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Summary. Nonlinearities in rotating systems have been seen to cause a wide variety of rich phenomena, however the understanding of these 

phenomena has been limited because numerical approaches typically rely on ‘brute force’ time simulation, which are inefficient due to issues 

of step size and settling time, cannot locate unstable solution families and may miss key responses if the correct initial conditions are not 

used. This work uses numerical continuation to explore the responses of such systems in a more systematic way. A simple isotropic rotor 
system with a smooth nonlinearity is studied, and the rotating frame is used to obtain periodic solutions. Asynchronous responses with 

oscillating amplitude are seen to initiate at certain drive speeds due to internal resonance, in a manner similar to that observed for non-smooth 

rotor stator contact systems in previous literature. These responses are isolated, in the sense that they will only meet the more trivial 

synchronous responses in the limit of zero damping and out of balance forcing. In addition to increasing our understanding of the responses 
of these systems, the work establishes the potential of numerical continuation as a tool to systematically explore the responses of nonlinear 

rotor systems. 

Introduction 

Nonlinear dynamic system’s response can show bifurcations with small changes in its parameters. Therefore, 

systematically locating these bifurcation points is vital. Rotating machinery makes this more challenging with gyroscopic 

coupling that ties the whirl frequencies to the rotor speed. As a result, the internal resonance phenomenon can occur in a 

large range of operating rotor speeds, resulting in the bouncing orbits  involving rotor-stator contact. The contacting 

interaction can be defined in various ways in the literature, ranging from rigid impact [1] to soft penalty contact [2].  

For the solution of nonlinear problems within rotordynamics field, time simulations [3] and analytical and semi-analytical 

approaches based on harmonic balance method [4] have been used, aside from experimental investigations. However, this 

work uses the numerical continuation method applied directly to the systems of ODE, as a contrast to Refs. [5], due to its 

advantages over time simulations in computational cost and over algebraic methods in setup simplicity.  

The analysed system is a 2-dof overhung rotor with isotropic cubic nonlinearity, shown in Figure 1 in the dimensional 

form. The equation of motion is nondimensionalised and transformed into the autonomous rotating coordinate frame 

equations given in Eq. (1). 
 

𝑈′′ + (−�̂�𝐽(𝐼�̂� − 2) + 2𝜁)𝑈′ + (�̂�2(𝐼�̂� − 1) + 1 + 2𝜁�̂�𝐽)𝑈 + 𝛾�̂�2𝑈 = �̂��̂��̂�2 {
1
0
} , 𝐽 = [

0 −1
1 0

] (1) 

 

where hat indicates the nondimensional form, 𝑈 = [�̂�, 𝑣] is the rotating coordinate vector with coordinates �̂� and 𝑣, �̂� is 

the rotor speed, 𝐼𝑝 is polar moment of inertia, 𝜁 is damping ratio, 𝐽 is a skew symmetric matrix, 𝛾 is the cubic stiffness, �̂� 

is the distance of disk geometric centre to the stationary equilibrium, �̂� is the disk mass, �̂� is the eccentricity of the disk, 
(. )′ is the derivative with respect to time, all in nondimensional forms. 

The main focus of this work is on asynchronous periodic orbits that are caused by internal resonance, and we address 

similarities and differences to the case of contacting nonlinearity. The solutions found are validated with time simulation. 

AUTO open-source ODE numerical continuation software and MATLAB ode45 explicit integrator were used in the study.  
 

 
Figure 1: The 2-dof overhung rotor system with isotropic cubic stiffness.  

Results 

The bifurcation diagram resulting from the numerical continuation procedure is plotted in Figure 1(a). In this plot, the 

responses of the system with different damping levels are given together to see the effect of damping. The solution 

includes the synchronous response, which is skewed highly towards right due to stiffening, and asynchronous response 

that has two distinct sets of solution families, named here as double- and single-loop solution families after their apparent 

shapes in Figures 1(b) and 1(c). These orbits are periodic due to being viewed in the rotating frame (otherwise quasi-

periodic in the stationary frame). Figures 1(d) and 1(e) show close-ups of asynchronous response to the synchronous 

solution. The double-loop and single-loop solutions were linked to the internal resonance conditions 3:1 and 2:1 in the 

rotating coordinates, respectively, by comparing them to the Campbell diagram with signed frequencies. These clearly 

show the closeness of the periodic responses to the stationary ones in the case of very low damping, ζ=1e-5. The periodic 

solutions were shown to be present only below a certain damping value that is peculiar to the solution family. This limit 
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was found to be 0.0116 for double-loop solutions and 0.082 for single-loop solutions, as illustrated in Figure 2.  

  

 
Figure 1: a) Continuation results as bifurcation diagram, b-c) double- and single-loop periodic orbits in rotating frame, d-e) and their 

low damping tips’ close-up. Red “L” signs locate the folds of the solution families. Dashed lines show unstable solutions.  

 

 
Figure 2: Damping limits for a) double- and b) single sloop solution families were 0.0116 and 0.082, respectively. The “U” signs 

locate the orbits corresponding to the sampled damping values. Dashed lines show unstable solutions. 

Conclusions 

The softer extreme of rotor-stator contact interaction was investigated by replacing the contact with a cubic stiffness 

nonlinearity. Direct application of continuation on the equations of motion was easy to setup and the solution procedure 

can be validated with time simulations easily. The following conclusions were drawn. The previously reported intermittent 

contact patterns for the models of hard impact and compliant snubber rings can also be observed in the case of the 

geometric nonlinearity of cubic stiffness. The level of damping changes the region where periodic motions was expected. 

Higher damping can cause the periodic solutions to disappear from the bifurcation diagrams. However, for low damping 

there is a limit to the growth of the periodic orbit region towards the lower rotor speeds; for very low values of damping 

(e.g. ζ=1e-4 and 1e-5) the periodic solution family approaches the synchronous solutions. It might be inferred that the gap 

closes asymptotically as ζ and the oscillation amplitude approach zero. This indicates that this region requires very little 

disturbance for synchronous solutions to jump to the periodic orbits.  
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