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On the Escape of a Resonantly Excited Couple of Colliding Particles from a Potential
Well under Bi-harmonic Excitation
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Summary. Escape dynamics of a damped two-particle system with internal collisions in a truncated quadratic potential well under
biharmonic excitation is investigated. It is assumed that the excitation frequencies are tuned to the 2l-fold values of the modal natural
frequency of the relative motion and to the modal frequency of the center of mass on the bottom of the potential well. Although the
escape is an essentially non-stationary process, the critical forcing amplitude strongly depends on the stationary amplitudes of the
relative vibrations within the two particles. The characteristic escape curve for the critical force moves up with the increasing relative
vibrations.

Introduction

Escape from a potential well is an important topic in non-linear dynamics. The problem arises in various fields of physics
and engineering [1]-[5].
A broad spectrum of physical phenomena from the dynamics of molecules to celestial mechanics has been studied in
the literature, discussing topics such as energy harvesting [6], the physics of Josephson junctions [7], transient resonance
dynamics of oscillatory systems [8, 9] or such phenomena as capsizing of ships [3, 10]. A further example for an escape
related topic is the dynamic pull-in in microelectromechanical systems (MEMS) [11]-[16].
First, in 1940, Kramer started to investigate the forced escape phenomenon regarding the thermal activation of chemical
reactions [17, 18]. Despite of much research which has taken place in the last 80 years, important unsolved problems still
exist regarding the escape process [19].
In the case of constant forcing, escape might occur as a consequence of the slow variation of the system parameters
which leads to subsequent bifurcations of the steady-state regimes of the response [2, 11, 12]. Thompson investigates
extensively the mechanisms leading to escape in a cubic model potential. His numerical results describe the phenomenon
of escape along a broad scale of the excitation frequency of the harmonic forcing. It reveals the chaotic processes leading
to escape near the critical forcing amplitude curve. Using Melnikov’s method [32] a good approximation can be given for
the numerical location of a part of the critical force curve.
Different modeling approaches can be found in the literature to give analytic criteria for the escape. In the paper of Virgin,
[3] harmonically forced and damped particles are investigated in three different model potentials, where the steady state
response of the particle’s motion is used to obtain the partly empirically corrected analytic criterion. The author assumes
a harmonic response with an additional bias to correct asymmetries of the potential.
Technically relevant potential wells in general exhibit a monotonically decreasing stiffness when moving away from the
center of the potential well. This is necessary to flatten out the profile of the potential, otherwise its depth could not be
finite.
In the paper [3] some model potential wells are also investigated numerically. The numerical results show a sharp min-
imum of the critical forcing amplitude depicted along the forcing frequency. This sharp minimum takes smaller values
than the linearized eigenfrequency of the potential well. Papers [14, 15] investigating the problem of dynamic pull-in in
MEMS devices also come to similar results regarding the shape of the critical forcing curve.
In the papers [20, 21] investigating the safe basins of attraction for various dynamical systems similar patterns for the sharp
minimum were found. This let’s the reader formulate a hypothesis about the above mentioned feature of the critical forcing
curve as an inherent property of the escape phenomena. In the papers [22, 25] for different potentials this hypothesis was
investigated using harmonic forcing.
The above two papers investigate the escape dynamics of the harmonically forced bodies assuming 1:1 resonance. The
applied method is able to take into account the transient dynamics of the system, which can be described by the slow
flow on the resonance manifold. Varying the initial conditions (IC) allows the identification of two different escape
mechanisms. The simpler to describe maximum mechanism (MM) corresponds to the case when the oscillation amplitude
reaches the escape threshold as a consequence of the excitation. In this case, exciting with the critical force results in an
amplitude value that just reaches the escape threshold. The other mechanism is the so called saddle mechanism (SM).
It is different from the previous mechanism, because the amplitude of the vibration stays quite small even if the forcing
amplitude is almost critical. When the critical forcing amplitude is reached, the vibration amplitude starts to increase
abruptly and escape takes place. At the lowest point of the critical force curve both mechanisms can be observed at the
same time. The approach resembles the research done in [23, 24] describing transient phenomena in coupled oscillator
systems with the use of limiting phase trajectories (LPT).
In paper [28] a system of a pair of strongly coupled particles in a truncated quadratic potential well with a bi-harmonic
excitation, consisting of a high and a low frequency component, was investigated. The paper introduced a new method to
model the effect of the high-frequency excitation using an effective force field which was derived by convolution of the
original force field and the probability density function of the fast movement around the center of mass of the two particles.
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Figure 1: The setting of the collision problem in a potential well with harmonic force excitation.

