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Summary. In this study, we develop an optimization procedure of zero-dispersion point in curved mechanical beams. The zero-
dispersion point is associated with a zero-slope in the frequency-amplitude relation of a nonlinear resonator. As an outcome, local
to this zero-dispersion point, the nonlinear effect of amplitude-to-frequency noise conversion is eliminated, albeit the large oscillation
amplitude. This zero-dispersion point can be used for noise suppression and frequency stabilization of precision clocks and sensitive
detectors. The overall goal is to obtain the zero-dispersion point at the highest possible amplitude (for signal-to-noise ratio enhance-
ment) and frequency (for resolution enhancement). To this end, we found the optimal midpoint elevation of the curved beam and
optimized its initial bell-shape function using a genetic algorithm to maximize the frequency and energy level of the zero-dispersion
point.

Many technological applications use micromechanical beams as a frequency-selective element to attain high RF frequen-
cies. The practical requirement to operate above the noise floor of the device necessitates the need for large-amplitude
oscillation (relative to the small size of the micro-beam); these large amplitudes lie deep in the nonlinear range, where there
is considerable amplitude-to-frequency (A-f) noise conversion. However, in a specific class of nonlinear resonators, the
dependence of oscillation frequency on the energy (or amplitude) may be non-monotonic, generating energy levels where,
locally, the frequency is independent of the energy. For example, the oscillation frequency ω(Etot) can exhibit a softening
behaviour for low energy levels Etot < EZD, and hardening behaviour for high energy levels Etot > EZD, where in the
transition between these two behaviours, there is an extremum of the frequency corresponding to a zero-dispersion (ZD)
point Etot = EZD satisfying the condition dω/dEtot|EZD = 0 (Fig. 1, left panel). Hence, small amplitude fluctuations
are not translated into frequency fluctuations near this ZD point. Consequently, the ZD point can be used for suppres-
sion of frequency noise in both open-loop [1] and closed-loop [2] systems at large vibration amplitudes, which guarantee
operation above the noise floor of the device with a large signal-to-noise ratio (SNR).
In this study, we analyze the possibility to generate an optimal ZD point from the well-known and thoroughly explored
curved micro-beam [3, 4] (Fig. 1, right panel). In the curved beam, there are inherently hardening and softening non-
linearities, and therefore, we can obtain the ZD point, where these opposing nonlinearities cancel one another and the
fluctuations in the amplitude of vibrations do not locally affect the frequency [5].
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Figure 1: Left panel: The frequency-energy backbone curve of a nonlinear resonator with a zero-dispersion point. At the point of
zero-dispersion, Etot = EZD, there is an extremum of the frequency with a zero slope, and hence, the frequency is locally constant.
Right panel: Definition sketch of a curved micro-beam. The doubly clamped micro-beam of length ℓ and rectangular cross-section
(b× d) have an initial shape of an inverse bell, which is described by a function w0(x) and a maximal depth of h = |w0(ℓ/2)|.

We consider the conservative transverse vibration of a clamped-clamped shallow arch micro-mechanical beam of an
initial shape described by w0(x) with a maximal height of h, width b, thickness d and length ℓ (Fig. 1, right panel).
We wish to obtain a reduced-order nonlinear model for the beam and analyze its dynamics using the Euler-Bernoulli
beam model. We assume that the flexural motion of the beam is dominated by its fundamental frequency, and use a
single-mode approximation, w(x, t) = q(t)ϕ(x), where ϕ(x) is the eigenfunction of the fundamental mode that satisfies
the doubly clamped beam boundary conditions. We perform a Galerkin projection onto ϕ(x) to obtain the following
nonlinear ordinary differential equation for the modal coordinate q(t)

q̈ + ω2
0q + βq2 + γq3 = 0. (1)
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For an initially bell-shaped beam with w0(x) = hϕ(x), the coefficients ω2
0 , β and γ in Eq. (1) are a function of h (the

normalized initial elevation of the midpoint of the beam). Moreover, Eq. (1) has an exact analytical solution that describes
the strongly nonlinear dynamics of q(t) in terms of elliptic functions [5]. Thus, we can find closed-form expressions for
the ZD point dω/dEtot|EZD

= 0 that yield the energy at the ZD point EZD, and the fundamental frequency at the ZD
point ω(EZD). We note that both EZD and ω(EZD) are functions of the coefficients ω2

0 , β and γ, which in turn are
functions of h. Therefore, using the initial elevation h as the design parameter, we can optimize these two expressions
EZD = f(ω2

0 , β, γ) = f(h) and ωZD = g(EZD) = g(ω2
0 , β, γ) = g(h). Specifically, by setting dEZD/dh = 0, we can

find the initial elevation h that maximize the energy level of the ZD point, max{EZD(h)}, and by setting dωZD/dh = 0
we can find the initial elevation h that maximize the frequency of oscillation at the ZD point, max{ωZD(h)}. As can be
seen form the left panel of Fig. 2, EZD is an increasing monotonic function of h, and thus, the maximal EZD is achieved
at the maximal initial elevation that is possible hmax. In contrast, ωZD is not a monotonic function of h (Fig. 2, left panel).
Therefore, for given dimensions and properties of the beam, there is a unique optimal frequency (Fig. 2, left panel).
Using the bell-shaped beam w0(x) = hϕ(x) as an initial shape of the curved beam, we apply a genetic algorithm [6] to
find the optimal shape of the curved beam that yields a ZD point at the highest frequency and energy level. The genetic
algorithm uses the initial shape of the beam to create a population (group of shape functions) of other solutions in its
vicinity. After calculating the objective function dω/dEtot|EZD

= 0 for each individual (certain shape function) of the
population, the algorithm creates the next generation of population using the fittest solutions of the last generation by: (i)
selection, where the fittest solutions survive for the next generation, (ii) crossover, where each two solutions are being
used to create a new solution, and (iii) mutation, where some of the solutions are changed randomly. For each shape
function, we used spectral methods to calculate the coefficients of Eq. (1) and find its ZD point. After 500 generations
of a population of 15 individuals, the algorithm converged to an optimal shape function. The ZD point of the new shape
function is achieved at energy levels 3 times higher than the initial bell-shaped beam w0(x) = hϕ(x) and with a frequency
of more than 3 times higher (see Fig. 2, right panel).
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Figure 2: Left panel: The frequency-energy dependency of a bell-shaped beam. The fundamental frequency of oscillation ω is overlaid
by the frequency of oscillation at the ZD point ωZD (black) as a function of the total energy of the system Etot for different values of
initial elevation h. The maximal oscillation frequency at the ZD point, max{ωZD(h)}, is denoted by the red crossmark on the curve of
ωZD. Right panel: Comparison between the initial bell-shaped function of the beam (in blue) and the optimal shape function after 500
generations of a population of 15 individuals (in red). The frequency and energy of the zero-dispersion point in the optimal shape are
threefold higher than in the bell-shaped beam.
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