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Summary. This paper deals with cyclic systems, such as for instance turboengines, in the presence of random mistuning
and geometrical nonlinearities. A new methodology based on cyclic components is proposed to create a nonlinear
reduced-order model. It is applied on a simplified bladed-disk with a cubic nonlinearity for both tuned and mistuned
cases. Internal resonances in which several modes of a system exchange energy are recovered. A comparison of the
amplification factor due to mistuning between the linear and nonlinear structures is given.

1 Introduction

This paper studies the dynamics of cyclic structures such as turboengines. For perfectly tuned linear systems,
Valid and Ohayon [1] proved that their model could be written in terms of cyclic components. As underlined
in [2, 3], the full system of equations, controlling the dynamics of the structure, can thus be split into multiples
much smaller cyclic systems. The modes associated with these cyclic components, also called nodal diameters,
form a modal basis of the equations of motion. The thorough review given by Mitra and Epureanu [4] presents
the properties of cyclic structures and underlines two ongoing problematics for such systems: the nonlinear and
the mistuning effects.
In this paper, geometrical nonlinearities are investigated. As the bypath ratio of turboengines is getting larger,
effects due to large deformation are getting more pronounced in recent practical applications. Such nonlinearities
couple the different nodal diameters of the system. Consequently the size of the cyclic system becomes equal to
the onde of the full system and applying cyclic symmetric properties loses its advantages. However combining
the specific cyclic geometry of the structure and nonlinear effects reveals some interesting complex phenomena.
These have been widely studied by the scientific community. Vakakis [5] studied the nonlinear characteristics
(similar modes, localization, energy transfer) of a simplified tuned cyclic structure and compared his result with
experimental ones [6]. Georgiades et al. [7] studied modal interactions occuring in cyclic structures. Sarrouy
et al. [8] proposed a methodology to determine the multiple periodic solutions of a tuned cyclic structure.
Internal resonances [9], transfer of energy from one mode to another, were investigated in these papers. More
recently Grolet et al. [10] and Fontanela et al. [11] studied the phenomenon of dark solitons in cyclic structures.
All of these papers solved the full system of equation which is time-consuming. Recently, we propose in [12]
a methodology to determine which nodal diameter gets coupled in a tuned cyclic structure. This allows to
decrease significantly the size of the problem and to express the nonlinearity in the cyclic domain. With this
strategy, employing the cyclic symmetry property gets again more computationally interesting.
Random mistuning corresponds to the presence of small imperfection in the cyclic structure, due to manufactur-
ing tolerances for instance. This theoretically breaks the cyclic symmetry property and the entire system must
be solved to capture exactly the whole dynamics. In terms of modal properties, the mistuning leads to a split
of frequencies of the degenerated modes as explained in [4, 5]. Methodologies [13, 14] that use cyclic symmetric
properties have been developed to reduce the size of the linear system of equations. They assume that the
motion of the system is mostly controlled by the tuned modes. In a series of papers, Bladh et al. [15, 16, 17]
proposed a new methodology to create a reduced-order model (ROM) in order to perform many simulations for
multiple random mistuning patterns. This probability study has provided an amplification factor curve with
respect to the level of mistuning. This amplification factor is defined as the ratio of the maximal displacement
of the mistuned structure over the tuned one. Such analysis is time-consuming, even for linear problems, but
the concept of amplification factor is extremely interesting for engines manufacturers. Studies [18] have shown
that intentional mistuning patterns (large and controlled difference between the sectors) reduce the impact of
random mistuning on the response amplitude and thus allow a better prediction of the system dynamics.
In this paper, both random mistuning and geometrical nonlinearity are considered. The objective is to present
a new methodology to create non-linear ROMs that can be used to predict amplification factor of nonlinear
mistuned structures. Section 2 presents how mistuning and nonlinearities can be taken into account in a cyclic
formulation. Section 3 details the new ROM methodology that is based on these cyclic components. The
simplified bladed-disk (blisk) used as test-case will be presented in Section 4. Finally, a probability approach
will then be conducted in Section 5 to determine the amplification factor for the linear and nonlinear blisk
systems.
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2 Cyclic symmetry formulation

This section first recalls the cyclic symmetric properties of a linear system before introducing nonlinearities and
mistuning.

