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Summary. This paper develops a data-driven reduced-order model of the viscous Moore-Greitzer (MG) partial differential equations
(PDEs) by threading together ideas from dimensionality reduction to sparse regression and compressed sensing. Numerical simulation
of the infinite dimensional viscous MG system is reduced into low dimensional data using principal component analysis (PCA) and
autoencoder neural networks based dimensionality reduction methods. Based on the observation that MG equations close to bifurcations
have a sparse representation (normal forms) with respect to high-dimensional polynomial spaces, we use the Sparse Identification
of Nonlinear Dynamics (SINDy) algorithm which uses a collection of all monomials as a sampling matrix and a sparse regression
technique to recover a system of two sparse ordinary differential equations (ODEs) with cubic nonlinearities.

Introduction

This paper develops data-driven theory and algorithms to detect and mitigate stall compressor instability. The motivation
is to produce a high-fidelity simulation of a jet engine compressor called the digital twin, which has the ability to monitor
and diagnose complex systems to improve performance efficiency and utilization. Jet engine compressor models typically
integrate a hierarchy of multi-physics and multi-fidelity models which are continually updated with data streams from
the sensors. The model used to describe airflow inside the jet engine compressor is the viscous MG equations [12, 22]
which consist of a nonlinear partial differential equation (PDE) and two ODEs. There are three types of Hopf bifurcations
that can exist in the viscous MG equations corresponding to physical oscillations dominated by the ODE (surge), PDE
(rotating stall), or a mixture of both. The objective of this particular work is to use optimization and regression techniques
from machine learning to arrive at a lower dimensional description of the PDE from datasets. The success of compressor
reduced-order modelling is rooted on accurate representations of the multi-physics and multi-fidelity models.

First, we describe the viscous MG equations, provide an explicit expression for the system’s equilibrium, and show that
the steady operating axial flow and pressure drifts from the aforementioned equilibrium during PDE bifurcation. Then,
we introduce reduced-order modeling (ROM) to significantly alleviate computational costs by projecting the high dimen-
sional state variables onto a low-dimensional subspace. We perform ROM on simulated data from viscous MG equations
to construct a set of “good” basis functions. Approximations of bases spanning this subspace are constructed using prin-
cipal component analysis (PCA) [15, 28] and both linear and nonlinear autoencoder neural networks [26, 27].

It is impossible to effectively “learn” from high dimensional data unless there is some kind of implicit or explicit low
dimensional structure. Over the past 10 years, researchers have focused on sparsity as one type of criteria for low-
dimensional structure. The inherent sparsity of natural signals is central to the mathematical framework of compressed
sensing [5, 6, 9]. The main aim of compressed sensing is to construct a sparse vector from linear measurements of the
vector such that the number of observed measurements m is significantly smaller than the dimension n of the original
vector and satisfies the “Restricted Isometry Property” (RIP). Intuitively, the existence of a RIP implies that the geome-
try of sparse vectors is preserved through the measurement matrix, as illustrated in a high dimensional application [23].
These techniques rely heavily on the fact that many dynamical systems can be represented by governing equations that
are sparse in the space of all possible functions. The assumption for the low dimensional structure for the MG equations
originates from the center manifold theory in dynamical systems [13, 31], where a high dimensional system undergoing
Hopf bifurcation can be fully described by projecting the equations onto the subspace of a 2-dimensional center manifold.

Finally, we adapt a recently developed technique called Sparse Identification of Nonlinear Dynamics (SINDy) [4, 7, 8]
which has demonstrated the ability to recover governing equations of complex dynamical systems. The methods presented
in SINDy approach the problem of automating the discovery of dynamic equations that describe natural systems through
the lens of sparsity-promoting regression techniques such as Least Absolute Shrinkage and Selection Operator (LASSO)
[29]. To lend insight into this process, the SINDy algorithm was applied to simulated data from various ROM models to
recover their respective sparse equations which is then used to reconstruct the original system’s dynamics.

