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Nonlinear kinematics of a moored axisymmetric wave energy converter
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Summary. Mathematical models for wave energy converters (WECs) are naturally germinated from the models in classical offshore
engineering applications, where the assumption of linear kinematics and dynamics is commonplace. However, while the assumption of
linear, small amplitude, motion fits traditional offshore problems (it is desirable to stabilize ships, boats and offshore platforms), it is
not representative of the expected (and desired) motions of a WEC, since the main objective is to enhance the response and maximize
power extraction. The inadequacy of linear models for many wave energy applications has led to an increasing number of publications
and codes implementing nonlinear hydrodynamics. However, nonlinear kinematics has received little attention, since few models yet
consider six degrees of freedom (DoFs) and large rotations. This paper implements a nonlinear kinematic model for one of the most
well established WEC concepts: an axisymmetric heaving point absorber with single taut line mooring. The influence of the nonlinear
kinematics are demonstrated and potential sources of numerical instability in yaw are discussed. Finally, the model is also used to
articulate parametric resonance in roll/pitch.

Introduction

The kinematics and dynamics of floating bodies is traditionally related to offshore engineering problems, such as: naval
applications and the design of large oil and gas platforms [1]. For these applications, the main objective is usually
to stabilize the motion of the floating objects, therefore the resulting small amplitude motions are within the limits of
where linear theory is sufficiently accurate for modelling the system. However, contrary to these conventional offshore
applications, wave energy converters (WECs) are designed and controlled with the objective of enhancing the wave
induced motion to maximize power absorption [2]. Therefore, it is often the case that linear models become inapt to
accurately predict the behaviour of a WEC . The fidelity of mathematical models is crucial for a reliable estimation of the
cost of electricity and for the effectiveness of model-based control strategy [3], which are essential for achieving economic
viability [4, 5]. Including nonlinearities in energy-maximising control strategies is both essential and possible [6].
As the wave energy field grows in experience and maturity, the necessity of nonlinear models, for a comprehensive
design of most WEC types, becomes increasingly apparent [7, 8, 9]. While fully-nonlinear models, such as the ones
solving Navier-Stokes equations, achieve high accuracy, they are not computationally viable for control or optimization
applications. Considering the more computationally convenient partially-nonlinear models based on potential theory, most
of the research is focusing on nonlinear hydrodynamics, namely on the modelling of nonlinear Froude-Krylov, radiation,
or diffraction forces, or on viscous effects [10, 11, 12, 13]. However, little effort is found towards modelling nonlinear
kinematics [14].
The consideration of nonlinear kinematics is usually necesssary for systems with large amplitude motion and multiple,
coupled degrees of freedom. The inclusion of nonlinear kinematics is shown to be important in applications such as
biomechanics [15, 16], robotics [17, 18], transportation [19, 20], tracking control [21, 22] and design of manipulators
[23, 24], to name a few. However, for wave energy applications, numerical models employed to simulate the dynamic
behavious of WECs generally assume the motion to be planar, in the direction of wave travel, with up to 3 DoFs considered
(horizontal translation, vertical translation and rotation in the resulting plane: surge, heave and pitch, respectively) [25].
Moreover, the rotational displacement and velocity are normally assumed to be small. Few nonlinear studies are performed
in 6-DoFs, especially considering roll/pitch parametric resonance or yaw instability [26, 27]. Parametric resonance is
usually detrimental, but the ability to model it can enable more efficient harvesting instead [28, 29].
This paper presents a nonlinear model relevant for wave energy applications, including both nonlinear kinematics and
nonlinear hydrodynamics. Typical WEC modelling approaches are challenged, discussing potential issues arising from
employing the usual simplifying assumptions. In particular, potential numerical instability may arise from neglecting the
mooring line torsional stiffness and viscous dissipation.

Mathematical model for a moored axisymmetric floater

The case study, schematically shown in Figure 1, is the archetype of the popular WEC concept known as a “point absorber”
(since its dimensions are small compared to the wavelength such that it can be virtually approximated by a single point).
Consequently, a natural choice is to design point absorbers to be independent of the incoming wave direction, so they are
normally axisymmetric. The energy extraction results from the relative movement between the buoy and a fixed point on
the sea floor. The buoy is attached to the sea floor by a single taut mooring line.
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Figure 1: Cylindrical point absorber, with a single taut mooring line tethered to the sea floor (at depth h). Both the inertial frame
(x, y, z) and the body-fixed frame (x̂, ŷ, ẑ) have their origin at the still water level (SWL). The floater is shown at rest (in transparency)
and displaced. The mooring line has axial stiffness Kmoor , initial length L0 and elongation ∆L. The device can rotate with respect to
the mooring line.