2.1 Linear cyclic symmetric systems
Let consider a cyclic structure composed of N identical sectors (tuned system), such as the one illustrated in
Figure 1. The dynamics of the entire structure is described with the equation:

Mü +Cu̇ +Ku = fext, (1)

where M, C and K represent the mass, damping and stiffness matrices. The vectors u and fext denote the
displacement and the external forces associated with the entire structure. As detailed in [3, 12] the cyclic
symmetry property only requires to model a single sector (whose mass, damping and stiffness matrices will be
noted M0, C0 and K0). Applying the spectral Fourier matrix F (normalized by a factor

√
N) and the matrix

(Bk)k∈J0,KK (where K = N
2 if N is even and N−1

2 otherwise) which relates to a phase change function of the
nodal diameter considered between the left and right boundaries of a sector, one obtains the following decoupled
equation of motion in the cyclic domain for each nodal diameter k,

M̃k
¨̃uk + C̃k

˙̃uk + K̃kũk = f̃k, (2)

where M̃k = B̄T
k F̄M0FBk and similarly for the damping and stiffness matrices. The operators .T and .̄ denote

respectively the tranpose of a vector or matrix and the complex conjugate. The vectors ũk and f̃k represent the
cyclic component of the displacement and the external forces associated with the nodal diameter k. The initial
problem (Equation (1)) contains N×Ndof unknowns (with Ndof the number of degrees of freedom of one sector).
It is transformed into N independent problems with Ndof unknowns each (corresponding to Equation (2) applied
∀k ∈ J0,KK).
In turboengines application, one stage of blisk usually gets excited by another stage. This creates an excitation
force with specific properties: in most cases the excitation either follows a traveling or a standing wave pattern.
The associated wave number of the excitation force will be noted hex [19]. As a consequence, Equation (2)
needs only to be solved for this specific nodal diameter hex as the remaining nodal diameters are not excited
and therefore do not respond.

Figure 1: General cyclic structure. The cyclic symmetry property requires to model only a single sector such
as the one illustrated in grey color.

2.2 Nonlinear cyclic symmetric systems
In the presence of internal nonlinearities (the cyclic boundaries are assumed to be free of nonlinear forces), the
system (2) gets coupled from the nonlinear terms and needs to be solved for all k simultaneously. The equation
of motion in the cyclic domain becomes:

M̃k
¨̃uk + C̃k

˙̃uk + K̃kũk + f̃nl,k (ũ) = f̃k, ∀k ∈ J0,KK, (3)

where f̃nl,k (ũ) are the cyclic nonlinear forces for the k−th nodal diameter. Those are function of the displacement
written here in terms of cyclic components such that ũ =

[
ũT

0 , ..., ũT
K

]T . The components ũk for the degenerated
diameters (k ∈ J1,K−1K if N is even and k ∈ J1,KK if N is odd) are complex values. The nonlinear terms couple
a priori all nodal diameters. Therefore the system (3) has the same size as (1).
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In some of our recent work [12], we showed how to identify which nodal diameter get coupled for a given excitation
when the structure exhibits polynomial nonlinearities. Applying this methodology reduces the system (3) to
the following

M̃k
¨̃uk + C̃k

˙̃uk + K̃kũk + f̃nl,k (ũ) = f̃k, ∀k ∈ (km) , (4)

where km is a reduced set of the interacting nodal diameters found by the methodology explained in [12]. In
practice the nonlinear term f̃nl,k can be either obtained by calculating the nonlinear forces in the physical domain
(function of the displacement and using Fourier transforms back and forth) or by computing them directly in
the cyclic domain (see the method proposed in [12]).