Viscous Moore-Greitzer Equations

Model and Analysis
Turbo-jet engine is comprised of 3 parts: axial flow compressor where air gets compressed, the plenum where the air un-
dergoes combustion and rapidly expands, and the turbine where the air is let out (see for example, Figure 1 in [30]). The
flow enters from atmospheric pressure at the inlet duct, proceeds through the compressor block where the static pressure
is increased, enters the outlet duct, and then exits to atmospheric pressure through the downstream turbine’s throttle. The
compressor is made out of an entrance duct, an inlet guide vane (IGV), multiple stages of stator-rotor pairs, and an exit
duct towards the plenum. A stator is a rotary system with static blades and a rotor comprises of revolving blades.
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The following basic assumptions of the MG compressor model [12, 22] are made. The pressure rise across the compres-
sor lags behind the pressure drop delivered by the throttle due to mass storage in the exit duct (or plenum). Across the
compressor, the difference between the pressure delivered by the compressor and pressure rise that currently exists across
the compressor acts to accelerate the flow rate through the compressor. The flow is assumed to be incompressible and
irrotational everywhere except inside the plenum where combustion occurs and rapidly expands the air.

The viscous MG equations for a cylindrical axial flow compressor consist of Laplace’s partial differential equation (PDE)
for disturbance velocity potential φ̃ ′(t,θ ,η)

φ̃
′
ηη + φ̃

′
θθ = 0. (1)

with boundary conditions
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at η = 0 and φ̃ ′ = 0 at η =−∞ and a pair of ordinary differential equations (ODEs) for annulus average of axial momentum
Φ(t)

Ψ(t)+ ℓc
dΦ(t)

dt
=

1
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and pressure drop from across the compressor Ψ(t)

dΨ(t)
dt

=
1

4B2ℓc
(Φ(t)−F−1

T (Ψ(t))). (4)

The subscripts of φ̃ ′ indicate partial derivatives with respect to time t, angular θ and axial η coordinates of the cylindrical
compressor. (·)0 means the quantity is evaluated at the compressor entrance η = 0. a is the internal compressor lag,
lc = lI + lE + 1

a is the characteristic compressor length (dimensionless quantity normalized with respect to compressor
radius), and B is the plenum to compressor volume ratio [11]. Detailed derivation of the non-viscous model can be found
in [11, 12, 22] while the viscous model was developed in [1, 21] and thoroughly derived in [3].

The compressor ψc(φ) and throttle FT (φ) characteristic functions that are considered follow [12, 22]

ψc(φ) = ψc0 +H
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(5)

FT (φ) =
φ 2

γ2 . (6)

H and W are the characteristic height and width of the compressor and ψc0 is a value determined by experiments. Throttle
coefficient γ describes the amount of opening - large γ implies a wide open throttle while small γ implies a closed throttle.
Equations (1), (2), (3), and (4) can be combined into a compact state-space form ∂y

∂ t = Ay+ f(y) following [2]
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by introducing state variable g
g(t,θ) = (φ̃ ′

η)0 = ∑
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where
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is the solution to (1) and we define
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1
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as well as an operator K that acts on φ = ∑n∈Z φ̃neinθ such that
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n∈Z

(
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φ̃neinθ . (11)

To inspect the nonlinearities in f(y), we perform Taylor series’ expansion on ψc(Φ+ g) up to the third cubic term to
expand the integrand of ψ̄c
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Note that g(t,θ) has a vanishing average property due to assumptions made to the disturbance flow. Therefore, ψ̄c is only
a function of t and not θ and as a result, K−1(ψ̄c) = 0. The nonlinearity vector f(y) becomes

f(y) =
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The system (7)’s equilibrium consist of ge(θ) = 0 and Ψe = ψc(Φe) = FT (Φe) which means (Φe,Ψe) lies on the intersec-
tion of curves (5) and (6). Φe can be solved by finding the root of the polynomial
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(14) has one real root and a pair of imaginary roots, where the real root is
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For our analysis, γ is the bifurcation parameter to be varied for different kinds of Hopf bifurcation.

