Period approximation for nonlinear oscillators with Carleman linearization

Csanád Árpád Hubay and Tamás Kalmár-Nagy
Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary

Summary. A method for period approximation of nonlinear oscillators using Carleman linearization is presented. The approximation of the amplitude-dependent period of a given nonlinear oscillator is calculated and compared to exact period values.

Introduction

Calculation of the period of a nonlinear oscillator is an important engineering problem. In this paper, a versatile tool, the so-called Carleman linearization [1] is used to obtain the solutions of nonlinear oscillator $\ddot{x}+f(x, \dot{x})=0$ and its exact amplitude-dependent period is approximated. An example of such nonlinear oscillator is

$$
\begin{equation*}
\ddot{x}+\left(1+\dot{x}^{2}\right) x=0, \quad x(0)=A, \quad \dot{x}(0)=0 . \tag{1}
\end{equation*}
$$

Mickens et al. [2] derived the formula of the exact period of the oscillator (1):

$$
\begin{equation*}
T_{\text {exact }}(A)=4 A \int_{0}^{1} \frac{\mathrm{~d} z}{\sqrt{\exp \left(A^{2}\left(1-z^{2}\right)\right)-1}} \tag{2}
\end{equation*}
$$

An approximation of the exact period in case of small values of A is given in [3] as

$$
\begin{equation*}
T_{\text {approx }}(A) \approx 2 \pi\left(1-\frac{1}{8} A^{2}+\frac{1}{256} A^{4}+\frac{5}{6144} A^{6}-\frac{7}{262144} A^{8}+\ldots\right) . \tag{3}
\end{equation*}
$$

Small and large amplitude periodic orbits of Eq. (1) were investigated by Kalmár-Nagy and Erneux in [4].

Carleman linearization and period approximation

Eq. (1) can be written as

$$
\begin{align*}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-\left(1+x_{2}^{2}\right) x_{1} . \tag{4}
\end{align*}
$$

By introducing the notation

$$
\begin{equation*}
\mathbf{x}^{[j]}=\left(x_{1}^{j}, x_{1}^{j-1} x_{2}, x_{1}^{j-2} x_{2}^{2}, \ldots, x_{1}^{2} x_{2}^{j-2}, x_{1} x_{2}^{j-1}, x_{2}^{j}\right)^{\mathrm{T}}, \quad j=1, \ldots, n \tag{5}
\end{equation*}
$$

and applying Carleman linearization [1] Eq. (4) is recast as

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{c}
\mathbf{x}^{[1]} \\
\mathbf{x}^{[2]} \\
\mathbf{x}^{[3]} \\
\vdots \\
\mathbf{x}^{[n-2]} \\
\mathbf{x}^{[n-1]} \\
\mathbf{x}^{[n]}
\end{array}\right)
\end{align*} \underbrace{\left(\begin{array}{ccccccc}
\mathbf{B}_{1,1} & \mathbf{0} & \mathbf{B}_{1,3} & \ldots & \mathbf{0} & \mathbf{0} & \mathbf{0} \tag{6}\\
\mathbf{0} & \mathbf{B}_{2,2} & \mathbf{0} & \ddots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\vdots & \vdots & \ddots & \ldots & \vdots & \vdots & \vdots \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{B}_{n-2, n-2} & \mathbf{0} & \mathbf{B}_{n-2, n} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \ldots & \mathbf{0} & \mathbf{B}_{n-1, n-1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{B}_{n, n}
\end{array}\right)}_{\mathbf{y}_{n}} \underbrace{\left(\begin{array}{c}
\mathbf{x}^{[1]} \\
\mathbf{x}^{[2]} \\
\mathbf{x}^{[3]} \\
\vdots \\
\mathbf{x}^{[n-2]} \\
\mathbf{x}^{[n-1]} \\
\mathbf{x}^{[n]}
\end{array}\right)}_{\mathbf{C}_{n}},
$$

where \mathbf{C}_{n} denotes the Carleman matrix of order n and \mathbf{y}_{0} is the vector of initial conditions. The matrices $\mathbf{B}_{j, j}, j=$ $1, \ldots, n$ and $\mathbf{B}_{k, k+2}, k=1, \ldots, n-2$ are constructed as follows

$$
\mathbf{B}_{j, j}=\left(\begin{array}{cccccc}
0 & -j & & & \tag{7}\\
1 & 0 & -j+1 & & 0 & \\
& 2 & 0 & \ldots & & \\
& 0 & \cdots & 0 & -2 & \\
& 0 & & j-1 & 0 & -1 \\
& & j & 0
\end{array}\right), \quad \mathbf{B}_{k, k+2}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & -1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & -2 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & -k & 0
\end{array}\right) .
$$

The approximation of the solution of Eq. (4) is written as

$$
\begin{equation*}
\widehat{x}_{1}(t)=\mathbf{e}_{1}^{\mathrm{T}} e^{\mathbf{C}_{n} t} \mathbf{y}_{0}(A), \quad \widehat{x}_{2}(t)=\mathbf{e}_{2}^{\mathrm{T}} e^{\mathbf{C}_{n} t} \mathbf{y}_{0}(A) \tag{8}
\end{equation*}
$$

where \mathbf{e}_{1} and \mathbf{e}_{2} are standard basis vectors. The approximate solution $\widehat{x}_{2}(t)$ can be written as power series of A, i.e.,

$$
\begin{equation*}
\widehat{x}_{2}(t)=\sum_{k=1}^{n} \tilde{x}_{2, k}(t) \frac{A^{k}}{k!} \tag{9}
\end{equation*}
$$

