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Synchronization of a Self-Excited Inertia-Wheel Pendula Array
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Summary. We investigate synchronization of a self-excited inertia wheel pendula array. The dynamical system exhibits asymptotically
stable equilibria, periodic limit cycle oscillations, and non-stationary rotations. The analysis reveals that synchronous periodic oscilla-
tors are in-phase whereas quasiperiodic oscillators are out-of-phase. Furthermore, the non-stationary rotations exhibit combinations of
oscillations and rotations of the individual elements which are asynchronous.

Introduction

Self-excited synchronous oscillations in multibody dynamical systems have been documented since the middle of the sev-
enteenth century with the observation of Christiaan Huygens that two pendulum clocks hanging from a common flexible
support swung together periodically approaching and receding in opposite motions[1]. Examples of synchronization in
rigid-body and continuous dynamical systems have been documented for coupled mechanical metronomes[2], coupled
pendula suspended from a moving beam[3], and a nano mechanical cantilever array[4]. We examine the complexity of
coexisting synchronous and asynchronous self-excited oscillations in an array of three planar pendula augmented with ro-
tating inertia wheels governed by a linear feedback mechanism. We formulate the dynamical system using a Lagrangian
approach (Fig. 1 left). A linear stability map analysis of the zero equilibria yields a transition from an asymptotically
stable region (Fig. 1 right-red) to a region of self-excited oscillations (Fig. 1 right-blue), culminating with a region of
rotations (Fig. 1 right-white). We note that the saddle-node bifurcation (I's = 0) for both a stationary array (z € R®) is
identical to that of a moving array (z € R'!). However, the Hopf bifurcation between a stable zero equilibria and periodic
oscillations reveals a slightly larger region of self-excited limit cycles (Fig. 1 right-dashed).
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Figure 1: Definition sketch (left), stability map (right) of the inertia wheel feedback gains (Fg (I‘l)) for a stationary (solid)
and moving (dashed) array

Results

By enforcing the analytical constraints[7] we find the Hopf threshold (Fig. 1 right-solid) of the stationary array. The Hopf
threshold of the moving pendulum array is obtained numerically for varying values of the gain I'; (Fig. 1 right-circles).
Area I 4 yields asymptotic stability for the moving array, and area I together with I 4 yields asymptotic stability for the
stationary array. We simulate the dynamics of the array for gain values I's both near and far from the Hopf threshold
I35 (T'1 ) for an arbitrary constant gain parameter I'y = const. For gains I's near the Hopf threshold we obtain periodic
motion of the array elements which reveals in-phase synchronization (Fig. 2 left). As the gain I's increases we obtain
quasiperiodic dynamics of the individual elements and out-of-phase synchronization (Fig. 2 center). The quasiperiodic
motion leads to asynchronous chaotic oscillations (Fig. 2 right). The behavior of the dynamical system was examined
through Poincaré maps (Fig. 2 bottom) portrayed by the system conjugate momenta (py, Pei, Pg:) and sampled every
positive zero crossing of the central inertia wheel velocity which is bounded.
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Figure 2: Time histories (upper) and conjugate momenta Poincaré maps (lower) for an in-phase periodic response (left)
and an out-of-phase quasiperiodic response (center), and asynchronous chaotic oscillations (right)

Discussion

Non-stationary rotations occur first in the periphery pendula (Fig. 3 left), while the center pendulum exhibits chaotic
oscillations. After a threshold gain value fg r all three pendula rotate while the base oscillates chaotically (Fig. 3 center).
The chaotic oscillations of the base culminate with rotations of all system elements (Fig. 3 right). We note that the
linear feedback governing inertia wheel dynamics was synchronized with the pendula array periodic (out-of-phase) and
quasiperiodic/chaotic (in-phase) oscillations, the non-stationary rotations were found to be asynchronous.
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Figure 3: Time histories for non-stationary rotations combined with oscillations of the array elements (left) and (center),
and non-stationary rotations of all elements (right)
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