The multi-body problem was simplified that way to a single body problem for which standard techniques could be applied.
The research also showed that the high-frequency excitation has a stabilizing effect on the escape behavior with the used
model potential, for which, being the model of a linear oscillator, a single particle has a critical forcing amplitude tending
to 0 at the the resonance frequency. In the case of two bodies, however, the minimal value of the critical force curve is
greater than 0 and it is shifted to a lower frequency than the linearized eigenfrequency of the potential.
In the present paper, the model presented in [28] is modified such that the particles, although they are still considered as
point masses, are not able to penetrate each other, but an almost elastic collision, with the coefficient of restitutionR takes
place every time they get in touch with each other, i.e. the distance between them is ∆ := r1 + r2.
First, the mathematical model of the problem is introduced. Then, after bringing the equations into an appropriate form
using a coordinate transformation, the first step of the model reduction based on the so called ’unfolding transformation’
is described. With the use of this result, the further reduction of the model takes place in the next section, which is based
on a probabilistic type of averaging, that leads to a single particle problem in a modified, effective potential. In the section
’Numerical results and discussion’ the reduced model is compared to the original problem by direct numerical integration
using parameter values spanned by a grid on the excitation frequency – force amplitude plane, highlighting the stabilizing
effect of the high-frequency excitation. The findings of the paper are summarized in the ’Conclusions’ section.

Description of the model

Let us consider the following problem setting depicted in Fig. 1.
The coupled pair of particles with masses m1 and m2 is excited harmonically in a one-dimensional quadratic potential
well. The linear spring between the particles has the stiffness k ≫ 1 and the linear damper is described by the damping
coefficient c of O(1). The potential well is defined individually for both of the particles by V1(x) = m1V (x) and V2(x) =
m2V (x), respectively, where m1 and m2 are of O(1). Poly-harmonic forces, given by F1(t) and F2(t), respectively, can
act on both of the bodies. The particles cannot penetrate through each other and hence collide every time they are at a
distance ∆ := r1 + r2 from each other. The collision is nearly elastic, which means the coefficient of restitution is close
to one, i.e. R ≈ 1.
The differential equations describing the motion of the system are given by

[
m1 0
0 m2

] [
ẍ1
ẍ2

]
+

[
c −c
−c c

] [
ẋ1
ẋ2

]
+

[
k −k
−k k

] [
x1
x2

]
+

[
m1V

′(x1)
m2V

′(x2)

]
=

[
F1(τ)
F2(τ)

]
if x1 +∆ < x2, (1)

x1+ = x1−, x2+ = x2−, if x1 +∆ = x2, (2)

ẋ1+ =
Rm2(ẋ2− − ẋ1−) +m1ẋ1− +m2ẋ2−

m1 +m2
, ẋ2+ =

Rm1(ẋ1− − ẋ2−) +m1ẋ1− +m2ẋ2−
m1 +m2

,

(3)

where V is defined as

V (x) =

{
1
2x

2 − 1
2 |x| ≤ 1,

0 |x| > 1,
(4)

The excitation force can be chosen in general as

Fj(τ) =

p∑
i=1

Aji sin(Ωjiτ + βji), with j ∈ 1, 2 and p ∈ N+. (5)
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In order to be able to excite the center of the mass in the potential well and the relative vibrations within the particles
simultaneously, the excitation in the current investigation is chosen to be

F1(τ) = F11 sin(Ω11τ + β11) + F12 sin(Ω12τ + β12), (6)
F2(τ) = 0. (7)

The coordinates x1 and x2 can be linearly transformed to the new coordinates

y1 :=
m1x1 +m2x2
m1 +m2

, y2 := x2 − x1, (8)

thus, y1 describes the movement of the particle’s center of mass and y2 gives the distance between the particles. By having
collisions, y2 can never be smaller than ∆. The inverse of the coordinate transformation is substituted back into Eq. (1),
which leads to

ÿ1+µV
′ (y1 − (1− µ)y2) + (1− µ)V ′ (y1 + µy2)

