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Influence of Gyroscopic Effects on Nonlinear Dynamics of High-Speed Planetary Gears
Having an Elastic Ring
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Summary. Numerical simulations show that gyroscopic effects can significantly influence the nonlinear dynamics (resonances and
parametric instabilities) of planetary gears having a deformable ring at high speed. Analytical solutions at resonances and parametric
instabilities that include the gyroscopic effects are derived and used to explain the numerical results.

Introduction

Vibrations of planetary gears arise primarily from periodically changing sun-planet and ring-planet tooth mesh excitation
as the gears rotate. A resonance occurs when a harmonic L of the mesh frequency Ωm approaches a natural frequency
ωq (i.e., LΩm ≈ ωq). A parametric instability occurs when LΩm ≈ ωp + ωq , where ωp and ωq can be the same. Near
resonances or parametric instabilities, vibrations can become large enough that nonlinear tooth separation occurs. The
ring has substantial elastic deformation when it is designed to be thin for weight saving. Gyroscopic (i.e., Coriolis) effects
become significant for high-speed systems, but their influence on the nonlinear dynamics of planetary gears having an
elastic ring are not yet known.
This work derives closed-form solutions for the nonlinear dynamics of planetary gears with a deformable ring using
the model in [1]. The model includes speed-dependent gyroscopic and centripetal effects. The tooth mesh excitation
is modeled as time-varying stiffnesses that include tooth separation nonlinearity. Numerical integration of the dynamic
model shows the significant impact of gyroscopic effects on the resonances and parametric instabilities at high speed.

Numerical results

Fig. 1 shows the RMS of dynamic ring-planet mesh deflection from numerical integration of a planetary gear system
having a deformable ring without (black dashed line) and with (green dotted line) gyroscopic effects. The differences
highlight the significant influence of gyroscopic effects. One resonance (Ωm ≈ ω4) and one parametric instability (Ωm ≈
ω1 + ω2) are present for the system without gyroscopic effects. When gyroscopic effects are included, an additional
resonance at Ωm ≈ ω3 occurs. For the resonance Ωm ≈ ω4, the peak amplitude decreases and the peak resonant frequency
shifts to the right with inclusion of gyroscopic effects. The parametric instability Ωm ≈ ω1 + ω2 is absent for the system
with gyroscopic effects.
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Figure 1: RMS (mean removed) values of dimensionless ring-planet mesh deflection from numerical integration of a planetary gear
system having a deformable ring without (black dashed line) and with (green dotted line) gyroscopic effects over a range of dimension-
less mesh frequencies. These RMS results are identical for every planet. The arrows indicate results from increasing and decreasing
speed simulations. The thick (red) and thin (blue) solid lines are the analytical results from Eq. (1) for the two resonances Ωm ≈ ω3

and Ωm ≈ ω4 and Eq. (3) for the one parametric instability Ωm ≈ ω1 + ω2 for the system without and with gyroscopic effects.

Analytical explanation

Resonances
The amplitude-frequency relation for a resonance LΩm ≈ ωq (whether the system is gyroscopic or not) is derived as
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where aq is the real-valued amplitude of the resonant mode, νq is the modal damping ratio, R1 and R2 are real-valued
terms associated with tooth contact loss, N is the number of planets, k(L)

j1 for j = s, r are the L-th harmonic coefficients
(complex-valued) of the first sun-planet and ring-planet mesh stiffness variations, ∆j,0 are the static sun-planet and ring-
planet mesh deflections (real-valued and identical for every planet) due to the applied torque, ∆

[q]
j1 are the first sun-planet

and ring-planet modal mesh deflections (complex-valued), and the overbar denotes complex conjugate. Vanishing of the
square root term in Eq. (1a) gives the peak resonant amplitude

aq,p = 2|R3|/νq. (2)

Eqs. (1b) and (2) explain why the resonance Ωm ≈ ω3 does not occur for the system without gyroscopic effects but occurs
for the system with them (Fig. 1). In the absence of gyroscopic effects, mode 3 is a mode where the modal sun-planet and
ring-planet mesh deflections vanish (i.e., ∆

[3]
sn = ∆

[3]
rn = 0 for n = 1, 2, . . . , N ) [2], such that the R3 for this mode and

the peak amplitude a3,p in Eq. (2) vanish. When gyroscopic effects are included, mode 3 becomes a mode with nonzero
∆

[3]
sn and ∆

[3]
rn [3]. This leads to nonzero R3 in Eq. (1b) and nonzero a3,p in Eq. (2) and therefore the occurrence of the

resonance Ωm ≈ ω3 for the system with gyroscopic effects in Fig. 1.
Eq. (1) shows that gyroscopic effects shift the resonant frequencies by changing the natural frequencies. The ω4 increases
when gyroscopic effects are included, so the resonant frequency for Ωm ≈ ω4 shifts to the right. This prediction matches
the numerical results in Fig. 1.
Eqs. (1b) and (2) reveal that gyroscopic effects affect the peak amplitudes of resonances by changing vibration mode
quantities. Gyroscopic effects change the modal mesh deflections ∆

[4]
sn and ∆

[4]
rn . At high speed, this change is significant.

This alters the values of R3 in Eq. (1b). R3 changes significantly for mode 4, which affects the associated peak amplitude
a4,p. As shown in Fig. 1, the analytical predictions capture this effect.

Parametric instabilities
The boundaries of the range of mesh frequencies for a parametric instability LΩm ≈ ωp + ωq to occur are derived as
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Eq. (3a) gives that a parametric instability is eliminated by damping when

|D(L)
pq | <

√
νpνq. (4)

Eqs. (3) and (4) apply to both non-gyroscopic and gyroscopic planetary gears having a deformable ring.
Eqs. (3b) and (4) show that gyroscopic effects change the occurrence of a parametric instability by changing modal
mesh deflections. The parametric instability Ωm ≈ ω1 + ω2 for the system without gyroscopic effects has |D(1)

1,2| =
0.0211 >

√
ν1ν2 = 0.02. Therefore, this parametric instability is present in Fig. 1. When gyroscopic effects are

included, the modal mesh deflections ∆
[1]
j1 and ∆

[2]
j1 for j = s, r change so that |D(1)

1,2| decreases (see Eq. (3b)). This leads

to |D(1)
1,2| = 0.0172 <

√
ν1ν2 = 0.02. The parametric instability Ωm ≈ ω1 + ω2 is absent in Fig. 1 in the presence of

gyroscopic effects.

Conclusions

Gyroscopic effects alter the occurrence of resonances, shift resonant frequencies, and change resonant amplitudes asso-
ciated with nonlinear behavior induced by contact loss. These influences are significant for high-speed planetary gears
having an elastic ring. A closed-form amplitude-frequency relation derived for the resonances of planetary gears with-
out and with gyroscopic effects reveal how these effects change the resonant behavior by their influence on the natural
frequencies and vibration modes. For example, changes of modal mesh deflections of a resonant mode can change the
resonant amplitude and, sometimes, change whether a resonance occurs or not.
The influence of gyroscopic effects on parametric instabilities of planetary gears having an elastic ring is similarly sub-
stantial. The analytical results reveal that gyroscopic effects change the occurrence/absence of parametric instabilities
and the mesh frequency range where a given instability occurs. These effects arise principally from changes to the modal
mesh deflections of the participating modes.
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