The Jacobian of f(y) at equilibrium is
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The eigenvalues of (A+∇fye) corresponding to the PDE are
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and the eigenvalues of (A+∇fye) corresponding to the ODEs are
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Hopf bifurcation occurs when a pair of (A+∇fye) eigenvalues’ real parts cross the imaginary axis with the derivative of
the real parts with respect to γ is not equal to zero. There are three possibilities: surge (ODE bifurcation), stall (PDE
bifurcation), and combination (simultaneous ODE and PDE bifurcations).

The critical bifurcation point for surge is γc,surge such that Re(µ1,2) = 0. When γ < γc,surge, surge occurs. It is difficult to
obtain an explicit expression for γc,surge but γc,surge is the solution to

Φe(γc,surge)

(
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W

)
−
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W 2
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= 0. (20)

The condition for surge is ∂

∂γ
(Re(µ1,2))

∣∣∣
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> 0.

The critical bifurcation point for stall is γc,stall such that Re(λ1) = 0. When γ < γc,stall , stall occurs. Again, it is difficult
to obtain an explicit expression for γc,stall but γc,stall is the solution to
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(
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− νW 2

3aH
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The condition for stall is ∂
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∣∣∣
γc,stall

> 0.
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It is possible for the largest PDE eigenvalue pairs and both ODE eigenvalues to simultaneously cross the imaginary axis.
This is achieved when γ = γc,combo where

ψ
′
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γ2
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2a
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For the combination case, it is possible to calculate the expression for the normal form which are the diagonal entries of
(A+∇fye)(γc,combo)
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(K−1
(

ν

2 (1−n2)− 1
2 ni

)
1

2lc

√
ν2

a2 − 1
B2

− 1
2lc

√
ν2

a2 − 1
B2


 . (23)

Rotating Stall Simulation Results
The system of equations (7) is integrated using the spectral method. θ ∈ [−π,π) is discretized into 512 equally spaced
points, leading to a system of 514 ODEs (512 of which are Fourier coefficients of g(t,θ)) to be numerically integrated
using SciPy’s solve_ivp with dt = 0.1. The following parameter values are used in all cases

lc = 8, m = 1.75, a = 1/3.5, ν = 1, ψc0 = 1.67H, H = 0.18, W = 0.25. (24)

The plenum to compressor volume ratio B and the throttle opening γ are chosen to produce different type of bifurcations,
and for the stall case, the simulations results are given below in Figure 1.
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Figure 1: Stall dynamics of viscous Moore-Greitzer equations: (a) Φ(t) and (b) Ψ(t) do not settle at their stable equilib-
rium values due to influence from PDE Hopf bifurcation. (c) Amplitude of g(t,θ) in t settles to a non-zero value during
Hopf bifurcation. (d) Phase portrait of ODE states Φ(t) and Ψ(t) which does not settle at the equilibrium point.

Dimensionality Reduction for Reduced-Order Modelling (ROM)

Principal Component Analysis (PCA)
PCA is also known as proper orthogonal decomposition (POD) in mechanical engineering [15] and discrete Karhunen-
Loève expansion in signal processing and information theory [20]. PCA is a method to find principal axes in high
dimensional data. These principal axes span the eigenvectors of the covariance matrix of the measurements which are
orthonormal to each other such that the individual data along these directions are linearly uncorrelated. PCA can also be
used as a dimensionality reduction tool by truncating a measurement’s linear combination in its principal axes. Construct-
ing basis functions from data using PCA can be formulated mathematically as a low-rank matrix approximation problem
which can be easily computed by using the singular value decomposition (SVD) [10].
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Suppose we have N observations of n-dimensional data

Y = [y1 . . .yN ] (25)

where Y ∈Rn×N , yi = y(ti) ∈Rn. After centering the data about its empirical mean to get Y0, define a transformation
W ∈Rn×m where m < n in the context of dimensionality reduction. The lower dimensional data is calculated by

X0 = WT Y0. (26)

If we use PCA, then the transformation is defined as

W = Pm = [p1 . . .pm] (27)

where pm are the principal axes of Y0 or the first m eigenvectors of the covariance matrix Y0YT
0 .