Reference frames
Two right-handed frames of reference are defined, as schematically shown in Figure 1. The first one (x, y, z) is world-
fixed, inertial, with the origin at the still water level (SWL) and on the centre of the buoy at rest, with the x−axis along
and in the same positive direction of the wave propagation, and the z−axis pointing upwards. The inertial frame is used
to describe the body displacements (ζ), divided into translations (p) and rotations (Θ):

ζ =

[
p
Θ

]
, p =

xy
z

 , Θ =

ϕθ
ψ

 , (1)

The second right-handed frame of reference is (x̂, ŷ, ẑ), body-fixed, hence non-inertial, with the origin at the center of
gravity of the floater. This is used for writing the dynamic equation of the system, since the inertial matrix remains
constant. Therefore, both forces and velocities are represented in the body-fixed frame, along the axis of the buoy.
Velocities (ν), divided into translation (v) and rotations (ω), are defined as:

ν =

[
v
ω

]
, v =

uv
w

 =

 ˙̂x
˙̂y
˙̂z

 , ω =

pq
r

 . (2)

Kinematic mapping
It is worth remarking that forces and velocities are along time-varying axes, while displacements are along fixed axes. In
linear hydrodynamic models there is no difference between such axes, based on the assumption of small displacements.
However, in a nonlinear approach, a mapping from body- to world-frame velocities should be applied, at each time step,
in order to obtain the correct displacements. One possible mapping is the following:

ζ̇ =

[
ṗ

Θ̇

]
=

[
RΘ 03×3

03×3 TΘ

] [
v
ω

]
= JΘν, (3)

where RΘ is the rotation matrix, depending on the Euler angles Θ, defined according to the 3-2-1 convention as:

RΘ = Rẑ,ψRŷ,θRx̂,ϕ =

cψ −sψ 0
sψ cψ 0
0 0 1

 cθ 0 sθ
0 1 0

−sθ 0 cθ

1 0 0
0 cϕ −sϕ
0 sϕ cϕ

 , (4)
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with c and s standing for cos() and sin() trigonometric operators, respectively. RΘ is applied to translational velocities.
TΘ is applied to rotational ones, and is defined as follows:

TΘ =

 1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

 , (5)

where t stands for the tan() trigonometric operator. Note that the singularity of TΘ in ±π/2 is usually not an issue in
wave energy applications, since the amplitude of the pitch angle is, by design, always expected to be smaller than π/2.

Coriolis and centripetal forces
Another consequence of using a body-fixed frame are Coriolis and centripetal forces, which are normally neglected under
the assumption of small rotational velocities. Let us define, for convenience of notation, the skew-symmetric operator
S : R3 → R3×3 as

S :

λ ∈ R3

∣∣∣∣∣∣S(λ) ∆
=

 0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

 . (6)

Using such a notation, it is possible to define Coriolis and centripetal forces as:

FCor = −CCorν = −
[

MS(ω) −MS(ω)S(rg)
MS(rg)S(ω) −S(Irω)

] [
v
ω

]
, (7)

where M is the mass of the body, rg is the vector from the origin of the body-fixed frame (reference point) to the centre
of gravity, and Ir is the matrix of the moments of inertia with respect to the reference point. If the reference point is
coincident with the center of gravity, then rg is the null vector and Ir is a diagonal and minimal matrix, with Ix, Iy , and
Iz on the diagonal. Consequently, the Coriolis and centripetal force in (7) becomes:

FCor = −


M (qw − rv)
M (ur − pw)
M (pv − qu)
qr (Iz − Iy)
rp (Ix − Iz)
pq (Iy − Ix)

 (8)

Hydrodynamic forces
The wave-structure interaction is modelled using the partially nonlinear hydrodynamic model detailed in [30]. This
model decomposes the force from the fluid on the floater into several compoents: the Froude-Krylov (FK) force FFK , the
diffraction force Fd, the radiation force Fr and the viscous force Fv . The model is labelled ”partially nonlinear” since
the diffraction and radiation forces are modelled linearly, whereas the viscous and FK force terms are nonlinear. The
viscous force is described by an integral quadratic representation, and the nonlinear FK force is calculated by integrating
the undisturbed pressure field from the incident wave over the instantaneous (updated at each time step) wetted surface of
the floater. Full details of the nonlinear FK force representation are given in [31] for axisymmetric floaters, and in [32]
for prismaric floaters. An open-source toolbox for the implementation of the nonlinear FK method is provided in [33].