2.3 Nonlinear mistuned cyclic symmetric systems
Only random mistuning (small variations between sectors) is considered in this work. Stiffness variations are
assumed but the method can be easily extended for mass or damping mistuning. Consider the cyclic system
illustrated in Figure 1 and assume that each sector shows a slight variation in its stiffness matrix such that, for
a sector j, its stiffness is defined with

Kj = K0 + ∆Kj , (5)

where ∆Kj denotes the mistuned part of sector j. In order to get the general equation of motion in the cyclic
domain, one applies the same cyclic symmetric procedure (the same projections) as explained above despite the
fact that the sectors are not necessarily all identical. The system of equations becomes

M̃k
¨̃uk + C̃k

˙̃uk + K̃kũk + ∆K̃k,aũ + ∆K̃k,b
¯̃u + f̃nl,k (ũ) = f̃ext,k, ∀k ∈ J0,KK, (6)

When applying the Fourier matrix, the physical mistuned matrix gets split into ∆K̃a and ∆K̃b. They are
respectively multiplied by ũ and its complex conjugate.. In (6), ∆K̃k,a and ∆K̃k,b represent these mistuned
parts impacting the k−th nodal diameter. The construction of these matrices follows standard linear algebra
from the cyclic symmetric properties and are not detailed here for brevity. As highlightened in (6), the mistuning
effect also creates coupling between the cyclic components (the whole ũ vector is present) and thus the system
must be solved for all nodal diameters simultaneously.
For better readibility, the different equations (6) for all k are concatenated using block diagonal matrices and
it gives

M̃¨̃u + C̃ ˙̃u + K̃ũ + ∆K̃aũ + ∆K̃b
¯̃u + f̃nl (ũ) = f̃ext (7)

The purpose of the new methodology presented in this study is to compute a nonlinear reduced-order model
(ROM) of system (7).

3 Methodology to create a nonlinear ROM

The following methodology is based on the theory of normal nonlinear mode (NNM) developed by Rosenberg [21]
and the synthesis procedure of Szemplinsky [22].

3.1 Evaluation of the NNMs
The first step of the proposed ROM creation is to compute the NNMs associated with the k−th cyclic component
of the underlying perfect cyclic symmetric system. They are defined as the solutions of the following autonomous
and conservative system associated with (4) in which only the nodal diameter k is taken into account in the
nonlinear term (the system is thus decoupled),

M̃k
¨̃uk + K̃kũk + f̃nl,k (ũk) = 0. (8)

The NNMs are computed with the Harmonic Balance Method (HBM) with a pseudo arc-length procedure [20].
The solution of (8) is supposed periodic of fundamental frequency ω and sought as

ũk =
Nh∑

n=−Nh

c̃k,neinωt. (9)

where Nh is the maximum number of harmonics retained and c̃k,n are the harmonics coefficients of the k−nodal
diameter. For a degenerated diameter, each harmonic coefficient is independent as ũk is a complex vector;
however for non-degenerated diameters, one has c̃n,k = ¯̃cn,−k and thus a real vector is obtained. Substituting (9)
in (8) and projecting the system on the exponential basis with the scalar product,

〈f,g〉= 1
T

∫ T

0
f (t) ḡ (t)dt, (10)
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one retrieves the HBM system of equations to solve with c̃k,n and ω as unknowns. The nonlinear forces are
evaluated with the Alternating Frequency Time (AFT) procedure [23]. In practice, for an intialization on
mode i, we only retrieve for each nodal diameter the harmonics coefficients −1 and 1: c̃i,k,±1. These are then
normalized by a control coordinate and are used to form the vector denoted later φnl

i,±1, which provides the
shape of the displacement for all DOFs parametrized by the control coordinate.

3.2 Synthesis procedure
The second step is to build a nonlinear reduction basis. The solution of (7) is sought after in the form of (11) for
each nodal diameter (index k). The cyclic displacement of each of these nodal diameters is defined with multiple
nonlinear modes (index i up to I) whose calculation is explained in Section 3.1, supplemented by multiple linear
modes (index m up to M).

