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Summary. Virtual testing procedures have become a standard in vehicle dynamics. The increasing complexity of driver assistance sys-
tems demand for more and more virtual tests, which are supposed to produce reliable results even in the limit range. As a consequence,
simplified vehicle models, like the classical bicycle model or 4-wheel vehicle models, have to be replaced by a fully three-dimensional
and nonlinear vehicle model, which also encompasses the details of the suspension systems. This paper presents a passenger car model,
where the chassis, the four knuckles, and the four wheels are described by rigid bodies, the suspension system is modeled by the generic
design kinematics, and the TMeasy tire model provides the tire forces and torques in all driving situations.
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Introduction

The multibody approach has become a standard in vehicle dynamics [1]]. General multibody software packages, like
Adams/Car [2], ReCurDyn [3]], or SIMPACK [4] make it possible to assemble vehicle models of different complexities.
Commercial products, like CarSim [5]], CarMaker [6]], or DYNA4 [7]] provide ready to use vehicle models, which are
real-time capable and may be used in Hardware-in-the-Loop (HIL) test rigs, in driving simulators, or for all kind of virtual
driving tests including parameter optimization or autonomous drive. A basic multibody model of a standard passenger
car is usually supplemented by a handling tire model, like Pacejka [8] or TMeasy [9], and it is extensible by subsystems
for the steering system and the drive train [10]. Sophisticated model approaches combined with an efficient and robust
solver provide an excellent runtime performance [[11]. Nevertheless, simplified and rather crude three-dimensional vehicle
models are still applied in the context of lap-time optimization [[12] and autonomous driving [13]. However, this reduces
such investigations to the level of basic studies, because the impact of the suspension properties and the road roughness
on vehicle dynamics is not taken into account. This paper demonstrates, that a virtual test car (VTC), properly modeled
by a three-dimensional and nonlinear multibody system, is able to achieve a much faster-than-real-time performance even
on standard personal computers, although it includes the nonlinear suspension kinematics and the wheel/tire dynamics.

The VTC-Model

Model Structure
A virtual test car, valid for typical passenger cars in all driving situations, is represented by a three-dimensional multibody
model which consists at least of the chassis, four knuckles, and four wheels, Figure E} The virtual test car (VTC) is

wheel=rim+tire

. (&

road: [z, 4] = f(x,y) knuckle

Figure 1: Multibody model structure of a passenger car

operated with the TMeasy tire model, which represents a handling model, where the tire acts as a massless force element.
The suspension kinematics allows each knuckle to perform relative to the chassis a hub motion h and a steer motion s.
This generic model approach makes it possible to investigate the influence of different suspension designs, including all-
wheel steering, on the handling and dynamics of a vehicle. The steer motions of passenger car front wheels are typically
coupled by a rack and pinion steering system and the rear suspension often incorporates no active steer motions at all.
Each of the four wheels, consisting of the rim and the tire, rotates with the angle ¢ about a knuckle-fixed axis, defined
by the unit vector e,y. The generalized coordinates xv, yv, 2v, ¥v, Oy, and ¢y describe the momentary position and
orientation of the vehicle-fixed, within the VTC model also chassis-fixed, reference frame V with respect to an earth-
fixed frame 0. The points C and K denote the gravity centers of the chassis and the knuckle. In practice, the wheels of
passenger cars are sufficiently balanced. Then, the wheel center W will be located on the wheel rotation axis and is fixed
to the knuckle as a consequence.
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The multibody system, providing the basis of three-dimensional passenger car model, hasupto f =6 +4*2+4 =18
degrees of freedom if each of the four knuckles is modeled with a hub and a steer motion. The total number of degrees
of freedom is reduced to f = 16 if the rear wheels are not actively steered. More complex but still real-time capable
vehicle models including the drive train, the steering system, and dynamic force elements are described in [11] and
[14]. Appropriate road models provide the road height z and the friction coefficient x4 as a function of the contact point
coordinates x and y [[15].

Reference Frame and Nontrivial Generalized Velocities

The momentary position and orientation of the chassis-fixed or vehicle-fixed reference frame V is provided by the position
vector 7oy,0 and the rotation matrix Aoy defined in the VTC model as

Ty costpy —sinyy 0| cosfy 0 sinfy | |1 0 0
Tov,0 = |Yv and Agy = |[sinyy cosyy O 0. 1 0 0 cos¢y —singy (D
2v 0 0 1| |—sinfy 0 cosby||0 singy cosoy

where zv, yv, zv, ¢v, Oy, and ¥y serve as generalized coordinates. The comma separated index O indicates that the
components of the vector 7oy pointing from O to V are expressed in the earth-fixed reference frame 0.

