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Context

The Cristal Baschet (Fig. 1a) is a contemporary musical instrument composed of a large number of glass rods arranged
in chromatic scale. The sound is produced by rubbing glass rods with wet fingers, which causes the occurrence of stick-
slip phenomenon. Each rod is connected to an assembly of threaded shafts, whose mechanical properties determine the
pitch of the note. The vibrations are then transmitted to large metal sheets or cones that act as radiating elements. The
manufacturing and tuning of the instrument is essentially based on empirical know-how and involves many parameters.
Their influence on the sound and playability of the instrument is not clearly understood. One of the problems encountered
is the difficulty to produce sounds in the high register of the instrument. In this study, a minimal model of Cristal Baschet
is developed to analyze the emergence of self-sustained oscillations by means of linear stability analysis, with the aim of
proposing design rules to improve the playability of the instrument.

Model

The minimal model focuses on the interaction between the wet finger and an isolated resonator (Fig. 1b). The resonator
consists of a glass rod connected to a threaded shaft. Its dynamic behavior is represented by a set of modes. The modal
parameters, which depends on design parameters (geometry, material properties...), can be obtained from a finite element
model or from experimental modal analysis of the instrument. To model the occurrence of self-sustained oscillations from
the frictional interaction with the finger, the knowledge of mode shapes at the interaction point is sufficient. Two gesture
parameters, i.e. parameters that are controlled by the musician, are considered: the velocity of the finger vf along the rod
and the normal force FN exerted by the finger on the rod. To describe the interaction between the finger and the resonator,
the friction law considered in this study assumes that the glass rod perfectly sticks to the finger during sticking phases
(∆v = 0) and that the friction force during sliding phases depends on the relative velocity ∆v = u̇ − vf between the
finger and the glass rod [2]. The sliding friction force is therefore expressed as FT = µ(∆v)FN with

µ(∆v) = µd +
µs − µd

1−∆v/v0
, (1)

where µs is the coefficient of static friction, µd the asymptotic coefficient of dynamic friction and v0 a parameter control-
ling the shape of the friction curve (Fig. 1c).
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Figure 1: (a) Cristal Baschet (adapted from [1]). (b) Interaction between wet finger and resonator. (c) Friction curve and
its linearization around static equilibrium in sliding situation.

Linear stability analysis

As a first step to determine the conditions at which the self-sustained oscillations can occur, the stability of the static
solution in a sliding state is examined [3]. For this purpose, it is considered that the glass rod is in static equilibrium (i.e.
u̇ = 0) under the action of a constant friction force Fs resulting from the motion of the finger at constant speed. Assuming
small fluctuations of the glass rod velocity around its equilibrium position, a linearization of the friction curve around the
static solution is performed to express the corresponding variations in friction force as FT ≈ Fs + Cu̇, where coefficient
C represent the local slope of the friction curve (Fig. 1b). Inserting this linearized expression into the modal equations
yields

Mq̈ +
(
C− CΦfΦ

T
f

)
q̇ + Kq = ΦfFs , (2)
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where M = diag(mn), C = diag(2mnξnωn), K = diag(mnω
2
n) are the modal mass, damping and stiffness matrices,

and Φf is a column vector containing the value of each mode shape at the location of the finger. Looking for a solution to
the homogeneous equation in the form Qeλt, one obtains an eigenvalue problem(

λ2M + λ
(
C− CΦfΦ

T
f

)
+ K

)
Q = 0 , (3)

where each eigenvalue λ characterizes an oscillating component whose amplitude either decreases (if Re(λ) < 0) of
increases (if Re(λ) > 0) over time, corresponding respectively to stability or instability of the static equilibrium. Self-
sustained oscillations occurs when the smallest modal damping ratio ξeff = −Re(λ)|λ|−1 is negative (Fig. 2). The
threshold depends on gesture parameters and friction law (both included in coefficient C) and design parameters (through
the value of mode shapes Φf at the interaction point).

Time-domain simulations

In order to verify the criterion calculated from linear stability analysis, time-domain simulations are performed using an
explicit numerical scheme of the form

x(ti+1) = Ax(ti) + Bf(ti) , (4)

where x is a vector containing all modal coordinates and their time derivatives and f is a vector containing the modal
forces. The coefficients in A and B are obtained using a piecewise constant approximation of the right-hand side of
modal equations. At each time step, the unknown friction force FT exerted by the finger on the glass rod is obtained
by enforcing a sticking or sliding condition. The results of time-domain simulations (Fig. 3) are in agreement with the
predictions of linear stability analysis. The amplitude grow rate at various levels of normal force follows the same trend
as the evolution of effective modal damping ratio shown in Fig. 2.
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Figure 2: Smallest effective damping ratio ξeff as a
function of the normal force FN exerted by the finger
and its velocity vf . The dashed line indicates the limit
between positive and negative values of the damping
ratio, corresponding to stability or instability of the
static equilibrium in sliding situation.
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Figure 3: Velocity of the glass rod u̇ and friction force FT
obtained from time-domain simulation. The red dashed lines
are respectively the finger velocity vf and the normal force
FN (which also corresponds here to the maximum static fric-
tion force since µs = 1 in this simulation). The different lev-
els of force correspond to points 1 to 6 in Fig. 2. Although
masked by the scale fixed for the velocity, the third level of
normal force leads to oscillations with increasing amplitude
but low growing rate, not allowing to see the permanent pe-
riodic regime.

Conclusion

The minimal model of the Cristal Baschet describes the dependence of the amplitude grow rate of instabilities on the
physical parameters: it is shown that the law of friction plays an essential role but its influence depends also on the mode
shapes of the resonator at the connection point. These modal parameters are directly adjusted by the instrument maker
when he tunes the mobility of these resonators. The model shows that a too low mobility can be responsible for the
difficulties in obtaining the sound in the upper register.
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