ũk =
I∑

i=1

φnl
i,1

(∣∣∣αnl
i,n>0

∣∣∣)
 Nh∑

n=1
αnl

i,neinωt

+φnl
i,−1

(∣∣∣αnl
i,n<0

∣∣∣)
 −Nh∑

n=−1
αnl

i,neinωt


+

M∑
m=1

[
φlin

m

(
αlin

m,1eiωt +αlin
m,−1e−iωt

)]
∀k ∈ J0,KK.

(11)

The generalized coordinates associated with the NNMs are approximated with a Fourier expansion (of order
Nh) whose coefficients are αnl

i,n. As explained in [21], φnl
i,±1

(∣∣αnl
i

∣∣) depends on the amplitude of the generalized
coordinates and is thus evaluated via an interpolation process at every solver iteration. Linear modes can also
be added to the synthesis procedure if necessary and those are represented by mode shapes φlin

m and generalized
coordinates αlin

m,1 and αlin
m,−1. Equation (11) is the synthesis associated with a degenerated nodal diameter:

each NNM is split into two parts (the positive and negative harmonic coefficients) to respect the eigenvalue
multiplicity. For a non-degenerated diameter, the cyclic component is only controlled with its positive harmonic
(its negative counterpart is its complex conjugate). Mathematically the reduction (11) can also be written as

ũk =
Nh∑

n=−Nh

c̃k,neinωt, ∀k ∈ J0,KK, (12)

where the harmonic coefficients are sought after as

c̃−Nh
...

c̃n
...

c̃Nh

=
(
φnl (∣∣αnl∣∣) φlin)︸ ︷︷ ︸

Φ

αnl

αlin
1

αlin
−1


︸ ︷︷ ︸

α

, (13)

where c̃n = [c̃0,n, ..., c̃K,n]T gathers the n−th harmonic coefficients of all nodal diameters and αnl is the con-
catenation of

(
αnl

i,n

)
(i,n)∈J1,IK×J−Nh,NhK

. Similarly, the unknowns αlin
±1 contains the generalized coordinates

for the different linear modes. The matrix Φ is created by combining appropriately the different basis: the
NNMs and the linear modes. The solution (12) is substituted in (7) and the system is then projected in the
exponential basis (see Equation (10)). This gives:Z̃−Nh

· · · 0
...

. . .
...

0 · · · Z̃Nh


c̃−Nh

...
c̃Nh

+

 0 · · · ∆K̃b
... ...

...
∆K̃b · · · 0


¯̃c−Nh

...
¯̃cNh

+

c̃fnl,−Nh
...

c̃fnl,Nh

=

c̃fext,−Nh
...

c̃fext,Nh

 (14)

where Z̃n = (inω)M̃ + (inω)C̃ + K̃ + ∆K̃a is the dynamical rigidity matrix associated with the harmonic n ∈
J−Nh,NhK. The vectors c̃fnl,n and c̃fext,n gather the n−th harmonic coefficients of all nodal diameters for the
nonlinear and external forces. The nonlinear forces are evaluated with the same procedure as the one explained
in Section 3.1. The harmonic coefficients in (14) are then substituted by (13). Finally, the last stage of the
ROM creation is premultiplying this equation by ΦT ,(

Φ̄T Z̃Φ
)
α+

(
Φ̄T

(
J1+2Nh

⊗∆K̃b

)
Φ̄
)
ᾱ+ Φ̄T c̃fnl = Φ̄T c̃fext , (15)

where Z̃ is a block diagonal matrix containing
(
Z̃n

)
n∈J−Nh,NhK. The vectors α, c̃fnl and c̃fext are vertically

concatenated. The matrix J1+2Nh
is the exchange matrix (J1+2Nh,i,j = δ2Nh+2−i,j).