The components of the velocity vector vy and the angular velocity vector wgy can both be expressed in the vehicle-fixed
frame. The set of kinematical differential equations

Ty Vg v 1 cosf singsinf  cos¢sind | |w,
v | = AOTV Uy and Oy | = 7 0 cospcos —singcost||wy 2)
v v, Py cos 0 sin ¢ cos ¢ W,

——

Vov,v Wov,v

provides then the time derivatives of the generalized coordinates 2y, ¢y, 2y, gﬁv, év, @bv as a function of the generalized
velocities vy, vy, V., and wg, wy, w,. As shown in [[16] this particular choice of nontrivial generalized velocities reduces
the complexity of the equations of motion significantly.

Relative Kinematics
The vehicle model, shown in Figurem consists of n = 9 rigid bodies: the chassis, four knuckles, and four wheels. The
absolute position and orientation of an arbitrary body j is defined by

T0j,0 = Tov,o + Aov rvjv  and  Ag; = Aoy Ay 3)

where roy,0 and Aoy are defined by (I) and ry j,v and Ay ; describe the position and orientation of body j relative to the
vehicle-fixed reference frame V.
The vector of the absolute body velocity vg; can be expressed in the vehicle-fixed frame

d

T .

voj,v = vov,v + Aoy — (Aov rvjv) = vov,v +Wov,v X rviv + vy “4)
dt

where according to (2) the components of the vectors voy,y and woy,1 are entirely defined by the nontrivial generalized
velocities vz, vy, Uz, Wy, Wy, w.. The movements of body j relative to the vehicle-fixed frame V can be characterized by
a certain set of generalized coordinates, which may be collected in the vector y;. Then, the vector ry-; - describing the
momentary position of body j relative to V depends on this set of generalized coordinates, ry ;v = 7y, v (y;) and its
time derivative with respect to frame V results in

d 87"‘/]‘7\/

tviv = rviv(y) = D1
J

o Ui = t;v(y;) U (5)

where the term ¢ v represents the partial velocity of the body j motions. Similarly, the vector of the absolute body angular
velocity, expressed in the vehicle-fixed frame V, reads as

woz,v = wov,v twviv = wov,v +djv(Y5) ¥j (6)

where the term d; - describes the partial angular velocity of the body j motions.
The absolute acceleration and the absolute angular acceleration of body 7, both expressed in the vehicle-fixed frame V,
are at first provided by

d
T . ~T . . .
ag;v = AOV& (Aov vov,v) = wov,v X vojv + Tov,v + Ty y Wov,v +wov,y X Tviv + vy
(7

d
T . .
v = AOV@ (Aov wov,v) = wov,v X woj,v + Wov,v + Wvjv
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where the cross product wov, 1y X 1y, was transferred viaw X r = —r X w = —TFw = 7T to the multiplication of a
transposed skew-symmetric matrix with a vector. The velocity vgy,1y and the angular velocity woy,1 depend entirely on
the generalized velocities. The relative velocity 7y ;v and the relative angular velocity wy ; - are provided in (5) and (6).
Their time derivatives result in

Fviv=tivy) i +hv) g and vy =dv(y;) i + div () d ®)

The trivial choice z; = 9; of generalized velocities is always possible. Then (7) reads as

. 0 v
~T . . . 03,V . R
agjv = [laxs Ty, v - tiv.. ]2 + wovy X (vov +7viv) +Eivy = —5, £t av
)
. 5 . Owoj,v . R
aojv = [03x3 Isxs ...djv...] 2 + wov,y X wojv +djvy; = T;Z + agjv
where the vector .
z = [vwvyvz Wy Wy W, yl...yn] (10)

collects the generalized velocities of the vehicle model. The symbols 343 and 03«3 represent 3 X 3 matrices of identity
and zeros. The 3 x f matrices 0 vo;,v/02; and Owy; v /0 z;, where f denotes the number of degrees of freedom,
represent the partial velocities and partial angular velocities of the absolute body 7 motion. The symbols aézj’v and aé%j’v
abbreviate the remaining acceleration and the remaining angular acceleration terms, which do not explicitly depend on
the time derivatives of the generalized velocities.

