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Summary. Co-simulation is used to enable global simulation of a coupled system via the composition of simulators. Within this work, a new 

co-simulation approach is developed for mechanical systems with nonlinear components. Specifically, a model two-degree-of-freedom 

oscillator, including Duffing type nonlinearities, was investigated first by applying the method of multiple scales. This provided reliable 

information on its dynamics under primary external resonance. Moreover, the new co-simulation approach was presented and compared 

with the classical co-simulation methods from the literature. Here, the main focus is placed on mechanical subsystems. However, the new 

methods have general validity and can be applied to couple arbitrary solvers. 

Introduction 

Co-simulation or solver coupling has already been applied extensively to various engineering fields [1, 2]. The basic 

idea consists in a decomposition of the global model into two or more sub-models. The different subsystems are 

connected by coupling variables, which are exchanged only at the macro-time points (also called communication 

points). Between these points, the subsystems integrate independently from each other, using their own solver. 

Generally, the subsystems can be coupled by physical force/torque laws (applied forces/torques) or by algebraic 

constraint equations (reaction forces/torques) [3, 4].  

Two well-known co-simulation approaches are used: a parallel and a sequential, known as Jacobi and Gauss-Seidel, 

respectively, as their properties are similar to the respective linear iterative solvers. Furthermore, co-simulation 

approaches can be subdivided into explicit, implicit and semi-implicit methods. Finally, concerning the decomposition 

of the overall system into subsystems, three different possibilities can be distinguished. Namely, force/force, 

force/displacement and displacement/displacement decomposition. 
 

 

Figure 1: Example mechanical model 

Description of the new co-simulation method 

Within this work, emphasis is placed on the proper decomposition of the original system into two (or more) subsystems. 

Specifically, the decomposition takes place only at constraints of the initial model, which are artificially introduced 

through auxiliary bodies, in case they do not exist. The previously described procedure for the original mechanical 

model, shown in Figure 1, is depicted in Figure 2. Moreover, following recent work of the authors, the constraint 

equations and the equations of motion of each sub-model are formulated as a system of exclusively second-order 

ordinary differential equations (ODEs), bypassing numerical challenges associated with differential-algebraic equations 

[6, 7]. The distinct difference of the proposed approach, in comparison to the formerly developed co-simulation 

methods, lies in the dynamic nature of the master/orchestrator, which is now treated as a separate subsystem. Finally, 

through an appropriate weak formulation, the constraint equations and the OEMs of interface (master) model are 

expressed in a convenient and consistent first order ODE form, which carries over all the advantages of the 

corresponding second order ODE form [8]. 

 

 

Figure 2: Equivalent model of initial mechanical model (Figure 1) 
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Numerical results and discussion 

Here, a mechanical system with nonlinear components is examined [9, 10]. Specifically, the dynamic behavior of a two-

degree-of-freedom oscillator involving stiffness characteristics modelled by linear and cubic terms is investigated by 

applying the method of multiple scales (see Figure 1). In the cases examined, the external forcing possesses a component 

with frequency close to one of the natural frequencies of the linearized model (for typical results, see Figure 3). A detailed 

analysis of the convergence and the numerical error behavior is carried out in order to examine the different properties of 

the new co-simulation scheme developed, in comparison to the already existing approaches. A set of characteristic results 

are presented in Figure 4. Despite the fact that the models examined are simple and purely mechanical, the techniques 

used can also be extended and applied to arbitrary multibody or structural dynamics systems. 
 

 

Figure 3: Normalized displacement amplitude for linear and non-linear system 

 

Figure 4: Convergence plots for Jacobi communication pattern, explicit scheme and force-force decomposition (classical approach) 
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