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Constrained input modulation for impulse-based motion control
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Summary. We revisit the impulse-based motion control, introduced in [9], from a viewpoint when the control signal is constrained
by the actuator limits. We demonstrate how the impulsive control [9] is modulated for the weighted input impulses, and what the
consequences it has for the control performance. In addition, the state transients as a jumping map are discussed, when the amplitude-
bounded (modulated) impulses can no longer guarantee the asymptotic convergence, and the stable limit cycles can appear instead.

Introduction

Hybrid control systems (see for example [6, 7] and references therein) allow for both continuous and discrete dynamics,
while the discrete control actions may appear in form of the continuously or event- or state-depended switching of the
bounded control value or, alternatively, in form of the discrete impulses with finite energy content. Intensive research
on the possibly uniform and generalized description of the hybrid dynamical systems and, especially, on their stability
analysis and stabilization was performed already one and half decades ago. Here we exemplary refer to the several
available seminal (correspondingly tutorial) works like [4], and special issues like introduced in [1].
Impulsive dynamics (see e.g. [3] for basics) appear quite often in evolution of the natural processes, where some short-
term perturbations (or generally stimuli) act instantaneously in the form of impulses and, thus, give rise to instantaneous
jumps of the thereby affected dynamic states. A classical academic example is the bouncing ball (see for example in [4]),
while in engineering, the various vibro-impact [3] systems can be found, for example, in the mechanical play-pairs also
known as backlash [10]. When it comes to impulsive control actions, then the input impulse, or impulsive force cf. [3],

p0 = lim
∆t→0

t0+∆t∫
t0

u(τ)dτ (1)

at the controlling instant t0 is, to say, scaling the Dirac measure δt0 , so that the impulsive control effort u = p0 δt0
cannot be a function of time. Analysis of such control systems may require to properly denote and handle the impulsive
differential equations (see e.g. [5]). At the same time, introduction of a supplementary jump (or jumping) map (cf. the
unified modeling framework provided in [2]) of the state transitions at all t = t0 enables the further use of conventional
system notations for all t 6= t0 by means of e.g. ODEs or, correspondingly, state-space equations. In applications, one
cannot expect that the impulse magnitude will keep a well-specified control action u(·) always below some finite actuator
constraint. Therefore, once the input signal is inherently bounded |u(·)| < U by some positive system constant U , an
impulsive control cannot be directly implemented, no matter which particular control strategy is lying behind.
Hybrid impulsive motion control, addressed in this work, was introduced in [9] while some preliminary formulation,
including an experimental case study, was demonstrated before in [11]. The impulsive control was proposed for systems
of the second order with uncertain upper-bounded damping, while the state axes represent the guard conditions that trigger
a dedicated impulsive control action as soon as one of the both is crossed. One can notice that other impulsive controls
were also proposed formerly in [8] and [12], for the mechanical systems with friction. In either approach, however, an
impulsive action occurs first when a motion trajectory falls on the position axis, which implies several zero velocity (and
subsequent re-acceleration) phases before it converges to the origin. In the following, we will briefly summarize the
impulse-based control [9], for convenience of the reader, and then address the impulse modulation for bounded inputs.

Impulse-based motion control

The impulse-based motion control [9] is given by

mẍ+ dẋ+ kx = −α sign(ẋ)
d

dx
sign(x)− β sign(x)

d

dẋ
sign(ẋ)︸ ︷︷ ︸

≡u

, (2)

