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Summary. The effects of electrostatic nonlinearity on rate measuring performance of a capacitive MEMS Coriolis Vibrating Gyroscope 

(CVG) with an imperfect sensing element are investigated. The electrostatic nonlinearity is a result of large amplitude vibration of the ring, 

which modifies the capacitive forcing and induces self-induced parametric amplification. A cubic-order nonlinear mathematical model is 

used to describe the electrostatic nonlinearity and expressions are developed for the scale factor and bias.  It is shown that parametric pumping 

induces an amplification range that enhances rate sensitivity and electrostatic non-linearity has potential to negate the effects of imperfection.  

Model Description 

For MEMS rate-measuring CVG’s having a ring resonator [1] the dominant source of nonlinearity is electrostatics due to 

capacitive actuation and sensing of ring displacements. The dynamics of the sense mode used to detect rate is significantly 

affected by self-induced parametric amplification [1, 2] when the vibration amplitude is large and the modal properties 

modulate at twice its vibration frequency. In the small amplitude regime imperfections degrade the scale factor and bias 

[3]. The potential for nonlinearity to negate or reverse these effects is presented here. 

 

 
Figure 1: (a) Schematic general layout; (b) voltage profile applied by individual electrodes 

 

Figures 1(a) and 1(b) show the ring element, capacitive electrodes and support structure for a typical device together with 

the voltages applied across electrode gaps.  Voltage 𝑉𝐴𝐶  drives the ring into its 2𝜃 flexural primary mode.  Voltage 𝑉𝐷𝐶 

is primarily responsible for electrostatic nonlinearity. A cubic-order nonlinear model is used to describe the dynamics of 

the primary (drive) and secondary (sense) modes. Assuming the applied angular rate is much smaller than the natural 

frequency, 𝑉𝐴𝐶 ≪ 𝑉𝐷𝐶 , and the ring is thin and midsurface-inextensional, the equation of motion for the sense mode is: 
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𝑋, 𝑌 are modal coordinates describing the drive and sense modes respectively; 𝜔0 is the undamped natural frequency and 

Q is the Q factor for the perfect ring. In practice, 𝑌 ≪ 𝑋 so nonlinear terms in 𝑌 have been neglected.  𝜅 is the nonlinear 

elastic coupling strength from the drive mode to the sense mode and results in amplitude-dependent resonance. 𝜇𝜔 is an 

imperfection parameter and Ω is the applied angular rate. The sense mode is subjected to: i) Coriolis forcing proportional 

to 𝑋̇Ω; ii) imperfection-induced quadrature force proportional to 𝜇𝜔; and iii) parametric excitation arising from nonlinear 

elastic coupling 𝜅. The drive mode modulates the stiffness of the sense mode at approximately twice its effective vibration 

frequency. The amplitude and phase of the sense mode oscillation are obtained using the averaging method and the scale 

factor 𝑆𝐶 and bias Ω0
𝐶  are found to be: 
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(3𝛾 − 2𝜅) is the frequency detuning parameter and 𝜉𝑦 = 𝜅
𝑥2

4𝑔0
2 is the pumping 

strength, where 𝛾 is the modal Duffing coefficient and 𝑥 is the drive amplitude. 𝜅, 𝛾 < 0 characterize the nonlinear modal 

stiffnesses and |𝜅| ≤ |𝛾|, where |𝜅| = |𝛾| when 𝛿𝜒 = 45°. For small-amplitude operation, 𝜉𝑦 = 0 and ∆𝜔
2∝ 𝜇𝜔. 
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Nonlinearity causes amplitude-dependent frequency detuning and parametric pumping and both interact with the 

imperfection to modify the scale factor and bias at large amplitude. 

