
ENOC 2020, July 5-10, 2020, Lyon, France

Solitary wave-like solutions in hyperelastic tubes conveying inviscid and viscous fluid
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Summary. We study possible steady states of an infinitely long tube made of a hyperelastic membrane and conveying either an inviscid,
or a viscous fluid with power-law rheology. The tube model is geometrically and physically nonlinear; the fluid model is limited to
smooth changes in the tube’s radius. For the inviscid case, we analyse the tube’s stretch and flow velocity range at which standing
solitary waves of both the swelling and the necking type exist. For the viscous case, we show that a steady-state solution exists only
for sufficiently small flow speeds and that it has a form of a kink wave; solitary waves do not exist. For the case of a semi-infinite tube
(infinite either upstream or downstream), there exist both kink and solitary wave solutions. For finite-length tubes, there exist solutions
of any kind, i.e. in the form of pieces of kink waves, solitary waves, and periodic waves.

Introduction

Nonlinear waves in fluid-filled elastic tubes play an important role in problems of the cardiovascular system [1,7]. Solitary
wave solutions are used for the analysis of pulse waves as well as for the study of the formation of aneurysms [3,4]. As a
rule, such solutions are theoretically analysed without consideration of the fluid viscosity [2, 5]. The goal of this study is
to include the viscosity into account and to study its effect on solitary-wave-like solutions.
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Figure 1: Cylindrical membrane tube in the initial and the deformed state.

Problem formulation and results

Governing equations
We consider a cylindrical membrane tube with a circular cross-section with a thickness of h and a radius of R, made
of incompressible hyperelastic Gent material (Fig. 1). The ratio h/R is sufficiently small for the bending stresses to be
neglected compared to the membrane stresses. The tube conveys a non-Newtonian viscous fluid whose rheology obeys
a power law. We restrict ourselves to axisymmetric motion. In [2], a self-contained derivation of the exact equations of
motion for the case of an inviscid fluid was given. We re-derive these equations and upgrade it by the viscous fluid forces
taken into account. The fluid equations are considered in the formulation [9, 10]. With these assumptions, closed system
of four differential equations is derived.

Analysis: inviscid fluid
If the fluid viscosity is neglected and the velocity is constant at each cross-section, the system of equation has four first
integrals, as shown in [2]. We prove that the existence of these integrals retains if the velocity distribution is non-constant,
but the viscosity is still neglected. The system of first integrals is reduced to a two-dimensional dynamic system, which is
analysed by its phase plane (Fig. 2).
It is known [6] that for a quiescent fluid (or, equivalently, if a constant pressure is set in the tube) in a tube that is axially
unstretched at infinity (axial stretch λ10 = 1), a standing solitary wave in the form of a localised swelling exists for a
range of far-field circumferential stretches 1.18 < λ20 < 1.69. We show that in the case of a moving fluid, there is a
range of velocities (0.063 ≤ vf0 ≤ 0.58 for far-field radial stretch λ20 = 1.5), in which there exists, simultaneously with
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Figure 2: Vector field and separatrices of the stationary saddle points for λ10 = 1, λ20 = 1.5, and vf0 = 0.4. General view (a),
enlarged view in the area of the separatrix loops (b).
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Figure 3: Swelling (a) and necking (b) solitary waves λ2(x) for λ10 = 1, λ20 = 1.5, and vf0 = 0.4.
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Figure 4: Kink-like solution λ2(x) for infinite-length tube conveying viscous fluid.

the standing swelling solitary wave, a standing necking solitary wave. At a lower fluid velocity, there is only a swelling
solitary wave; for larger velocities, no solitary waves exist. Note that in a model of a geometrically and physically linear
tube, in which only the nonlinearity of the flow was taken into account [8], there always exists, for any nonzero flow
velocity, only a standing necking solitary wave. Thus, both the existence of a standing swelling solitary wave and the
limited range of fluid velocities for which a standing necking solitary wave exists are consequences of the physical and
geometrical nonlinearities of the tube model.

Analysis: viscous fluid
When a viscous fluid moves, only two of the four first integrals exist, and the motion of the trajectory on the phase plane
is accompanied by a simultaneous change of the vector field. First, we prove that there are limit stretch states of the tube
as x → −∞ and x → +∞, with the stretches λ1 and λ2 tending to constants but the stresses tending to infinities to
compensate for the fluid pressure and the longitudinal stress caused by the fluid viscosity, which are infinitely growing
upstream and infinitely decreasing downstream. The transition between these limit states occurs in the central section of
the tube and exists only if the fluid velocity is sufficiently small. In this case there is a unique solution linking the states
at infinity in the form of a monotonic decrease in the radius downstream, i.e. a kink-like solution. Localised swelling
or necking solutions for a tube that is infinitely long in both directions do not exist. However, such solutions exist if the
tube is infinitely long in only one direction, either downstream or upstream. But solutions in which a semi-infinite tube
has multiple neckings or swellings do not exist. For finite-length tubes, there exist ‘pieces’ of both swelling and necking
solitary waves, as well as close-to-solitary-wave solutions with a finite number of successive swellings or neckings.
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