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Summary. Based on energy flow theory, it is revealed that a necessary sufficient condition for nonlinear dynamical systems (NDS) 

𝐲̇ = 𝐟(𝐲, 𝑡) to have periodical orbits is that there exist a non-zero spin matrix and one closed orbit with a corresponding period T, 

along which the time averaged flows of generalised potential energy (GPE) and generalised kinetic energy (GKE) vanish. For 

autonomous systems, a necessary condition to have periodical orbits is the energy flow characteristic factors (EFCFs) must not be 

semi-positive or semi-negative. Three examples are given to support the above revealed characteristics.  
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Introduction 

NDS investigated herein are generally sufficient to regard a second order differential equation with its initial conditions 

in a non-dimensional form, as discussed by [1-5], which can be transformed into the first order differential equation 

𝑑𝐲 𝑑𝑡 ≡ 𝐲̇⁄ = 𝐟(𝑡, 𝐲),        𝐲(0) = 𝐲0.                                                             (1) 

We consider that 𝐲 = 𝐲(𝑡) ∈ 𝑅𝑛 is a vector valued function of an independent variable 𝑡 ∈ 𝐼 = (𝑡1, 𝑡2) ⊆ 𝑅 and 𝐟: 𝑈 →
𝑅𝑛  is a smooth function of variable 𝑡 and vector 𝐲 defined on some subset 𝑈 ⊆ 𝑅𝑛, an n-dimensional phase space, and 

we seek a solution 𝛗(𝐲0, 𝑡) such that 

                   𝛗(𝐲0, 0) = 𝐲0.                                                                                    (2) 

The solution  𝛗(𝐲0,∙): 𝐼 → 𝑅𝑛  defines a solution curve, trajectory or orbit of Eq.1 based at 𝐲0 as shown by Fig. 1(a).   

According to the basic local existence and uniqueness theorem [6], there exist no intersections of the trajectories of Eq.1 

in the solution space except at its fixed points. The solution curves 𝛗𝑡(𝑈) generate the flow shown by Fig. 1(b).To 

investigate the behaviors of NDS, Xing [5] developed an energy flow theory, which has discovered that i) GPE 

automatically plays a role of Lyapunov function for stability at fixed points of NDS, ii) generalised energy conservation 

law of chaotic motions [5,7], iii) behaviors of friction-induced vibrations [8]. This paper aims to tackle the periodical 

solutions of NDS to reveal its energy flow characteristics. 

 

 
 

Figure 1: (a) a solution curve  𝛗𝒕(𝐲0) with its energy flow curve 𝐸𝒕(𝐲0), of which their tangent vectors at a point 𝐲 are 𝐲̇ = 𝐟 and 𝐸̇,   

respectively; (b) the flow  𝛗𝑡(𝑈)  and the energy flow  𝐸𝑡(𝑈) in 𝑅𝑛  (Xing [5, 7]). 

Fundamentals of energy flow analysis 

Energy flow variables, matrices, and equations 

In the energy flow theory, the following energy flow variables based on Eq.1 in phase space are defined,  

GPE:   𝐸 = 0.5𝐲𝑇𝐲;         GKE:   𝐾 = 0.5𝐲̇𝑇𝐲̇;     Force power ∶    𝑃 = 𝐲𝑇𝐟,                              (3) 

of which the time averaged GPE and GKE as well as the time averaged GPE-flow (GPEF) and the time averaged GKE-

flow (GKEF) during a period (0, 𝑇) are respectively defined by 

〈𝐸〉 = ∫ 0.5𝐲𝑇𝐲
𝑇

0

𝑑𝑡 𝑇⁄ ,        〈𝐾〉 = ∫ 0.5𝐲̇𝑇𝐲̇
𝑇

0

𝑑𝑡 𝑇⁄ ,      〈𝑃〉 = ∫ 𝐲𝑇𝐟
𝑇

0

𝑑𝑡 𝑇⁄ ,  

〈𝐸̇〉 = ∫ 𝐸̇
𝑇

0
𝑑𝑡 𝑇⁄ = [𝐸(𝑇) − 𝐸(0)] 𝑇⁄ = ∫ 𝑃

𝑇

0
𝑑𝑡 𝑇⁄ = 〈𝑃〉 ,                                                (4) 
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〈𝐾̇〉 = ∫ 𝐾̇
𝑇

