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Summary. We study the nonlinear dynamics of a three-link swimmer model in ideal fluid, where inertial forces due to added mass are 

dominating while viscous drag forces are negligible. We consider an underactuated swimmer where one joint is periodically actuated while 

the other joint is passive and viscoelastic, with torsional spring and damper. The swimmer’s motion depends significantly on the amplitude 

and frequency of the actuated joint angle. Optimal frequency is found where the swimmer’s net displacement per cycle is maximized, under 

symmetric periodic oscillations of the passive joint. In addition, upon crossing critical values of amplitude and frequency, the system 

undergoes a bifurcation where the symmetric solution loses stability and asymmetric solutions evolve, for which the swimmer moves along 

an arc. We analyze these phenomena using numerical simulations and analytical methods of Floquet theory and Hill’s determinant. The 

results demonstrate the important role of parametric excitation on stability of motion for flexible underactuated locomotion. 

Introduction 

Autonomous swimming robots have a promising potential for various applications such as surveillance and protection in 

marine environment, search and rescue missions, and maintenance operations within pipe systems of complex 

infrastructures [1], [2]. A common model assumes ideal fluid [3], [4], where the viscosity is negligible and the swimmer-

fluid interaction is induced by reactive forces that represent added mass effect. Our previous work [4] used this model to 

study multi-link swimmers under kinematic input prescribing all joint angles, numerically, analytically and 

experimentally (Figure 1b). Inspired by biological swimmers in nature that utilize body flexibility, the recent work [5] 

studied a modified model of planar three-link swimmer having one passive viscoelastic joint (torsional spring + damper) 

and one actuated joint with oscillating angle 𝜃2(𝑡) = 𝜀 cos(𝜔𝑡) , see Figure 1a. Unlike [4], in the semi-passive model [5] 

the excitation frequency 𝜔 and amplitude 𝜀 of the active joint have a significant effect on the response of the passive 

elastic joint and the resulting motion. 

 

 

Results 

In this work, we revisit the model in [5] and study its nonlinear dynamics and stability, both numerically and analytically. 

Numerical simulations of the system’s nonlinear dynamics result in symmetric periodic motion, in which the passive joint 

angle 𝜃1(𝑡) is oscillating symmetrically about zero while the swimmer’s net motion is translation along a straight line 

(Figure 2, blue curves). For a fixed amplitude 𝜀, An optimal frequency 𝜔 is found where the net displacement per cycle 

is maximized (Figure 3, top left). Analyzing stability of periodic solutions reveals a bifurcation point depending on input’s 

amplitude and frequency, where the symmetric periodic solution loses stability and a pair of stable asymmetric solutions 

evolve, which involve oscillations of 𝜃1(𝑡) about nonzero mean angle, resulting in net rotation such that the swimmer 

moves along an arc (Figure 2, red curves). Asymptotic analysis of the symmetric solution under small-angle assumption 

𝜀≪1 enables obtaining explicit expressions for the optimal frequency and displacement. Analyzing small variations about 

the symmetric periodic solution gives a Hill-type equation (linear time-periodic 2nd- order ODE) whose stability can be 

approximated using truncated Hill’s determinant [6]. We obtain analytic conditions for the stability transitions depending 

on input’s amplitude and frequency, which agree with the numerical simulations (Figure 4). Finally, we conduct additional 

numerical simulations in order to analyze added effects of nonzero initial momentum, drag forces, and tension spring 

mechanism at the passive joint. 
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Figure 1: (a). Swimmer model – (𝑥, 𝑦) are the position of the body-fixed reference frame origin. 𝛽 is the rotation angle of the body-

fixed reference frame. 𝑎𝑖 and 𝑏𝑖 are the major and minor radii of the elliptic links. 𝜃𝑖  are the relative angles between links. (b). Our 

previous experimental robotic swimmer with two actuated joint angles [4] 
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Figure 2: Transient simulations – Left: trajectories in joint-angles plane. Right: trajectories in x-y plane. Blue: symmetric solution, 

Red: asymmetric solution. Simulations with the same amplitude and initial condition and different frequencies result in 

significantly different solutions trajectories. 

Figure 3: Steady state solution parameters in 𝜔 and 𝜀  – Optimal frequency 

is found where the net displacement per cycle is maximized. A bifurcation 

point depending on input’s amplitude and frequency occurs, where the 

symmetric solution loses stability and a pair of stable asymmetric solutions 

evolve. Stability transitions involve Floquet multipliers crossing |𝜆𝑖|=1. 

Figure 4: Stability and instability regions and transition curves in 

frequency-amplitude plane – The analytic stability transition 

condition of Hill’s determinant predicts the first and second 

stability transitions. A third transition at higher amplitudes is not 

captured by the asymptotic analysis.  
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