=
1

m1 +m2
(F11 sin(Ω11τ + β11) + F12 sin(Ω12τ + β12)) if y2 > ∆, (9)

y1+ = y1−, ẏ1+ = ẏ1−, if y2 = ∆, (10)

ÿ2+
c

m
ẏ2 +

k

m
y2 + V ′ (y1 + µy2)− V ′ (y1 − (1− µ)y2)︸ ︷︷ ︸

small coupling term of O(1) since k
m≫V ′(x)

= −F11

m1
sin(Ω11τ + β11)−

F12

m1
sin(Ω12τ + β12) if y2 > ∆, (11)

y2+ = y2−, ẏ2+ = −Rẏ2−, if y2 = ∆, (12)

with

1

m
:=

1

m1
+

1

m2
, µ :=

m1

m1 +m2
. (13)

Eq. (11) is coupled to Eq. (9) only through a small term, which, if both terms of the sum are evaluated inside of
the potential, is equal to y2 and if both terms are evaluated outside of the potential, is equal to 0. Otherwise, the small
coupling term is not independent of y1 anymore, but still, even in this case the force of the potential is very small compared
to the force of the spring. In addition, the case, when both particles are in the potential well, is the most dominant one,
thus the small coupling term can be approximated by y2 very well. By doing so, Eq. (11) becomes linear and can be
solved easily.

ÿ2 +
c

m
ẏ2 +

(
k

m
+ 1

)
y2 = −F11

m1
sin(Ω11τ + β11)−

F12

m1
sin(Ω12τ + β12) if y2 > ∆, (14)

y2+ = y2−, ẏ2+ = Ry2−, if y2 = ∆, (15)

Since the damping coefficient, c
m in the investigated case is not small, the homogeneous solution will decay in relatively

short time and the relevant part of the solution becomes the particular solution [29]-[30]. The frequency of the resonance
peak in the motion of y2 without collision would be

Ω02 =

√
k

m
+ 1− c2

2m2
, (16)

but the collisions have a significant effect on the high frequency vibration, which has to be discussed first in order to be
able to determine the vibration amplitude and so the probability density function (PDF) of the high-frequency oscillations.
In the current investigation we are interested in the escape behavior of the two-particle system with large inner vibrations
under a low-frequency and small force amplitude excitation. To get large vibrations in the relative motion of the particles
the appropriate excitation frequencies should be found.
The resonance frequency of the particle’s center of mass in the potential well is not influenced by the collisions. When
both particles are in the potential well, Eq. (9) simplifies to

ÿ1 + y1 =
1

m1 +m2
(F11 sin(Ω11τ + β11) + F12 sin(Ω12τ + β12)) , (17)

which means that the linearized eigenfrequency of y1 is Ω01 = 1.
In the next section the focus is set on the description of the vibration amplitude of the relative movement depending on
the choice of the excitation frequency.
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The first step of the model reduction: resonance of the colliding particles under high-frequency
excitation

The analysis of the resonance frequencies of Eq. (14) is already performed by Fidlin in chapter 3.5 of [31]. In the present
section of this paper the content of the book is repeated mostly, however, due to a printing error in the book, a somewhat
different result is obtained in the end.
In order to be able to apply the results from the book, a preliminary step is needed. With a coordinate transformation it
has to be ensured that the term y2 in Eq. (14) has the coefficient 1.

Introducing the new, dimensionless time t = ω0τ , with ω0 =
√

k
m + 1 the time derivatives can be rewritten as follows

ẏ2 =
dy2
dτ

= ω0
dy2
dt

= ω0y
′
2, (18)

ÿ2 =
d2y2
dτ2

= ω2
0

d2y2
dt2

= ω2
0y

′′
2 , (19)

where the time derivative with respect to the dimensionless time is indicated by a prime (’). Rewriting Eq. (14) in the
dimensionless time yields

y′′2 +
c

ω0m
y′2 + y2 = − F11

m1ω2
0

sin

(
Ω11

ω0
t+ β11

)
︸ ︷︷ ︸

Negligible

− F12

m1ω2
0

sin

(
Ω12

ω0
t+ β12

)
. (20)

Given that Ω11 is chosen to be in the nearby of Ω01 = 1, the effect of the first term on y2 is negligibly small. Defining the
following parameters

