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Summary. Time-dependent aerodynamic loads of thin elastic structures subjected to airflow can be calculated by numerous methods.
Analytical, semi-empirical, reduced-order, and CFD-based models can be utilized to calculate the aerodynamic loads. Calculations
of the aerodynamic loads are influenced by nonlinear aerodynamic effects for large deformations of the elastic structure, such as
dynamic stall, hysteresis, and vortex formation. In this work, the applicability and accuracy of a data-based identification method for
calculating the aerodynamic loads in the time domain are investigated. To create the data-based model, high precision validated CFD
simulations were used. The model was constructed using the SINDy (Sparse Identification of Nonlinear Dynamics) algorithm. After the
initial data fitting process, the reduced-order aeroelastic simulations with the identified aerodynamic models run up to five magnitudes
faster than classical high precision FSI simulations. The most significant advantage of this method is that it can be applied to a large
variety of different geometries, and it is also accurate for large deformations and large angles of attack in the nonlinear aerodynamic
regime.

Introduction

Obtaining accurate and efficient aerodynamic models has been a fundamental goal of research efforts in aeronautics over
the past century [1]. Aerodynamic models are essential for designing aircrafts [2], building large span elastic bridges [3].
Accurate aerodynamic models are used to evaluate static and dynamic aeroelastic stability and develop feedback control
laws for aircraft. Closed-form solutions for the attached incompressible unsteady flow problem around a two-dimensional
(2D) airfoil exist in both the frequency and time domains [4]. However, these models do not provide acceptable results in
the case of rapid oscillations and high angles of attack.
Semi-empirical models such as ONERA and Leishman-Beddoes can be used to approximate the aerodynamic nonlinearity
caused by the dynamic stall and flow separation. Lelkes and Kalmár-Nagy modeled the aerodynamic forces for large
angles of attack as a piecewise linear function, which was able to capture the phenomenon of dynamic stall [5].
Considering machine learning advancements, developing reduced-order models based on data obtained from measure-
ments or numerical simulations began to gain popularity recently [6]. An overview of data-driven methods in aerospace
engineering is given by Brunton et al. [7]. In the work of Pohl et al. [8] the SINDy method is used to derive polynomial
models for the lift of an airfoil.
In this paper, the Sparse Identification of Nonlinear Dynamics (SINDy) method [9] is applied to create accurate aerody-
namic models of a simple flat plate subjected to airflow using data obtained from CFD (Computational Fluid Dynamics)
simulations.

Sparse Identification of Nonlinear Dynamics (SINDy)

In this paper, we use the Sparse Identification of Nonlinear Dynamical systems (SINDy) method, introduced by Brunton
et al. [9, 10], and later refined in the work of Champion et al. [11]. An overview of the method and the description of
the Python package that is used in our paper is given by Silva et al. [12]. Sparse Identification of Nonlinear Dynamics
is a method based on representing the model as a system of possible nonlinear ordinary differential equations, whose
right side can be written as a linear combination of some elementary functions [9]. Then a sparsity promoting regression
is applied to determine the coefficients, resulting in easily interpretable models with only a few active terms. Physical
constraints can be easily incorporated by constraining the regression procedure.
The LASSO and the STLSQ optimization method have been used for the regression. These methods have l1 and l2
regularized objective functions, respectively. The STLSQ procedure incorporates an adjustable threshold, any coefficient
below this threshold is neglected. Then the regularization is repeated again for some iterations. The norms are defined as

l1(x) =

n∑
i=1

|xi|, (1)

l2(x) =

√√√√ n∑
i=1

(xi)2. (2)

Using the formulas (1) and (2), the objective functions for the LASSO and STLSQ optimization procedure are respec-
tively:

1

2n
||y −Xw||22 + λ ||w||1 , (3)

1

2n
||y −Xw||22 + λ ||w||22 . (4)
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To determine the hyperparameters, the Optuna [13] package was used. Using this package, a multiobjective optimization
was performed with the objectives defined as the error of the integrated model and the number of terms. So-called Pareto-
optimal hyperparameter groups were determined. This means that for a given group, there are no other groups, which
would result in an improvement over both objectives. This way, multiple models can be chosen, depending on the needs
of the given task.

Identified models

The CFD simulations that the models have been trained on were obtained by prescribing a sinusoidal oscillation for the
pitch (α) or the plunge (h) motion of the flat plate wing, with a 1m chord length. During the simulations we prescribed
the motion in the following form

α(t) = αamp cos(ωt), h(t) = hamp cos(ωt), (5)

where αamp and hamp are the oscillation amplitudes, and ω is the angular frequency of the oscillation.
Data were obtained for three oscillation amplitudes and frequencies of the pitching and plunging motion, resulting in 18
different time series of the aerodynamic lift coefficient. The details of the CFD simulations are described in [14, 15].
Three models were identified, one for each frequency. The frequency was nondimensionalized; the resulting reduced
frequency is defined as k = ωb

U , where b is the half chord length, U is the wind velocity, and ω is the angular frequency of
the oscillation.
The aerodynamic model equations were created by using the state variables α, α̇, CLα , h, ḣ, CLh . The Reduced-Order
Models (ROMs) of the pitch CLα and the plunge CLh induced lift coefficients are

ĊLα(α, α̇, CL; k) = a1(k)α+ a2(k)α̇+ a3(k)CLα + a4(k)α
2 + a5(k)αα̇ . . . , (6)

ĊLh(h, ḣ, CLh ; k) = b1(k)h+ b2(k)ḣ+ b3(k)CLh + b4(k)h
2 + b5(k)hḣ . . . , (7)

where a lexicographic ordering was used for the coefficients ai(k) and bi(k), which are listed in Table 1 and 2. We assume
that the total lift coefficient CL is the sum of the pitch and the plunge induced lift coefficients, i.e.,

CL = CLα + CLh . (8)

Reduced frequency a1 a2 a3 a11 a16 a19 a35 a50

k = 0.1 0.213 5.42 0 249 0 0 -665.76 -1.52·106
k = 0.2 12.2 0 -2.70 0 0 0.799 0 0
k = 0.5 4.01 6.32 -1.34 0 -56.5 0.463 0 0

Table 1: The coefficients of the pitch reduced-order model (Eq. (6)).