0

𝑑𝑡 𝑇⁄ = [𝐾(𝑇) − 𝐾(0)] 𝑇⁄ = ∫ 𝐲̇𝑇𝐟̇
𝑇

0

𝑑𝑡 𝑇⁄  .   

The corresponding energy flow equilibrium equations take the forms 

𝐸̇ = 𝑃,      𝐸0
̇ = 0.5𝐲𝟎

𝑇𝐲𝟎,      𝐉 = ∂𝐟 𝜕𝐲𝑇⁄ ,        𝐄 = 0.5(𝐉 + 𝐉𝑇),        𝐔 = 0.5(𝐉 − 𝐉𝑇),   

𝐾̇ = 𝐲̇𝑇𝐲̈ = 𝐲̇𝑇𝐟̇ = 𝐲̇𝑇(𝜕𝐟 𝜕𝑡⁄ + 𝐉𝐲̇) = 𝐲̇𝑇 𝜕𝐟 𝜕𝑡⁄ + 𝐲̇𝑻𝐄𝐲̇ = 𝜕𝐾 𝜕𝑡⁄ + 𝐲̇𝑇𝐄𝐲̇,                               (5) 

where 𝐉 is Jacobian matrix, the partial derivative of vector 𝐟 with respect to vector 𝐲𝑇 [5]. For autonomous NDS from 

Eq. 5 we have 

 𝐲̇ = 𝐟(𝐲),         𝐾̇ =  𝐲̇𝑇𝐄𝐲̇,             〈𝐾̇〉 =
1

𝑇
∫ 𝐲̇𝑇𝐄𝐲̇

𝑇

0
𝑑𝑡,                                              (6) 

since 𝜕𝐾 𝜕𝑡 = 0⁄ . Here 𝐄 is a real symmetrical energy flow matrice while 𝐔 is a real skew-symmetrical spin matrix, so 

that 𝐲𝑇𝐔𝐲 = 𝟎 = 𝐲̇𝑇𝐔𝐲̇. Geometrically, GPE relates the position 𝐲 of a point in phase space, while GKE involves the 

velocity or tangent vector 𝐲̇ of solution curve, and the generalised force power 𝑃 gives the energy flow, the time change 

rate of GPE.  

 

Energy flow characteristic factors 

The energy flow matrix 𝐄 is a real symmetrical matrix, of which the eigenvalues and the corresponding eigenvectors are 

real, and its characteristic equation 

                    𝐄𝛆 = 𝜆𝛆,          |𝐄 − 𝜆𝐈| = 0,                                                                            (7) 

can give the eigenvalue 𝜆𝐼  and its corresponding eigenvector 𝛙𝐼 satisfying the orthogonal relationships 

𝚿𝑇𝐄𝚿 = 𝚲 = 𝐝𝐢𝐚𝐠(𝜆𝐼),       𝚿𝑇𝚿 = 𝐈,        𝚿 = [𝛙1 𝛙2 ⋯ 𝛙𝑛].                                      (8) 

Normally, the eigenvectors with different eigenvalues span a complete subspace in the neighbor of the point where the 

matrix 𝐄 defined, so that the vector 𝛆 can be represented as 

                   𝛆 = 𝚿𝛇,                                                                                             (9) 

which, when substituted into the term  𝛆𝑇𝐄𝛆  and by using the orthogonal relationships in Eq.8, gives 

𝛆𝑇𝐄𝛆 = 𝛇𝑇𝚿𝑇𝐄𝚿𝛇 = 𝛇𝑇𝚲𝛇 = ∑ 𝜆𝐼
𝑛
𝐼=1 𝜁𝐼

2.                                                        (10) 

This result implies that the value of 𝛆𝑇𝐄𝛆 about a point is totally determined by the eigenvalues and eigenvectors of 

energy flow matrix. We respectively call 𝜆𝐼 and 𝛙𝐼 as the energy flow characteristic factors (EFCFs) and the energy 

flow characteristic vectors (EFCVs) of NDS. 