β :=
c

ω0m
, ε :=

F12

m1ω2
0

, ω :=
Ω12

ω0
, (21)

we can rewrite Eq. (20) can be rewritten as follows

y′′2 + βy′2 + y2 = −ε sin(ωt+ β12) if y2 > ∆, (22)
y2+ = y2−, y′2+ = −Ry′2−. if y2 = ∆. (23)

Using the so called ’unfolding transformation’

y2 = |z|+∆, (24)

Eq. (22) can be written as

z′′ + βz′ + z = (−∆− ε sin(ωt+ β12)) sgnz if z ̸= 0, (25)
z′+ − z′− = −(1−R)z′− if z = 0. (26)

Using the Van der Pol transformation with

z = A sinφ, z′ = A cosφ. (27)

and a newly defined, uniformly rotating phase

ψ = ωt+ β12, (28)

Eq. (25) can be transformed to

A′ = −βA cos2 φ+ (−∆− ε sinψ) cosφ sgn sinφ if φ ̸= nπ,

A+ −A− = −(1−R)A− if φ = nπ, (29)

φ′ = 1 + β sinφ cosφ+
∆+ ε sinψ

A
| sinφ|, (30)

ψ′ = ω. (31)

With the usual definition of the resonant surface and resonant solutions as also defined in [31], we focus on the parameter
values of ω for which the averaged right hand side becomes discontinuous, as in the vicinity of those values, large
amplitude responses may occur. ’Dangerous’ terms are

< sinψ cosφ sgn sinφ > =
1

2π

∫ 2π

0

sin(ωt+ γ) cos t sgn sin tdt, (32)

< sinψ
∣∣ sinφ| > =

1

2π

∫ 2π

0

sin(ωt+ γ)| sin t|dt, (33)

γ = ψ0 − φ0, (34)
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which expression can have values different from zero for values ωl = 2l, l = 1, 2, 3... Then, by introducing

δ =
ω

2l
− 1, θ = φ− ψ

2l
, (35)

Eq. (29) can be rewritten as

A′ = −βA cos2 φ−∆cos(φ)sgn(sinφ)− ε sin
(
2l(φ− θ)

)
cosφ sgn(sinφ) if φ ̸= nπ, (36)

A+ −A− = −(1−R)A− if φ = nπ, (37)

θ′ = −δ + β sinφ cosφ+
∆+ ε sin

(
2l(φ− θ)

)
A

| sinφ|, (38)

φ′ = 1 + β sinφ cosφ+
∆+ ε sin

(
2l(φ− θ)

)
A

| sinφ|. (39)

Taking small values for δ, the discontinuous averaging procedure can be performed. Using the notations of [31], the four
integrals to be evaluated are

J1 =
1

2π

∫ 2π

0

sin(2lφ)| sinφ|dφ =
1

π

∫ π

0

sin(2lφ) sinφdφ = 0, (40)

J2 =
1

2π

∫ 2π

0

cos(2lφ)| sinφ|dφ = − 2

π(4l2 − 1)
, (41)

J3 =
1

2π

∫ 2π

0

sin(2lφ) cosφ sgn sinφdφ =
4l

π(4l2 − 1)
, (42)

J4 =
1

2π

∫ 2π

0

cos(2lφ) cosφ sgn sinφdφ = 0. (43)

Using the above results and averaging yields the following differential equations

A′ = −
(
1

2
β +

1−R

π

)
A− 4lε

π(4l2 − 1)
cos 2lθ, (44)

θ′ = −δ + 2∆

πA
+

2ε

π(4l2 − 1)

sin(2lθ)

A
. (45)

Eq. (44) differs from Eq. (3.95) in [31] by the additional factor 3 in the denominator, which is a printing error.
Setting the left hand side to 0, the stationary solution, A∗ and θ∗ can be obtained.