Passenger car suspensions force the knuckles to perform rather complex nonlinear but smooth motions relative to the
chassis or the vehicle-fixed reference frame V respectively. In addition, the damper elements in a vehicle suspension
systems reduce the relative velocities g; to moderate values. As a consequence, the terms i,y ; and d; v ; can be
neglected compared to the other terms in the remaining acceleration and the remaining angular acceleration which results
in a non-perfect multibody model, but safes a significant amount on computation effort and still provides an acceptable
accuracy [17].

Chassis

The first body, the chassis, represents a special case, because the vehicle-fixed reference V frame is fixed to the chassis.
As a consequence, the position vector v,y = Ty ¢,y is constant and the rotation matrix is simply defined by the 3 x 3
matrix of identity, Ay; = Ay = Isxs. Then

dwoc,v
0z

dvoc,v

P = [03x3 Isxs Osxy,] (11)

= [Isxs ey Osxs]  and
provide the partial velocities and the partial angular velocities of the chassis, where f,, = f — 6 denotes the degrees of
freedom of the motions relative to the chassis.

Generic Suspension

The kinematics of standard suspension systems, like the double wishbone, the MacPherson, or the multi-link suspension,
can be solved online or approximated by lookup tables or more efficiently by smooth two-dimensional functions [[18]].
Regardless of the type of an independent suspension the position and orientation of the knuckle fixed reference frame K
relative to the chassis or vehicle-fixed frame V can be described by a position vector and a rotation matrix

¢
rvw,yv =Tvw,p + [n| and Ayg = A, A, Ag (12)
¢

where v, p describes the design position of the wheel center W, which on a balanced wheel is located on the wheel
rotation axis and hence fixed to the knuckle. The rotation matrix is composed of three elementary rotations, where ~y
describes the steer motion, « the wheel camber, and 3 the pitch motion of the knuckle.

In particular at kinematic and compliance (KnC) tests, the wheel center W is used as a reference point to monitore and
measure the knuckle/wheel movements. The coordinates £ = £(h, s), n = n(h,s), ¢ = ((h,s) as well as the rotation
angles « = a(h, s), § = B(h,s), vy = v(h, s) depend on the hub and steer motions A and s. In general, the hub motion
can be described by the vertical displacement of the wheel center, ( = h. A least square approximation of measured or
computed KnC tests delivers the design kinematic parameters, which for a typical double wishbone suspension on the
left front wheel are listed in Table[T] It provides column by column the parameter sets required for the two-dimensional
design kinematic functions f = f(h,s), where h and s represent the hub and the steer motion. The columns hold for
the constraint knuckle motions §& = £(h, s) to v = ~y(h, s), the spring and damper displacements ug = ug(h,s) and
up = up(h, s), as well as the vertical movement 2., = 2Zqr5(h, $) of the anti-roll bar attachment point. Each parameter
set consists of the range limits (dh, ds), the initial inclinations (dfdh@, dfds@), as well as the four center (fp@, fop, fon,
fn@) and the four corner points (fpp, fpn, fnp, fnn) as defined in [18].
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Table 1: Design kinematics parameters for a typical double wishbone front left suspension including force element displacements

g n « ﬂ Y us Up Zarb

+0.08096 +0.08096 +0.08096 +0.08096 +0.08096 +0.08096 +0.08096 +0.08096 dh

+0.07240 +0.07240 +0.07240 +0.07240 +0.07240 +0.07240 +0.07240 +0.07240 ds

-0.02765 -0.07112 +0.44734 -0.32329 +0.11453 +0.89260 +0.89323 +0.67524 dfdhe
+0.30806 -0.14963 +1.20972 +1.20120 -8.21459 -0.19082 -0.16794 -0.01680 dfdse
+0.01559 -0.03140 +0.11704 +0.10749 -0.57684 +0.01238 +0.05418 +0.05251 fpp=f(+dh,+ds)
-0.00218 -0.01604 +0.05305 -0.02603 +0.00908 +0.07213 +0.07291 +0.05257 fpo=f(+dh, 0 )
-0.03338 -0.01630 -0.12277 -0.11642 +0.78398 +0.01970 +0.07544 +0.05581 fpn=f(+dh,-ds)
+0.01826 -0.01635 +0.06099 +0.10629 -0.61014 -0.04529 -0.01864 -0.00030 fop=f( @ ,+ds)
-0.03167 +0.00089 -0.14875 -0.05932 +0.79015 -0.04802 +0.00026 +0.00311 fon=f( @ ,-ds)
+0.02081 -0.02134 +0.02840 +0.11802 -0.63890 -0.10653 -0.08846 -0.05699 fnp=f(-dh,+ds)
+0.00224 -0.00420 -0.02389 +0.02663 -0.00885 -0.07249 -0.07190 -0.05673 fne=f(-dh, @ )
-0.02946 -0.00217 -0.14831 -0.02219 +0.78449 -0.11015 -0.07223 -0.05396 fnn=f(-dh,-ds)

