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Model updating for digital twins using Gaussian process inverse mapping models
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Summary. In engineering dynamics, model updating is typically applied to minimize the mismatch between a physical system and
its digital twin. This paper proposes to use inverse mapping models, based on Gaussian Processes (GPs). The latter are trained offline
using simulated data, enabling fast online updating of physically interpretable parameter values in first-principles-based nonlinear
dynamics models. The GPs infer parameter values based on time-domain features measured on the real system. Additionally, GPs
enables uncertainty quantification of the inferred parameter values. A nonlinear multibody model is used to illustrate the capability of
this method to update parameter values, with high computational efficiency, and extract corresponding uncertainty measures.

Introduction

Digital twins allow engineers to optimize the design and performance of a (controlled) physical system, and monitor
systems in real-time. Since, a model (i.e., a digital twin) is, not an exact representation of the physical system, fruitful
employment of the digital twin is hindered. Model updating is therefore used to minimize the mismatch between the
model and the measured system. In this research, we focus on updating parameter values of first-principles models with
fixed model structures. To make model updating generally applicable in an online, digital twin context, the updating
method should be: 1) computationally fast , 2) applicable to nonlinear models, 3) physically interpretable, and 4) able to
quantify the uncertainty in the parameter estimates. The method introduced here uses inverse mapping models, based on
Gaussian Processes (GPs): a set of measured features is mapped to a set of corresponding parameter values. Additionally,
the GPs yield a quantification of the uncertainty in the estimated parameter values. Although this method has previously
been applied to linear systems [3], here, we extend its application to nonlinear systems by using time-domain features.

Methodology

Inverse models are used to, online, rapidly map a set of measured time-domain output features to a set of physically
interpretable parameter values of a first-principles (or forward) model, see Figure 1. Parameterizing the forward model
with the inferred parameter values, results in an updated model that, when used in a simulation, yields a set of output
features close in similarity to the original, measured features. In this research, the output features are defines as samples of
the output signals at equidistant moments in time. In contrast to earlier work of the authors [2], in which a neural network
is used to define the inverse mapping model, here, GPs are used. Due to the use of GPs, in addition to inferred parameter
values, a quantification of the uncertainty in each inferred parameter value is obtained in the form of a standard deviation.
For each updating parameter, a separate GP is trained offline using training data. These data are obtained by simulating
the forward model and extracting features from the simulated output signals for a number of distinct combinations of
updating parameter values, distributed in some admissible updating parameter space P. Note that the excitation signals
and initial conditions used to obtain the training data should be identical to those used for the real measurements as these
are implicitly learned by the GPs. Furthermore, the forward model structure is assumed sufficiently accurate.
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Figure 1: Schematic representation of in- and outputs to first-principles models and inverse models for model updating.

Case study: a nonlinear multibody system

The GP-based updating method is applied to a two-degrees-of-freedom nonlinear multibody system consisting of two
connected rigid beams of mass m1 and m2, respectively, see Figure 2. The np = 4 updating parameters are: damping
constants dy , dθ, and spring constants ky , and kθ, where we assume that their values lie between the bounds of the
parameter set P ⊂ Rnp×1, specified in Table 1. The system is simulated for 5 seconds with the static equilibrium position
of the system, parameterized with parameter values in the center of P, as initial condition. For the output features, 100
equidistant time samples, of both the y(t) and θ(t) output signals, are used per sample. To mimic real measurements,
these output signals are contaminated by output noise (zero mean, σy = 5 × 10−5 m, σθ = 0.015 rad). The system is
excited by an impulse-like excitation force F (t) and moment M(t):

F (t) =

{
5 N if 0.2 ≤ t ≤ 0.25
0 N else , (1) M(t) =

{
0.075 N ·m if 0.2 ≤ t ≤ 0.25
0 N ·m else . (2)
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Parameter Value
m1 2.163 kg
m2 0.13701 kg
g 9.81 m/s2

ICOM,2 2.981× 10−4 kg·m2

yCOM,2 3× 10−3 m
zCOM,2 4.6× 10−3 m

F

Figure 2: Demonstrator model with non-updating parameter values.
The location of the Center Of Mass (COM) is indicated by yCOM,2 and
zCOM,2. Furthermore, g represents the gravitational acceleration and
ICOM,2 the mass moment of inertia about the COM.
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Figure 3: Inferred standard deviation of parameter value esti-
mates for dy in the subspace of P spanned by ky and kθ .

Table 1: Updating parameters and their lower and upper bound of P, bias, standard deviation, and mean absolute relative error.

Parameter Lower bound Upper bound µε [%] σε [%] µ|ε| [%]

dy 0.9 N·s/m 1.1 N·s/m 0.1063 0.9374 0.7412
dθ 1.75× 10-4 N·m·s/rad 2.25× 10-4 N·m·s/rad -0.0991 1.3673 1.0880
ky 5 N/m 15 N/m -0.0004 0.3117 0.2128
kθ 0.027 N·m/rad 0.045 N·m/rad -0.0356 0.2581 0.2026

All np GPs are trained using the same 250 training samples, generated for as many combinations of updating parameter
values, sampled using a Latin hypercube from P. The squared exponential kernel is used in combination with a Gaussian
likelihood and a constant valued mean function, of which the hyperparameters are optimized by minimizing the negative
log marginal likelihood. For more information about these settings, the reader is referred to [1].
To demonstrate the proof of principle of the proposed method, output features of nt = 500 test samples are simulated
for distinct parameter values p(i) ∈ P (where i indicates the sample), using equivalent settings for the simulation as for
the training data generation. Here, all instances of p(i) are randomly distributed (uniformly) in P. Then, the trained GPs
are used to infer parameter values p̂(i) ∈ P from the simulated output features. To asses accuracy and precision of these
inferred parameter values, the relative estimation error is calculated:

εrel(i) =
(
p̂(i)− p(i)

)
� p(i), (3)

and used to determine the bias and standard deviation of the relative error, and the mean absolute relative error:

µε =
1

nt

nt∑
i=1

εrel(i), σε =

√√√√ 1

nt − 1

nt∑
i=1

(εrel(i)− µε)⊗ (εrel(i)− µε), µ|ε| =
1

nt

nt∑
i=1

|εrel(i)| . (4)

In (3) and (4), � and ⊗ denote the entrywise division and multiplication operators, respectively. In Table 1, these error
metrics are listed for all updating parameters. As displayed by the low error metrics, these parameters are inferred
accurately (low bias) and precisely (low standard deviation). Furthermore, Figure 3 shows the inferred standard deviation
in dy , representing the quantification of the uncertainty in the estimated parameter values, as obtained by the GP, for all
test samples in the subspace of P spanned by ky and kθ. Note that the largest inferred standard deviations are located at
the edges of P (especially the edge where ky ≈ 5 N/m). The time required to infer all parameter values and their inferred
standard deviations is only 13 ms, enabling fast, credible parameter value updating.

Conclusions and future work

In this work, Gaussian Processes are used as inverse mapping models to efficiently update physically interpretable pa-
rameter values of a nonlinear multibody model using time-domain features. Additionally, inferred standard deviations,
provided by the GPs, provide a quantification of the uncertainty in the updated parameter values. However, costwise,
GPs scale poorly with an increasing number of training samples [1]. Consequently, applications to updating problems
with many updating parameters may become infeasible. Therefore, in future work, we will investigate Bayesian neural
networks as an alternative for inverse mapping models. Furthermore, to improve the sensitivity of the inverse mapping
model, optimal excitation design, feature extraction, and feature selection techniques should be explored further.
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