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Summary. Targeted energy transfer between two weakly and linearly coupled oscillators is studied. One of oscillators possesses time-
dependent damping and nonlinear restoring forcing terms. Thanks to the detection of different system dynamics, its phase-dependent
characteristics are clarified leading to having finer vision about energy channelling between such oscillators. The developments prepare
design tools for tuning parameters of the time-dependent oscillator leading to the design of energy channelling between two oscillators.

We would like to design the targeted energy transfer [1] between a linear and a time-dependent nonlinear oscillator. Our
considered system is composed by a linear oscillator weakly coupled to an absorber with a time-dependent cubic rigidity
[2] and damping (see Fig. 1). The considered system can correspond to an acoustical mode which is linearly coupled to
an adaptative acoustical resonator in nonlinear domains.The studying of such resonators with fixed parameters have been
already articulated in [3, 4, 5] for membrane and Helmholtz resonators and has been programed for a loudspeaker in [6].
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Figure 1: System with time-dependent cubic rigidity and damping

To study the behaviour of this system around a 1 : 1 resonance, we consider the nondimensioned governing equations.
Then, to have the envelope of the response of the system we introduce the complex variables of Manevitch [7]. To detect
the different dynamics of the system, the multiple scales method [8] is used. Hence, we introduce fast and slow time
scales. We keep only the first harmonics of the system via truncating other harmonics.

From the study of the fast dynamics of the system we can define the equation of the slow invariant manifold (SIM) which
corresponds to the energy of the first linear oscillator (/V) as functions of that of the absorber (/NV3) and also the phase
(d2). Moreover, we can detect the local extrema of the SIM. Introducing the perturbation in the complex variables of
Manevitch, the unstable zone of the SIM can be clarified.

From the study of the slow dynamics of the system, we are able to define the equilibrium, singular points and the back-
bone curve of the system. These developments permit to predict different possible periodic or non-periodic regimes as
functions of excitation amplitude and frequency.

For the system with time dependent rigidity and damping, we represent in Fig. 2 the SIM with its unstable zone accom-
panied by results obtained from direct numerical integration of the governing equations of the system without external
excitation but under initial conditions. We notice that the SIM depends on three parameters: the energy of the linear
oscillator (IN7), the energy of the nonlinear oscillator (/V3) and its phase (d2) contrary to the case with constant parameters
where the SIM only depends on N7 and N5. Moreover we can observe in the Fig. 2b that the numerical integration
follows the SIM and therefore the analytical predictions. The Fig. 3 represents different views of the equilibrium points
of this system and the unstable zone of the SIM. We observe that, there are two branches: a main branch (i) and an isola (ii).

Depending of progress of the work, some experimental results will be probably presented.
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Figure 2: The SIM of the system with its unstable zone (green line) and numerical results (blue line). a) Three-dimensional
view (d2, N, N1); b) Two-dimensional view (No,N7).
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Figure 3: Different views of collected equilibrium points. o is the de-tuning of the frequency of excitation for analyzing
system behaviours around a 1 : 1 resonance. a) (o, Na, N1); b) (0, N2). The equilibrium points located in unstable zone
of the SIM are represented in green.
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