Mooring force
The mooring system applies a force, Fm, to the attachment point at the bottom center of the floater. The mooring force is
modelled here as a linear spring.

Equation of motion
Finally, the dynamical equation in 6 DoFs for the floater becomes:{

ζ̇ = JΘν

Mν̇ + FCor = FFK + Fd + Fr + Fv + Fm
(9)

where M is the inertial matrix,
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Coupling between DoFs

For the case of linear hydrodynamics, incoming unidirectional waves induce a planar external excitation on axisymmetric
floaters (surge, heave and pitch). However, when considering nonlinear FK forces, a coupling can manifest under certain
conditions, due to an internal excitation of the sway and roll DoFs [31]. In particular, when the excitation frequency is
about twice the natural frequency in roll, a Mathieu-type of instability induces parametric resonance [34].
In these regions of parametric instability, a nonlinear FK model can provide 5 DoFs of excitation. Note, there is no
means of exciting the yaw DoF. Even when considering the mooring system, the single mooring line does not provide any
coupling between the excited DoFs and yaw [35]. However, if nonlinear kinematics effects are introduced, the Coriolis
and centripetal forces, as well as the kinematic mapping JΘ, have the mathematical structure to provide a coupling with
yaw. The following sections will show that, if these forces and the kinematic mapping are not appropriately taken into
account, then the model can exhibit numerical instability.

Kinematic mapping
The last row of equation (3) represents the mapping from the body-fixed rotational velocities, ω, to the rate of change of
the yaw displacement, ψ̇:

ψ̇ = q
sinϕ

cos θ
+ r

cosϕ

cos θ
(10)

If ϕ is not exactly zero, Equation (10) shows that, ψ̇ will be greater than zero. For the case of 3-DoF excitation (linear
FK model or nonlinear FK model away from the parametric instability region), ϕ is not excited and simply decays from
a small initial value ϕ0; consequently ψ̇ ≈ 0. On the other hand, when 5-DoF excitation occurs (nonlinear FK model in
the parametric instability region), roll is internally excited and eventually the term q sinϕ

cos θ is non negligible, nor ψ̇ anymore
either.
Therefore, it results that the yaw DoF is coupled with other rotational DoFs, either weakly (in the 3-DoF case) or strongly
(in the 5-DoF case). However, if there is no excitation of the yaw DoF, the yaw displacement is bounded, since ψ̇ is of
the same order of magnitude of q: ψ̇ = O(q). Nevertheless, under certain conditions, yaw may also be weakly excited by
Coriolis and centripetal forces, potentially inducing the system to be unstable and generate an unbounded yaw response.

Coriolis and centripetal forces
As shown in Equation (8), the surge component of FCor is:

FCor(1) = −M (qw − rv) (11)

It is worth to notice that, in the simple 3-DoF case, the product rv ≈ 0, so that FCor(1) ≈ −Mqw. Therefore, the mean
of FCor(1) depends on the phase difference between pitch and heave, which are both externally excited. In particular,
a zero mean is obtained if the phase difference is 90◦, while strongly negative or positive means are obtained for phase
differences of 0 or 180◦, respectively. In a linear hydrodynamic model, the surge exciting force has zero mean, so that
the resulting surge displacement is bounded to have the same sign of the mean of FCor(1), and magnitude depending
on the mooring restoring force [35], since no hydrostatic force is present in surge. On the other hand, if a nonlinear
hydrodynamic model is used, second order drift effects shift the mean of the surge exciting force to positive values, so
that the resulting mean displacement is a combination of both the wave and the Coriolis and centripetal forces.
The yaw component of the FCor around the center of gravity, as shown in (8), is the following:

FCor(6) = −pq (Iy − Ix) (12)

Since pitch is externally excited, q is never zero. Since roll is either internally excited (5-DoF case) or in a simple decay
(3-DoF case), p is either significantly large or relatively small, respectively, but never exactly zero. It follows that FCor(6)
is exactly zero if and only if Ix = Iy .