 

Spin matrix  

The spin matrix 𝐔 is a real skew-symmetric matrix and therefore its non-zero eigenvalues 𝜅𝐼 must be conjugate purely 

imaginaries with the complex eigenvector matrix 𝐘 satisfying the following orthogonal relationships 

𝐘∗𝑇𝐔𝐘 = 𝐝𝐢𝐚𝐠(𝜅𝐼),            𝐘∗𝑇𝐘 = 𝐈,                                                             (11) 

Here * denotes a conjugate of complex number.  

 

Curl of a vector field  

The curl of a vector field 𝐟, denoted by curl𝐟, or ∇ × 𝐟, at a point O is defined in terms of its projection onto various 

lines through the point. As shown in Fig.2, if  𝛎 is a unit vector, the projection of the curl𝐟 onto 𝛎 is defined as a limited 

value of a closed-curve integral in a plane orthogonal to 𝛎, divided by the area A enclosed by the closed curve.  Here, 

the path C of integration is constructed around the point O, so that, when Eqs. 1 and 3 are introduced, we have 

(∇ × 𝐟)𝜈 = lim
𝐴→0

{∮ 𝐟 ∙ 𝑑𝐲
𝐶

𝐴⁄ } = lim
𝐴→0

{∮ 𝐲̇ ∙ 𝐲̇
𝐶

𝐴⁄ } = lim
𝐴→0

{∮ 2𝐾𝑑𝑡
𝐶

𝐴⁄ }.                         (12) 

 

 
 

Figure 2: Circulation integration of path C with its positive direction obeying the right-hand rule to define the curl of vector field 𝐟. 
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For 3-dimensional space, the curl𝐟 can be denoted in a tensor form 

        (∇ × 𝐟)𝑖 = 𝑒𝑖𝑗𝑘𝑓𝑘,𝑗,                                                                          (13) 

where ijke is the permutation tensor [9,10]. The curl𝐟 is a dual vector of a skew-symmetrical matrix 𝐔, spin matrix, 

satisfying the following relationship 

(𝐔)𝒊𝑗 = 𝑈𝑖𝑗 = −0.5𝑒𝑖𝑗𝑘(∇ × 𝐟)𝑘 = −0.5𝑒𝑖𝑗𝑘𝑒𝑘𝑟𝑠𝑓𝑠,𝑟 = −0.5(𝛿𝑖𝑟𝛿𝑗𝑠 − 𝛿𝑖𝑠𝛿𝑗𝑟)𝑓𝑠,𝑟 = 0.5(𝑓𝑖,𝑗 − 𝑓𝑗,𝑖) = 0.5(𝐉 − 𝐉𝑇)𝑖𝑗 . (14) 

Periodical orbits 

For NDS, a periodical orbit is defined as a closed path governed by Eq. 1 in phase space, along which the phase point  

𝐲(𝑡) with its velocity 𝐲̇(𝑡), starting from a position 𝐲(𝑡̂) at time 𝑡̂, moves to the same position  𝐲(𝑡̂ + 𝑇) = 𝐲(𝑡̂) with the 

same velocity 𝐲̇(𝑡̂ + 𝑇) = 𝐲̇(𝑡̂) after a period T, and the motion repeats again, such as 𝑡̂ = 0  shown in Fig.3. If we 

assume that 𝑑𝑆 denotes a differential line element with its unit outside normal vector 𝜈𝑖  and unit tangent vector 𝜏𝑖   at a 

point on the closed curve in Fig.3, so that 

   𝛕𝑑𝑆 = 𝐲̇|𝑑𝐲| |𝐲̇|⁄ = 𝐲̇|𝐲̇𝑑𝑡| |𝐲̇|⁄ = 𝐲̇𝑑𝑡,                                                     (15) 

based on which the integrals along the curve in the next section hold. 