To couple the different modes, the nonlinear forces (term c̃fnl) are evaluated with the AFT procedure while
solving (15). 4



Even though the notation suggests that the same expansion is performed for each nodal diameter, the new
methodology can be adjusted and each nodal diameter written with different modal basis and harmonic expan-
sion.
This formulation is different from the synthesis proposed by Krack et al. [24] for the following reasons: the
reduced Equation (15) uses cyclic components, a multi-harmonic expansion and a reevaluation of the nonlinear
forces (once with the NNM evaluation and once with the synthesis stage).
In practice, the unknowns of system (15), α, are solved with a Newton-Raphson solver. For better efficiency,
the semi-analytical jacobian of this system is provided to the solver. The work of Joannin et al. [25] provides
insights on how to compute the jacobian in a similar problem.

3.3 Choice of nodal diameters and modes
The methodology proposed is efficient if the user chooses wisely the NNMs to compute, the linear modes and
the HBM expansion order. As explained in Section 2, turboengines are usually excited by a specific excitation
force with a given wave number hex. Moreover only random mistuning is accounted in this paper which induces
an assumed slight variation around the tuned response of the system.
As a consequence, only NNMs of the nodal diameters that interact in the tuned system (see [12]) are evaluated.
In the case of a mistuned structure, corrections are made possible by taking into account the linear modes of
the remaining nodal diameters.
The selection of which modes to compute depends on the probability of the appearance of internal resonances
and thus on the spectral repartition of the natural frequencies of the system.

4 Application for a tuned and a mistuned blisks

The purpose of this Section is to validate the methodology explained in Section 3. The reference solution used
for validation is the HBM employed on the full system with Nh = 3 harmonics. Comparison of computation
time between the reference solution and the ROM procedure is provided in Section 4.4.

4.1 Simplified model and ROM creation
The proposed methodology is tested on a simplified blisk composed of N = 24 sectors, one of which is illustrated
in Figure 2. A cubic nonlinearity is applied at the tip of the blade to model symmetric large displacement. This
test case was already used in [12] to study a perfectly tuned structure. The mass, damping and stiffness values
can be found in Tables 1 and 2 of the aforementioned article. Figure 3 represents the natural frequencies of the
underlying linear tuned system. In the remaining of the article, an external force with hex = 3 is applied and is
set to excite the first mode of the nodal diameter 3 of the system. Based on [12], we know that the third and
ninth nodal diameters will be coupled. Moreover, Figure 3 allows to see that the first and third modes of the
nodal diameter 3 are almost commensurable, and similarly for the first and second modes of the ninth nodal
diameter. As a consequence 1:3 internal resonances may occur. The NNMs computed will therefore be those
associated with these 4 natural frequencies (depicted by red circles in Figure 3). In the rest of this section, the
reduction basis used is composed of these 4 NNMs, expanded with the HBM up to Nh = 3, associated with
more or less linear modes depending on the situation.

m1

k1

k3

fext,0 (t)

knl

Figure 2: Description of the simplified blisk.
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Figure 3: Natural frequencies for each nodal diameter.
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The tuned system is first studied in Section 4.2. Section 4.3 focuses on mistuning and a random mistuning
pattern is introduced on top of the spring stiffness values k1 and k3, see Figure 2. The new stiffnesses are
defined as

km,i = ki (1 +εξi) , i ∈ {1,3} (16)

where km,i is the mistuned stiffness value used instead of ki (i = 1 ou 3). The parameters ε and ξi are the
mistuning parameters: ε controls the level of mistuning (ε ∈ [0,1]) and ξi is a random value taken from an
uniform law in [−0.1,0.1]. Table 1 provides the random mistuning pattern used in this section.

Sectors S1 S2 S3 S4 S5 S6 S7 S8
ξ1 (in%) 0.0094 −8.8 −9.2 0.43 6.4 4.4 3.2 9.5
ξ3 (in%) −0.583 3.6 −8.6 −8 6.4 −7 0.37 3

S9 S10 S11 S12 S13 S14 S15 S16
6 −1.4 −8.3 −6.5 6.6 −8.8 0.54 3.1

−0.92 6.5 −7.3 −2.2 6.1 −2 −1.7 2.6
S17 S18 S19 S20 S21 S22 S23 S24
−4.2 −9.7 −6.7 −2.6 −0.21 −9 −8.9 −4.6
−1.4 9.7 −7.9 −6 −3.2 8.4 4.8 −1.5

Table 1: Numerical values used for ξ.