where the continuous system dynamics is shaped by the inertial massm > 0 and uncertain (or in the worst case unknown)
stiffness and damping constants k, d > 0, respectively. Note that the upper-bound of the damping coefficient d < D needs
to be known. The discrete control value u is parameterized by α, β > 0 and is acting only when the motion trajectory
crosses one of the state axes, i.e. at (0, ẋ0) or (x0, 0). This provides a disjoint jump set D = Ẋ0 ∪ X0 = {(x, ẋ) ∈
R2 |x = 0 ∪ ẋ = 0} and makes both control actions (on the right-hand side of (2)) respectively disjunctive and, therefore,
simultaneously appearing only in zero equilibrium (x, ẋ) = 0, while sign(0) = 0 is defined. The proposed control
system (2) is well fitting into the autonomous-impulse hybrid systems framework [2] and, thus, can be fully described by
ẋ = f(x) if x ∈ C and x+ ∈ J(x) if x ∈ D, where the flow and jump maps are f and J , respectively. The belonging
flow and jump sets are disjoint so that C = R2\D. The parametric conditions for the gains are 0.5m|ẋ0| ≤ α < m|ẋ0|
and β = 0.5|x0|D, while a state value during last crossing of the orthogonal axis is denoted by the subindex zero, i.e. x0

and ẋ0 correspondingly. For further details on and analysis of the impulse-based motion control we refer to [9].
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Modulation of bounded control input

The impulsive control action in (2) requires a control effort |u| = 2αδ(ẋ0) ∨ 2βδ(x0), where δ(·) is the Dirac delta
function, cf. with eq. (1). Recall that the Dirac delta function can be seen as distributional derivative of the sign-function,
weighted by factor 2, and can then be defined and constrained to satisfy the identity as follows:

δ(y) =

{
∞, if y = 0,
0, if y 6= 0;

∞∫
−∞

δ(y)dy = 1; δ(y0) = lim
∆t→0

p∆t(t0). (3)

Note that the last expression is (3) relates the Dirac delta function to the square pulse p of duration ∆t and amplitude
(∆t)−1, cf. with an impulsive force in (1). Since the square pulse has unity ’strength’ (or ’weight’), it is evident that for
a constrained actuator (with maxu = U ) the pulse duration T ≡ ∆t is required to be T = 2(α ∨ β)U−1. That leads to
an inevitable modulation of the discrete (impulsive) control as u 7→ u[x0, ẋ0](t0 ≤ t ≤ t0 + T ). In order to analyze the
impact of such control modification on the convergence performance of (2), cf. [9], one needs to evaluate

x+ = exp
(
A(t0 + T )

)
x0(t0)∓

t0+T∫
t0

exp
(
A(t− τ)

)
B Udτ, (4)

which provides inhomogeneous (particular) solutions for x0 = [0, ẋ0]T ∨ [x0, 0]T at the time instant t0 of the control
pulse. Here A ∈ R2×2 and B ∈ R2×1 are the associated system matrix and input distribution vector resulting from
the left-hand side of (2). Note that the sign before the integral in (4) changes depending on the quadrants in which the
trajectory undergoes zero-crossing. The ”−” sign captures either x = 0 crossing from the II-nd to the I-st quadrant or
ẋ = 0 crossing from the I-st to the IV-th quadrant. And the + sign appears for the corresponding zero-crossings from the
IV-th to the III-rd or from the III-rd to the II-nd quadrant. For an asymptotic convergence of the state trajectory towards
zero equilibrium, driven by a sequence of the control impulses u(t0,n) with n = 1, . . . , N where N →∞, it is sufficient
to demonstrate constant decrease of Euclidean norm of the state vector after each executed pulse, i.e. ‖x+‖2 < ‖x0‖2.
A symbolic solution of (4) is computable, yet cumbersome, so that solely several numerical observations are shown and
discussed below. For the sake of simplicity, no linear damping is assumed, i.e. d = D = 0, so that the left-hand side
of (2) represents a harmonic oscillator for the assigned m = 0.1 and k = 10. The initial values are assigned to be
[x, ẋ](t = 0) = [−0.001, 0.1], and the forward Euler solver with ∆t = 0.0001 sec is used. The difference between the
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converging unbounded control and that U -bounded, which runs into stable limit cycles, is demonstrated in the diagrams
(a) and (b). An avoidance of limits cycles and, thereupon, further convergence towards zero equilibrium is demonstrated in
the diagram (c) with variation of the α-parameter. A more detailed analysis of the parametric conditions of the occurrence
or escape of the limit cycles calls for an explicit solution of (4), equally as for periodic solutions with impulses at t0,n.
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