 

 
  

 Figure 3: The periodical orbit and the unit normal / tangent vectors of line element 𝑑𝑆 on orbit. 

 

This definition implies that for a periodical orbit, its position vector should be a periodical function of time. Generally, 

this periodical function can be represented by a Fourier series of period T. For simplifying mathematic formulations but 

not losing generality, as an example, we consider this function is a sinusoidal function 

𝐲(𝑡) = 𝐲̂ sin(𝜔𝑡 + 𝜙̂),          𝐲̇(𝑡) = 𝐲̂𝜔 cos(𝜔𝑡 + 𝜙̂) ,         𝜔 =
2𝜋

𝑇
,                                  (16) 

where 𝐲̂ and 𝜙̂ denote the amplitude and phase angle,  𝜔 is a frequency corresponding to the period. From Eq. 16, it 

follows that GPE and GKE respectively are 

𝐸 =
1

2
sin2(𝜔𝑡 + 𝜙̂) 𝐲̂𝑇𝐲̂ = 2𝐸̂ sin2(𝜔𝑡 + 𝜙̂),            𝐸̂ =

𝐲𝑇𝐲

4
,                                                    (17) 

𝐾 =
1

2
cos2(𝜔𝑡 + 𝜙̂) 𝐲̂𝑇𝐲̂𝜔𝟐 = 2𝐾̂ sin2(𝜔𝑡 + 𝜙̂),            𝐾̂ =

𝐲𝑇𝐲

4
𝜔𝟐 = 𝜔𝟐𝐸̂.    

Energy flow characteristics of periodical orbits of NDS 

Based on the definition of periodical orbits governed by Eq. 1, if there exists a periodical orbit, the following energy flow 

characteristics must hold. 

 

Time averaged GPE 

〈𝐸〉 =
1

𝑇
∮ 𝐸𝑑𝑡 = 𝐸̂

𝑆
,                                                                        (18) 

where 𝐸̂ is a positive constant representing the averaged distance of phase points on the orbit to the origin since E is 

positive and the motion repeats along the closed orbit. 

 

Time averaged GPEF 

〈𝐸̇〉 =
1

𝑇
∫ 𝐸̇

𝑇+𝑡̂

𝑡̂
𝑑𝑡 =

𝐸(𝑇+𝑡̂)−𝐸(𝑡̂)

𝑇
= 0 =

1

𝑇
∫ 𝐲𝑇𝐟

𝑇+𝑡̂

𝑡̂
𝑑𝑡,                                       (19-1) 

since for the periodical orbit S, 𝐲(𝑡̂ + 𝑇) = 𝐲(𝑡̂). If the vector field 𝐟 takes a form  

𝐟 = 𝐁(𝐲)𝐲 = (𝐄̅ + 𝐔̅)𝐲,      𝐄̅ = (𝐁 + 𝐁𝑇) 2⁄ ,           𝐔̅ = (𝐁 − 𝐁𝑇) 2⁄ ,                          (19-2) 



 

 

ENOC 2020+2, July 17-22, 2022, Lyon, France  

 

 
Eq. 19-1 requires the EFCFs of matrix 𝐄̅ not always being semi-positive or semi-negative in the period T. 

