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Summary. We show stabilisation of unstable Rayleigh-Plateau(RP) modes on a liquid cylinder by subjecting it to a radial oscillatory
body force. The proposed stabilsation was short lived as shown earlier in our inviscid study [5]. Viscous analysis is performed which has
importance for this stabilisation. Linear stability predictions are obtained via Floquet analysis [3]. We also solve the linearised, viscous
initial-value problem for free-surface perturbations obtaining an integro-differential equation governing the amplitude of Fourier mode.
This equation represents the cylindrical analogue of its Cartesian counterpart [1]. Present study [4] shows that RP stabilisation can
be extended longer in time using radial oscillatory forcing. Predictions from the numerical solution to this equation demonstrates RP
mode stabilisation upto several hundred forcing cycles and shows excellent agreement with direct numerical simulations(DNS) of the
incompressible, Navier-Stokes equations using Basilisk [7]. An expanded version of present study is under review in a journal for
publication.

Dynamic stabilisation of RP modes - Linear inviscid theory

Liquid filaments, jets or annular fluid films coating the rods are susceptible to breakup into droplets via classical Rayleigh-
Plateau (RP hereafter) instability [6, 8]. In our earlier inviscid study [5], Faraday waves on a liquid cylinder where dynamic
stabilisation of RP modes was predicted but found to be extremely short-lived in inviscid simulations. Figure 1, shows an
infinitely long, quiescent liquid cylinder of density ρ, surface-tension T , kinematic viscosity ν and radiusR0 being subject
to a radial, oscillatory body force F(r, t). Interface perturbation is expressed as η(θ, z, t) = am(t; k) cos(mθ) cos(kz),
where k and m represents axial and azimuthal wavenumber.

Figure 1: A schematic representation of surface perturbation on a viscous liquid cylinder of radius R0 subject to a radial
body force F(r, t) = −h

(
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)
cos(Ωt)êr, where h and Ω are imposed forcing strength and frequency respectively.

Under the linearised, inviscid, irrotational approximation, the equation governing amplitude am(t; k) of Faraday waves
on the free surface is shown to be Mathieu equation[5],
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am(t; k) = 0, (1)

Figure 2a and 2b shows the inviscid stability chart and stabilisation of RP modes through DNS being short lived due to
nonlinearity.
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(a) Inviscid stability chart

m=4

(b) DNS for k = 4.8, h = 1.8× 104cm/s2

Figure 2: Shaded and white indicate unstable and stable regions respectively. Panel (a) Inviscid stablity chart from equa-
tion 1 showing critical forcing strength hcr above which RP unstable mode k0 = 4.8 cm−1 will be stablised. Parameters:
Ω = 600π rad/s (f=300 Hz), R0 = 0.2 cm, ρ = 0.957 gm/cm3, T = 20.7 dynes/cm. Panel (b) (Red curve) Time signal
from inviscid 3D-DNS [7], (k0 = 4.8 cm−1,m0 = 0) excited at t = 0. (Black curve) Solution to equation 1, (Left inset)
Zoomed out view of solution to equation 1, (Right inset) Stability chart for m = 4 showing unstable non-axisymmetric
Fourier mode (k = 28.8 = 6k0,m = 4) at t̃ ≈ 14 s causing destabilisation.
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Dynamic stabilisation of RP modes - Linear viscous theory

In the viscous analysis presented here [4] we performed Floquet analysis following [3] to obtain viscous stability chart
and solve the initial-value problem (IVP) following toroidal-poloidal decomposition [2] on a cylinder. We finally obtain
an integro-differential equation (2) for am(t; k) which has a damping and two memory terms incomparison to Mathieu
equation 1. It is shown that, by carefully tuning the strength and frequency of (radial) forcing, RP modes accessible to the
system maybe rendered stable thus stabilising the cylinder for long time (many forcing time periods).
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Stablisation of RP modes: viscous stability chart and DNS comparison

Case Fluid a(0) m0 k0 ρI ρO µI µO R0 h Ω T
1 Silicone oil 0.01 0 4.8 0.957 0.001 0.1 0.001 0.2 1.8× 104 600π 20.7

Table 1: Parameters for stability chart and DNS (CGS units)
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Figure 3: Panel a) Stability chart (m = 0) and panel (b) non-axisymmetric (m = 1, 2, 3, 4) modes with Case 1 parameters
in table 1. Figure 3a shows bold black lines→ viscous tongue, black dashed line→ inviscid tongue. (Inset) complete chart.
The mode (k0 = 4.8,m0 = 0) is stabilised when hcr1 < h < hcr2 with hcr2 = 2.05 × 104 cm/s2 from m = 4 (see figure
3b). We select h = 1.8× 104 (red dot and solid red line in figure 3a and 3b respectively) for stabilisation. Panel (c) DNS
time signal for case1 with parameters in table 1: (Red and blue dots) from DNS shows excellent agreement with solution
to equation 2(refered as Analytical in figure 3c) upto 600 forcing cycles (t̃ ≡ tΩ/2π). (Orange line) Destabilisation seen
in axisymmetric DNS when h < hcr1 and when (Pink line) h > hcr2. Note that inviscid simulation in figure 2b where for
the same k0, stabilisation is seen for only three forcing cycles.

Conclusions

We solved the initial-value problem (IVP) leading to a novel integro-differential equation governing the (linearised) am-
plitude of three-dimensional Fourier modes on the viscous liquid cylinder extending our earlier inviscid study. It is
demonstrated that by suitably tuning the frequency of forcing and choosing strength hcr1 < h < hcr2, RP mode (k0)
can be stabilised with all axisymmetric and three-dimensional modes that may be generated by nonlinear effects, can be
prevented from destabilising the cylinder. DNS comparison have shown excellent aggreement with theoretical predictions
demonstrating RP stabilisation upto hundreds of forcing cycles.
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