1
2β + 1−R

π

2l
A∗ = − 2ε

π(4l2 − 1)
cos 2lθ∗, (46)

δA∗ −
2∆

π
=

2ε

π(4l2 − 1)
sin 2lθ∗. (47)

Eliminating θ∗ and introducing

βl =
1
2β + 1−R

π

2l
, εl =

ε

4l2 − 1
, (48)

one obtains

β2
l A

2
∗ +

(
δA∗ −

2∆

π

)2

=
4ε2l
π2

. (49)

Its solution for A is then

A1,2 =
2

π

δ∆±
√
ε2l (β

2
l + δ2)−∆2β2

l

β2
l + δ2

. (50)

Only the root with the plus sign is a stable solution (see proof in [31]) therefore the stationary amplitude is

A∗ =
2

π

δ∆+
√
ε2l (β

2
l + δ2)−∆2β2

l

β2
l + δ2

. (51)

For fixed ∆, βl and εl but for varying δ the maximal value of A∗ can be found by setting

∂A∗

∂δ

∣∣∣∣
δmax

!
= 0, (52)
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which leads to

δmax =
∆βl
εl

. (53)

Inserted in Eq. (51) the biggest amplitude value estimated by the analytic approach is

A∗,max =
εl
βl
, (54)

independent from ∆, i.e. for every feasible choice of ∆ the maximal amplitude is the same for some δmax.
Now we can write the solution

z(t) = A∗ sin

(
ωt

2l
+ φ0

)
(55)

for some φ0, thus

y2(t) = A∗

∣∣∣∣ sin(ωt2l + φ0

) ∣∣∣∣+∆. (56)

0 2 4 6 8 10 12 14 16 18

t

0

0.1

0.2

0.3

y
2
(t

)

Direct numerical solution

Analytic estimation

(a) m1 = 1, m2 = 5, Ω12 = 61.988 (l = 1) and ∆ = 0.

0 5 10 15 20 25 30 35

t

0

0.02

0.04

0.06

0.08

0.1

0.12

y
2
(t

)
Direct numerical solution

Analytic estimation

(b) m1 = 2, m2 = 1, Ω12 = 138.71 (l = 2) and ∆ = 0.0006.

Figure 2: Comparison of the numerical solution for y2 with the theoretically estimated stationary amplitude for c = 0.5,
k = 800, F12 = 15. The theoretical model can predict the stationary amplitude very accurately.

The second step of the model reduction: calculating the effective slow potential using the probabilistic
description of the high-frequency oscillations

Given the amplitude of y2, the PDF of the high-frequency oscillations around the common center of mass, y1 can be
determined as [

z1
z2

]
=

[
x1 − y1
x2 − y1

]
=

[
y1 − m2

m1+m2
y2 − y1

y1 +
m1

m1+m2
y2 − y1

]
=

[
− m2

m1+m2
y2

m1

m1+m2
y2

]
. (57)

As it can be expected, the movement is not symmetric around y1, unless the masses are equal. In general the PDFs of the
individual particles, ρi(x) are given by arcsine distributions cut in the middle as depicted in Fig 3. To write the probability
density function of z1 and z2, first, we define

A1∗ = (1− µ)A∗, A2∗ = µA∗, ∆1 = (1− µ)∆, ∆2 = µ∆, (58)

thus

z1 = −A1∗

∣∣∣∣ sin(ωt2l + φ0

) ∣∣∣∣−∆1, z2 = A2∗

∣∣∣∣ sin(ωt2l + φ0

) ∣∣∣∣+∆2. (59)

In general the probability density function (PDF), ρ(x) of a function, f(t), which is strictly monotonically increasing and
continuously differentiable on the interval (a, b) is given by

ρ(x) =
1

f ′[f−1(x)]
· 1

b− a
for f(a) < x < f(b). (60)

If the function, f(t) is strictly monotonically decreasing, its PDF is just the negative of the above expression. Thus in the
special case of

f(t) = Ai∗ sin(Ωt+ β) + ∆i (61)
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we have

ρ(x) =
1

Ω
√
A2

i∗ − (x−∆i)2
1

b− a
, (62)

where a and b are such, that the function increases monotonically between them. Since f(t) is periodic, it suffices to
determine the PDF of one period, which in the case of z1 and z2 can be done by splitting the period into a monotonically
increasing and monotonically decreasing part. As the two parts obviously has the same PDF in this case, it is enough
to determine the PDF of the monotonically decreasing part for z1 and the monotonically increasing part for z2, that we
achieve by choosing

a = −2lφ0

ω
, b =

2l
(
π
2 − φ0

)
ω

, Ω =
ω

2l
, (63)

then we can write

ρ1(x) =

{
2

π
√

A2
1∗−(x+∆1)2

for −A1∗ −∆1 < x < −∆1,

0 otherwise,
(64)

ρ2(x) =

{
2

π
√

A2
2∗−(x−∆2)2

for ∆2 < x < A2∗ +∆2.