 

Time averaged GKE 

〈𝐾〉 =
1

𝑇
∮ 𝐾𝑑𝑡

𝑆
= 𝐾̂ =

1

2𝑇
∮ 𝐲̇ ∙ 𝐲̇𝑑𝑡

𝑆
=

1

2𝑇
∮ 𝐲̇ ∙ 𝛕𝑑𝑡

𝑆
,                                         (20) 

where 𝐾̂ is a positive constant, sine GKE is not negative. From this result, when Eq.12 noticed, it follows that  curl𝐟 

must not vanish, so that Eq. 14 implies  

      𝐔 ≠ 0.                                                                                        (21) 

In a reverse case if Eq.21 holds, then Eq. 20 holds. Therefore, Eq. 21 is a necessary and sufficient condition for Eq. 20.  

 

Time averaged GKEF 

〈𝐾̇〉 =
1

𝑇
∫ 𝐾̇

𝑇+𝑡̂

𝑡̂
𝑑𝑡 =

𝐾(𝑇+𝑡̂)−𝐾(𝑡̂)

𝑇
= 0 =

1

𝑇
∫ (

𝜕𝐾

𝜕𝑡
+ 𝐲̇𝑇𝐄𝐲̇)

𝑇+𝑡̂

𝑡̂
𝑑𝑡,                              (22-1) 

For autonomous NDS, 𝜕𝐾 𝜕𝑡⁄ = 0, from Eq. 10, it follows 

〈𝐾̇〉 =
1

𝑇
∫ (𝐲̇𝑇𝐄𝐲̇)

𝑇+𝑡̂

𝑡̂
𝑑𝑡 =

1

𝑇
∫ (𝛇𝑇𝚲𝛇)

𝑇+𝑡̂

𝑡̂
𝑑𝑡 =

1

𝑇
∫ (∑ 𝜆𝐼

𝑛
𝐼=1 𝜁𝐼

2)
𝑇+𝑡̂

𝑡̂
𝑑𝑡 = 0,                        (22-2) 

holds, implying that the EFCFs of NDS must not always be semi-positive or semi-negative in the period T.  

Above equations are valid if exsisting periodical orbits of NDS, so that they are necessary conditions. Considering GPE 

geometrically involves the distance of a phase point to the origin, we can confirm that for a periodical oribit curve, of 

which each point has its positive distance to the origin, so that Eq. 18 always is valid. Moreover, as discussed above, the 

condition in Eq. 21 can replace the Eq. 20, which implies that non-zero spin matrix of NDS is a necessary condition for 

its periodical orbits. 

 

Theorem A necessary sufficient condition for NDS, governed by Eq. 1, having periodical orbits is that its spin matrix  

𝐔 ≠ 0 and there exists at least one closed curve with a corresponding period T, along which the time averaged GPEF 

and GKEF vanish. For autonomous NDS, the condition of time averaged GKEF can be replaced by that its EFCFs of 

energy flow matrix E are always not semi-positive or semi-negative in the period T.  

Examples 

A linear system 

As an example, we consider a system with one degree of freedom governed by equation 

     𝑥̈ + 𝛼𝑥̇ + 𝑥 = 𝑓 cos 𝑡,                                                                  (23-1) 

which can be rewritten in the form of phase space 

   [
𝑥̇
𝑦̇

] = [
0 1

−1 −𝛼
] [

𝑥
𝑦] + [

0
𝑓 cos 𝑡

],                                                  (23-2) 

with its Jacobian, energy flow, spin matrices and energy flow equation respectively as follows 

𝐉 = [
0 1

−1 −𝛼
] = 𝐁, 𝐄̅ = [

0 0
0 −𝛼

] , 𝐔̅ = [
0 1

−1 0
] , 𝐸̇ = −𝛼𝑦2 + 𝑦𝑓 cos 𝑡 , 𝐾̇ =

𝜕𝐾

𝜕𝑡
− 𝛼𝑦2 = −𝛼𝑦2 − 𝑦̇𝑓 sin 𝑡.   (23-3)        