For each simulation, a bifurcation analysis [26] and branch switching algorithms [27] are performed. Solving (15)
provides the generalized coordinates which can then be employed to recover the displacement of the entire
structure. In the following section, the results illustrated are the displacement amplitude of the mass m1 for
the third and ninth nodal diameters. Those are noted respectively ũ3 and ũ9.

4.2 Results for the tuned structure
First the ROM procedure is validated for the tuned model. The external force is applied on mass m1, and is
defined as:

f̃ext,3 = 25
(
e−iωt + eiωt

)
. (17)

This high amplitude force was chosen to exhibit multiple nonlinear phenomena for the tuned case and thus to
verify the accuracy of the ROM for these complex situations.
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Figure 4: Frequency forced response for the tuned system. ( ): reference solution; ( ): ROM solution for the
stable main branch; ( ): ROM solution for the unstable main branch; ( ): ROM solution for the bifurcated
branch; ( ): bifurcation points.

The results obtained with the ROM procedure and the reference solution are provided in Figure 4. Two
branches are represented: the main branch of solution and a bifurcated branch initiated from a symmetry-
breaking bifurcation (only the stable part of this branch is represented in Figure 4). The ROM solution
perfectly matches the reference solution with a huge computational time saving as detailed in Table 2. Multiple
internal resonances are obtained in Figure 4. They are highlightened by arrows and number and the harmonics
coefficients of the response at these points are represented in Figure 5. For the peak numbered 1, on the main
branch, ũ3 mainly responds with its first harmonic (see Figure 5a); however ũ9 responds both on its first and
third harmonics. It shows that a 1:1 and 1:3 internal resonances have taken place. For the peak numbered 2,
still located on the main branch, the amplitude of ũ9 is higher than ũ3 (see Figure 5b) and is mainly due to
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its first harmonic. An 1:1 internal resonance is occuring. Notice that for both of these peaks, the solution has
a standing wave form similar to the external force (because c̃k,n =−¯̃ck,−n). For the peak numbered 3 located
on the bifurcated branch, the solution has a forward traveling wave shape (because c̃k,n<0 6= 0 and c̃k,n>0 = 0).
Moreover Figure 5c shows a 1:3 internal resonance.

−3 −1 1 3
0

1

2

3

4

5 ×10−3

Harmonic number n

∣ ∣ c̃
k,

n∣ ∣

(a) Peak 1 (main branch).

−3 −1 1 3
0

0.2

0.4

0.6

0.8

1

1.2 ×10−3

Harmonic number n

∣ ∣ c̃
k,

n∣ ∣
(b) Peak 2 (main branch).

−3 −1 1 3
0
1
2
3
4
5
6
7
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Harmonic number n

∣ ∣ c̃
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(c) Peak 3 (bifurcated branch).

Figure 5: Amplitude of the harmonics coefficients of the response at the three peaks mentioned in Figure 4.
( ): c̃3,n; ( ): c̃9,n. The second harmonic is not represented as it is exactly equal to 0.

The same model was used in [12] with a different reduction procedure and similar results were obtained. Overall,
this example has shown that the proposed ROM is perfectly able to recover complex phenomena such as internal
resonances and branch switching for a tuned system.