Scale factor and bias 

The scale factor for an ideal, linear CVG behaves linearly with drive amplitude 𝑥 and inversely with bandwidth, so a high 

Q factor is desirable.  In (2) the (∆𝜔
2 + 𝜉𝑦)(∆𝜔

2 − 𝜉𝑦) term plays a key role in the nonlinear modification of the scale 

factor when the amplitude-dependent frequency detuning parameter and parametric pumping strength interact i.e.: 

i. (∆𝜔
2 + 𝜉𝑦)(∆𝜔

2 − 𝜉𝑦) > 0 - nonlinearity interacts constructively with imperfection, reducing the scale factor. 

ii. (∆𝜔
2 + 𝜉𝑦)(∆𝜔

2 − 𝜉𝑦) = 0  -nonlinearity negates imperfection effectively trimming the device. 

iii. (∆𝜔
2 + 𝜉𝑦)(∆𝜔

2 − 𝜉𝑦) < 0 -nonlinear amplification occurs as the effective bandwidth is reduced. 

 

 
Figure 2:  Variation of (a) 𝑆𝐶  normalized relative to the trimmed, linear case for continuous (𝜅 = 𝛾) and discontinuous (|𝜅| < |𝛾|) 

biasing electrodes, and (b) Ω0
𝐶 with the gap-normalised drive amplitude 

 

When (∆𝜔
2 + 𝜉𝑦)(∆𝜔

2 − 𝜉𝑦) < 0 the result is a pure nonlinear effect, because without parametric pumping the 

imperfection always acts to reduce the scale factor.  Figure 2 shows that nonlinear amplification occurs for a range of 

drive amplitudes. A consequence of this is that the imperfect device has an enhanced scale factor compared to a linear, 

trimmed device. This amplification range is defined by −|𝜉𝑦| < ∆𝜔
2< |𝜉𝑦| and the amplification increases as the 

pumping strength 𝜉𝑦 increases.  The upper bound of this range grows without bound when 𝛾 = 𝜅 because the variation 

of (∆𝜔
2 + 𝜉𝑦)(∆𝜔

2 − 𝜉𝑦) with drive amplitude is monotonic in this case, so nonlinear trimming only occurs at the lower 

bound when the parametric pumping negates the effects of frequency detuning, i.e. ∆𝜔
2= −𝜉𝑦 . In practice higher order 

nonlinearities play a role in limiting the vibration amplitude. On the other hand, if the difference between 𝛾 and 𝜅 is large 

such that |𝜅| ≪ |𝛾|, which corresponds to the case when the biasing electrode span is small, the upper and lower bounds 

approach each other and the amplification range reduces. The lower bound of this range when ∆𝜔
2= −𝜉𝑦  also plays a 

role in nullifying the bias. Figure 2(b) indicates that the bias is increasingly sensitive to the operational drive amplitude 

as the amplitude increases.  The bias variation is monotonic, either increasing or decreasing, and nonlinear trimming of 

the device to nullify the bias is only possible if the amplitude dependent frequency detuning is negated by the parametric 

pumping, i.e. ∆𝜔
2 and 𝜉𝑦 have opposite signs. As electrostatic nonlinearity is softening, this can only occur when the 

drive excitation is applied at an angular position close to the maximum frequency axis, i.e. 𝜇𝜔 cos 4𝜃𝜔 > 0. 

Conclusions 

Electrostatic nonlinearity in ring-based MEMS CVGs interacts with ring imperfections due to self-induced parametric 

pumping and amplitude-dependent frequency detuning of the modes. These nonlinear effects have potential to negate 

performance degradation caused by imperfection, effectively trimming the device, but can enhance sensitivity in 

particular drive amplitude ranges. The lower bound of the amplification range effectively nullifies the bias in the specific 

case where the frequency detuning is negated by parametric pumping. The performance enhancement offered by 

electrostatic nonlinearity for imperfect devices is most significant when the cubic-order modal stiffnesses are balanced.  

 

References 
 

[1] P. M. Polunin and S. W. Shaw, "Self-induced parametric amplification in ring resonating gyroscopes," International Journal 

of Non-Linear Mechanics, vol. 94, pp. 300-308, 2017/09/01/ 2017. 

[2] S. H. Nitzan et al., "Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical 

resonating disk gyroscope," (in eng), Scientific reports, vol. 5, p. 9036, Mar 12 2015. 

[3] C. Acar and A. Shkel, MEMS Vibratory Gyroscopes-Structural Approaches to Improve Robustness, 1 ed. Springer US, 2009. 
 

(a) (b) 


