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Synchronization of a Self-Excited Inertia-Wheel Pendula Array
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Summary. We investigate synchronization of a self-excited inertia wheel pendula array. The dynamical system exhibits asymptotically
stable equilibria, periodic limit cycle oscillations, and non-stationary rotations. The analysis reveals that synchronous periodic oscilla-
tors are in-phase whereas quasiperiodic oscillators are out-of-phase. Furthermore, the non-stationary rotations exhibit combinations of
oscillations and rotations of the individual elements which are asynchronous.

Introduction

Self-excited synchronous oscillations in multibody dynamical systems have been documented since the middle of the sev-
enteenth century with the observation of Christiaan Huygens that two pendulum clocks hanging from a common flexible
support swung together periodically approaching and receding in opposite motions[1]. Examples of synchronization in
rigid-body and continuous dynamical systems have been documented for coupled mechanical metronomes[2], coupled
pendula suspended from a moving beam[3], and a nano mechanical cantilever array[4]. We examine the complexity of
coexisting synchronous and asynchronous self-excited oscillations in an array of three planar pendula augmented with ro-
tating inertia wheels governed by a linear feedback mechanism. We formulate the dynamical system using a Lagrangian
approach (Fig. 1 left). A linear stability map analysis of the zero equilibria yields a transition from an asymptotically
stable region (Fig. 1 right-red) to a region of self-excited oscillations (Fig. 1 right-blue), culminating with a region of
rotations (Fig. 1 right-white). We note that the saddle-node bifurcation (Γ3 = 0) for both a stationary array (x ∈ R5) is
identical to that of a moving array (x ∈ R11). However, the Hopf bifurcation between a stable zero equilibria and periodic
oscillations reveals a slightly larger region of self-excited limit cycles (Fig. 1 right-dashed).
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Figure 1: Definition sketch (left), stability map (right) of the inertia wheel feedback gains
(
Γ3(Γ1)

)
for a stationary (solid)

and moving (dashed) array

Results

By enforcing the analytical constraints[7] we find the Hopf threshold (Fig. 1 right-solid) of the stationary array. The Hopf
threshold of the moving pendulum array is obtained numerically for varying values of the gain Γ1 (Fig. 1 right-circles).
Area IA yields asymptotic stability for the moving array, and area IB together with IA yields asymptotic stability for the
stationary array. We simulate the dynamics of the array for gain values Γ3 both near and far from the Hopf threshold
Γ3H(Γ1H) for an arbitrary constant gain parameter Γ1 = const. For gains Γ3 near the Hopf threshold we obtain periodic
motion of the array elements which reveals in-phase synchronization (Fig. 2 left). As the gain Γ3 increases we obtain
quasiperiodic dynamics of the individual elements and out-of-phase synchronization (Fig. 2 center). The quasiperiodic
motion leads to asynchronous chaotic oscillations (Fig. 2 right). The behavior of the dynamical system was examined
through Poincaré maps (Fig. 2 bottom) portrayed by the system conjugate momenta (pψ, pθi, pϕi) and sampled every
positive zero crossing of the central inertia wheel velocity which is bounded.
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Figure 2: Time histories (upper) and conjugate momenta Poincaré maps (lower) for an in-phase periodic response (left)
and an out-of-phase quasiperiodic response (center), and asynchronous chaotic oscillations (right)

Discussion

Non-stationary rotations occur first in the periphery pendula (Fig. 3 left), while the center pendulum exhibits chaotic
oscillations. After a threshold gain value Γ̂3R all three pendula rotate while the base oscillates chaotically (Fig. 3 center).
The chaotic oscillations of the base culminate with rotations of all system elements (Fig. 3 right). We note that the
linear feedback governing inertia wheel dynamics was synchronized with the pendula array periodic (out-of-phase) and
quasiperiodic/chaotic (in-phase) oscillations, the non-stationary rotations were found to be asynchronous.

Figure 3: Time histories for non-stationary rotations combined with oscillations of the array elements (left) and (center),
and non-stationary rotations of all elements (right)
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