
ENOC 2020, July 11-16, 2021, Lyon, France

A port-Hamiltonian formulation for the full von-Kármán plate model
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Summary. In this contribution, a port-Hamiltonian reformulation of the full von-Kármán dynamical model for geometrically non-
linear plates is detailed, including the collocated boundary control and observation. Starting from the canonical equations, a set of
variables is chosen so as to make the total energy quadratic. The model, reformulated in these variables, highlights a port-Hamiltonian
structure ruled by a state-modulated interconnection operator.

Classical model

The classical full von-Kármán dynamical model is presented in Bilbao et al. [2015]. The problem, defined on an open
connected set Ω ⊂ R2, takes the dimensionless form

ü = DivN ,

ẅ = −div DivM + div (N gradw),

N = Φ(ε),

M = Φ(κ),

ε = Gradu+ 1/2 gradw ⊗ gradw,

κ = Grad gradw,
(1)

where u ∈ R2 is the in-plane displacement,w is the vertical displacement, ε is the in-plane strain tensor, κ is the curvature
tensor, N is the in-plane stress resultant and M is the bending stress resultant. The notation a ⊗ b = ab> denotes the
dyadic product of two vectors. The div operator is the divergence of a vector field, and grad the gradient of a scalar
field. The operator Grad = 1

2

(
∇+∇>

)
designates the symmetric part of the gradient (i. e. the deformation gradient

in continuum mechanics). For a tensor field U : Ω → R2×2, with components Uij , the divergence Div(U) is a vector,
defined column-wise as

Div(U) :=

2∑
i=1

∂xiUij , ∀j = {1, 2}.

The linear tensor mapping Φ is positive and preserves symmetry:

Φ(A) = ν Tr(A)1 + (1− ν)A, A = A> =⇒ Φ(A) = Φ(A)>, where 1 = Diag(1, 1).

The total energy of the model (Hamiltonian functional)

H =
1

2

∫
Ω

{
‖u̇‖2 + ẇ2 +N .. ε+M .. κ

}
dΩ, where A ..B = Tr(A>B) (2)

consists of the kinetic energy and both membrane and bending deformation energies. This model proves conservative, see
Bilbao et al. [2015]. Indeed, this implies that a port-Hamiltonian realization of the system exists. We shall demonstrate
how to construct a port-Hamiltonian realization, equivalent to (1).

The equivalent port-Hamiltonian system (pHs)

To find a suitable port-Hamiltonian system, we first select a set of new energy variables to make the Hamiltonian functional
quadratic. The selection is the same as for both the linear plate problems in Brugnoli et al. [2019a,b]:

αu = u̇, αw = ẇ, Aε = ε, Aκ = κ. (3)

The energy is quadratic in these variables

H =
1

2

∫
Ω

{
‖αu‖2 + α2

w + Φ(Aε) ..Aε + Φ(Aκ) ..Aκ

}
. (4)

By computing the variational derivative of the Hamiltonian, one obtains the so-called co-energy variables:

eu := δαuH = u̇, ew := δαwH = ẇ, Eε := δAεH = Φ(Aε), Eκ := δAκH = Φ(Aκ). (5)

Before stating the final formulation, consider the operator C(w)(·) : L2(Ω,R2×2
sym )→ L2(Ω) acting on symmetric tensors

C(w)(T ) = div(T gradw). (6)

Proposition 1 The formal adjoint of the C(w)(·) is given by

C(w)∗(·) = −1

2
[grad(·)⊗ grad(w) + grad(w)⊗ grad(·)] . (7)
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Proof 1 Consider a smooth scalar field v ∈ C∞0 (Ω) and a smooth symmetric tensor field U ∈ C∞0 (Ω,R2×2
sym ) with

compact support. The formal adjoint of C(w)(·) satisfies the relation

〈v, C(w)(U)〉L2(Ω) = 〈C(w)(v)∗, U〉L2(Ω,R2×2
sym ) . (8)

The proof follows from the computation

〈v, C(w)(U)〉L2(Ω) = 〈v, div(U gradw)〉L2(Ω) , Integration by parts,

= 〈− grad v, U gradw〉L2(Ω,R2) , Dyadic product properties,

= 〈− grad v ⊗ gradw, U〉L2(Ω,R2×2
sym ) , Symmetry of U ,

= 〈−1/2(grad v ⊗ gradw + gradw ⊗ grad v), U〉L2(Ω,R2×2
sym ) .

(9)

This means
C(w)∗(·) = −1

2
[grad(·)⊗ grad(w) + grad(w)⊗ grad(·)] , (10)

leading to the final result.

The pH realization is then given by the following system

∂

∂t


αu
Aε

αw
Aκ

 =


0 Div 0 0

Grad 0 −C(w)∗ 0
0 C(w) 0 −div Div
0 0 Grad grad 0



δαuH
δAεH
δαwH
δAκH

 , (11)

The second line of system (11) represents the time derivative of the membrane strain tensor. To close the system, variable
w has to be accessible. For this reason, its dynamics has to be included. The augmented system reads

∂

∂t


αu
Aε

w
αw
Aκ

 =


0 Div 0 0 0

Grad 0 0 −C(w)∗ 0
0 0 0 1 0
0 C(w) −1 0 − div Div
0 0 0 Grad grad 0


︸ ︷︷ ︸

J


δαuH
δAεH
δwH
δαwH
δAκH

 . (12)

Given the results in Brugnoli et al. [2019a,b] and Proposition 1, the operator J is formally skew-adjoint. If only the
kinetic and deformation energies are considered, it holds δwH = 0. In general this terms allows accommodating other
potentials, for example the gravitational one. Suitable boundary variables are then obtained considering the power balance

Ḣ = 〈γ0eu, γ⊥Eε〉∂Ω + 〈γ0ew, γ⊥⊥,1Eκ + γ0(Eεn · gradw)〉∂Ω + 〈γ1ew, γ⊥⊥Eκ〉∂Ω , (13)

where γ0eu = eu|∂Ω is the Dirichlet trace, γ⊥Eε = Eεn|∂Ω is the normal trace (n is the outward normal vector),
γ⊥⊥,1Eκ = −n · DivEκ − ∂s(n>Eκs)|∂Ω is the effective shear force at the boundary (s is the tangent versor at the
boundary), γ1ew = ∂new|∂Ω is the normal derivative trace and γ⊥⊥Eκ = n>Eκn is the normal to normal trace. The
boundary conditions are consistent with the ones assumed in Puel and Tucsnak [1996] for deriving a global existence
result for this model.

Conclusions

We have presented a pHs formulation of the full von-Kármán model. The dynamics of the system exhibits a state mod-
ulated interconnection operator, while the energy remains quadratic in the chosen variables. Of particular interest is the
discretization of such a model for simulation and control purposes. The Partitioned Finite Element Method (PFEM), an
extension of mixed finite elements to pHs, seems to be particularly suitable to achieve a structure-preserving discretization
of this model, as in Cardoso-Ribeiro et al. [2020] for the 2D Shallow Water Equation, which exhibits the same kind of
polynomial nonlinearity.
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