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Summary. This work presents how synchronized states that self-organize in networks of mutually coupled oscillators can be entrained
by an external reference oscillator. A second-order Kuramoto model with time-delayed coupling is used to predict the phase-differences
in the network and the stability of the entrained states. The model predictions are then verified by experimental measurements.

Introduction

Synchronization is important for well-defined and concerted operations and provides the means to establish and keep
time-synchronization in networks of spatially distributed clocks [1]. In technical applications synchronization is usually
achieved by entraining an oscillator with a periodic signal of a high quality reference oscillator [2]. In natural systems
self-organized synchronization is prevalent and based on a mutual coupling between, e.g., cellular oscillators. In this
manuscript we study the complex dynamics in finite system of inert, mutually delay-coupled oscillators when subject to
an external forcing. The theoretical results for the minimal case, where a reference entrains a network of two mutually
delay-coupled oscillators, are verified by experiments with electronic phase-locked loop (PLL) oscillators [4]. We discuss
the experimental results taking into account the basins of attraction of the synchronized states that are studied.

Model for Studying the Entrainment of Networks of Mutually Delay-Coupled Oscillators

The dynamics in networks of inert, delay-coupled oscillators can be studied using a second-order Kuramoto model [3, 4]

mk θ̈k(t) + θ̇k(t) = ωk +
Kk

nk

N∑
l=1

ckl h (θl(t− τkl)− θk(t)) , (1)

where k = 1, . . . , N indexes the N oscillators, ωk ∈ R denotes the intrinsic frequencies, h(·) a periodic coupling
function, Kk ≥ 0 ∈ R the coupling strength, mk ≥ 0 ∈ R an inertial parameter, nk ≥ 0 ∈ N0 the number of inputs of
oscillator k, θi(t) ∈ S1 for i = {k, l} the phases of the oscillators’ output signals with θ̇(t) and θ̈(t) denoting their first
and second time derivatives, ckl = {0, 1} the components of the network’s adjacency matrix, and τkl ∈ R denotes the
cross-coupling time delays. The ansatz to study synchronized states and their linear stability is

θk(t) = Ωt+ βk + εqk(t), (2)

where Ω denotes the global frequency of a synchronized state, εqk(t) a small perturbation (ε� 1), and βk a phase-offset.

Network of mutually delay-coupled oscillators: frequency and phase differences of synchronized states
Using the ansatz (2) in Eqs. (1) and expanding h(·) to first order with respect to ε, we obtain the properties of synchronized
states fromO(ε0): Ω = ωk +K h (−Ωτkl + βkl) , where βkl = βk−βl, e.g., equal to 0 or π for identical oscillators. The
linear stability of these states depends on the the oscillator’s parameters and the properties of the synchronized states [4].

Individual oscillator entrained by a reference: phase difference with respect to reference oscillator
Here, the frequency of the synchronized state is determined by the reference Ω = ωR. The phase difference is β =
−h−1 [(ωR − ω)/K]−ωRτ . The stability depends only on the detuning of the frequencies and the coupling strength [5].

Networks of mutually delay-coupled oscillators entrained by a reference: phase differences
Here, we consider a network of heterogeneous oscillators, making the ansatz (2) for Ω = ωR. The entrainment is accounted
for by assigning the reference oscillator with k = 1 and setting c1l = 0 ∀ l. The N − 1 phase differences can then be
obtained from

ωR = ωk +
Kk

nk

N∑
l=1

ckl h [−ωRτkl − βkl] . (3)

Example of a Minimal Entrained Network and Experimental Verification

We study a network of two mutually coupled oscillators one of which is forced by an external reference, see Fig. 1. From
Eq. (3) the phase differences between the mutually coupled oscillators β23 = ωRτ32+h−1 [(ωR − ω3)/K3] and that to the
reference βR2 = ωRτR2 + h−1 [2 (ωR − ω2) /K2 − h [−ωRτ23 − β23]] are obtained. The theoretical predictions and the
experimental results β23 and βR2 of the synchronized states are shown as a function of the reference frequency in Fig. 2c.
The range of reference frequencies for which synchronized states are linearly stable is shown in green. In experiments
however, we only find stable synchronized states in a smaller range than predicted. This can be explained by the basins
of attraction obtained from time-series simulations shown in Figs. 2a, 2b. They show the basins for different initial phase
histories for t ∈ [−τ, 0]. In Fig. 2a all oscillators are initially free-running, as can be realized in the experimental setup.



ENOC 2020+2, July 17-22, 2022, Lyon, France

PLL 3
REF 2 31

REF1

outa) b)

PLL 2

Figure 1: a) Sketch of entrainment of a network of two mutually delay-coupled oscillators. b) The experimental setup con-
sists of a microcontroller that organizes the delay-coupling between the two mutually coupled PLLs and the entrainment
by a virtual reference derived from its internal clock. For details about the experimental setup see reference [4].

In Fig. 2b, the simulation starts in the entrained synchronous state, similarly to linear stability analysis. Their x- and y-axis
represent the phase differences φ1 = θ3(0)− θ2(0) and φ2 = θ3(0)− θ1(0) between the oscillators at t = 0, respectively.
The color encodes the asymptotic value of the order parameter for any combination (φ1, φ2), obtained from a time series
simulation of the oscillator network using the Eqs. (1). The order parameter has been modified such that it is equal to one
if the phase configuration of the entrained synchronous state under investigation is achieved [3]. From Fig. 2a it can be
understood that the basin of attraction has zero volume close to the boundaries of linear stability. Hence, we cannot find
entrained synchronous states with the experimental setup (Fig. 1b) that always starts from an initially free-running state.

(a) history: all oscillators uncoupled

(b) history: entrained synchronized state

(c) The phase differences β23 (red) and βR2 (blue) versus the fre-
quency of the reference. The green area denotes linearly stable states.
Experimental results shown by black stars and yellow diamonds.

Figure 2: Parameters: ω2 = 1004·2πHz, ω3 = 996·2πHz,K2 = 423·2πHz,K3 = 408·2πHz, and τR1 = τ12 = 0.265 s.

Conclusions

This work studies the entrainment of self-organized synchronous states. Our phase oscillator model takes into account
time-delays in the coupling and inert oscillator response. It predicts the properties of entrained synchronous states as
verified here by experimental results obtained from electronic oscillators. Self-organized synchronous states can be viewed
as an effective oscillator that has emerged over a network of mutually coupled oscillators. This effective oscillator is
characterized by its quiescent frequency Ω and the frequency range within which it can lock to a reference. Both properties
affect the linear stability of entrained synchronous states and depend on the delays within the mutually coupled oscillators.
The delay between reference and network only affects the phase differences of the entrained synchronized states.
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