4.3 Results for the mistuned structure
The random mistuning pattern given in Table 1 is now introduced in the system. Three values of ε are studied:
0.01, 0.1 and 1, corresponding respectively to a deviation of 0.1%, 1% and 10% between the tuned and mistuned
systems. A traveling wave excitation is applied on m1 such that

f̃ext,3 = 2.5e−iωt. (18)

This force is 10 times smaller than the standing wave force used for the tuned case and its amplitude is more
typical of turboengines applications.
For ε= 0.01 and ε= 0.1, the nonlinear basis is supplemented with all the linear modes below the threshold 1 of
Figure 3 (represented by the dashed green line T1) that are used to take into account the other nodal diameters.
For ε = 1, the system is largely mistuned (10% deviation) and the first three modes of each nodal diameter
are included in the reduction basis (represented by the dashed green line T2 in Figure 3). For this system, all
nodal diameters are coupled and respond; however only the third and ninth nodal diameters will be represented
as they control the main dynamics. The stability of the response was not studied as the main purpose of the
article is to validate the accuracy of the ROM with respect to the reference solution.
Figure 6 represents the forced response for the three values of ε. For these different configurations, no bifurcated
branch was obtained. As ε increases, the amplitude of ũ3 and ũ9 decreases. The energy initially contained in
these two nodal diameters is gradually transfered to the rest of the nodal diameters due to the mistuning effect.
Moreover, we can observe the appearance of multiple linear resonances for the third and ninth nodal diameters.
This is expected as frequency splitting occurs [28]. The new methodology perfectly matches the result of the
reference solution.
In mistuned systems, detecting internal resonances is an arduous task as all nodal diameters are expected to
respond. Figure 7 represents the harmonic coefficients of ũ3 and ũ9 for the peaks represented in Figure 6. For
peak 1 of Figure 6a (ε= 0.01), the solution shows a traveling shape and the third harmonic of ũ9 is dominant. It
gives evidence to a 1:3 internal resonance (see Figures 7a). Similar results are obtained for peak 3 of Figure 6b
(ε= 0.1) as shown in Figures 7b. The peaks 2 and 4 for the ε= 0.01 and ε= 0.1 are associated with a standing
wave solution as depicted in Figures 7d and 7e for instance. For both peaks of Figure 6c (ε = 1), the solution
has a standing wave shape and only the first harmonic responds for ũ3 and ũ9.
Obtaining a standing wave solution, even though the excitation is defined with a traveling form, was expected
for mistuned system [28]. However Figure 7 presents an interesting trend: as ε increases, the internal resonances
progressively disappear. Studying succesively Figure 7a, 7b and 7c (increase of ε), one can observe that the
amplitude of the third harmonic of ũ9 diminishes in aid of the first harmonic. As a consequence, it is expected
that large mistuning would remove internal resonances. In order to make a definitive statement, further studies
should be conducted but these are beyond the scope of this paper
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(b) ε = 0.1.
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(c) ε = 1

Figure 6: Frequency response function for different levels of mistuning. ( ): linear response; the rest of the
legend matches the one of Figure 4.
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Figure 7: Harmonics content for the response on the six peaks of Figure 6. The legend matches the one of
Figure 5.
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4.4 Computation time comparison
For both tuned and mistuned systems, the proposed ROM has shown great accuracy and enables to recover
complex nonlinear phenomena. Table 2 compares the computation time between the ROM and the reference
solutions.

Test case Method Number of unknowns Computation time (min)

Tuned system Reference 720 24
ROM 48 3

Mistuned system (ε= 0.01) Reference 720 59
ROM 108 24

Mistuned system (ε= 0.1) Reference 720 145
ROM 108 43

Mistuned system (ε= 1) Reference 720 202
ROM 186 81

Table 2: Computation time for the different test cases and methodologies. The simulations were run on a
standard computer with Intel Core i7 2.30GHz 8Go.

The computation time of the new methodology is greatly reduced compared to the reference solution (2 to 8
times faster). The computation time of the NNMs is not taken into account in Table 2 as it is negligible (below
20s and needs to be computed only once for all simulations).