The time averaged GPEF and GKEF of the system are respectively given by 

〈𝐸̇〉 =
1

2𝜋
∫ (−𝛼𝑦2 + 𝑦𝑓 cos 𝑡

2𝜋

0
)𝑑𝑡,             〈𝐾̇〉 =

1

2𝜋
∫ (−𝛼𝑦2 − 𝑦̇𝑓 sin 𝑡

2𝜋

0
)𝑑𝑡.                   (23-4) 

It is not difficult to obtain the EFCFs of the system 

𝜆̅1 = −𝛼,          𝜆̅2 = 0,                                                                  (23-5)                                                               

implying they are semi-positive for 𝛼 < 0, semi-negative for  𝛼 > 0,  and vanish when 𝛼 = 0. Based on the above 

results, we discuss its two cases as follows. 

Non-forced case 𝑓 = 0 

For this case, the time averaged GPEF and GKEF have the values 

〈𝐸̇〉 = 〈𝐾̇〉 = {
> 0,       𝛼 < 0,
< 0,       𝛼 > 0,
= 0,       𝛼 = 0.

                                                                         (23-6) 

As shown in Fig. 4, from this result it follows that the system is a divergence one when 𝛼 < 0, due to time averaged 

GPEF and GKEF are always increasing and the orbit tends to infinite; while it is a converged one when 𝛼 > 0, the orbit 

tends to the origin of phase space. There are no periodical orbits for non-zero values of parameter 𝛼 although the spin 

matrix of the system is not zero.  Also, EFCFs are semi-positive or semi-negative which do not satisfy the conditions in 
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Theorem. When 𝛼 = 0 the system has its periodical orbit of radius  𝜌 = √𝑥0

2 + 𝑦0
2 depending on the initial condition 

(𝑥0, 𝑦0) shown in Fig.4. 

 

 
 

Figure 4: The orbits of 1-DOF system affected by the damping parameter 𝛼  and external force f. 

 

Forced case  𝑓 ≠ 0, 𝛼 > 0 

For this case, since the system is linear, we know the solution of system is 

       𝑥 =  𝜌 sin 𝑡,     𝑦 =  𝜌 cos 𝑡,                                                                            (23-7) 

so that its time averaged GPEF and GKEF calculated by using Eq. 23-4 are 

〈𝐸̇〉 =
1

2𝜋
∫ (−𝛼𝜌2 cos2 𝑡 + 𝜌𝑓 cos2 𝑡

2𝜋

0
)𝑑𝑡 =

−𝛼𝜌2+𝜌𝑓

2
=  〈𝐾̇〉 =

1

2𝜋
∫ (−𝛼𝜌2 cos2 𝑡 + 𝜌𝑓 sin2 𝑡

2𝜋

0
)𝑑𝑡.   (23-8) 

Therefore, both GPEF and GKEF vanish when 𝜌 = 𝑓 𝛼⁄ , in which the work done by the external force is dissipated by 

the damping of the system and the system undergoes a periodical motion with radius 𝜌 = 𝑓 𝛼⁄  shown in Fig. 4. 

 

Van der Pol’s equation  

Van der Pol’s equation provides an example of an oscillation with nonlinear damping, its energy dissipated at large 

amplitude but generated at low amplitude. The governing equation of Van der Pol’s system is given by 

[
𝑥̇
𝑦̇

] = 𝐁 [
𝑥
𝑦] ,     𝐉 = [

0 1
−1 − 2𝑥𝑦 −(𝑥2 − 1)

] ,    𝐁 = [
0 1

−1 −(𝑥2 − 1)
],                           (24-1) 

from which, when Eq. 5 used, it follows 

𝐄 = [
0 −𝑥𝑦

−𝑥𝑦 −(𝑥2 − 1)
] , 𝐔 = [

0 1 + 𝑥𝑦
−1 − 𝑥𝑦 0

],  𝐸̇ = −(𝑥2 − 1)𝑦2, 𝐾̇ = 𝐲̇𝑇𝐄𝐲̇ = −2𝑥𝑦𝑥̇𝑦̇ − 𝑦̇2(𝑥2 − 1).   (24-2) 

 
 

         Figure 5: the periodical orbit of Van der Pol’s equation. 