0 otherwise.
(65)

The PDF of the particle system, ρ(x) is obtained finally by the weighted sum of the individual probability density functions

ρ(x) = µρ1(x) + (1− µ)ρ2(x). (66)

A numeric example is given in Fig. 3.
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z
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z
2
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-0.1

0

0.1

PDF

Figure 3: One period of the high-frequency oscillation and the corresponding PDF with masses m1 = 1 and m2 = 5.

Effective potential by convolution
Eq. (9) can be rewritten now as follows

ÿ1+µV
′ (y1 + z1) + (1− µ)V ′ (y1 + z2) =

1

m1 +m2
(F11 sin(Ω11τ + β11) + F12 sin(Ω12τ + β12)) . (67)

The arguments of V ′(·) oscillates with a high frequency around y1, instead of calculating the exact values for every
moment, a kind of averaging is used to obtain an effective potential Ṽ . As during a period of the high frequency vibration
zi the change of y1 is small, we can get the averaged force at y1 by calculating the total force on the particle density cloud
at y1 having the PDF ρ1(x) and ρ2(x). The latter operation can be performed, as for any continuously distributed volume
in a force field, by the following integral transformation

Ṽ ′(y1) =

∫ ∞

−∞
V ′(x)ρ(x− y1)dx. (68)

In our special case the integral can be evaluated analytically. First we define the positions

d1 = −1−∆2 −A2∗, d2 = −1−∆2, d3 = −1 + ∆1, d4 = −1 + ∆1 +A1∗, (69)
d5 = 1−∆2 −A2∗, d6 = 1−∆2, d7 = 1 +∆1, d8 = 1 +∆1 +A1∗. (70)
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In the following, we will only consider the case, when ∆+A∗ < 2, so that we can guarantee that d1 . . . d9 are in ascending
order. With the help of the above positions we can define the domains

D1 = {x ∈ R|x ≤ d1}, (71)
Di = {x ∈ R|di−1 ≤ x < di} for i = 2 . . . 8, (72)
D9 = {x ∈ R|d8 ≤ x}. (73)

Thus, the effective force field can be written as

Ṽ ′(y1) =



0 x ∈ D1,

(1− µ)
(
y1 +∆2 +

2
π

(√
A2

2∗ − (1 + ∆2 + y1)2 − (y1 +∆2) arcsin
(
− 1+∆2+y1

A2∗

)))
x ∈ D2,

(1− µ)
(
y1 +∆2 +

2
π
A2∗

)
x ∈ D3,

µ
(

2
π

(√
A2

1∗ − (∆1 − 1− y1)2 + (∆1 − y1) arcsin
(

∆1−1−y1
A1

)
−A1∗

))
+ (1− µ)

(
y1 +∆2 +

2
π
A2∗

)
x ∈ D4,

y1 x ∈ D5,

µ
(
y1 −∆1 − 2

π
A1∗

)
+ (1− µ)

(
2
π

(
A2∗ −

√
A2

2∗ − (1−∆2 − y1)2 + (∆2 + y1) arcsin
(

1−∆2−y1
A2∗

)))
x ∈ D6,

µ
(
y1 −∆1 − 2

π
A1∗

)
x ∈ D7,

µ
(
− 2

π

(√
A2

1 − (1 + ∆1 − y1)2 + (∆1 − y1) arcsin
(

1+∆1−y1
A1∗

))
−∆1 + y1

)
x ∈ D8,

0 x ∈ D9.

(74)

Through integration the effective potential can be determined as well. As the potential can be shifted arbitrarily by a
constant, we set the condition Ṽ (−∞)

!
= 0. However, the analytic expression for Ṽ (y1) is very complex, so we dispense

with giving an exact formula here.
Please note, that Eq. (74) is valid for arbitrary values of ∆, however, in practical cases ∆ is limited to O(ε), thus the
intervals D3 and D7 do not have a significant role.
In Fig. 4 a graphical example is represented for a certain parameter choice (cf. the caption of Fig. 4).

-2 -1 0 1 2

y
1

-0.5

-0.4

-0.3

-0.2

-0.1

0

P
o
te

n
ti
a
l

Original

Effective

(a) Potential–Ṽ (y1)
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Figure 4: Non-linear force field and some other derived quantities generated by m1 = 2, m2 = 1, c = 0.5, k = 800,
F12 = 30, Ω12 = 69.335 (l = 1), ∆ = 0.0006.

