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Summary. A method for period approximation of nonlinear oscillators using Carleman linearization is presented. The approximation
of the amplitude-dependent period of a given nonlinear oscillator is calculated and compared to exact period values.

Introduction

Calculation of the period of a nonlinear oscillator is an important engineering problem. In this paper, a versatile tool, the
so-called Carleman linearization [1] is used to obtain the solutions of nonlinear oscillator & + f(x, ) = 0 and its exact
amplitude-dependent period is approximated. An example of such nonlinear oscillator is

P+ (1+iH)r=0, 2(0)=A4, #0)=0. (1)

Mickens et al. [2] derived the formula of the exact period of the oscillator (1):
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An approximation of the exact period in case of small values of A is given in [3] as
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Small and large amplitude periodic orbits of Eq. (1) were investigated by Kalmar-Nagy and Erneux in [4].
Carleman linearization and period approximation

Eq. (1) can be written as

Ty = T,
: 2 “4)
o = —(14 z3)x;.
By introducing the notation
j i g1 i—2_2 2 j—2 i—1 _j\T -
xll = ( S wT me, adTas, L, wiad T, mad L xd), j=1,...,n, (5)
and applying Carleman linearization [1] Eq. (4) is recast as
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yo(A) = (4,0, 42,0,0, 4%,0,0,0,..., A", ..., 0)",

where C,, denotes the Carleman matrix of order n and yj is the vector of initial conditions. The matrices B; ;, 7 =

1,...,nand By x12, k=1, ..., n — 2 are constructed as follows
o = 00 0 0 0 0
0 —j+1 0 00 -1 0 0 0
2 0 _
BJvJ' = 0 —2 ) Bk7k+2 = 0 0 2 0 0 @)
0 j—1 0 -1 :
j 0 0 0 0 0 -k 0

The approximation of the solution of Eq. (4) is written as

L/U\l (t) = erlI‘GC”tyO (A), 53\2 (t) = e;fec“'tyo(A), (8)
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where e, and e are standard basis vectors. The approximate solution Zo () can be written as power series of A4, i.e.,

n } Ak
=> Tak(t) 7y 9)
k=1 ’
The period T'(A) of system (4) is approximated based on [5] as

T(A) =21 + AT(A) =21+ Y AT} (10)
k=1

The coefficients Z5 j(¢) in Eq. (9) at the period T'(A) are expressed as
B . ~(m) (A)Tn
Fox(T(A)) = To 1 (21 + AT(A)) = &g (27) + Z Ty (2m) =, (11)

where fg”;) denotes the mth derivative. Since Eq. (4) is a conservative system [4], Z2(7T'(A)) = 0 must hold . Balancing

the terms
A : O = ‘%2’1(27T)7
A2 10 = G p(2m) + & 1 (2m)Th,
77 (12)

AP 20 = G 3(2m) + & o (2m) Ty + & 1 (2m) T + 75,(2m) 5

where the primes mean derivation. System (12) is solved for the unknown Ty’s.
Using the Carleman linearization of order n = 9 of system (4) the approximation of the period reads as

T(A) ~2m <1 — —A2 + Ly + LN A8> , (13)

256 6144 262144

the same as in Eq. (3). The following table shows some numerical results in case of n = 5, 7, 9 order Carleman matrices.

n=>5 n="7 n=9 ‘
A | Tewaet(A) | T(A) Rel error[%] | T(A) Rel. error[%] | T(A) Rel. error [%]
0.01 6.2831 6.2831 6.2831 6.2831
0.1 6.2753 6.2753 6.2753 6.2753
1 5.5272 5.5223 0.088 5.5274 0.004 5.5273 0.001
1.5 4.6903 4.6403 1.065 4.6985 0.176 4.6942 0.085
2 3.7613 3.5343 6.036 3.8615 2.644 3.8186 1.522
2.2 3.4131 3.0568 10.44 3.6366 6.547 3.5445 3.850
Conclusions

A new way of calculation for the period of a nonlinear oscillator was introduced. Approximate period values of a given os-
cillator were calculated and compared to exact ones. We conclude, in the case of small amplitudes, Carleman linearization
can be used for approximation of the period of a nonlinear oscillator.
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