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Summary. The mathematical solution of a system of two coupled Duffing oscillators is obtained in closed form by extending to this 2 DOF 

system a technique previously used for 1 DOF systems. A parametric investigation is proposed to illustrate the usefulness of the exact 

solution to detect the main dynamical phenomena, in particular those related to the modal coupling which is the main characteristic of this 

archetypal system.  

Introduction 

A two Degrees of Freedom (DOF) nonlinear oscillator is an archetypal system that allow to detect, in a simple way, the 

modal coupling in nonlinear mechanical systems. It permits focusing on the main phenomena, without unessential 

mathematical developments that sometimes hide the main physical characteristics of interest. Furthermore, it is obtained 

when a two-mode reduced order model of any, even infinite dimensional, system is considered. It is the natural 

evolution of the study of simple 1 DOF archetypal systems, like Duffing, Helmholtz, van der Pool, etc., that have been 

largely studied in the past. 

Although it looks a simple model, it is not yet fully investigated, even if several studies have been devoted to modal 

coupling of different, specific, engineering systems. Furthermore, all previous works used numerical simulations or 

approximated analytical methods, notably the multiple time scale method. 

In this work, which is based on [1] and take advantage from the ideas of [2-4], we consider an exact, closed form, 

solution for a system of two Duffing oscillators, linearly and nonlinearly coupled. This permits a full parametric 

investigation and detection of “all” dynamical outcomes due to coupling. 

Governing equations and solution 

A system of two Duffing linearly and nonlinearly coupled oscillators is governed by the equations 

 𝑀𝑥�̈� + 𝐷𝑥�̇� + 𝐾𝑥𝑥 + 𝐾3𝑥𝑥
3 + 𝐷𝑥𝑦(�̇� − �̇�) + 𝐾𝑥𝑦(𝑥 − 𝑦) + 𝐾3𝑥𝑦(𝑥 − 𝑦)3 = 𝐺𝑥(𝑡), 

 𝑀𝑦�̈� + 𝐷𝑦�̇� + 𝐾𝑦𝑦 + 𝐾3𝑦𝑦
3 + 𝐷𝑥𝑦(�̇� − �̇�) + 𝐾𝑥𝑦(𝑦 − 𝑥) + 𝐾3𝑥𝑦(𝑦 − 𝑥)3 = 𝐺𝑦(𝑡), (1) 

where 𝑀𝑖 are the masses, 𝐷𝑖  the damping coefficients, 𝐾𝑖 the linear stiffnesses, 𝐾3𝑖 the nonlinear stiffnesses and 𝐺𝑖(𝑡) 
the external forces. To obtain the closed form solution, the excitations are assumed to be in the form 

 𝐺𝑥(𝑡) = 𝐷𝑥�̇� + 𝐷𝑥𝑦(�̇� − �̇�) + 𝐾𝑥𝑦(𝑥 − 𝑦) + 𝐾3𝑥𝑦(𝑥 − 𝑦)3 − 𝑆𝑥𝑥 − 𝑆3𝑥𝑥
3, 

 𝐺𝑦(𝑡) = 𝐷𝑦�̇� + 𝐷𝑥𝑦(�̇� − �̇�) + 𝐾𝑥𝑦(𝑦 − 𝑥) + 𝐾3𝑥𝑦(𝑦 − 𝑥)3 − 𝑆𝑦𝑦 − 𝑆3𝑦𝑦
3, (2) 

where 𝑆𝑥, 𝑆3𝑥, 𝑆𝑦, 𝑆3𝑦 are parameters that can be chosen freely. Inserting (2) in (1) yields 

 �̈� + (𝜔𝑥
2 +𝑊𝑥)𝑥 + (𝑘𝑥 + 𝐶𝑥)𝑥

3 = 0,    �̈� + (𝜔𝑦
2 +𝑊𝑦)𝑦 + (𝑘𝑦 + 𝐶𝑦)𝑦

3 = 0, (3) 
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Equations (3) are two uncoupled Duffing equations, for which the closed form solutions are  