Neural Network Implementation of PCA
An autoencoder is a type of multilayer feedforward neural network that at its simplest form (see Figure 2 without 64-nodes
hidden layers) has an input layer with n nodes, followed by a hidden layer with m nodes (where m < n), followed by an
output layer with n nodes. When the activation functions are chosen to be linear, the input-output relationship is given by

ŷ = W2(W1y+b1)+b2 (28)

where W1,WT
2 ∈ Rm×n are the encoder and decoder weight matrices, and b1 ∈ Rm, b2 ∈ Rn are the encoder and de-

coder bias vectors. Once the optimal {W1,W2,b1,b2} are found, we can construct an encoder to reduce the input into a
reduced-order data x ∈Rm using {W1,b1} and a decoder to convert the encoded data back to its original dimension using
{W2,b2}.

Under certain assumptions on the error function landscape, the minimization problem for the autoencoder reduces to

min
{W2}

∥Y0 −W2W+
2 Y0∥2

F . (29)

where W+
2 is the Moore-Penrose inverse/pseudoinverse [25] of W2. For the case when the columns of W2 are orthonormal

like Pm, then W+
2 = WT

2 will make (29) equal to the reconstruction error of PCA. Therefore, it is clear that Pm is a solution
to the autoencoder optimization problem. The problem is that the product of Pm with any proper orthogonal matrix
Q ∈Rm×m will be a minimizer W2, such that there are infinitely many solutions. Coupled with the fact that mini-batch
stochastic gradient descent [19] is the go-to optimization algorithm in today’s neural network frameworks, there is no
guarantee that W2 converges to the same value when the training procedure is repeated, let alone align itself to Pm. While
any W2 in this space can be used to mimic the input data almost perfectly, this inconsistency is an issue in our problem as
we would like to further uncover the underlying structure of the encoded measurements X = [x1 . . .xN ].

Regularized Linear Autoencoder
An approach to recover the principal axes from autoencoder weights is based on the following hypothesis [26]: the first m
left singular vectors of W is also the first m principal axes of Y0. This hypothesis can be framed as an autoencoder with a
regularizer or penalty to the sum of the Frobenius norms of the encoder weight matrix W1 and decoder weight matrix W2

min
{W1,W2}

∥Y0 −W2W1Y0∥2
F +λ (∥W1∥2

F +∥W2∥2
F). (30)

For a large enough λ value, the error surface is guaranteed to be convex with a single global minima which will correspond
to the principal axes [17]. Additionally, the minimum values of this loss function is W∗

1 = WT
2 unlike W∗

1 = W+
2 in the

original approach.

Nonlinear Principal Component Analysis (NLPCA) and Autoencoder
NLPCA was developed to uncover the underlying nonlinear manifold in large dimensional datasets. The neural network
architecture we are considering to train our NLPCA autoencoder is shown in Figure 2.

X = W2 tanh(W1Y+b1)+b2

Ŷ = W4 tanh(W3X+b3)+b4. (31)

We choose the nonlinear activation function tanh() as in [27] under the justification that a trigonometric function would
fit well with the solutions of the MG equations which are spanned by the Fourier basis (8). The NLPCA autoencoder is
trained to minimize the loss function of

min
{W1,2,3,4,b1,2,3,4}

∥Y− Ŷ∥2
F . (32)

The resulting {W1,2,3,4} and {b1,2,3,4} are then used to construct an encoder and decoder as per (31).
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Figure 2: Autoencoder architecture for MG compressor data with tanh() activation function