A very important effect, due to the asymmetric integration kernel, is the asymmetry of the effective force field. Therefore
all the other quantities derived from it, are asymmetric as well. Moreover, the potential energy on the right boundary
of the potential is also different from the potential energy on the left hand side of the potential, which might lead to an
asymmetric escape behavior. The probabilities of escaping to the right might differ from the probability of escaping to the
left. The further the ratio m1

m2
is from 1, the greater is the asymmetry, which leads to vibrations with a symmetry center

different from 0.
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Numerical results and discussion

A good way to determine the goodness of the order reduction method applied above is to depict the escaping/non-escaping
points on the low excitation frequency–low excitation force plane. In Fig. 5 such a comparison can be seen. It is important
to note, that the sharp minimum (ΩC , FC), observed by many authors in the literature, can be determined more or less.
However, in Fig. 5 on the right from the minimum, i.e. for Ω11 > ΩC there is not really a frequency dependent
critical forcing value, above which escape happens for whatever forcing amplitude. Instead the transition from no-escape
into escape happens through a fractal-like boundary and there exist even separated non-escaping ’islands’ in the ’see’
of escaping Ω11 − F11 parameter combinations. Such a time evolution is shown in Fig. 6. The remarkable feature of
the model reduction is, that even these non-escaping islands of the parameter combinations remain preserved. When the
non-linear part of the effective force gets smaller (cf. 5b), we can observe a less chaotic behavior around the critical
force values. Moreover, it is also obvious that the minimally needed force amplitude moves up, as the non-linearity of the
effective force field increases, due to the increasing amplitude of the relative motion. This simple fact explains also, why
the escaping region in the Ω11 − F11 plane moves closer to the point (1, 0), when the relative motion is excited with a
higher resonant frequency but unchanged force amplitude. Eq. (54) and Eq. (48) show the simple relationship between the
excitation frequency and the amplitude of the caused resonant motion that shows a decreasing amplitude with increasing
value for l.

(a) First resonant frequency is excited, Ω12 = 69.34 (l = 1). (b) Second resonant frequency is excited, Ω12 = 138.67 (l = 2).

Figure 5: Comparison of the reduced model to the original one with parameter valuesm1 = 2,m2 = 1, c = 0.5, k = 800,
F12 = 30, and ∆ = 0.0006. Dark blue dots mean no escape for both models, bright blue is escape in the simplified model,
but no escape in the original model, green is no escape in the simplified model, but escape in the original one. Yellow
stands for escape in both models. F := F11

m1+m2
.
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Figure 6: m1 = 2, m2 = 1, c = 0.5, k = 800, F12 = 30, Ω12 = 69.335 (l = 1) and ∆ = 0.0006.

Conclusions

In the present work escape of a strongly coupled, colliding pair of particles from a potential well under bi-harmonic
excitation was investigated. Through a coordinate transformation from the physical coordinates of the particles into the
coordinates of the common center of mass and into the distance of the particles the motion could be decomposed into a
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slow and into a fast variable. After determining the oscillation amplitudes of the fast motion with the use of the so called
’unfolding transformation’, a certain type of averaging, appropriate to use also with piece-wisely defined functions being
based on the probability density function of the fast motion, was performed. The resulting formulas for the effective
force-field are fully analytic, thus a huge reduction in the simulation time can be achieved (5 hours vs 4 minutes in the
example shown). It turns out, that even such properties of the system remain well conserved, as for example the location
of the non-escaping islands on the low excitation frequency–low forcing amplitude (Ω11 − F11) plane. Although in the
current work escape was investigated in a truncated quadratic potential well, the application of the PDF based averaging
method is straightforward for several different potentials as well.
Many questions may remain open in the Reader regarding the further analysis of the escape behavior of a colliding pair
of coupled particles. What happens if the resonant frequencies of the relative motion are of the same magnitude as the
eigenfrequency of the bottom of the potential well? How do the initial conditions of the particles influence the escape
behavior? How to proceed in case of poly-harmonic excitation? What if the collision of the particles is a random process?
What happens when there are more than two colliding particles?
The authors of this paper hope, that many of the readers will feel motivated to find answers to these and many other
different questions arising when studying the thrilling topic of escape from a potential well.
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