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Summary. Parametric amplifiers have been well known in the electronic industry as well as in micro electromechanical systems
(MEMS). However, they are typically confined to amplify the signals of these systems at primary or secondary resonance frequencies.
Parametric amplification can nonetheless be extended to be broadband under certain conditions and system parameters. To the best
of the authors’ knowledge, this is not yet applied in microsystems, although being highly promising especially for the industry of
micro sensors and transducers. On the other hand, in the industry of rate gyroscopes, the micro-ring gyroscope is being developed for
over a decade in order to reach the accuracy level of tactical or inertial grade gyroscopes, while maintaining relatively low production
costs of MEMS. For that sake, parametric amplification was studied for micro-ring gyroscopes with different excitation methods.
However, the idea of having "global" amplification was not yet applied. For this reason, this contribution aims at presenting a parametric
excitation method for nonlinearly modeled micro-ring gyroscopes which can provide "global" improvement in the amplification and
the performance for a broadband frequency spectrum.

Introduction

Parametric resonances have long benn studied since the 1831 by Faraday. They were up to this date in practice the only
useful phenomenon acquired through parametric excitation, i.e. through having a time-varying coefficient in the system’s
partial differential equation (PDE). The common practice, at least in the microsystems industry, did not make use so far
from an important observation by Cesari in 1939. He found in at least two degree-of-freedom (DOF) systems, that an
asynchronous parametric excitation can lead to "global" phenomena across the whole frequency spectrum [1]. This will
be explained in the next section.

On the other hand, researchers aim at improving micro gyroscopes to attain the tactical grade level (0.1 deg/h bias stabil-
ity), seeking the level of inertial grade (<0.01 deg/h) afterwards. For micro gyroscopes, nonlinear resonances were used in
the literature to overcome asymmetries due to fabrication, as they allow energy transfer between vibration modes [2], thus
improving sensitivity. Moreover, parametric resonances proved to "squeeze" mechanical and electrical noises [3], which
contribute in improving the Angle Random Walk (ARW) and bias stability. Also by operating in the nonlinear regime,
parametric excitations were found to provide much higher amplification, however, this was not adequately theoretically
investigated till recently [4]. To this end, this work aims at extending the authors’ investigation of the global effects
induced by phase-shifted parametric excitations in linearly modeled micro-ring gyroscopes [5] to the nonlinear case.

Global effects

The previously mentioned global effects are discussed here for a linear system. In the current practice of paramteric
excitation mechanisms, instability or amplification were exhibited at the primary resonance frequency equal to double the
natural frequency, i.e. Ω = 2ωi , or at the countably infinite secondary frequencies ωi±ωj

n , where i = 1, 2, j = 1, 2, n εN.
But by applying the theory of Cesari we could get an amplification and/or instability at every excitation frequency, hence,
that is named as a "global" effect. One such consequence can be driving the system in a state of "total instability",
i.e. at every frequency. Having said that, it may seem as bad news to engineering applications, however, for a system
that behaves nonlinearly this could be translated to having higher amplitude, gain or amplification at a non-trivial stable
stationary solution. This can be achieved by having phase-shifted off-diagonal time periodic functions in the parametric
excitation matrix C(t). This effect can be simply illustrated for a two DOF system

q̈ + (D + G)q̇ + (K + C(t))q = 0, (1)

where D,G,K and C(t) are the damping, gyroscopic, stiffness and parametric excitation matrices, respectively. The
resulting phenomenon can be illustrated in Fig.1. The figure shows a global destabilization of the system in absence of
other excitation mechanisms, explained by having a positive eigenvalue at all frequencies except for anti-resonances.

Modeling of the nonlinear micro ring gyroscope

As shown in Fig. 2, the micro ring gyroscope is modeled as an elastic inextensible ring totally surrounded by curved
electrodes, each at an angle θ̄k. The ring was found to exhibit two degenerate modes at the first vibration frequency, the
antinodes for the first mode and second modes are at angles θ̄k = (nπ2 ), (nπ2 + π

4 ) respectively. For modeling the ring’s
elastic dynamics we follow Natsiavas [7] by considering only flexural vibrations in thin rings. The elastic and electrostatic
potential energy, Ud and Ue respectively, are then found to be

Ud = EI
2R3

∫ 2π
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Figure 1: Global destabilization of a 2 DOF system

R

Figure 2: A sketch of the micro ring gyroscope

where R is the mean radius, u and v are the radial and circumferential displacements of a point on the centroidal axis
respectively (s. Fig. 2), ε0 is the electric constant, b, h are the ring’s thickness and width respectively, d is the initial gap
between each electrode and the ring’s body, and VDC , VAC are the direct and alternating voltages respectively applied on
the electrodes. On the other hand, the kinetic energy for the ring in a rotating frame will be

T = ρbh
2

∫ dπ
0

[u, v]T . [u, v]TRdθ.
Applying the ansatz proposed by Natsiavas but for only two vibration modes, u(θ, t) = A(t) cos(2θ) + B(t) sin(2θ) −
9

16R

[
A2(t) +B2(t)

]
, and considering the alternating voltage to be distributed approximately according to VAC(θ, t) =

VAC(t) cos(2θ), we get two nonlinear ordinary differential equations in A(t) and B(t) representing the system dynamics
for the drive (primary) and sense (secondary) modes respectively.

Normal form transformation

However, since the resulting equations of motions are highly nonlinear, an analytical method is required to develop a better
understanding of the gyroscope’s dynamics. Different perturbation methods are widely used to analyze those systems, but
we prefer here to use the normal form method, since it proved to have comparatively better accuracy for highly nonlinear
systems involving parametric excitation. An approximate analytical solution is therefore derived, through which the
highest eigenvalue could be calculated in terms of system’s and excitation parameters, this was used as an indication for
system stability. This can be seen in Fig. 1, in which the normal form method was used to simulate the eigenvalues of the
system in (1) for all but resonant frequencies, complying with the numerical results calculated by the Floquet method. Two
main findings are specially important; firstly the system is destabilized for approximately the whole frequency spectrum,
that is specially important in tuning the exciation frequency. Since this would overcome the problem of the loss of
sensitivity by mistuning. And secondly, this can give a new method of controlling the gyroscope’s response through
frequency control. This method will then be applied on the already derived equations of motion, and thereby the effect of
the parametric excitation on the nonlinear micro gyroscope will be illustrated, in a similar way to what is explained for
the linear system in (1).

Conclusions

This work contributes to understanding the observed nonlinear behavior of the micro-ring gyroscopes, since its nonlinear
model was not sufficiently discussed in the literature [4]. Moreover, we propose a novel excitation method in the field of
micro sensors, which offers an unprecedented flexibility in tuning as well as amplifying the micro ring gyroscope. This is
believed to contribute to the development of current MEMS gyroscopes towards achieving an inertial grade accuracy.
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