The Matlab function provided in the following Listing computes the kinematics of a generic suspension modeled by
the design kinematics. It provides the orientation of the knuckle-fixed reference frame, the momentary position of the
wheel center which serves as a reference point for the knuckle motion, as well as the corresponding partial velocity and
partial angular velocity. The 3 x 1-vector ufe collects the displacements of the spring ug, the damper up, and the vertical
movement 2z, of the anti-roll bar. The 3 x 2-matrix dufedyf contains the changes of ufe with respect to the hub and steer
motions collected in the 2 x 1-vector yk = [h;s]. They are used within the VTC environment to compute the contribution
of the suspension forces to the vector of generalized forces directly via the virtual power. The additional 5 X 1 output
vector ao collects the constraint motions resulting from the Matlab function dk_fun, which evaluates the two-dimensional
functions as described in [18]].

Listing: Matlab function computing the kinematics of a generic suspension via the design kinematics

function ... % v t c utility

[ avk ... % orientation of knuckle fixed frame

, dkv ... % part. angular velocities knuckle

, rvwv ... % position of wheel center

, twv ... % partial velocities wheel center

, ufe ... % force element displacements

, dufedyf ... % change of ufe due to yf

, ao ... % additional output

1 = dk_susp ... % generic suspension via design kinematics
( yk ... % generalized suspension coordinates yk = [ h; s ]
, rvkd ... % design position of wheel center

, dkin ... % matrix of design kinematics parameter

)

% constraint wheel motions yk (1) = hub, yk(2) = steer )

(
[ xw,dxwdyf (1),dxwdyf(2) 1 = dk_fun( yk(1), yk(2), dkin(:,1) );
[ yw,dywdyf(1),dywdyf(2) 1 = dk_fun( yk(1), yk(2), dkin(:,2) );
[ al,daldyf(1),daldyf(2) 1 = dk_fun( yk(1), yk(2), dkin(:,3) );
[ be,dbedyf (1),dbedyf(2) 1 = dk_fun( yk(1), yk(2), dkin(:,4) );
[ ga,dgadyf (1),dgadyf(2) 1 = dk_fun( yk(1), yk(2), dkin(:,5) );
% sine- and cosine functions as well as combinations
sal = sin(al); sbe = sin(be); sga = sin(ga);
cal = cos(al); cbhe = cos(be); <cga = cos(ga);
salsbe = sal*sbe; salcbe = sal*cbe; calsga = calxsga; calcga = calxcga;

% rotation matrix of chassis -> knuckle (elementary rotations: ga-al-be)

avk(1,1) = <cbexcga - salsbe*sga;
avk(2,1) = cbexsga + salsbex*cga;
avk(3,1) = -sbexcal;

avk (1,2) = -calsga;

avk(2,2) = calcga;

avk(3,2) = sal;

avk (1,3) = sbexcga + salcbex*sga;
avk(2,3) = sbexsga - salcbhex*cga;
avk(3,3) = calx*che;

% partial angular velocities due to hub and steer
dkv = zeros(3,2);

for j=1:2

dkv(1,3j) = cgaxdaldyf(j) - calsgaxdbedyf(j);

dkv(2,3j) = sgaxdaldyf(j) + calcgaxdbedyf(j);

dkv(3,3j) = salxdbedyf (j) + dgadyf(j);
end

% actual position of wheel center
rvwv = [ rvkd(1)+xw; rvkd(2)+yw; rvkd(3)+yk(1) 1;

% partial velocities due to hub and steer
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twv = [ dxwdyf
dywdyf
1

1) dxwdyf(2) ;
1) dywdyf(2) ;
[ iE

~

% displacements and partial derivatives of force elements

[ ufe(1),dufedyf(1,1),dufedyf(1,2) 1 dk_fun( yk(1), yk(2), dkin(:,6) );
[ ufe(2),dufedyf(2,1),dufedyf(2,2) 1 dk_fun( yk(1), yk(2), dkin(:,7) );
[ ufe(3),dufedyf(3,1),dufedyf(3,2) 1 dk_fun( yk(1), yk(2), dkin(:,8) );