Numerical yaw instability

Generally, both intuition and experience teach that no significant yaw response is expected from an axisymmetric sys-
tem. Physically, the only restoring force in yaw is provided by moorings. For the mooring system shown in Figure 1,
the restoring is provided by the torsional stiffness of the mooring line, which is normally small and usually neglected
[36]. Consequently, no yaw restoring term is usually implemented in the numerical model. In addition, no dissipative
mechanism are usually implemented in yaw, because radiation damping is ideally zero and viscous losses are reasonably
negligible, due to the smooth axisymmetric geometry. However, neglecting dissipative and restoring terms in the yaw
DoF can lead to unexpected yaw responses, and potentially generating conditions for numerical instability.
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Initial conditions
Let us assume that the initial conditions, (ζ0), are not exactly zero, but a small fraction of their expected steady state
response, so that ζ0 can be considered ‘almost’ zero. Such an assumption is consistent with the common application
where, a mathematical model is coupled with a physical system, taking measured displacement and/or velocity signals
as inputs (either in an experimental test-rig [37] or in real-sea deployment [38]). Furthermore, it is common practice to
assume almost-zero initial conditions in nonlinear hydrodynamic models, in order to provide some initial energy to all
DoFs and study the effect of instability [39, 40]. In absence of external-internal excitation or strong coupling, the small
initial conditions rapidly decay. In the following discussion, the initial roll displacement, (ϕ0), is slightly greater than zero
(say, 0.5◦), so that ϕ, ϕ̇, and p are non-zero.
Furthermore, let us assume that the initial yaw displacement ψ0 is zero. Although this is an unnecessary assumption, it
will highlight that a response in yaw (with no external nor internal hydrodynamic excitation) can appear solely due to the
nonlinear kinematics.

Transversal moments of inertia
Theoretically, the two transversal moments of inertia, Ix and Iy , should be identical. However, numerically, the geomet-
rical properties of the buoy will be reproduced with finite accuracy, thus Ix and Iy may be not exactly the same as each
other. In this study, as an example, Iy has been considered to be 99.9%Ix.

Excitations
Table 1 summarizes all possible conditions that can arise.

Table 1: Characteristic of the yaw oscillatory response, ψ. Considering no viscous nor restoring terms in yaw and a small perturbation
of the initial condition in roll and pitch. Two transversal moment of inertia cases are considered: ideal (Ix = Iy) and almost-ideal
(Ix ≈ Iy), in combination with two hydrodynamic excitation conditions: 3-DoF (linear FK model or nonlinear FK model away from
the parametric resonance region) and 5-DoF (nonlinear FK model close to the parametric resonance region).

Hydrodynamic excitation
3-DoF 5-DoF

Ix = Iy Decay Sustained, O(θ)
Ix ≈ Iy Unstable Unstable

Let us consider the two hydrodynamic excitation conditions:

• 3-DoF excitation, where the excitation is external only.

• 5-DoF excitation, where 3-DoF are external excitation and 2 DoF are internal excitations present in the nonlinear
FK model close to the parametric resonance region.

In the ideal case (Ix = Iy), there is no forcing term in yaw, so that the yaw response will follow roll and pitch angles,
according to equation (10). In particular, in the 3-DoF excitation condition, yaw will follow the decay of roll; in the 5-DoF
excitation condition, the oscillatory part of yaw will follow the pitch sustained response, modulated by the sine of the roll
response. A slowly increasing mean of yaw is also present, due to the absence of a restoring force.
However, in the almost-ideal case (Ix ≈ Iy), equation (12) shows that there is a forcing term of the yaw DoF, much
smaller in a 3-DoF scenario than a 5-DoF scenario, but never exactly zero. Consequently, due to the lack of viscous and
restoring terms, the yaw DoF is not restrained and becomes unstable, so that its response diverges at a rate proportional to
the difference between Ix and Iy . Therefore, when implementing Coriolis and centripetal forces in a 6-DoF model, it is
important to include a yaw restoring term, which prevents the numerical instability from appearing.

