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Stochastic resonance in a parametrically perturbed aeroelastic system
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Summary. In this work, we investigate the effect of parametric noise on a classical two degree-of-freedom pitch-plunge aeroelastic
system and study the manifestation of stochastic resonance in the same. The non-dimensional form of the governing equations are
studied, considering nonlinear soft-springs. The reduced velocity of the flow is modelled as a stochastically varying parameter by the
Ornstein-Uhlenbeck (OU) process. This parametric noise significantly changes the qualitative dynamics of the system. One such new
qualitative dynamics that we observe is noise induced intermittency, where the system hops between two attractors– ~0 fixed point and
a stable limit cycle oscillation (LCO). Next, we fix the mean reduced velocity near the onset of bifurcation and examine effect of noise
intensity. We see that the signal to noise ratio (SNR) of the system responses reaches a maxima for an optimum value of the noise
intensity. This characteristic feature in the aeroelastic system perturbed by parametric noise indicates the phenomenon of stochastic
resonance.

Introduction

The response of an elastic structure in a fluid flow is a very important research area as the applications range from aeroe-
lastic system design to design of tall buildings, bridges [1]. The design of these structures requires careful consideration
as there is interplay between three kinds of forces — inertial, elastic and aerodynamic forces. The interaction between the
three forces can cause the structure to exhibit LCOs, which is undesirable as it can cause fatigue failure in the structure
[2]. These self-excited LCOs of the structure is termed as the flutter phenomena. Recently, a lot of importance is being
given to the role played by parametric noise in such engineering systems [3, 4]. Noise is known to bring drastic qualitative
changes in the dynamical behaviour of such systems. One important feature in physical and biological systems subjected
to noise is the phenomenon of stochastic resonance [9, 10], which manifests due to a change in noise intensity. It is known
that such systems attain a maximum SNR at an optimum noise intensity. Inspired from these works, we make an attempt
to study the effect of parametric noise and the role played by the noise intensity on a classical pitch-plunge aeroelastic
system.

Methodology

The aeroelastic system is modelled as an airfoil undergoing motion in the pitch and plunge degrees-of-freedom under a
steady, uniform incoming flow and is based on the model by Lee et al [6, 7]. The non-dimensional governing equations
of motion are given in Equation 1.
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where xαb is the distance between the elastic axis and the centre of mass of the airfoil, rαb is the radius of gyration of
the airfoil, b is the semi-chord length of the airfoil. ′ denotes differentiation with respect to non-dimensional time, ε is the
non-dimensional plunge of the elastic axis, α is the pitch of the elastic axis, U is the reduced velocity, ω̄ is the ratio of
uncoupled natural frequencies in the plunge to the pitch mode, µ is the mass ratio, βα and βε denote the coefficients of
the cubic term of stiffness in the pitch and plunge modes respectively, ζα and ζε are the damping ratios in the pitch and
plunge modes respectively. CL and CM are the lift and moment coefficients respectively, which are derived based on the
Wagner function formulation [5]. The springs are assumed to be soft springs (βα is −ve).

Noise model
The reduced velocity U in Equation 1 is stochastically modelled as an OU process, which is generated by the Stochastic
Differential Equation (SDE) given in Equation 2

dU = λ(Um − U) dt+ σ dW (2)

where Um is the mean reduced velocity, λ is the inverse of the correlation time, σ is the noise intensity – parameters
of the OU process, W represents the standard brownian motion. The generated process has a correlation RUU (∆τ) =
exp(−λ∆τ) with variance σ2/(2λ). The entire system when cast in state space form looks like Equation 3

d ~X = f( ~X,U, τ) dτ

dU = λ(Um − U) dτ + σ dW (3)

where ~X consists of the system and auxillary variables (see [6, 7]). The Equations in 3 are interpreted as an Itô SDE and
are integrated by using the Euler-Maruyama method [8, 9].
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Results and Discussions

Firstly, the bifurcation behaviour of the deterministic system is studied by varying reduced velocity (U ). The system
undergoes a sub-critical Hopf bifurcation (flutter point, U = 6.29) beyond which it gets attracted to a stable LCO. The
unstable LCO takes a turn and becomes the stable LCO branch (turning point, U = 5.93). Now we investigate how
these responses get altered in the presence of parametric noise. Figure 1 (a) and (b) show time histories of U(τ), α(τ)
respectively for σ = 0.37 and Figure 1 (c) and (d) shows the same for σ = 0.27. For Um = 6.25 the system starts to
display hopping dynamics (Figure 1 (b) and (d)), wherein it intermittently switches between the~0 fixed point and the LCO.
This effect is solely due to the presence of parametric noise in the system and is dubbed as noise induced intermittency
in the literature [3, 11]. Next, we fix Um = 6.25 and vary the noise intensity σ. As σ is increased, the SNR value of
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Figure 1: Time histories for α(τ) and U(τ). (a) and (b): σ = 0.37, (c) and (d): σ = 0.27

the response increases as the system starts spending greater amounts of time in the LCO attractor. Further increase in σ
leads to a decrease in the value of SNR due to frequent switching between the attractors and the dynamics gets dictated
by the noise. This is further confirmed by plotting the power spectra and mean residence times of the responses. This
phenomenon where the SNR reaches a maxima for an optimum value of intensity of the noise is termed as stochastic
resonance [9, 10] and is being reported in the aeroelastic system for the first time.

Conclusions

We have investigated the effects of parametric noise on the considered aeroelastic system. The introduction of parametric
noise in U , modelled as an OU process brings about drastic changes in the system dynamics. The system starts hopping
between the two attractors and displays a new state of intermittent oscillations. The phenomenon of stochastic resonance
is observed when the noise intensity σ is varied. These changes in the system dynamics and the manifestation of stochastic
resonance brought on due to the parametric noise presents new challenges during design and use of aeroelastic systems.
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