Sparsity in Reduced-Order Data

Over the past two decades, researchers have focused on sparsity as one type of low-dimensional structure. Given the
recent advances in both compressed sensing [6, 9] and sparse regression [29], it has become computationally feasible
to extract system dynamics from large multimodal datasets. The term sparse in signal processing context refers to the
case where signals (or any type of data, in general) have few non-zero components with respect to the total number of
components. It is well known in dynamical systems, the normal forms provide a way of finding a coordinate system
in which the dynamical system takes the “simplest” or “minimal” form. The normal forms, which are sparse in the
space of homogeneous vector polynomial of certain degree, is calculated by making judicious choices of the solutions to
the homological equations [13]. Hence, in the context of our work, close to the bifurcation point, the sparse regression
techniques rely heavily on the fact that many dynamical systems can be represented by governing equations that are sparse
in the space of all possible functions of a given algebraic structure.

Compressed Sensing
Compressed sensing (CS) is a technique for sampling and reconstructing sparse signals that can be represented by k << n
significant coefficients over an n- dimensional basis. The central goal of CS is the recovery of sparse vectors from a
small number of linear measurements, which distinguishes CS from other dimensionality reduction techniques. In [9] and
[6], the original sparse (k-sparse) signal is projected onto a lower-dimensional subspace via a random projection scheme,
called the sampling matrix. More precisely, this broader objective is exemplified by the important special case in which
one is interested in finding a vector S ∈Rn using the (noisy) observation or the measurement data

Y = ΘS+η , where Θ ∈Rm×n with k < m < n, (33)

is the known sensing or sampling matrix and η is the measurement noise.

In general, this problem cannot be solved uniquely. However, if S is k-sparse i.e., if it has up to k non-zero entries, the
theory of CS shows that it is possible to reconstruct S, a k-sparse vector inRn uniquely from m linear measurements even
when m << n, by exploiting the sparsity of S. This can be achieved by finding the sparsest signal consistent with the
vector of measurements [9], i.e.

argmin
S∈Rn

∥S∥0 subject to ∥Y −ΘS∥2 ≤ ε (34)

where ∥S∥0 denotes the l0 norm for S (the number of non-zero entries of S), while ε denotes a parameter that depends on
the level of measurement noise η . However, l0 minimization problem (34) is a non-convex problem which is NP-hard.

Instead of problem (34) we consider its l1 convex relaxation which may be stated as

argmin
S∈Rn

∥S∥1 subject to ∥Y −ΘS∥2 ≤ ε (35)

where the l1 norm (sum of the absolute values of the entries of S) is a convex function. Hence (35) is a convex optimization
problem which can accurately approximate the solution to (34) in polynomial time with high probability if measurement
matrix Θ is chosen to satisfy a necessary condition called “Restricted Isometry Property” (RIP) [5, 6]. One should note
that the l1 minimization in (35) is closely related to the LASSO problem [29]

argmin
S∈Rn

∥Y −ΘS∥2
2 +α∥S∥1 (36)

where α ≥ 0 is a regularization parameter. If ε and α in (35) and (36) satisfy some special conditions, the two problems are
equivalent; however, characterizing the relationships between ε and α is difficult except for the special case of orthogonal
sensing matrices Θ. The practical success of the LASSO can be attributed to the fact that in many cases S is sparse.
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Sparse Identification of Dynamical Systems (SINDy)
Sparse identification of nonlinear dynamics (SINDy) [4] is an algorithm for discovering the dynamical equations directly
from the data. The problem of model discovery from data can be formulated as a feature selection problem in machine
learning. The SINDy algorithm takes m-time measurements of x ∈Rn, X = [x(t1), . . . ,x(tm)]T ∈Rm×n and attempts to
discover the structure of a nonlinear differential equation of the form

