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Summary. In this study, we consider the PDµ control of the inverted pendulum with different delays in the proportional and the
fractional derivative terms. This concept gives a transition between several special cases already investigated in the literature. The main
question is whether the critical delay can further be extended by employing fractional-order feedback combined with delay detuning.

Introduction

Time delay in state-feedback systems sets a strong limitation in the stabilization of unstable plants. If the feedback delay
is larger than some critical value, then the system cannot be stabilized. This feature can well be demonstrated by the
inverted pendulum paradigm [3, 4]. Stabilization of an inverted pendulum by proportional-derivative (PD) feedback is
possible if and only if the feedback delay τ is smaller than a critical delay given by

τPD
crit =

T

π
√
2
, (1)

where T is the period of the oscillations of the pendulum hung downwards [4]. If τ > τcrit, then one cannot find
proportional and derivative gains that stabilizes the inverted position of the pendulum.
The critical delay can be increased by employing control laws other than PD feedback. For instance, if the feedback
involves acceleration (PDA feedback), then the critical delay can be increased to τPDA

crit =
√
2 τcrit,PD [3]. Alternatively,

if the delay of the proportional and the derivative terms are detuned, then the critical delay increases to τdPD
crit ≈ 1.47 τPD

crit

[3]. Another alternative way to increase the critical delay is the application of fractional-order control: in case of PDµ

feedback, τPDµ

crit ≈ 1.12 τPD
crit [1].

Introducing fractional-order derivative in the feedback loop allows us to exploit the time history starting from some initial
time to the current time instant. This can be seen from the most frequently used definitions of fractional derivative: the
Riemann-Liouville fractional derivative, the Caputo fractional derivative and the Grünvald-Letnikov fractional derivative.
All of these definitions of the fractional derivative resembles a distributed delay term that converts into a point delay term
if the order of the derivative is an integer [2].

Problem statement

The characteristic function of the system under investigation reads

D(s) = s2 − a0 + kpe
−sτp + kds

µe−sτd , (2)

where a0 > 0 is the open-loop system parameter, τp > 0 and τd > 0 are the feedback delays and 0 < µ < 2 is the order
of the fractional derivative. This system can also be interpreted as a control system with a single latency τ with some
additional delays (delay detunings) δp ≥ 0 and δd ≥ 0 in both terms such that τp = τ + δp, τd = τ + δd.
The D-subdivision method can also be applied to fractional-order systems. Substitution of s = 0 and s = ±iω, ω > 0
into D(s) = 0 gives the D-curves

s = 0 : kp = a0 , kd ∈ R , (3)

s = ±iω, ω > 0 :


kp =

(
a0 + ω2

) sin(µπ2 − τdω)
sin
(
µπ
2 − (τd − τp)ω

) ,
kd =

(
a0 + ω2

) sin(τpω)

ωµ sin
(
µπ
2 − (τd − τp)ω

) . (4)

The D-curves bounds the parameter regions in the plane (kp, kd) where the number of unstable characteristic roots is
constant. Stable regions (zero unstable characteristic roots) can be determined numerically using the argument principle.
When the delays increase then the stable regions typically shrink and disappear. There is a critical delay τdPDµ

crit : if
min(τp, τd) > τdPDµ

crit then the system cannot be stabilized by any triplet (kp, kd, µ). The goal of this study is to determine
the stabilizability boundaries in the plane (τp, τd) and to find τdPDµ

crit .

Special case: PDµ controller with a single delay

Stabilizability was already investigated if the delays in the proportional and fractional derivative terms are the same
(τp = τd = τ ). In the case of a PDµ controller with a single delay, the stabilizable region was derived in [1] in the plane
of the dimensionless parameters a = a0τ

2 and µ (see the left panel in Figure 1).
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Using the D-subdivision technique, we can observe four types of loss of stabilizability. These geometric conditions can
be directly translated into the multiplicity conditions shown in the right panel of Figure 1. This gives a more uniform
description of the stabilizability boundaries compared to that of [1]. Conditions detJ = 0 corresponds to the singularity
of the Jacobian matrix of the other three (four) equations with respect to kp, kd, ω1 (and ω2). The geometric interpretation
of this condition is the tangency of D-curves at the limit of stabilizability.
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Figure 1: Stabilizable region of (2) if τp = τd = τ with a = a0τ
2 (left). The stabilizability boundaries and multiplicity conditions in

the plane (µ, τ) if a0 = 2 (right).

Main results: stabilizability diagrams in the plane (τp, τd)

Using a similar technique described in the previous section, we can construct stabilizability diagrams for the case τp 6= τd.
First, we need to detect the geometric conditions at the limit of stabilizability using D-subdivision. These geometric
conditions can be translated into multiplicity conditions. From the multiplicity conditions, we obtain a nonlinear system
of equations, which can be reduced after solving for kp and kd. Finally, the reduced equations can be solved using
pseudo-arclength continuation.
Figure 2 shows the stabilizability boundaries in the plane (τp, τd) for different values of µ. The stabilizable region can
be extended compared to the detuned PD controller (µ = 1) by choosing an appropriate value of the fractional order µ.
The largest admissible delay is obtained for µ = 0.999637. In this case the critical delay is τdPDµ

crit = 1.00778τdPD
crit (see

the right panel of Figure 2). Hence, an extremely small but still finite extension of the critical delay can be achieved by
employing detuned fractional-order control.
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Figure 2: The stabilizability boundaries in the plane (τp, τd) if µ ≤ 1 (left) and µ ≥ 1 (middle) with a0 = 2 (stabilizable regions are
to the left of the curves). The path of the critical point associated with the maximal allowed delay in the plane (τp, τd) if µ ≤ 1 (right).
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