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Non-linear Vibrations in a Coiling Process with Periodically Changing Radius
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Summary. The mechanical model of a winding process has to consider the coupling of the vibrations of the strip and the coiling drum
due to non-steady state operation conditions. In the mechanical model of this variable mass system additionally variable parameters
are present and result in non-linear equations of motion. The longitudinal and transversal motion of the axially moving strip and the
bending deflection of the coiling drum are considered by Rayleigh-Ritz approximations which involve the application of the extended
equation of Lagrange. A periodically changing radius is a potential source of vibration excitation. A time integration algorithm with
small time steps has to guarantee a converged solution for the long computation time. Simulation results of steady state and non-steady
state operation conditions are computed and show the coupling of the vibrations and the excitation due to the periodic radius function.

Introduction

A suitable mechanical model is necessary for the simulation of the vibrations in a coiling process. In the coiling process
an axially moving strip moves continuously towards a rotating drum where it is coiled. Between two successive coiling
processes the strip passes through a Steckel mill where the thickness is reduced. The mechanical model starts at the exit
of the Steckel mill and considers the axial motion of the strip with the transversal oscillations. Then the strip is coiled
where the strip is attached on the drum, contributes to the bending stiffness and increases the mass of the drum. The
resulting mechanical model is a non-linear dynamic model with varying mass and system parameters, which are defined
by the variable outer radius of the drum, the variable bending stiffness of the drum and a variable eccentricity of the
rotating drum. Due to the coiled material the mass of the coiling drum increases or decreases continuously. For the
outer radius of the coiling drum an Archimedian Spiral and a periodic step function is assumed, which gives an outer
radius and bending stiffness depending on the coiled strip length. For the simulation of the coiling process with the long
computation time a integration algorithm was implemented. For the derivation of the equations of motion Rayleigh-Ritz
approximations are used to get only a few degrees of freedom in the mechanical model. The application of the extended
equations of Lagrange, see [1], is necessary as the mass in the system is not constant, which is a restriction for the well-
known equations of Lagrange, see [2]. In the extended equations of Lagrange the control volume concept with the surface
integrals with partial derivatives as a kernel are present. In [3] additionally some literature with examples on dynamic
systems with variable mass is discussed. In [4] an alternative approach for the influence of the variable mass is considered
using reactive forces, where also some examples are shown. The coupled vibrations are analysed and numerical studies
are performed in order to increase the knowledge about the complicated variable mass non-linear dynamic system of the
coiling drum with an outer radius involving a periodic excitation and the axially moving strip. For the dynamic system the
initial and boundary conditions are defined and with the given operation conditions a time-integration algorithm computes
the solution.

Mechanical modelling of the coiling drum and the moving strip

Figure 1: Mechanical model of the rotating drum with the axi-
ally moving strip

The mechanical model includes the coiling drum on elas-
tic bearings and the moving strip, see Fig. 1. Rayleigh-
Ritz approximations and the extended equations of La-
grange have been used for the derivation of the mechan-
ical model. For the derivation of the equations of mo-
tion it is important to distinguish between the material
control volume and the spatial control volume. The me-
chanical model has five degrees of freedom, the horizon-
tal and vertical deflection x, y and the rotation angle ϕ of
the coiling drum, the transversal deflection of the moving
strip q and the entrance speed of the strip sL. The strip
tension force FB is given as a predefined time-dependent
value at the entrance of the system and the torque at the
coiling drum MT is computed. The coiling drum is mod-
eled as a beam with different stiffness in longitudinal
direction. The outer radius of the drum increases and
an Archimedian spiral r = r0 +

hϕ

2π
as well as a step-

function r = r0 + h floor
( ϕ

2π

)
have been analysed. For

the computation of the actual stiffness it is assumed that
the coiled strip is attached to the drum and contributes to
the stiffness.
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The model of the coiling drum and the moving strip is described and derived in [5]. The coupling between the coiling
drum and the moving strip is modelled considering the strain in the strip εS = εxx− zw′′ + 1

2w
′2. The horizontal motion

of the strip in longitudinal direction at the right position where it touches the coiling drum considers the shortening effect
of second order, see [5]. ϕ ist the rotation angle and x is the horizontal deflection of the center of the rotating drum.

Computed Results

Figure 2: Amplitude and velocity of
transversal motion of the strip

For the derived mechanical model the solution was computed and a parametric
study has been performed. The parameters of the coiling drum based on the
computations presented in this contribution are L0 = 5m, r0 = 0.45m, h =
10mm, b = 0.5m, E = 105kN/mm2, cC = 107kN/m, ρ = 7800kg/m3, m0 =

1200kg. For a strip tension force of FB = FB0

(
1 + sin(πt/2)

2

)
with FB0 =

50kN the computation is carried out. From the results of the amplitude of the
transversal strip vibrations in Fig. 2 the non-linear coupling effect with the
varying frequency and amplitude is shown.
When a step-function of the outer radius of the coiling drum is used, the com-
puted resulting vibrations are shown in Fig. 3 and Fig. 4 for a constant strip
tension force at the entrance of the system in Fig. 1. It can be seen that the
effect of the step function in the outer radius gives an impact-like excitation
which occurs after every revolution. For successive rotations the vibration am-
plitudes are computed with a small time step to get a convergent result as the
step-function of the radius gives a modification in the kinematics of the system.
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Figure 3: Horizontal Position and speed of the Center of the
Coiling Drum
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Figure 4: Rotation angle and speed of the coiling drum

Conclusion

A mechanical model with a variable mass and varying parameters and a periodic function for the outer radius of a coiling
process was derived. The simulation results show a production process for a constant axial speed. For a defined variation
of the strip tension force at the entrance the vibration amplitudes of the coordinates show non-linear coupled vibrations and
the frequency and amplitude for the transversal strip oscillation depend on the strip tension force. For the step-function of
the outer radius the computation needs a higher effort and shows an excitation after every revolution of the coiling drum.
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