Ẋ = f(X(t))≈ Θ(X)S (37)

where Θ(X) = [θ1(X),θ2(X), ...,θp(X)] ∈Rm×p form the dictionary of basis functions, and S = [s1 ... sk ... sn] ∈Rp×n

is the matrix of coefficients, where each column sk corresponds to an equation with p terms. p is the maximal number of
n-multivariate monomials of degree at most d. The majority of S entries are zero while the remaining non-zero entries
identify the active terms contributing to the sparse representation of the dynamics f(X). To guarantee sparsity, SINDy is
reformulated as a LASSO problem

argmin
sk

1
m

m

∑
i=1

∥ẋ(ti)−Θ(x(ti))sk∥2
2 +α∥sk∥1 (38)

where α is the l1 regularization coefficient. LASSO is an optimization algorithm that finds a sparse solution for (38) by
initializing sk = 0 and at each iteration, it tries to find an update for sk one entry at a time. The coefficient α acts as a
threshold such that if the an optimal condition involving α is not satisfied for a particular sk entry, the entry is chosen to
be equal to zero. Increasing the value of α leads to more zero entries in sk, resulting in a sparse model.

The dictionary of basis functions for monomial sampling of dynamical system is

Θ(X) =

 | | | | |
1 X XP2 XP3 . . .
| | | | |

 . (39)

The dictionary Θ(X) is constructed by appending candidate nonlinear functions of X column-wise. Here, higher order
polynomials are denoted as XPd where d is the order of the polynomial considered. For example, element 1 is a column-
vector of ones, element X is as defined above, element XP2 is the matrix containing the set of all quadratic polynomial
functions of the state vector x, and is constructed as follows:

XP2 =


x2

1(t1) x1(t1)x2(t1) . . . x2
2(t1) . . . x2

n(t1)
x2

1(t2) x1(t2)x2(t2) . . . x2
2(t2) . . . x2

n(t2)
...

...
. . .

...
. . .

...
x2

1(tm) x1(tm)x2(tm) . . . xm
2 (tm) . . . x2

n(tm)

 . (40)

We interpolate the reduced MG simulation data as a dynamical systems with cubic nonlinearity which is up to XP3 .

ROM Results and Analysis

We run 10 simulations of the viscous MG equations’ stall case for t ∈ [0,500] with dt = 0.1. The initial conditions for
g(t,θ)’s amplitude, Φ, and Ψ are drawn from the normal distribution with mean 0.1 and standard deviation 0.05. The
first 2000 data points (up to t = 200) containing the transient dynamics are discarded. This gives us 10 Y ∈ R3000×514

datasets. We perform k-fold cross validation [14] on PCA, regularized autoencoder, and NLPCA autoencoder to find the
best ROM parameters to bring down the data dimension to 2. Both autoencoders’ training were performed using Adam
optimizer [16] with learning rate of 10−4 for 10 epochs of 4 mini-batch size for the regularized linear autoencoder and 20
epochs of 4 mini-batch size for the NLPCA autoencoder.

We encode the 10 datasets using the 3 different encoders to obtain 3 versions of 10 X ∈ R3000×2. For each group of
reduced-order/encoded data, we perform a cubic nonlinearity dynamical system identification using PySINDy [8] paired
with LASSO optimizer from Python’s sklearn package. We train the 3 groups of 10 X datasets in order to find the best
α which hits the sweet spot between sparsity and accuracy using grid search [18]. After finding the best α for each group,
we perform another k-fold cross validation to decide on a model that best represent the 10 datasets of each ROM.

The discovered reduced governing equations satisfy the normal form if it is sufficiently described by 4 coefficients
µ,ω,b1,b2 up to an acceptable numerical tolerance

ẋ1 = µx1 −ωx2 +b1(x2
1 + x2

2)x1 −b2(x2
1 + x2

2)x2

ẋ2 = ωx1 +µx2 +b2(x2
1 + x2

2)x1 +b1(x2
1 + x2

2)x2. (41)
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However, when the linear operator is semi-simple (as in Hopf bifurcations), the correct identification of a normal form
depends critically on the null space of the homological operator [13]. The consequence of this fact is that the nonlinear
terms in normal form (41) commutes with the linear term. As shown in [24], a consequence of this property is that, when
the equation is normalized to any finite degree, say k = 3, and truncated, it will have symmetries that were not present in
the original system. More precisely, rewriting the normal form equations (41) at the bifurcation point (µ = 0) as