% provide constraint motions as additional output
ao = [ xw; yw; al; be; ga 1;

end

The generic suspension model provides the position of the wheel center rvwv — -y and the orientation of the knuckle
avk — Ay g relative to the vehicle-fixed reference frame V as well as the 3 x 2-matrices dkv — dg v and twv — ty
which provide the partial angular velocities of the knuckle and the partial velocity of the wheel center. The velocity of the
wheel center and the angular velocity of the wheel are then determined by

h h ;
Vow,v = Vov,v +wov,v X Tvw,v +tw,v [s] and wow,v = wov,v +dk,v [5} +eyw,v @ (13)

where eyw,v = Av i eyw,p provides the knuckle-fixed wheel rotation axis and wxw,v = e,w,v ¢ describes the angular
velocity of the wheel rotation relativ to the knuckle. The momentary position of the knuckle center K and its partial
velocities are defined by

rviyv =rvwyv t Avkrwikp =rvwy +rwky and txy =twyv +dxyv X Twkv (14)
where 7w g p denotes the design position of the knuckle center K relative to the wheel center W.

Equations of Motion

The state of a generic VTC model, as proposed here, is defined by f = 18 generalized coordinates and f = 18 generalized
velocities collected in the vectors

T
= [Cﬂv yv 2v ¢v Oy v hi s1 ha uz hg uz hg us o1 @2 03 P4 ] (15)

2= vz vy V2 wy Wy wo hy Sy ho i hs iz ha s P12 P3 Pa
Jourdain’s principle of virtual power delivers the equations of motion as a set of two first order nonlinear systems of

differential equations
y=K(y)z and M(y)z=q(y, 2z, u, w) (16)

where the vectors u and w collect all model inputs and additional dynamic states, required for dynamic tire and dynamic
suspension forces. A kinematic matrix /& which does not coincide with the matrix of identity, makes it possible to define
non-trivial generalized velocities, as done here in (2)) for the overall vehicle motions. The elements of the mass matrix M
and the vector of generalized forces and torques ¢ applied to the vehicle are generated for the n = 9 bodies of the VTC

model via . .
- “ avoj,V . 81}0J‘,V 8&)0]',\/ ) 8w0j,v
" ;{( 0z ) iy, 0z Oiv 0z a7

" vy A% T a aw(]',v r a
q = Z{(ai {Fjﬁv—mj a(lijv} + 8;: [Tj,v—@j’vaé%j_’v—woj’v X @jﬁvwoj’v} (18)

where m; and O, describe the mass and inertia of body j, F}'y, and T'}'y, represent the resulting vectors of the forces and
torques applied to body j. Equations () and (9) provide the angular velocities wy;,v, the partial velocities Ov; v 0z, the
partial angular velocities dwy;,v /0%, as well as the remaining acceleration aé%j v and the remaining angular acceleration

a(%v. The partial velocities of the front right knuckle (K2) and the front right wheel (W2) are, for example, defined by

dv ~

%2[13% T’\;Kg,v O3x2 trov Osx2 Osxz  Osx1 Osx1 Osx1 Osxi ]
(19)
ow

%Z[Oa‘m I35 O3x2 di2,v Osx2 Osxz  O3x1 Osxi O3x1 Oswi ]

M — I:ISX'?’ T$“,2,‘r 03)(2 tW27V 03><2 O3><Z 03><1 3x1 3Ix1 3><1]
aw wa.v () ()
M — [03><3 I3><3 03><2 dW27V 03><2 03><2 03><1 e!l > 3x1 3><1}
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The TMeasy model [9]] provides the tire forces Firq o to Firq o and the torques Ty o to Tryg o applied to the four wheel
centers. In particular, the slip based longitudinal and lateral tire forces strongly depend on the velocity state vy and wow
of the wheel. The velocity state of the wheel depends, according to (I3)), on the velocity state of the vehicle (vgy,1- and
wov,v) and on the kinematical properties of the suspension systems represented by the symbols tyv, di v, and eyw,v,
which describe the partial velocity of the wheel center, the partial angular velocity of the knuckle, and the position of
the wheel rotation axis. Hence, neglecting the suspension kinematics partly or completely, as done in simplified vehicle
models, inevitably results in poorly modeled tire forces and tire torques.

