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Abstract 

High speed rotor systems mounted on gas foil bearings present bifurcations which change the quality of stability, and 

may compromise the operability of rotating systems, or increase noise level when response amplitude drastically 

increases.  The paper identifies the dissipating work in the gas film to be the source of self-excited motions driving the 

rotor whirling close to bearing’s surface. The energy flow among the components of the system is evaluated for various 

design sets of bump foil properties, rotor stiffness and unbalance magnitude. The paper presents a methodology to retain 

the dissipating work at positive values during the periodic limit cycle motions caused by unbalance. An optimization 

technique is embedded in the pseudo arc length continuation of limit cycles, those evaluated (when exist) utilizing an 

orthogonal collocation method. The optimization scheme considers the bump foil stiffness and damping as the variables 

for which bifurcations do not appear in a certain speed range. It is found that Neimark-Sacker bifurcations, which 

trigger large limit cycle motions, do not exist in the unbalanced rotors when bump foil properties follow the 

optimization pattern. Period doubling bifurcations are possible to occur, without driving the rotor in high response 

amplitude. Different design sets of rotor stiffness and unbalance magnitude are investigated for the efficiency of the 

method to eliminate bifurcations. The quality of the optimization pattern allows optimization in real time, and bearing 

properties shift values during operation, eliminating bifurcations and allowing operation in higher speed margins. 

Introduction 

Gas Foil Bearings (GFBs) are part of a promising oil-free technology in modern high-speed rotating machinery, 

distinguished for their reliability, simplicity, and environmentally friendly characteristics. Relying on a thin gas film 

building up an aerodynamic, load-carrying lubrication wedge, such bearings are self-acting and do not require any 

external pressurization. Most notably, due to the absence of solid-to-solid contact between the airborne rotor journal and 

the bearing sleeve, excessively low wear and power loss can be achieved. Several types of GFBs have been introduced 

in the past, with the most common and efficient being the bump type foil bearing. The major difference detected in 

comparison with the conventional oil bearings is the presence of a thin gas film as a lubricant, which results to building 

up an aerodynamic, load-carrying lubrication wedge and eliminates the need for external pressurization [1-4].  

During the last few decades, the potential of GFBs has been widely confirmed by a great number of successful 

applications in air cycle machines of commercial aircraft [5]. Lately, in particular as a result of insurmountable speed, 

temperature, and weight limitations of conventional rolling-element bearings, novel concepts of oil-free turbochargers 

[6], oil-free rotorcraft propulsion engines [7], and micro gas turbines [8] are gaining increasing interest. Gas foil 

bearings have been successfully used in high-speed turbomachines, and they present a remarkable reliability. As the 

stiffness of the foils is much smaller than that of the fluid film, the foil bearings can adapt to various working conditions 

through foil deformations. Owing to these advantages, foil bearings are identified as a potential alternative for oil 

bearings. If properly designed and operated, foil bearings would incur very slight wear and have a long service life [7]. 

The design of a GFB is a multi-physical problem, and the research work on GFBs follows generically scientific 

objectives which have to couple each other at most times; these are mainly a) the material development (super alloys) 

for use in the GFB components [3], b) the fluid-structure interaction including the aerodynamic lubrication problem 

(compressible flow) and the structural problem predicting the bump foil structure dynamic properties and dynamic 

behaviour [9-12], c) the nonlinear dynamics of simple or complex rotors mounted on GFBs [13-19], d) the development 

of alternative GFB configurations including also adjustable configurations and control schemes [20].  

Nonlinear dynamics of rotor-GFB systems, and its study with tools like continuation methods, is relatively new object. 

Continuation methods have been applied on the nonlinear dynamics of rotor systems on oil bearings of several types 

[21,22], and recently in GFB rotor systems as well [23]. Bifurcations of Hopf type have been investigated at both 

bearing types (with oil and gas) [24]. The strongly nonlinear aerodynamic forces render a variety of motions and 

stability quality in the system, including periodic, quasi periodic and chaotic motions. Further to that, the system has the 

potential of totally different motions even at the same operating speed, according to initial conditions and operating 

parameters, such unbalance magnitude. Dynamic systems present stable and unstable solution branches and respective 

bifurcation sets, and this is the case in rotor-GFB systems too. Nonlinear dynamics of rotor-GFB systems were mostly 

used to correlate the quality of response of the system with advances in top/bump foil structure simulation, or 

alternative models in the aerodynamic simulation. 

Further to the aerodynamic modelling and, the bump type foil modelling has been investigated during the last decades 

as its properties are directly correlated to the aerodynamic performance of the bearing. Heshmat et al. [1] introduced the 

so-called simple elastic foundation model, consisting of linear elastic uncoupled springs. No viscous damping was taken 
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into account until Peng and Carpino [9] and Ku and Heshmat [26] took into consideration the top-to-bump foil and 

bump-to-housing Coulomb friction damping. Later on, Peng and Carpino [27] introduced a 2D foil model structure 

characterized by linear stiffness and damping coefficients, while considering the elastic behaviour of the bump foil. 

Alternative approaches have been published by Lez et al. [25] and other researchers [23], where the foil bumps and their 

interaction are modelled by multi-degree freedom systems. Baum et al. [12] introduced another foil structure, consisting 

of rigid, massless, beam-like elements with one finite dimension in axial direction and no coupling of the elements in 

the circumferential one, where each bump foil is modelled by a non-linear spring and a linear damper. 