ẋ = Ax+ f ∗(x) x ∈ R2, (42)

and letting x = exp(At)y, the transformed equations are

ẏ = exp(−At) f ∗(exp(At)y) y ∈ R2. (43)

Using the commutation property [24] of the normal form f ∗,

exp(−At) f ∗(exp(At)y) = f ∗(y), ∀t ∈ R, ∀y ∈ R2,

the normal form equations in the new variables y reduce to

ẏ = f ∗(y) y ∈ R2. (44)

For post-bifurcation dynamics, the discovered reduced governing equations satisfy the normal form (44) if it is sufficiently
described by 2 coefficients (b1,b2) up to an acceptable tolerance

ẏ1 = b1(y2
1 + y2

2)y1 −b2(y2
1 + y2

2)y2

ẏ2 = b2(y2
1 + y2

2)y1 +b1(y2
1 + y2

2)y2. (45)

Hence, MG equations close to a Hopf bifurcation have a sparse representation (45) with respect to high-dimensional poly-
nomial spaces. The practical success and importance of the LASSO can be attributed to correctly identifying the relevant
variables when the underlying model is sparse. LASSO algorithm is used in the subsequent sections to recover a system
of two sparse ordinary differential equations (ODEs) with cubic nonlinearities.

For the reconstruction, the obtained SINDy equations are integrated using the forward Euler method with a fixed integra-
tion time step dt = 0.1 to be consistent with the chosen smoothed forward difference differentiation scheme. The global
truncation error is then subtracted from the raw numerical integration result to correct the estimate. Lastly, the integrated
SINDy data are fed into the decoder of the respective reduction methods to reconstruct the high dimensional time series
and compared with the original dataset.

PCA and SINDy
The best SINDy regression is obtained using a LASSO threshold of α = 0.11, which outputs a system of two ODEs with
8 coefficients and a R2 score of 0.9999 on the test data ∥|Ẋ∥| as

ẋ1 = −0.000144x3
1 −0.008137x2

1x2 −0.000144x1x2
2 −0.008136x3

2

ẋ2 = 0.008136x3
1 −0.000144x2

1x2 +0.008136x1x2
2 −0.000144x3

2. (46)

The normal form coefficients (−0.000144,0.008136) are visibly detected. Reconstruction results for a chosen random
dataset are shown on the left in Figure 3.

Regularized Linear Autoencoder and SINDy
The best SINDy regression is obtained using a LASSO threshold of α = 0.30. The output is a system of two ODEs with
9 coefficients and a R2 score of 0.9999 on the test data ∥|Ẋ∥| and is given as

ẋ1 = −0.000440x2
2 −0.000145x3

1 +0.008138x2
1x2 −0.000143x1x2

2 +0.008138x3
2

ẋ2 = −0.008136x3
1 −0.000144x2

1x2 −0.008139x1x2
2 −0.000144x3

2. (47)

The normal form coefficients (−0.000145,−0.008138) are also visibly detected, albeit with wider deviation in values
compared to (46) and an additional quadratic term in the first equation. Reconstruction results for a chosen random
dataset are shown on the right in Figure 3.

NLPCA Autoencoder and SINDy
The best SINDy regression is obtained using a LASSO threshold of α = 0.60. The output is a system of two ODEs with
11 coefficients and a R2 score of 0.9998 on the test data ∥|Ẋ∥| which does not satisfy the normal form. A representative
equation (since the outcome is always random) is given as

ẋ1 = −0.001031x2
2 −0.000091x3

1 +0.007704x2
1x2 +0.000429x1x2

2 +0.006863x3
2

ẋ2 = −0.001664x2
1 −0.000580x2

2 −0.007607x3
1 −0.000473x2

1x2 −0.007470x1x2
2 −0.000237x3

2. (48)