The vehicle dynamics represented by (I6) is driven by the vector of generalized forces and torques. The contribution of
front right tire, part of the front right knuckle (K2) and wheel (W2) combination, to the vector of generalized forces and
torques is, for example, provided by

Frov

overall vehicle: ¢1.6 = q1.6 + T
Trov +rvwe,v X Epg v

hub and steer motions front right:  gg.10 = g9:10 + t,ZVE/Q,V Frov + d71;2,v Troy @h

wheel rotation front right:  q16 = q16 + €,y Tr2,v

The relations Frpray = Agv Froogand Ty = Agv Tr2,0 transform the resulting tire force vector and the resulting
tire torque vector from the earth-fixed into the vehicle-fixed frame. The amount of contribution depends on the partial
velocity of the wheel center tyy72 v, the partial angular velocity of the knuckle dx-» v, and the wheel rotation axis ey, .
Tire forces, which support and guide the vehicle, may change very quickly and can increase to considerable values, in
particular in critical driving situations. That is why, even rather small changes in the kinematical suspension properties,
represented by the symbols vy, di v, and ey, v, result in significant contributions to the vector of generalized force
and torques. Which magnifies the error in neglecting the specific properties of the suspension kinematics.

Example: Braking in a Turn

The numerical solution of differential equations, like the ones in @), is discussed in [19]. A straightforward implementa-
tion of the virtual test car (VTC) entirely realized in MATLAB provides an easy to use simulation environment including
plotting and animation facilities, Figure 2] As typical for standard passenger cars on dry road, the left plot in Figure 2]

t=23.8s t=26s t=14s t=0.2s
—

100 T I I 1 0
km/hlp o | ¢ circumferential )
g maut outer | wheel velocities | m/s

\ -1
_ \ longitudinal \\ rear outer /
2 \ acceleration 60 \\\ 9 /
4 40 (12T N\ /J
\ mner Vt \ 3
-6 20 Iron / lateral
inner N\ acceleration
-8 \/‘\_-V 0 \ -4 T T ']
2 3 4 5 t/s 6 2 3 4 5 t/s 6 2 3 4 5 t/s 6

Figure 2: Emergency braking in a turn without ABS of a typical midsize passenger car illustrated by animation screenshots and plots.

indicates a maximum deceleration of approximately 8 m/s?. The wheel load transfer from inner to outer during cornering
and from rear to front when braking causes the inner rear wheel to lock in the time interval t ~ 3 s to t ~ 4 s, center plot
in Figure 2] The VTC model handles wheel lock without any problems and the TMeasy tire model provides a smooth
transition to stand still in addition.

The numerical integration in the time interval 2 < t < 6 s performed with the standard MATLAB solver ode45, an
explicit Runge-Kutta formula of order 4 and 5 with step size control, took a 2,7 GHz Quad-Core Intel Core i7 just 4.72
seconds. This is already close to real-time performance (6 — 2)/4.72 = 0.85 even in the comparatively slow MATLAB
interpretation mode.
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Influence of the Suspension Kinematics on the Vehicle Dynamics

From a Standard to a Simplified Suspension Kinematics

Table [T] provides the design kinematics parameter matrix for the front left suspension of a typical passenger car. The
initial inclinations d «/dh = +0.44734 rad(m, d 8/dh = -0.32329 rad(m, and d 5/dh = +0.11453 rad(m indicate
that the knuckle performs significant rotations induced by the hub motion. As typical for front axle suspensions, the
first, second, and third rotation produces a partial camber compensation, counteracts the brake pitch, and generates a
slight self-steering effect. The axis of the knuckle-fixed coordinate system are parallel to the corresponding axis of
the vehicle-fixed reference frame. That is why, the design kinematics takes f00=f(@,0)=0 for granted. Then, center
points with different absolute values at vanishing steering angles (s=0), like fp@, = a(+dh,0) = +0.05305 rad and
fne, = a(—dh,0) = -0.02389 rad specify a nonlinear behavior, which in general is not a simple side effect but a
well design feature of the suspension kinematics. The design kinematics approach makes it easy to tune or design the
suspension kinematics. Replacing the first row in the parameter matrix of Table[T] by

+0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.08096 +0.08096 +0.08096 dh

just switches off the influence of the hub motion & on the constraint motions &, 7, «, 3, and 7y by leaving the force element
displacements ug, up, and z,,, unchanged. Simple 4-wheel vehicle models just take the steer motions into consideration
by neglecting the vertical suspension motions in addition, thus providing a far worse approximation.