 

To check if the time averaged GPEF and GKEF vanish in a possible closed orbit, we assume that 

       𝑥 =  𝜌 sin 𝑡,     𝑦 =  𝜌 cos 𝑡,                                                               (24-3) 

so that we obtain 

〈𝐸̇〉 =
1

2𝜋
∫ [−(𝜌2 cos2 𝑡 − 1)𝜌2 sin2 𝑡

2𝜋

0
)𝑑𝑡 = −

𝜌2

2
(

𝜌2

4
− 1),                                    (24-4) 

〈𝐾̇〉 =
1

2𝜋
∫ [2𝜌4 sin2 𝑡 cos2 𝑡 − 𝜌2 sin2 𝑡(𝜌2 sin2 𝑡 − 1)]

2𝜋

0
𝑑𝑡 = −

𝜌2

2
(

𝜌2

4
− 1).  

Therefore, when 𝜌 = 2, the GPEF and GKEF vanish, which gives a periodical orbit. For matrix E, its EFCFs are 

𝜆1,2 = {−(𝑥2 − 1) ± √(𝑥2 − 1) + 4𝑥2𝑦2} 2⁄ ,                                                     (24-5) 
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of which one positive and another negative. These results satisfy the conditions in theorem. As shown in Fig. 5, the 

periodical orbit is a circle of radius 𝜌 = 2, along which on the domain with |𝑥| > 1, the energy flow 𝐸̇ < 0, while on 

the domain with |𝑥| < 1,the energy flow 𝐸̇ > 0, and on the full circle the averaged energy flow vanishes. 

 

A planar system  

We investigate a planar system governed by 

 𝑥̇ = 𝑥𝑦,           𝑦̇ = −𝑦 + 𝑥2 2⁄ ,                                                       (25-1) 

of which its Jacobian, energy flow and spin matrices respectively as 

𝐉 = [
𝑦 𝑥
𝑥 −1

] = 𝐄,          𝐔 = 0,                                                        (25-2) 

so that there are no periodical orbits due to spin matrix vanishes. We can calculate the energy flow of the system, i.e. 

        𝐸̇ = 3𝑦𝑥2 2⁄ − 𝑦2,                                                                         (25-3) 

of which its zero energy flow curves are 

       𝑦 = 0,         𝑦 = 3𝑥2 2⁄  ,                                                                       (25-4) 

as shown in Fig.6. Using the Eq. 24-3, the time averaged GPEF is calculated as follows  

〈𝐸̇〉 =
𝜌2

2𝜋
∫ (

3𝜌

2

2𝜋

0
cos2𝑡 sin 𝑡 − sin2𝑡)𝑑𝑡 = −

𝜌2

2
≠ 0,                                              (25-5) 

which indicates periodical orbits are impossible.  

 
 

Figure 6: The zero energy flow curves of system shown by Eq. 25-1. 

Conclusions 

Energy flow theory with two scalars, GPE and GKE as well as the real symmetrical energy flow matrix E and the real 

skew-symmetrical spin matrix U is effectively used to investigate NDS in phase space. It is revealed that a necessary 

sufficient condition for NDS 𝐲̇ = 𝐟(𝑡, 𝐲) having periodical orbits is that there exist a non-zero spin matrix and a closed 

orbit with a corresponding period T, along which the time averaged GPEF and GKEF vanish. For autonomous systems 

with energy flow matrix E the necessary condition for periodical orbits is its EFCFs not being semi-positive or semi-

negative. Three examples, a damping / forced linear system, the Van der Pol’s system, and a planar one, are presented 

to illustrate the revealed characteristics. The developed energy flow theory provides an important means to explore 

dynamic characteristics of various NDS.  
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