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Summary. The study of anti-resonances in parametrically excited systems in the recent years was focused mainly on bimodal systems.
Assuming it to be strictly a bimodal coupling phenomenon, anti-resonances in systems with multiple degrees of freedom (DoF) were
seen as a generalization without added effects. Recent findings, however, hint at an interesting behavior when multiple anti-resonances
arise in close vicinity of each other. In the present contribution, these effects will be discussed and assessed with perturbational methods,
aiming at understanding the underlying phenomenon, which is expected to be advantageous especially in enhancing the robustness and
intensity of vibration mitigation.

Introduction

Ever since the discovery of anti-resonance by Tondl [8], further research by Schmieg [7], until recent investigations
conducted by Dohnal [1, 2] and finally comprehensive semi-analytical describtion by Karev [3, 4, 5], anti resonance was
interpreted as coupling between two modes. However, recent findings suggest that multiple anti-resonances can not be
viewed in isolation in all cases. Following [6], Lyapunov characteristic exponents (LCEs) are used to gain insight into the
system’s behavior. Floquet theory is applied to the parametrically excited system with excitation period time T , resulting
in Floquet multipliers ρi, from which the LCEs λi can be derived by

λi =
1

T
ln |ρi|. (1)

Numerical Observations

In [6], it was shown that in systems with multiple degrees of freedom (MDoF), under the right conditions anti-resonances
may appear at multiple excitation frequencies Ω. This is illustrated in Fig. 1, using the system introduced in [2, 9] and
studied further in [6] as an example. The anti-resonances are approximately at the combination frequencies Ω = Σ21 =
ω1 + ω2 and Σ32 = ω3 + ω2.
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Figure 1: LCEs λi of example system [6] over excitation frequency Ω for κ = 1, εp = 0.15. Two sepearte anti-resonances are visible.

The numerical results obtained by applying Floquet theory indicate that for a certain amplitude εp of parametric excitation,
while having asymmetrically skewed excitation terms by a factor κ in a MDoF (see (2)), a minimum of the largest of the
LCEs involved in anti-resonances max(λi) can be achieved. This leads to the anti-resonances laying on top of each other,
as visible in Fig. 2.
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Figure 2: LCEs λi of example system [6] over excitation frequency Ω for κ = 0.729, εp = 0.158. Two anti-resonances occur at the
same frequency.

The exact relation between the values of all LCEs λi and the equivalent damping of the system is yet to be fully understood.
Thus, numerical simulation of the system’s amplitudes after an initial displacement is used to clarify the effects of the
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two combined anti-resonances shown in Fig. 2. Fig. 3 shows the summed squares of amplitudes of all DoF of the
example system. With the dashed line indicating the reference time at which the unexcited system’s amplitudes become
negligibly small, it is apparent that a stabilizing effect is not only caused around the frequency of anti-resonances but for
all frequencies apart from resonances.
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Figure 3: Summed squares of amplitudes in all DoF after initial pertubation recorded over time t and with respect to the parametric
excitation frequency Ω. Reference time where unexcited system reaches negligible small amplitudes shown with dashed line ( ).
Lighter shade means larger amplitudes.

Perturbation analysis

In order to get a better insight into the observed phenomenon, the system is to be analyzed analytically. As a first step, the
system model is reduced for the sake of generalizing the studied system, which leads to a three-dimensional equation of
motion
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u = 0,

with the displacement u, damping µi, eigenfrequencies of the undamped unexcited system ω2
i , off-diagonal stiffness

terms kij , parametric excitation coefficients fij and frequency Ω, small parameter ε, amplitude of parametric excitation
εp = O(ε) and asymmetry parameter κ.

The findings are to be analyzed using multiple scales. For this purpose, the displacement u and asymmetry parameter κ
are perturbated, described by a power series with respect to the small parameter ε:

u = u0 + εu1 + ε2u2 +O(ε3), (3)

κ = 1 + εκ1 + ε2κ2 +O(ε3).

The ongoing study aims then at using the outcomes of the multiple scales analysis in understanding the reason behind the
stabilizing effect of coinciding anti-resonances at approximately all excitation frequencies. In this way, a generalization
of this phenomenon can be achieved for a 3 DoF system and, moreover, extended to generic MDoF systems. Such an
effect could be a powerful tool in mitigating vibrations in industrial applications.
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