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Summary. We develop two frameworks for “freezing” modulationally unstable wave packets of gravity waves over an uneven bottom
modeled by a finite-depth third-order non-linear Schrodinger equation. We compare with experimental results in a 30 m wavetank
featuring a sharp depth transition and propose a theoretical route for stabilizing of the modulated wave packets over an “adaibatic”
depth variation.

Theoretical framework and experimental setup

We consider the stabilization of modulationally unstable wave packets within the framework of the nonlinear Schrodinger
equation (NLS) in variable water depth [1].
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This is possible thanks to the simultaneous dependence of the parameters o and /3 in Eq. (1) on the adimentional depth
(kh), and has also been verified in an optical fiber experiment [4], where there is even more freedom to change the
parameters.

We provide two frameworks for the understanding and development of the stabilization, or “freezing”, of highly mod-
ulated waves. The first theoretical framework is to connect a solution related to modulationally unstable waves, such as
the Akhmediev breather (AB), to a solution like the dnoidal function which is related to a stable wavepacket. The second
consists in reducing the phase space to that of a carrier wave of frequency wq and the first two sidebands at wg & 2 (the
so-called three wave picture). In this context, “freezing” the wave packet corresponds to an expansion of a homoclinic
orbit and its transformation into an elliptic fixed point through the simultaneous variation of the NLS parameters « and 3.
We experimentally demonstrate this process in a 30 x 1 m? water wave tank with a fake bottom floor as shown in figure
1 (a), and provide a rigorous theoretical description of this process for a sharp change in bathymetry [3]. We also provide
a stabilization route when the bathymetry change is very slow [2]. The theoretical predictions in the three-wave picture
and the measurements show that the relative phase among the side-bands locks to 7 and their relative amplitude oscillates
around a finite value (fig 1, panels on the right). As shown in figure 1, apart from a 10% conversion to higher-order
side-bands, this implies that the breathing stage of modulation instability (MI) is indeed frozen. We confirm that this
complex wave dynamics is robust and such control of MI processes is feasible in a realistic experimental system. Our
results highlight the influence of topography and how waveguide properties can influence and manipulate the lifetime of
nonlinear and extreme waves.
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Conclusions

We study the nonlinear stage of evolution of modulational instability in surface gravity waves over a water body of
increasing depth. We show that this stage can be stabilized and results in a uniform train of pulses on a background.

The initial condition does not need to be restricted to an exact NLS solution (as ABs), since we have shown that freezing
occurs also in a three-wave system.

We have found a theoretical condition to dynamically stabilize unstable nonlinear waves. While the approach applies
to any system described by the NLS equation, and could therefore be easily generalized to other dynamical models, we
have experimentally confirmed our finding for the specific case of wave hydrodynamics. A sharp change in water depth
simultaneously modifies the dispersion and nonlinearity experienced by surface gravity wave packets, thus dramatically
modifying their dynamical behaviour. In the case of ABs, the separatrix expands and ends up enclosing the system
trajectory, which is stabilized around an elliptic fixed point. This jump can be described as the optimal matching of an
initial AB solution to a steady dnoidal solution of the universal NLS equation, illustrating the generality of this wave
control process.

Although the flexibility available to vary parameters in the hydrodynamics of surface water-waves is much less than
in other physical systems, such as optical fibers, our results help to clarify the possibility to dynamically control the
breathing evolution of water wave-packets and to understand the impact of bathymetry on the persistence (or lifetime) of
rogue waves.



ENOC 2020+2, July 17-22, 2022, Lyon, France

E;‘}E)(;ﬂmcm with StQCP Experiment without step —e—1 mo--0o-m o+ m
Bathymetry rom 3.07 to 5.20 kh= 3.05 Experiment Simulation
T
i () © @ o @'
T — , " " \
243, %3 st s s\w o \/—\
22.65 | 22,65 Pt AR RAN At U -
3
— 205 20.5 ettt i N W m Mol @ == =0==-00.-0--G (L
g [ e ! £ (0 (=)
- | SN 02
21745 17.45 pffivesi| et st Wt et e et . .o,
= Lo oo et o TN
8 s -
o | Mot It ! 1 Ml 6----0
g 144+ 14.4 | | -~ 02 02
£ 133 13.3 |t [t et ol pmtl et ot . ;
£ (h) (i)
T 8.95 ki fmenisecsiianest il ineosifitlinttlty g+ S 05 = 05
£ S
% z
A = o--06.-0- 0 N
5] k
E (.l)0 ) P ( 0)2
= °
e -
K AR fh A AN K A AN AN 3 S0 —‘0‘)' o
1.45 1.45 pn ! ! V \ S O----o”
0.2 0.2
324 552 70 75 80 8 90 95 70 75 80 85 90 95 0 5 10 15 20 243 [} 5 10 15 20 243
h (cm) t—x/Cy (s) t—x/Cy (s) Distance to wave maker (m) Distance to wave maker (m)

Figure 1: Left: (a) Water wave flume with artificial floor setup (cyan line), and the constant floor setup (dashed coral line). (b) Wave
height at each recorded position for the experiment with variable bathymetry, multiplied by a factor 20; the gray stripe indicates the
position of the step. (c) Wave height at each recorded position for the experiment with constant bathymetry, multiplied by a factor 20.
(d)-(k) Sideband evolution of the AB-type surface water wave over the adopted bathymetry with the depth step (d),(e),(f),(g), and the
constant flat bottom ho (h),(i),(j).(k). Here the initial condition for the envelope is of the form U, T = 0) = upe'®° + upe’tr 4
u_1e”*¥-1 the sideband fraction n; = |u;|?/(Juo|® + |u1|? + |u_1|?) and the relative phase 1 = (o1 + ©_1)/2 — @o. (d)—(h)
Sideband dynamics as identified from the eight gauge measurements, connected by a linear interpolation; (g)—(i) corresponding NLS
equation-simulated evolution. (d),(e),(h),(i) Sideband fractions 7o, 11, 772 of modes at detuning O (carrier), 2, and 22, respectively.
(£),(2),(),(k) Phase v of first-order sidebands (modes at £2) relative to the carrier frequency .
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Figure 2: Evolution of the envelope amplitude (shown in meters on the colorbar) from a perturbated plane wave initial condition to a
stabilized modulated wave packet over a constant slope from 2 m to 5 m.
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