6-DoF response

A nonlinear 6-DoF model has been implemented, including nonlinear kinematics, Coriolis and centripetal forces, nonlin-
ear Froude-Krylov forces, and 6-DoF quadratic viscous forces, as in [2]. The nonlinear hydrodynamics of this model is
able to articulate parametric resonance in roll and pitch, which is a Mathieu-type of instability, arising when the period of
the excitation force is about half the natural period in roll and pitch (Tn,5). Such an instability is mainly induced by the
heave displacement causing, among other effects, a time-varying metacentric height (GM ), thus hydrodynamic stiffness
in roll and pitch.
In order to highlight such a behaviour, the floater, whose schematics is shown in Figure 1, is inspired by the cylinder
studied in [41, 42], which is a renown example of parametrically unstable floater, due to the 2:1 ratio between natural
periods in pitch/roll and heave. However, a notional single mooring line has been included, in order to consider the full
6-DoF model. For simplicity, the mooring restoring force has been assumed to be linear and with no coupling between
DoFs. Note that, in order to avoid numerical instability in yaw, a torsional stiffness of the mooring line has been included.
Furthermore, a 0.1% perturbation of one of the two transverse moments of inertia has been considered, in order to highlight
the lack of instability thanks to the torsional stiffness.
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Finally, note that all parameters and results here presented are normalized, enabling application to structures of varying
size, such as the large spars in [41, 42], and to smaller WEC-like structures, as in [43]. The relevant common feature is
to realize a 2:1 ratio between pitch and heave natural periods. Table 2 shows the ratio between the natural period in each
DoF and Tn,5.

Table 2: Natural periods normalized by the pitch and roll natural periods [-].

Surge & Sway Heave Roll & Pitch Yaw
7.7 0.5 1 5.1

Figure 2 shows the amplitude of the response to regular waves, as a function of wave periods (Tw) and wave heights (Hw).
Periods are normalized by Tn,5, while the wave height and linear displacements are normalized by the metacentric height
(GM ). The dashed and dash-dotted red lines correspond to Tw = 1

2Tn,5 and Tw = Tn,5, respectively. As expected, a roll
and sway response is localized around an excitation period equal to 1

2Tn,5. At the same period, there is a clear reduction
of heave response, due to an internal exchange of energy between DoFs. Finally, under the 5-DoF excitation condition,
there is a small response in the yaw DoF, made possible by the nonlinear kinematics and the perturbation of the transverse
moment of inertia. However, due to the restoring term in yaw, numerical instability is avoided and the yaw response is
contained below 1 degree.

Figure 2: Amplitude of the response as a function of Tw and Hw. Periods are normalized by Tn,5, while the wave height and linear
displacements are normalized by the metacentric height GM . The dashed and dash-dotted red lines correspond to Tw = 1

2
Tn,5 and

Tw = Tn,5, respectively.

While Fig. 2 is obtained with a regular (monochromatic) waves, it is interesting to verify the development of parametric
resonance and dynamic instability to more realistic irregular (panchromatic) waves. The most interesting condition is at
the parametric resonance period, so that a peak period (Tp) of half Tn,5 is considered. Since the severity of the instability
is proportional to the significant wave height (Hs) a medium-high value is considered, based on Fig.2, equal to GM .
A typical Jonswap spectrum is considered, with the enhancing factor (γ) of 3.3. Figure 3 shows the dynamic response
of the floater for a long realization of the resulting stochastic process. It is clear that the parametric resonance in roll is
excited, but reaching a lower steady state amplitude than in the monochromatic condition, since the frequency-dependent
instability is weaker.

Conclusions

This paper proposes a model in 6 degrees of freedom for axisymmetric floaters, including nonlinear kinematics, Coriolis
and centripetal forces, and nonlinear Froude-Krylov forces. Although their physical impact is negligible, it is crucial to
include damping and restoring terms in the yaw degree of freedom in the numerical model. In fact, if yaw is unrestrained,
unstable and unbounded yaw responses may appear if there is a perturbation of the inertial properties of the system (likely
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Figure 3: Dynamic response to a realization of a panchromatic wave with peak period Tp = Tn,5/2 and significant wave height
Hs = GM .

if the mathematical model is coupled to a physical system). However, even with ideal inertial parameters, sustained
bounded yaw response may be obtained if all other 5 DoFs are excited. This particular scenario arises due to parametric
resonance conditions of the roll DoF, namely when the excitation force frequency is about twice the roll natural frequency.
The proposed model, thanks to the nonlinear FK formulation, is also able to articulate parametric resonance.
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