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Summary. This work investigates the influence of holed gear blanks on the nonlinear dynamic behaviour of a flexible gear train. The
system is excited by a multiharmonic internal excitation, namely a time-varying mesh stiffness and the static transmission error. This
presentation will summarise the numerical procedure that has been developed to study such systems. A reference configuration without
holes is used to give insight into the underlying dynamics and to highlight the effects of holed gear blanks. A thorough parametric
study then addresses the robustness of the forced response curves and bifurcation structure to changes in gear blank topology.

Introduction

Weight reduction is a recurring concern in the design of modern mechanical systems. One of the most widespread solution
to design lightweight gears is to resort to adding holes in the gear blanks. An accurate prediction of the dynamic behaviour
of gears remains challenging due to the functional backlash, necessary to allow for assembly and operation, which can
lead to contact loss and a strongly nonlinear response [1]. We herein propose an algorithm based on the harmonic balance
method to investigate the dynamics of such systems. The proposed approach is able to take into account the internal
excitation associated to geared systems. This excitation consists of the static transmission error (STE), whose origin lies
in the teeth deflection under load, manufacturing defects and potential tooth profile modifications, and the time-varying
mesh stiffness expressed as the derivative of the transmitted load relative to the STE [2].

Dynamic model

The proposed dynamic model [3] considers a reverse spur gear pair (same number of teeth on the input and ouput gears)
modelled as lumped inertias and masses denoted I1 and m1 for the input gear and I2 and m2 for the output gear. Because
both gears have the same number of teeth the shafts rotate at a fundamental frequency Ω. The shafts are modelled by
torsional stiffnesses K1 and K2 and are supported by bearings of stiffness Kb. The input and ouput are modelled by two
lumped inertias Iin and Iout, respectively. The gears are connected by a nonlinear element consisting of a time-varying
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Figure 1: Dynamic model of the flexible transmission considered in this study.

piecewise linear stiffness. It includes the backlash 2b and the static transmission error as a gap function g(t) :
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Here,H is the Heaviside step function and G is a 6× 1 column vector allowing for the projection of the displacements in
the global reference frame on the line of action. The gap function g(t) is expressed as

g(t) = b + qs(t)−
Fs

km(t)
(2)

where qs(t) is the static transmission error, km(t) the mesh stiffness and Fs corresponds to the transmitted load. There
exists a number of methods to compute the static transmission error. However this work considers gears with holes which
warrants the use of a multibody analysis.
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Numerical methods

Due to the functional backlash, the equations of motions of the above described systems are strongly nonlinear. The
harmonic balance offers an efficient framework to compute the nonlinear response in the frequency domain. The equation
of motion takes the general form

[M] q̈ + [C] q̇ + [K] q + fnl(q, q̇) = fex (3)

where q contains the generalised displacement of each DoF and [M], [C], [K] are respectively the mass, damping and
stiffness matrices. fex is the vector of external periodic forcing and fnl the vector of nonlinear forces, i.e. the mesh force
caused by contact, or lack thereof, between gear teeth. The terms in equation (3) are thus expanded as truncated Fourier
series. More specifically, the generalised displacements are expressed as

q ≈
H∑

k=0

akcos(kΩt) + bksin(kΩt) = [T⊗ [In]]q̃ (4)

where T contains the harmonic base functions up to the truncation order H , ⊗ is the Kronecker tensor product, [In] the
identity matrix of size n and q̃ is the vector in which the Fourier coefficients are stored. The nonlinear forces are treated by
the well-known alternating frequency/time procedure [4]. An arc-length continuation method is coupled with the HBM to
build the frequency response curves. Hill’s method [5] is used to assess the stability of the computed points and a number
of test functions are defined to locate smooth [6, 7] and grazing bifurcations.

Numerical example
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Figure 2: Forced response curve (a) and grazing bifurcation diagram (b). Dashed lines indicate unstable regions and solid
lines indicate stable regions. Saddle-node, Neimark-Sacker and grazing bifurcations are represented with circle, triangle
and diamond markers, respectively.

Conclusion

A numerical methodology has been developed to study the influence of gear topology discontinuities on the dynamics
of geared systems. Results show that holes have a beneficial effect in curtailing the frequency range where the system
exhibits vibro-impacts, both at low and high torques.
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