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Summary. A mechanical model of a beam subjected to impact velocity is analyzed. It consists of a beam with additional mass-spring 

systems. We investigate the distribution of the axial stress along the beam, and the effect of different parameters (masses and their 

distribution, spring’s stiffness) on the stability of the beam. 

Introduction 

In industrial safety, dynamic buckling is one of the most important considerations to design structures subjected to 

sudden loadings. For instance, spacer grids in nuclear fuel assembly should have sufficient buckling strength in case of 

major accidents as earthquakes.  Several studies using finite elements models with experimental validation for static 

buckling and post-buckling of spacer grids were conducted [1]. In literature, most studies focus only on inner 

characteristics of the spacer grid components without a fully dynamic analysis of the fuel rods movements [2]. Dynamic 

buckling of structural elements (columns, plates, shells...) under impulsive axial loading has been studied using different 

approaches. It has been widely investigated for imperfection-sensitive structures with neglected axial inertia forces [3]. 

For nearly perfect structures, other studies have shown that the axial inertia forces must be considered, particularly in 

the case of high impact velocities [4].   

 

Mechanical model 

We propose a simplified beam model to reproduce the effect of fuel rods, as lumped masses, on the dynamic buckling 

of the spacer grid. In the present study, we conduct a stability analysis based on eigenvalues evolution for the systems 

shown in figure 1 and figure 2. The occurrence of buckling and its characteristics (time to buckling, evolution of 

eigenvalues) are affected by additional masses due to axial stress waves. This effect is illustrated through the impact 

response of the system with an initial velocity for different configurations. Each configuration is defined by a specific 

distribution of mass-spring systems and by their frequencies. 
 

 
 

Figure 1: Model of a beam with additional masses 

 

 
Figure 2: Model of a beam with additional mass-spring systems 

 

 

To predict a potential buckling of the beam, we solve the wave equation by considering the additional masses  
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To obtain the geometric stiffness matrix at each time step, we consider the first nonlinear term in transverse direction in 

the axial strain of the beam 
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 Then an eigenvalue problem is obtained at each time step  

[Kelas + Kgeom(t)].  X + M. Ẍ = 0 (3) 

 

In fact, the system is instable if one eigenvalue of the system is positive. 
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Results 

The study is carried out for several configurations with multiple distributions of the masses or the mass-spring systems. 

Herein we present the results obtained for two configurations. The first configuration consists of a beam with three 

masses characterized by the mass ratio: rm =  
𝑚𝑖

Mbeam
 , with Mbeam is the beam’s mass. The second one consists of a 

beam with three mass-spring systems characterized by the frequency ratio: rf =  
fi

fbeam 
 where fbeam is the first natural 

longitudinal frequency of the beam and fi is the frequency of the mass-spring system. The distribution of the axial stress 

along the beam at each time step is shown in figures 3 and 4 for the first and the second configurations, respectively. As 

shown in figure 5 the beam tends to buckle for heavy additional masses. Furthermore, for a given additional mass, the 

frequency of the mass-spring system needs to be smaller than the natural frequencies of the beam to avoid buckling 

(figure 6). 

 

 

Figure 3: axial stress in the beam with masses for 𝑟𝑚 = 1  Figure 4: axial stress in the beam with mass-spring systems for 

𝑟𝑓 = 1 

 

Figure 5: Evolution of the maximum real part of eigenvalues of 

the beam with masses for different mass ratios 
 

 Figure 6: Evolution of the maximum real part of eigenvalues of 

the beam with mass-spring systems for different frequency ratios 

Conclusion and comparison with experimental data 

In this study we highlight the importance of considering the compression wave in the prediction of the buckling of a 

beam with an impact velocity. A further study considering non-linear springs is currently carried out to investigate their 

effect on the axial wave motion. 

For the beam model with mass-springs, the validation of this analysis is considered by setting up a prototype of a 

structure with rigid point mass inclusions and an adapted experimental protocol under impact conditions. 
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