Reduced frequency b1 b2 b3 b9 b35 b50

k = 0.1 -0.172 2.874 -0.398 0 0 0
k = 0.2 -0.715 2.33 -0.34 0 0 0
k = 0.5 -6.47 6.43 -1.6 -0.033 14113 23599

Table 2: The coefficients of the plunge reduced-order model (Eq. (7)).

We determined the Normed Root Mean Squared Error (NRMS) of the aerodynamic models using the formula

NRMSCL =
1

CLmax − CLmin

√√√√∑N
i=1

(
CL − ĈL

)2
N

, (9)

where N is the number of data points, CL is the CFD simulation data, ĈL, is the predicted value by the ROM simulation,
CLmax is the maximum, while CLmin is the minimum value of the CFD simulation data. The NRMS for the three pitch
and three plunge models can be found in Table 3 and 4, respectively.
For the reduced frequency k = 0.1, the lift coefficients from the CFD simulation and the fitted model as the a function of
the angle of attack for oscillation amplitudes αamp ∈ {2◦, 5◦, 10◦} are shown in Figure 1.
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(a) αamp = 2◦ (b) αamp = 5◦ (c) αamp = 10◦

Figure 1: Comparison of the identified ROM with the CFD simulation for k = 0.1 and αamp ∈ {2◦, 5◦, 10◦}.

Figure 2 illustrates the comparison of the identified ROM with the CFD simulation for k ∈ {0.1, 0.2, 0.5} and αamp =
10◦. It can be observed that the models provide a very good fit overall, can reproduce the nonlinear behavior associated
with the high angle of attack and high-frequency oscillations.

(a) k = 0.1 (b) k = 0.2
(c) k = 0.5

Figure 2: Comparison of the identified ROM with the CFD simulation for k ∈ {0.1, 0.2, 0.5} and αamp = 10◦.

For the reduced frequency k = 0.1, the lift coefficients from the CFD simulation and the fitted model as the a function of
the plunge displacement for oscillation amplitudes hamp ∈ {0.02m, 0.05m, 0.10m} are shown in Figure 3. For the low
reduced frequency k = 0.1, the reduced-order model gives an almost perfect fit.
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(a) hamp = 0.02m (b) hamp = 0.05m (c) hamp = 0.10m

Figure 3: Comparison of the identified ROM with the CFD simulation for k = 0.1 and hamp ∈ {0.02m, 0.05m, 0.10m}.

Figure 4 illustrates the comparison of the identified ROM with the CFD simulation for k ∈ {0.1, 0.2, 0.5} and plunge
amplitudes hamp = 0.1m. It can be observed that the models provide a very good fit overall, can reproduce the nonlinear
behavior associated with the high plunge amplitudes and high-frequency oscillations.

(a) k = 0.1 (b) k = 0.2 (c) k = 0.5

Figure 4: Comparison of the identified ROM with the CFD simulation for k ∈ {0.1, 0.2, 0.5} and hamp = 0.10m.

Oscillation amplitude Model for k = 0.1 Model for k = 0.2 Model for k = 0.5

2◦ 2.53% 1.88% 1.66%
5◦ 2.45% 2.25% 0.94%
10◦ 3.44% 4.62% 1.61%

Table 3: The NRMS values of the identified aerodynamic models for the pitching motion.

Oscillation amplitude Model for k = 0.1 Model for k = 0.2 Model for k = 0.5

0.02m 0.46% 0.67% 4.73%
0.05m 0.4% 0.65% 4.13%
0.10m 0.36% 0.65% 0.89%

Table 4: The NRMS values of the identified plunge aerodynamic models.
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Performance of the models for coupled pitch and plunge motions

To check the accuracy of the identified models, we have run coupled pitch and plunge motion simulations. We defined
the following coupled motion

α(t) = αamp cos(ωt), h(t) = hamp cos(ωt+ φ), (10)

where φ is the phase between the motions of the pitch and plunge.
In Figure 5 the comparison is shown between the CFD simulation, and the identified ROM model for k = 0.1, αamp =
10◦, and hamp = 0.1m for three different phase shift values. Both the combined pitch-plunge model and also the pitch-
only model is shown. It can be observed that the combined model can capture the nonlinear aerodynamic forces for the
coupled pitch and plunge motion. Using the combined model, the error in the maximum value of the lift is reduced by up
to 87%. The NRMS values of the combined model for the three test cases were under 5%.

(a) φ = 80◦ (b) φ = 90◦ (c) φ = 100◦

Figure 5: Comparison of the identified ROM with the CFD simulation for k = 0.1, αamp = 10◦, and hamp = 0.1m.
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Conclusions

The significant problem of creating reduced-order models for aerodynamic loads, valid for large amplitude, and frequency
oscillations, was studied. The SINDy method was utilized to extract the governing differential equation of the aerody-
namic lift coefficient from CFD data of a flat plate with pitching and plunging motion. This method resulted in easily
interpretable, simple models. It was shown that the identified models for one particular frequency show excellent agree-
ment with the CFD simulation data for varying amplitude oscillations. The future goal of this research is to couple the
created aerodynamic model to the structural dynamical model of a flexible plate subjected to airflow.
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