The period $T(A)$ of system (4) is approximated based on [5] as

$$
\begin{equation*}
T(A)=2 \pi+\Delta T(A)=2 \pi+\sum_{k=1}^{n} A^{k} \widetilde{T}_{k} \tag{10}
\end{equation*}
$$

The coefficients $\tilde{x}_{2, k}(t)$ in Eq. (9) at the period $T(A)$ are expressed as

$$
\begin{equation*}
\tilde{x}_{2, k}(T(A))=\tilde{x}_{2, k}(2 \pi+\Delta T(A))=\tilde{x}_{2, k}(2 \pi)+\sum_{m=1}^{n} \tilde{x}_{2, k}^{(m)}(2 \pi) \frac{\Delta T(A)^{m}}{m!} \tag{11}
\end{equation*}
$$

where $\tilde{x}_{2, k}^{(m)}$ denotes the m th derivative. Since Eq. (4) is a conservative system [4], $\widehat{x}_{2}(T(A))=0$ must hold. Balancing the terms

$$
\begin{align*}
A: 0 & =\tilde{x}_{2,1}(2 \pi) \\
A^{2}: 0 & =\tilde{x}_{2,2}(2 \pi)+\widetilde{x}_{2,1}^{\prime}(2 \pi) \widetilde{T}_{1} \\
A^{3}: 0 & =\tilde{x}_{2,3}(2 \pi)+\widetilde{x}_{2,2}^{\prime}(2 \pi) \widetilde{T}_{1}+\widetilde{x}_{2,1}^{\prime}(2 \pi) \widetilde{T}_{2}+\widetilde{x}_{2,1}^{\prime \prime}(2 \pi) \frac{\widetilde{T}_{1}^{2}}{2!} \tag{12}
\end{align*}
$$

where the primes mean derivation. System (12) is solved for the unknown \widetilde{T}_{k} 's.
Using the Carleman linearization of order $n=9$ of system (4) the approximation of the period reads as

$$
\begin{equation*}
T(A) \approx 2 \pi\left(1-\frac{1}{8} A^{2}+\frac{1}{256} A^{4}+\frac{5}{6144} A^{6}-\frac{7}{262144} A^{8}\right) \tag{13}
\end{equation*}
$$

the same as in Eq. (3). The following table shows some numerical results in case of $n=5,7,9$ order Carleman matrices.

		$n=5$		$n=7$		$n=9$	
A	$T_{\text {exact }}(A)$	$T(A)$	Rel. error [\%]	$T(A)$	Rel. error [\%]	$T(A)$	Rel. error [\%]
0.01	6.2831	6.2831		6.2831		6.2831	
0.1	6.2753	6.2753		6.2753		6.2753	
1	5.5272	5.5223	0.088	5.5274	0.004	5.5273	0.001
1.5	4.6903	4.6403	1.065	4.6985	0.176	4.6942	0.085
2	3.7613	3.5343	6.036	3.8615	2.644	3.8186	1.522
2.2	3.4131	3.0568	10.44	3.6366	6.547	3.5445	3.850

Conclusions

A new way of calculation for the period of a nonlinear oscillator was introduced. Approximate period values of a given oscillator were calculated and compared to exact ones. We conclude, in the case of small amplitudes, Carleman linearization can be used for approximation of the period of a nonlinear oscillator.

Acknowledgements

The research reported in this paper was supported by the Higher Education Excellence Program of the Ministry of Human Capacities in the frame of the Water Science \& Disaster Prevention research area of Budapest University of Technology and Economics (BME FIKP-VÍZ). The research reported in this paper has been supported by the National Research, Development, and Innovation Fund (TUDFO/51757/2019-ITM, Thematic Excellence Program). This project was supported by the UNKP-19-3-II New National Excellence Program of the Ministry of Human Capacities of Hungary.

References

[1] Hubay C.Á., Kalmár-Nagy T. (2019) Computing Poincaré-Lyapunov Constants via Carleman Linearization. Volume 6: 15th International Conference on Multibody Systems, Nonlinear Dynamics, and Control.
[2] Mickens R.E. (2006) Investigation of the properties of the period for the nonlinear oscillator $\ddot{x}+\left(1+\dot{x}^{2}\right) x=0$. Journal of Sound and Vibration 292(3-5):1031-1035.
[3] Beléndez A., Hernandez A., Beléndez T., Neipp C., Márquez A. (2007) Asymptotic representations of the period for the nonlinear oscillator. Journal of Sound and Vibration 299(1-2):403-408.
[4] Kalmár-Nagy T., Erneux T. (2008) Approximating small and large amplitude periodic orbits of the oscillator $\ddot{x}+\left(1+\dot{x}^{2}\right) x=0$. Journal of Sound and Vibration 313(3-5):806-811.
[5] Kuznetsov N. V., Leonov G. A. (2008) Computation of Lyapunov quantities. 6th EUROMECH Nonlinear Dynamics Conference (3).

