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Period approximation for nonlinear oscillators with Carleman linearization
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Summary. A method for period approximation of nonlinear oscillators using Carleman linearization is presented. The approximation
of the amplitude-dependent period of a given nonlinear oscillator is calculated and compared to exact period values.

Introduction

Calculation of the period of a nonlinear oscillator is an important engineering problem. In this paper, a versatile tool, the
so-called Carleman linearization [1] is used to obtain the solutions of nonlinear oscillator ẍ + f(x, ẋ) = 0 and its exact
amplitude-dependent period is approximated. An example of such nonlinear oscillator is

ẍ+ (1 + ẋ2)x = 0, x(0) = A, ẋ(0) = 0. (1)

Mickens et al. [2] derived the formula of the exact period of the oscillator (1):

Texact(A) = 4A

∫ 1

0

dz√
exp(A2(1 − z2)) − 1

. (2)

An approximation of the exact period in case of small values of A is given in [3] as

Tapprox(A) ≈ 2π
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)
. (3)

Small and large amplitude periodic orbits of Eq. (1) were investigated by Kalmár-Nagy and Erneux in [4].

Carleman linearization and period approximation

Eq. (1) can be written as
ẋ1 = x2,

ẋ2 = −(1 + x22)x1.
(4)

By introducing the notation
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2
1x
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2 , x1x

j−1
2 , xj2)T, j = 1, . . . , n, (5)

and applying Carleman linearization [1] Eq. (4) is recast as
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(6)

where Cn denotes the Carleman matrix of order n and y0 is the vector of initial conditions. The matrices Bj,j , j =
1, . . . , n and Bk,k+2, k = 1, . . . , n− 2 are constructed as follows
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The approximation of the solution of Eq. (4) is written as

x̂1(t) = eT1 e
Cnty0(A), x̂2(t) = eT2 e

Cnty0(A), (8)
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where e1 and e2 are standard basis vectors. The approximate solution x̂2(t) can be written as power series of A, i.e.,

x̂2(t) =

n∑
k=1

x̃2,k(t)
Ak

k!
. (9)

The period T (A) of system (4) is approximated based on [5] as

T (A) = 2π + ∆T (A) = 2π +

n∑
k=1

AkT̃k. (10)

The coefficients x̃2,k(t) in Eq. (9) at the period T (A) are expressed as

x̃2,k(T (A)) = x̃2,k(2π + ∆T (A)) = x̃2,k(2π) +
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where x̃(m)
2,k denotes the mth derivative. Since Eq. (4) is a conservative system [4], x̂2(T (A)) = 0 must hold . Balancing

the terms
A : 0 = x̃2,1(2π),

A2 : 0 = x̃2,2(2π) + x̃′2,1(2π)T̃1,

A3 : 0 = x̃2,3(2π) + x̃′2,2(2π)T̃1 + x̃′2,1(2π)T̃2 + x̃′′2,1(2π)
T̃ 2
1

2!
,

...

(12)

where the primes mean derivation. System (12) is solved for the unknown T̃k’s.
Using the Carleman linearization of order n = 9 of system (4) the approximation of the period reads as
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the same as in Eq. (3). The following table shows some numerical results in case of n = 5, 7, 9 order Carleman matrices.

n = 5 n = 7 n = 9
A Texact(A) T (A) Rel. error [%] T (A) Rel. error [%] T (A) Rel. error [%]

0.01 6.2831 6.2831 6.2831 6.2831
0.1 6.2753 6.2753 6.2753 6.2753
1 5.5272 5.5223 0.088 5.5274 0.004 5.5273 0.001

1.5 4.6903 4.6403 1.065 4.6985 0.176 4.6942 0.085
2 3.7613 3.5343 6.036 3.8615 2.644 3.8186 1.522

2.2 3.4131 3.0568 10.44 3.6366 6.547 3.5445 3.850

Conclusions

A new way of calculation for the period of a nonlinear oscillator was introduced. Approximate period values of a given os-
cillator were calculated and compared to exact ones. We conclude, in the case of small amplitudes, Carleman linearization
can be used for approximation of the period of a nonlinear oscillator.
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