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Summary. Existing work on kite behaviour mainly considers single-line kites and associated dynamics are limited to quasi-static anal-
yses. Mathematical descriptions rely on generalised aerodynamic models which have not been validated experimentally and thus lack
being suitable for design optimization purposes. Kites are utilized in both professional sporting activities and potential new energy gen-
eration applications. Understanding the dynamics of these kites allows for innovative improvements for such applications. Furthermore,
derivations of existing models are typically based on energy methods which are not immediately helpful to inform design optimisation
guidelines. In this work we derive the fully non-linear governing dynamic equations of motion for a two-line four-attachment point kite
using a four degree of freedom Newton-Euler formulation. We implement an aerodynamic model which has been previously tested and
validated (CFD/wind-tunnel) by our group. The analysis considers and focuses on stability regions of selected flight scenario and the
maneuverability of the kite for relevant kite design parameters.

Background

A kite is an atypical aerodynamic object and knowledge about its flight dynamics is rare in literature. Over the last decade
few articles have been published about two-line kites, even fewer include dynamic analysis [1, 2]. Quasi-static analysis
was performed by Dawson [3] to investigate the turning maneuver of a kite. Other existing work has been done on the
dynamics of two-line kites by Sánchez et al. [1]. Their work used the Lagrangian formalism to investigate the stability of
the kite for different wind speeds and one control parameter, but did not investigate the reason for turning and restorative
mechanisms of the kite flight. Research on the topic has recently increased with new applications of kites for energy
generation and ship propulsion [4], but the underlying, inherently nonlinear, dynamics is still under-studied. The kite
considered in this work consists of two lines, one for each hand (as depicted in new applications) which connect to each
side of the kite. These lines, each split to connect to four attachment points on the kite surface, introduce the necessary
moments to control the kite. The kite is modelled with circular disks to represent the aerodynamic surfaces as suggested
by Stevenson [5] to be able to validate theoretical models with experimental investigation and observation. This is a first
approach implementing a validated model; additional, more complex geometries can be introduced in future investiga-
tions. The kite system suggests two modes of behaviour: the first representing the stalling behaviour of the kite, the other
representing the expected (typical) kite flight. The dynamics of the considered kite shows restorative behaviour along the
elevation and pitch variables, but requires attention to control significant changes of the azimuthal angle. In this work we
focus on the roll control of a user and its stability regions for a selected set of parameters and ranges.

Model

This kite system is described by five coordinate systems: global, line, kite, and two disks (Figure 1). Euler angles are
used to define the kinematics of the kite with a 3-2-1 body-fixed rotation [6] resulting in four degrees of freedom, with
θ1 being the elevation of the kite, θ2 the azimuthal deviation of the kite, θ3 the pitching of the kite, and θ4 the yaw of the
kite. The nonlinear set of governing state-space equations is of the form

A8×8 q̇8×1 = f8×1

(
ML,MK , q, t

)
(1)

A8×8 represents the inertia matrix, f8×1 is the forcing vector containing the lift and drag moments as well as the kinematic
constraint relations, and q8×1 is defined in Eq. (2a). The moment equations are derived using the line and kite systems
where i denotes the disk number.

q8×1 =
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Parameter values for the centre of pressure and aerodynamic forces are taken from Dawson’s work [3]. The kinematic
constraint originates from the lines being straight resulting in a limitation of the moment along the roll axis and the
magnitude of the pitching angle with respect to the lines.
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Analysis & Results

The analysis considers the full set of non-linear equations. The governing equation (1) is solved using a standard numeri-
cal integration scheme, Runge-Kutta O(4). For the stability analysis, the Jacobian of the forcing term was approximated
with a central difference formula; its eigenvalues were computed for a selected parameter range of interest.

Figure 2 depicts stability regions of pitch θ3 and yaw θ4 angles for a selected azimuthal angle θ2 of 0◦ and increasing
elevation values θ1 from 0◦ – 90◦. In the order from left to right, the top left figure being θ1 = 0◦ and the bottom
right being θ1 = 90◦. Blue zones represent stable solutions, while orange crosses represent unstable solutions, and grey
zones represent spurious solutions (e.g. referring to negative line tension or collision with the ground). At θ1 = 0◦ there
are two columns of stable solutions, the spurious solution referring to the collision with the ground. As the elevation
angle increases the spurious solution disappears and the stable blue region becomes a circle-like zone which migrates
from negative to positive θ3 values. This variation in θ3 creates a restoring moment which brings the system back to
it’s elevation equilibrium. However, when the azimuthal angle is varied, the resultant twisting behavior acts to further
exacerbate the azimuthal deviation — an unstable equilibrium.

Figure 1: Coordinate systems for the two line kite

Figure 2: Stability regions of the system as the elevation changes
(from left to right — 0,15,30,40,60,90). Blue (filled) → stable, grey
(filled) → spurious but stable, orange (cross) → unstable

Conclusion

Kites are being utilised within new applications for energy generation, professional sporting activities, and ship propulsion
[4]. Further development of accurate models for these fields will allow for vast and effective design improvements
to enhance applications. In this work, a two-line four-attachment point disk kite is modelled using a Newton-Euler
formulation. This model utilises validated wind-tunnel data for the aerodynamic forces. The stability of the system is
analysed for a specific range of elevation angle values. Results demonstrate how the kite pitches to reach its equilibrium
elevation. This technique can be used to optimise multiple design parameters for numerous applications. By observing
the stability zones of the kite, the design parameters can be adjusted for specific flight behaviour and characteristics.
Additionally, the user control mechanism for operating such kites can be further investigated for better performance.
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