 𝑥(𝑡) = 𝐴𝑥𝑐𝑛(𝑎𝑥𝑡, 𝑏𝑥),   𝑦(𝑡) = 𝐴𝑦𝑐𝑛(𝑎𝑦𝑡, 𝑏𝑦), (5) 

where 
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and where “cn” is the Jacobian elliptic function. 𝑥(𝑡) and 𝑦(𝑡) are periodic with period 

 𝑇𝑥 =
4𝐾(𝑏𝑥)

𝑎𝑥
,   𝑇𝑦 =

4𝐾(𝑏𝑦)

𝑎𝑦
. (7) 

The solutions of interest are those for which 𝑇𝑥 = 𝑇𝑦(= 𝑇), i.e. both 𝑥(𝑡) and 𝑦(𝑡) oscillate with the same period (but 

not with the same amplitudes 𝐴𝑥 and 𝐴𝑦). Actually, this is an equation linking 𝐴𝑥 and 𝐴𝑦 (e.g. 𝐴𝑦(𝐴𝑥)), once all the 

other parameters are known. Then, from (7) one gets the period of the excitation 𝑇𝑥 = 𝑇(𝐴𝑥) and 𝑇𝑦 = 𝑇(𝐴𝑦). Inverting 

these expressions one obtains the frequency response curves 𝐴𝑥(𝑇) and 𝐴𝑦(𝑇). Further details, including how to 

determine its stability, can be found in [1]. 

An advantage of the proposed method is that it is possible to use the free parameters 𝑆𝑥, 𝑆3𝑥, 𝑆𝑦, 𝑆3𝑦 to shape the 

excitation and to have it as close as possible to a desired target, still keeping the closed form expressions for the 

nonlinear oscillations. 

An example 

To shortly illustrate the previous findings we consider 
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 𝜔𝑥 = 2.5,   𝑊𝑥 = −4.5,   𝑘𝑥 = 2,   𝐶𝑥 = 0,   𝜔𝑦 = 2.5,   𝑊𝑦 = 0,   𝑘𝑦 = −1,   𝐶𝑦 = 0, 

 𝑀𝑥 = 1,   𝑀𝑦 = 2,   𝐷𝑥 = 0.01,   𝐷𝑥𝑦 = 0.02,   𝐷𝑥 = 0.03,   𝐾𝑥𝑦 = 0.5,   𝐾3𝑥𝑦 = 0.4, (8) 

which corresponds to the perfect internal resonance (𝜔𝑥 = 𝜔𝑦) with the 𝑥 mode hardening and the 𝑦 mode softening. 

The solution of 𝑇𝑥 = 𝑇𝑦 is reported in Fig. 1. For 𝐴𝑥 = 1 one obtains 𝐴𝑦 = 1.9731 and 𝑇 = 3.5009. The corresponding 

excitations 𝐺𝑥(𝑡) and 𝐺𝑦(𝑡) and solutions 𝑥(𝑡) and 𝑦(𝑡) are illustrated in Fig. 2. In Fig. 3 it is shown how choosing 

𝑊𝑥 = −4.47979443, 𝐶𝑥 = 0.036619325, 𝑊𝑦 = 0.14970754, 𝐶𝑦 = 0.024427757 allows to strongly reduce 𝐺𝑦(𝑡), 

by leaving practically unchanged 𝐺𝑥(𝑡). This is an example of shaping the excitation, which can be improved by using 

optimization algorithms. Much more results, including frequency response curves, are reported in [1]. 

  
Figure 1: The solution 𝐴𝑦(𝐴𝑥) for the parameter (8). 

a)  b)  
Figure 2: a) 𝐺𝑥(𝑡) (black) and 𝐺𝑦(𝑡) (red); b) 𝑥(𝑡) (black) and 𝑦(𝑡) (red). 𝐴𝑥 = 1 and parameters (8). 

a)   b)   
Figure 3: As Fig. 2, but with 𝑊𝑥 = −4.47979443, 𝐶𝑥 = 0.036619325, 𝑊𝑦 = 0.14970754, 𝐶𝑦 = 0.024427757. 
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