Transient Vehicle Response

The DIN ISO directive 7401 lists the step steer input as one of the standard open loop maneuvers to reveal insight into
the transient response of vehicles. In practice, an ideal step input is not possible. The VTC environment realizes the steer
input s at the front and optionally at the rear axle via the rack displacements. Table [2| provides the time history of the

Table 2: Define step steer input within the VTC environment via lookup tables

0.0000 0.5000 0.6000 6.0000 time sample points 7g; in s
0.0000 0.0000 -0.0050 -0.0050 steer input front left pq(ts;) in m
0.0000 0.0000 -0.0050 -0.0050 steer input front right pga(ts;) in m

steer inputs at the front axle which correspond here to the rack displacement gp; = g3 = p of a standard rack and pinion
steering system. The rear wheels are not steered in this example g3 = g4 = 0. The steering forces applied to the knuckles
1 to 4 are defined by

Fsi = cgi(0i — si) +dsi (0i — 8i), i=1(1)4 (22)

The constants cg;, dg; summarize the stiffness and damping properties of the tie rods and the steering lever. The time
histories of the steer inputs deliver also their time derivatives 91 to ¢4. The steer motions of the knuckles s to s4 and their
derivatives $; to $4 are part of the vectors of generalized coordinates y and generalized velocities z as defined in (T3)).
Table 2] approximates the step by a continuous ramp, where the rack is moved in the time interval 0.5 < 7¢ < 0.6 s from
its center position s; = sy = 0 to the right s; = so = —5 mm and then (75 > 0.6 s) kept constant. This input generates
the wheel steering angles displayed as dotted black and dotted grey lines in plot (a) of Figure 3]

3 ' 8 o ' : 04 ' 4 simplified susp. kin
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susp. kin. T T 58 implifi [} 0
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Figure 3: VTC step steer results, where solid and broken lines characterize vehicles with standard and simplified suspension kinematics

The VTC model represents here a fullsize passenger car with a wheel base of a = 2.9 m, a track width of s ~ 1.5 m, and
wheel loads of F,; = F,» = 5.39 kN and F,3 = F,4; = 5.06 kN at the front and rear. The steady state values of the
lateral acceleration a, = v?/R = 6.658 m/s? and the yaw angular velocity Y =v /R = 0.2665 rad/s deliver a cornering
radius of R = 94 m and a vehicle velocity of v = 25 m/s in this example. A Pl-controller keeps the vehicle velocity
constant during the whole manuever by generating appropriate drive torques applied to the rear wheels.
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The plots in Figure 3] compare the results of the VTC model with standard double wishbone suspensions at the front
and the rear to a VT'C model where the influence of the hub motion on the constraint suspension motions is completely
switched off. As a consequence, the wheel steering angles of the simplified VTC model, represented by the dotted gray
and dotted black lines in plot (a) of Figure [3] correspond perfectly to the step or more precisely to the ramp steer input.
The nonlinear suspension kinematics of the front wheels incorporates a roll steering which reduces the steering angles
with increasing body roll. That is why the steering angles drop down in the average from 2.35 to 2.15 degree when the
roll angle, solid line in plot (c) of Figure [3] increases from O to 3.25 degree. This roll steer effect is a well designed
feature of the suspension kinematics. It automatically reduces the impact of the steer input at fast cornering but keeps the
maneuverability in the lower lateral acceleration range.

For a fair comparison of the standard vehicle to a vehicle with simplified kinematics the steer input of the standard vehicle
is increased such that both VTC models end up in the same lateral acceleration. The results are displayed in Figure [4]
where the steering wheel angles, plotted on the left, are zoomed to the interesting range from 2.0 to 2.5 degrees. In general,
the kinematics of passenger car steering linkages is designed according to the Ackermann geometry which results in larger
steering angles at the curve inner wheel compared to the curve outer wheel. The roll steering effect of the VTC model
with the standard suspension kinematics even counteracts the Ackermann geometry, solid black and grey lines in the left
plot of Figure[d] This is a smart suspension design, because during fast cornering the outer wheels are much more loaded
than the inner ones and hence the steering angle of the outer wheel is the one that counts.
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a b c (d) e
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Figure 4: VTC step steer results with simplified and standard suspension kinematics with adjusted steer input

Both VTC models end up now in the same lateral acceleration and the same yaw angular velocity, plots (b) and (c) in
Figure[d But, the time histories of the roll angle and the side slip angle still differ in their steady state values, plots (d)
and (e) in Figure

Standard Versus Simplified Kinematics

In practice, the suspension kinematics of a passenger car is carefully designed to meet certain requests arising from the
longitudinal and lateral dynamics [20]. The Figures[5]and[6] show the three-dimensional motions of the front left knuckle
for the VTC model with the simplified suspension kinematics and for the VTC model with the standard suspension
kinematics.