5 Amplification factor

When considering mistuned systems, turboengineers are used to study the maximal amplitude of the (physical)
displacement obtained over all sectors. The amplification factor (AF) is defined as the ratio between this
maximum amplitude and the amplitude of the (single) peak obtained in a perfectly tuned system. This is
illustrated in Figure 8 for the linear case. We propose a similar definition in the presence of nonlinearity, see
Figure 9. Both of these Figures are obtained on the test case of Figure 2 with a 2.5N traveling wave excitation
and hex = 3. The mistuning pattern is the one presented in Table 1 with ε= 0.1.
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Figure 8: Tuned ( ) and mistuned ( ) linear fre-
quency forced responses.
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Figure 9: Tuned ( ) (respectively ( )) and mistuned
( ) (respectively ( )) nonlinear frequency forced re-
sponses obtained with the ROM (respectively the ref-
erence solution).

The amplification factor relates to the amplification of the response due to the mistuning. In practice, one must
generate a large number of random mistuning patterns to determine the overall behaviour of the AF. Extended
studies have performed such tasks [17, 29] for linear systems. For instance, to determine accurately the 95th

AF threshold (corresponding to 95% of mistuned blisks below this AF), one way is to launch a Monte Carlo
simulation with a large number of samples. The simulation consists in randomly picking a large number of
mistuning patterns (for a given law), and sweep the excitation frequency for each of them to determine the
associated maximal amplitude. If one wants to reach a given accuracy, then the larger the AF-threshold, the

9



more simulations must be run. These calculations are time-consuming but it was shown, for instance in [17], that
the distribution of the AF law was a three-parameter Weibull law, and this allows to reduce greatly the number
of simulations needed. In the following, we have used a Weibull law reconstructed with only 50 simulations.
We have run these simulations for a 2.5N traveling force and hex = 3. The mistuning definition follows Equa-
tion (16) with ε= 1 and ξ is taken within an uniform law with 15 different standard deviations (from 1% to 15%
with a step of 1%). Figure 10a represents the AF with respect to the standard deviation for the linear system.
Figure 10b provides the same information for the nonlinear system. For both of these Figures, the 95th, 50th

and 5th percentiles (percentage of systems below the threshold) are represented. The maximum AF is obtained
for εmax ≈ 3% for the linear system and εmax ≈ 9% for the nonlinear one. The value of the maximum AF is
close to 1.9 for the linear system and 1.8 for the nonlinear one. Beyond this value of εmax, the AF decreases.
This behaviour has already been observed, in [29] for instance. The ROM solution matches well the reference
solution with a significant computational time saving: the trend is correctly captured and errors are below 7%
for a high level of mistuning.
Notice that the results were obtained with a specific excitation force. While Figure 10a remains valid for other
levels of excitation (at hex fixed), the nonlinear results of Figure 10b are expected to vary. For a complete map
of the influence of the mistuning, one must run these computations for all values of hex as well as for different
force amplitudes.
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(a) Linear Solution.
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(b) Nonlinear solution for the ROM/reference procedures.

Figure 10: Amplification factor with respect to the deviation of the random mistuned pattern. ( ):95th

percentile; ( ): 50th percentile; ( ): 5th percentile. The blue, red and green colors denote respectively the
linear case, the ROM and the reference solutions for the nonlinear case.

6 Conclusion

This paper presented a new reduced-order model methodology based on the computation of cyclic normal
nonlinear modes. It is able to handle randomly mistuned cyclic structures while exhibiting complex nonlinear
behaviour such as internal resonances. The method has been validated for a simplified blisk and has shown
great accuracy while reducing significantly the computation time.
A probabilist study was conducted to study the impact of both the nonlinearity and the mistuning on the
amplification factor of the system. For both linear and nonlinear systems, mistuning may lead to an amplification
of 90% in the response. This maximum is however reached for different values of standard deviation. For both
systems a plateau is reached after a relatively large value of standard deviation.
This new methodology is expected to be applicable and efficient for finite-element models of engineered struc-
tures. It thus offers probabilist opportunities which, at this date, could not be achieved. However, applying the
same procedure to intentional mistuned structures (large discrepancies between the blades) is expected to be
less efficient because the system is no longer close to its tuned counterpart.
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