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Summary. Reduced-order modeling is among the leading theoretical and computational challenges for data concerning nonlinear
systems in mechanics, ranging from structures and fluid flows, to their interaction and other multi-physics problems. Data-driven model
reduction methods are well-established for linear dynamical systems, while available approaches for nonlinear systems often reveal to
be sensitive in the identified parameters, and to be limited in prediction capabilities. With this contribution, we present an approach
based on the theory of spectral submanifolds, which captures explicit nonlinear models from data. Without specific assumptions on
the type of observables or the kind of measurements, our method identifies nonlinear models that exhibit the footprint of geometric
nonlinearities or nonlinear damping in the observed dynamics. Our reduced-order models, which are trained on decaying vibrations
data, are also capable to accurately predict forced-responses of the nonlinear dynamical system. We show the performances of our
algorithm on measurement data of oscillations in structural or fluid dynamics.

Introduction

In the context of data-driven reduced order modeling, the most common approaches in the literature are Principal Or-
thogonal Decompositions (POD) followed by Galerkin projections [1] or Dynamic Mode Decomposition (DMD) [2].
The former method, however, needs the knowledge of the governing equations of motion to retrieve the reduced dynam-
ics, while DMD is purely data-driven, but it cannot capture essentially nonlinear (or non-linearizable) dynamics [3], as,
for example, transitions between equilibrium states or nonlinear frequency responses of structural vibrations. Available
approaches from machine learning tend to not be robust or easy to handle for extrapolation or prediction [4]. In this
contribution, we present an approach based on the recent theory of spectral submanifolds (SSMs) [5] that can extract
reduced-order models from generic observables capitalizing on normal forms.

Results and discussion

Our method is a two-step procedure, whose details are described in [7]. After having embedded the data in a suitable
observable space (either by using Whitney or Takens-type embedding, depending on available measurements), we perform
data-driven dimensionality reduction by modeling the SSM geometry. Our reduced coordinates are the projection to the
modal subspace tangent to the SSM at the equilibrium, and the nonlinearities are described via polynomials. From these
arbitrary coordinates, we then seek the reduced dynamics in normal form by minimizing the conjugacy error among data,
and, for oscillatory problems, the general normal form related to m linearized modes of the system reads

ρ̇j = −αj(ρ,θ)ρj ,

θ̇j = ωj(ρ,θ),
j = 1, 2, ...,m, m ≥ 1, ρ = (ρ1, ρ2, ...ρm), θ = (θ1, θ2, ...θm). (1)

The maps αj and ωj are the nonlinear continuations of linearized frequency and damping, identifying how dissipation and
frequency change with respect to the normal form modal amplitudes ρ and eventually phases θ, whose latter dependence
is only showing up in internally resonant systems. We also remark that our modeling approach when related to multiple
non-resonant modes do not assume the modes to be uncoupled. We use (1) to study the dynamics and make predictions
for eventual forced responses, and afterwards, using the SSM geometry, we can trace back normal form amplitudes to
physical observed quantities. To show the performance of our method in capturing the nonlinear behavior in systems with
different physics, we consider an example in fluid-structure interaction and one featuring structural vibrations.
We first consider the liquid sloshing example from [6, 7] depicted in Fig. 1(a), where measurements are carried out via
a laser system and the excitation is provided by moving the platform onto which the tank sits. We set our observable to
be horizontal position of the water center of mass and we focus on the slowest system mode. We train our SSM-based
model from the resonance decay data shown in Fig. 1(b) using cubic nonlinearities, showing already good accuracy in
reconstructing test trajectories. The model identifies the nonlinear backbone curves, characterizing damping α(ρ) and
frequency ω(ρ), and is then used to compute frequency responses, which follows the reduced dynamics

ρ̇ = −α0ρ− βρ3 + f sin(ψ), ψ̇ = ω0 + γρ2 − Ω +
f

ρ
cos(ψ), (2)

where Ω is the forcing frequency, f the forcing amplitude and ψ = θ − Ωt the phase lag. Forced periodic solutions can
be sought in closed form from eq. (2). In Fig. 1(c), we show these forced responses, where the dots are experimental
measurements for different forcing frequency and forcing amplitude values, while solid lines are predictions from (2),
after proper calibration for finding the normal form forcing amplitude f . Even tough our model has been trained only on
unforced data, it exhibits great accuracy in predicting forced responses (thanks to our detailed modeling of softening and
of nonlinear damping), also for amplitudes being higher with respect to those of training data.
Another example is the two-beam system of Fig. 1(d). The first two modes of this assembly feature a 1 : 2 internal
resonance and system nonlinearities are due to weak frictional contact happening at the joint between the inner beam and
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Figure 1: (a) Photo of measurements of liquid sloshing in a tank. (b) Decaying oscillations released from resonant quadrature forcing
with model predictions. The amplitude is the horizontal displacement of the center of mass of the water inside the tank, expressed in
percentage after normalization with respect to the tank width. (c) Analytical Forced Response Curves (FRCs), the damped backbone
curve (blue solid line) and experimental measurements for different forcing amplitudes and frequencies. (d) Picture of the resonant
tester structure. (e) Decaying resonant oscillations excited via hammer impact of the inner beam along with model predictions. The
amplitude is the velocity of the inner beam tip. (f) Nonlinear damping trends for the slow α1 and fast α2 modes along some decaying
trajectories.

the external one, which is clamped to the ground on the other side. Decaying vibrations are excited using hammer impacts
on different locations of the inner beam and our observable is the inner tip velocity measured via laser scanner vibrometry.
Due to internal resonance, transients show two dominant frequencies, cf. Fig. 1(e), as they very quickly converge to the
slow four-dimensional SSM, i.e., related to the two slow system modes. In this case, our method automatically detects the
internal resonance from data and it identifies a cubic order model with the specific form

ρ̇1 = − α0,1ρ1 − β11ρ
3
1 − β12ρ

2
2ρ1 − ρ1ρ2 (σ11 cosψ − σ12 sinψ) ,

ρ̇2 = − α0,2ρ2 − β21ρ
2
1ρ2 − β22ρ

3
2 − ρ21 (σ21 cosψ + σ22 sinψ) ,

ρ1θ̇1 = + ω0,1ρ1 + γ11ρ
3
1 + γ12ρ

2
2ρ1 + ρ1ρ2 (σ11 sinψ + σ12 cosψ) ,

ρ2θ̇2 = + ω0,2 + γ21ρ
2
1ρ2 + γ22ρ

3
2 + ρ21 (σ22 cosψ − σ21 sinψ) ,

(3)

where ψ = θ2 − 2θ1 is the internal phase shift. Our data-driven model is able to reconstruct trajectories test with an
average 1.2 % error, as in the example of Fig. 1(e). In particular, the damping of the fast mode undergoes consistent
variation as shown in Fig. 1(f), becoming also negative for some times, since the fast mode tries to absorb energy from
the slow mode. Additional details of this example are reported in [8].
Our data-driven approach is implemented on the open-source MATLAB® package SSMLearn, which is to be released
soon. Other than the source code, the repository contains the data sets discussed in this contribution and the live-scripts
with their analysis, and also additional worked examples.
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