Reconstruction results for a chosen random dataset are shown in Figure 4.
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Figure 3: Reconstruction of viscous MG stall dynamics using PCA and SINDy (on the left) and regularized linear autoen-
coder and SINDy (on the right): (a) Φ(t), (b) Ψ(t), and (c) g(t,θ) reconstruction results at t = 0,100,200,300

Conclusions

We have showed that it is possible to fully reconstruct the solutions of the viscous MG equations from a system of 2 ODEs
up to cubic nonlinearity, constructed from data sets by sparse regression. Additionally, it seems that the only requirement
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Figure 4: Reconstruction of viscous MG stall dynamics using
NLPCA autoencoder and SINDy

to detect the normal form of the PDE Hopf bifur-
cation is to have reduced-order data that falls along
the first two principle axes, and reconstruction qual-
ity is entirely independent of whether normal forms
of the underlying PDE is detected or not. The
NLPCA autoencoder has to be trained for twice as
long (double the number of epochs) compared to the
linear autoencoder in order to converge to the lo-
cal minimum that produces great reconstruction re-
sult. Table 1 summarizes our findings for the three
chosen dimensionality reduction methods. Our sim-
ple approach rooted in physics-based machine learn-
ing which involves a priori knowledge of sparsity
and the center manifold theory allows us to bypass
deep neural network performing synchronized dimen-
sionality reduction and SINDy approach in [7]. It
is shown in Table 1 that performing dimensional-
ity reduction and SINDy independently does not re-
sult in any significant reconstruction loss. Addi-
tionally, it would be interesting to find out if non-
linear principal components would lead us to nor-
mal form discovery from a nonlinear autoencoder, and
if those components can be found using a simple
regularization based approach to ensure the convex-
ity of loss landscape just like its linear counterpart
[17].
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PCA Linear Autoencoder NLPCA Autoencoder
Training time 25 s 103 s 283 s

PDE reconstruction R2 score from training data 0.8973 0.8973 0.9916
PDE reconstruction R2 score from SINDy equations 0.8950 0.8948 0.9890

Number of RHS terms in reduced equations 8 9 11
Normal form detected yes yes no

Table 1: Summary of viscous MG equations’ reconstruction from SINDy models identified from different ROMs.
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[21] Mezić, I. (1998) A large-scale theory of axial compression system dynamics. Preprint.
[22] Moore, F. K., Greitzer, E. M. (1986) A theory of post-stall transients in axial compression systems: Part I—Development of equations. Trans.

ASME: J. Eng. Gas Turbines Power, 108(1), 68-76.
[23] Mukherjee, A., Aydogdu, Y., Ravichandran, T., and Sri Namachchivaya, N. (2022) Stochastic Parameterization Using Compressed Sensing: Ap-

plication to the Lorenz-96 Atmospheric Model. Tellus A: Dynamic Meteorology and Oceanography, 74(2022), pp.300–317.
[24] Namachchivaya, N. S., Doyle, M. M., Langford, W. F., Evans, N. W. (1994) Normal form for generalized Hopf bifurcation with non-semisimple

1:1 resonance. ZAMP, 45(2), 312-335.
[25] Penrose, R. (1955) A generalized inverse for matrices. Proc. Cambridge Philos. Soc., 51(3), 406–413.
[26] Plaut E. (2018) From Principal Subspaces to Principal Components with Linear Autoencoders. arXiv preprint, 1804.10253.
[27] Scholz M., Vigário R. (2002) Nonlinear PCA: a new hierarchical approach. Proc. ESANN, 439-444.
[28] Sirovich, L. (1987) Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math., 45(3), 561-571.
[29] Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 58(1), 267-288.
[30] Xiao, M. (2008) Quantitative characteristic of rotating stall and surge for Moore–Greitzer PDE model of an axial flow compressor. SIAM J. Appl.

Dyn. Syst., 7(1), 39-62.
[31] Xiao, M., Basar, T. (2000) Center manifold of the viscous Moore-Greitzer PDE model. SIAM J. Appl. Math., 61(3), 855–869.