At real passenger car suspension systems a steer motion causes the knuckle to rotate about the inclined kingpin axis which
in addition has a longitudinal and lateral offset to the wheel center. That is why, the centers 1 and 2 of the steered front
wheels perform longitudinal £ and lateral 7 motions as well as elementary rotations «, (3, v about the x-, y-, and z-axis
which in case of the simplified suspension entirely depend on the steer input s, Figure[5] The vertical displacements of the
wheel centers are unconstrained and described by the hub motion ( = h. Bump stops in the suspension systems restrict
the jounce motions (h > 0) at the curve outer wheels 2 and 4, upper right plot in Figures [5]and[6] The plots in Figure [6]
reveal the complexity of standard passenger car suspension systems. The distinct longitudinal motions & of the wheel
center 3 and the distinct pitch rotations g of the knuckle 3 indicate for example the ability of the rear suspension to reduce
a brake pitch. The lateral motions 7 and the rotations « about the x-axis provide the roll support and a partial camber
compensation. The former brings down the roll angle from 3.59 to 3.39 degrees, plot (d) of Figure ] The roll support
and the camber compensation at the front and rear wheels, which are carefully coordinated to each other, reduce further
on the side slip angle from -2.71 to -2.56 degrees, plot (e) of Figure [}

The steering forces Fis = [Fis1 Fga Fs3 F54]T and the driving torques Tp = [Tp1 Tp2 Tps TD4]T as well as the braking
torques s = [T51 T2 TB3 TB4}T define the inputs of the VTC model. The steering forces are directly applied to the
knuckles. Each of the driving torques acts between the chassis and the corresponding wheel at conventional drive trains or
between knuckle and wheel in case of wheel motors. The braking torques specify the maximum torques usually defined
by the braking pressures distributed to the wheels. An enhanced dry friction model, as described in [20], generates the
individual braking torque acting between knuckle and wheel. All inputs may be defined as simple feed forward time
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Figure 6: Standard suspension kinematics with adjusted step steer input

histories or provided by external controllers or by the output of additional subsystems. Hence, the VTC environment is
able to simulate vehicles with all kind of steering, driving and braking modes.

Jourdain’s principle combined with non-trivial generalized velocities and the idea of a non-perfect multibody system
approach result in equations of motion of minimal complexity. A partial implicit solver, as described in [21]], provides an
extremely fast numerical solution of sufficient accuracy and stability.

Consequences

Human drivers and automated drivers too are very sensitive to the roll angle and to the side slip angle, in particular. Hence,
a vehicle model which neglects some or all properties of the suspension kinematics is not able to reproduce the dynamics
of areal passenger car with reliable accuracy. Virtual tests to investigate the dynamics and the stability of vehicles as well
as the development and further improvement of driver assistance systems require at least vehicle models which incorporate
the nonlinearities of the suspension kinematics. Otherwise just basic studies will be possible, which of course may serve
as starting points for further and reliable investigations.
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Conclusion

Simplified vehicle models, like the classical bicycle model, 4-wheel vehicle models, or even three-dimensional vehicle
models neglecting the specific kinematical properties of the suspension systems, are not able to reproduce the dynamics
of vehicles properly. Such models are restricted to basic studies. The VTC environment takes the three-dimensional
motions of the chassis, four knuckles, and four wheels into account. The generic design kinematics suspension model is
able to describe the nonlinear properties of standard passenger car suspension systems with sufficient accuracy and with
a minimum of computation effort. The VTC model operated with the TMeasy tire model is valid in any driving situation.
A straightforward implementation of the virtual test car (VTC) entirely realized in MATLAB provides an easy to use
simulation environment including plotting and animation facilities. A VTC implementation coded in C achieves on a
standard personal computer with a 2,7 GHz Quad-Core Intel Core i7 a real-time factor (real-time/cpu-time) of 160 which
is magnitudes faster than real-time. Thus making the Virtual Test Car to an ideal platform for modern simulation tasks.
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