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Summary. This work is devoted to how the frequency of an external force effects the resonances in a one-dimensional initial-boundary
value problem for a nonhomogeneous wave equation involving a Robin type of boundary condition with a time-dependent coefficient.
By setting the frequency of the external force equal to ω, and the time-dependent boundary coefficient in the boundary condition equal
to k(t), different kinds of resonances can be obtained by numerical simulations. Next, by using the method of d’Alembert and wave
reflections, we can calculate the solution u(x, t) by dividing the time domain into finite intervals of length 2. Finally, the resonance
results can be analyzed by the map of the solution from t = 2n to t = 2(n+ 1), which are in agreement with those obtained by using
a numerical method.

Statement of the problem

k(t)
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Figure 1: The transverse vibrating string with a time-varying spring-stiffness support at x=L.

In this paper we study resonance for a nonhomogeneous wave equation (see Figure 1), where one end is attached to
a spring for which the stiffness properties change in time (due to fatigue, temperature change, and so on). By using
Hamilton’s principle, the system can be written as:

ρutt(x, t)− Puxx(x, t) = εcos(ωt), 0 < x < L, t > 0, (1)

where ρ is the mass density, P is the axial tension which is assumed to be constant, L is the distance between the supports,
and u describes the lateral displacement of the string. εcos(ωt) is an external force acting on the whole string, where ε
and ω are constants. The boundary conditions are:

u(0, t) = 0, Pux(L, t) + k(t)u(L, t) = 0, t > 0, (2)

where k(t) is the time-varying stiffness of the spring at x = L. The boundary condition at x = 0 is a Dirichlet type of
boundary condition, and the boundary condition at x = L is a Robin type of boundary condition with a time-dependent
coefficient k(t). Based on the Buckingham Pi theorem,the governing equation (1), the boundary conditions (2), and the
initial conditions can be transformed to the following non-dimensional form:

utt(x, t)− uxx(x, t) = εcos(ωt), 0 < x < 1, t > 0,

u(0, t) = 0, ux(1, t) + k(t)u(1, t) = 0, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < 1.

(3)

Numerical example of Resonance

This section is devoted to presenting some numerical simulations on the dynamical resonance behavior of system (3) for
two cases. Let us first assume that ε = 1 and the following initial conditions are given:

f(x) = sin2(1.7155x), g(x) = 0, 0 < x < 1. (4)

Case 1: k(t) is constant
Choosing k(t) = 2 and setting ω = λ1 ( λi satisfies the transcendental equation − 1

kλi = tan(λi)) the solution of the
nonhomogeneous wave equation (3) can be obtained, and is given as in Figure 2-1 (where a resonance arises).

Case 2: k(t) is not constant (k(t) = 1
at+1 )

Let k(t) = 1
at+1 . We know the eigenvalues λ satisfy approximately−(at+1)λ = tan(λ) (see Figure 3). By giving fixed

values for "ω" and "a", different solution shapes can be obtained as time increases (see Figure 2-2 to 2-4). Resonances
might occur (or not) depending on the choices for "ω" and "a".
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Figure 2-1: The solution u(x, t) with k=2, ω=2.2889. Figure 2-2: ω = 1.329, resonance zone is around (2,16).

Figure 2-3: Resonance arises when ω = π
2 . Figure 2-4: No resonance when ω = π.

Resonance (unbounded solution) analysis

The analytical solution based on the method of d’Alembert
According to the method of d’Alembert (see [1]), the general solution to Eq.(3) is given by

u(x, t) =
1

2
[f(x− t) + f(x+ t)] +

1

2

∫ x+t

x−t
g(s)ds+ ε

∫ t

0

(t− τ)cos(ωτ)dτ.

It should be noted that the functions f and g are only defined on the interval [0,1]. To extend f and g on the whole domain
(−∞,+∞), the boundary conditions should be considered.
The nonhomogeneous wave equation we considered above in Eq.(3) has a propagation speed of 1, which implies that the
vibration information at the point x = xi and t = 0 will propagate into two different directions with speed 1, and the
information will be back to the position xi at t = 2 as shown Figure 4-1. Furthermore, Figure 4-2 shows the domain of
dependence. Then by treating the state at t = 2 as a new initial condition and using the same extension procedures, the
information needed to calculate the solution of the equation up to every time can be obtained (for details see [2]).

Figure 3: The resonance produced
by different values of ω.

Figure 4-1: Wave reflections. Figure 4-2: Domain of
dependence.

Solution and mapping
The resonance results can be analyzed by the map of the solution based on the proposed method (the method of d’Alembert),
from t = 2n to t = 2(n + 1), which turns out to be in complete agreement with those obtained by using a numerical
method.
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