This paper aims to the insight of the local instability mechanisms, which trigger bifurcations, and drive the response of 

the system far from its elastic response (self-excited vibrations), usually close to the bearing clearance in journal 

positions and the rotor-stator clearance along the rotor. In this paper, it is found that the dissipating energy in the gas 

film should be directly correlated to the first (at lower speed) bifurcation detected in such a system, this being a 

Neimark-Sacker bifurcation in the unbalanced system, at most cases, or a period-doubling (flip) bifurcation in some 

others. Specifically, this paper benefits from the well-known lemma that self-excited motions are triggered when 

negative damping is included in the system; similar notification was made in [28] for rotors on oil bearings, under linear 

harmonic analysis. The energy flow is evaluated in this system for various design sets and this is used to an 

optimization scheme to avoid bifurcations in a certain speed range. The paper is organized as follows: 

The dynamic system of consisting of an elastic Jeffcott rotor mounted on two GFBs is composed for the autonomous 

and the non-autonomous case. The composition of the system renders a set of ordinary differential equations of 1st order 

(ODE set). The aerodynamic lubrication model and the bump foil structural model follow existing literature [12,14]. 

The authors program the pseudo arc length continuation method [29-31] with embedded orthogonal collocation method 

to provide the potential periodic solutions of the ODE set with unbalance excitation. 

Moreover, the quality of motions developed in such system is discussed evaluating the bifurcation sets, the time-

frequency decomposition of the response and Floquet multipliers, for some design scenarios and at a certain speed 

range. The energy flow is evaluated in the system during the respective periodic motions, with primary interest on the 

dissipative work of gas forces. An optimization scheme of successive polls for the two GFB design variables is 

implemented from the literature [32] and retains the dissipative work in the gas film positive in the respective speed 

range; Neimark-Sacker bifurcations are found to be eliminated in the respective speed range. However, period doubling 

bifurcations still exist at some cases, without these to drive the response at high amplitudes though. Different rotor 

stiffness and unbalance magnitude are considered in the results. The paper concludes that maximizing the dissipative 

work in the gas film does not trigger self-excited motions of the system, in a certain operating speed range, 

approximately two times wider than the respective without optimization of the GFB properties. 

Modelling and Formulation of the Nonlinear Dynamic System 

The physical model of the flexible rotor and of the gas foil bearings is presented in Fig. 1 where the symmetric rotor 

model considers the well-known Jeffcott rotor. The analytical dynamic model includes 4 DoFs for the rotor (due to 

symmetry), and the unique parameter of rotor design included in the model is the rotor’s lateral stiffness sk . The gas foil 

bearing model [2] considers linear spring and damping properties in the bump foil in the radial direction, and the key 

parameters of the gas bearing design consider the bump foil compliance f , and the pump foil damping coefficient fc as 

a function of the loss factor .     

 
 

 (a)                          (b) 
Figure 1: a) representation of an elastic Jeffcott rotor model with two journal masses at its ends, mounted on two gas-foil bearings;  

b) representation of the gas foil bearing configuration  

Analytical model of the gas bearing 

The assumptions introduced in the elastoaerodynamic lubrication problem are: a) isothermal gas film, b) laminar flow 

of the gas, c) no-slip boundary conditions, d) continuum flow, e) negligible fluid inertia, f) ideal isothermal gas law 

( )constantp  = , g) negligible entrance and exit effects, and h) negligible curvature ( )rR R c + . The Reynolds 
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equation for compressible gas flow under these assumptions is given in Eq. (1) [12], and it is an implicit function of 

time and of journal and top foil kinematics. 

( ) ( )3 2 3 2
p p

ph ph ph ph
x x z z x




        
+ =  +   

        
   (1) 

Analytical solution for Eq. (1) cannot be defined; a common approach to evaluate the pressure distribution is the FDM. 

The pressure domain is converted into a grid of 1, , 1Xi N= +  and 1, , 1Zj N= +  points, where i  and j  are the 

indexes in the circumferential and axial direction respectively, see Fig. 3a. 

The Reynolds equation is first rewritten defining the first time derivative of the pressure in Eq. (2a) and after some math 

in Eq. (2b). Then, the discrete Reynolds equation is defined in the grid points expressing the partial derivatives with 

finite differences. 

( ) ( )
2

3 31

2 2 2

p p
ph ph ph ph

x x z z x





         
= + −   

        
   (2a) 

( )
2

3 31

2 2 2

p p ph
p ph ph ph

x x z z xh h h h

        
= + − −   

       
   (2b) 

   
Figure 2a: Finite difference grid 

x zN N  

used for the evaluation of pressure 

distribution 

Figure 2b: Definition of the mean 

pressure
mp applied over bearing length

bL , and of gas force
bF with respective 

indexes. 

Figure 2c: Representation of the physical 

model; bump foil is modelled by linear 

springs and dampers. 

The dimensionless parameters of gas pressure p , gas film thickness h , spatial coordinates (circumferential and axial 

respectively) and z , time , rotating speed , and ratio / bR L = are included in the elastoaerodynamic lubrication 

problem of Eq. (1). The gas film thickness function is defined in Eq. (3) for the continuous and the discrete pressure 

domain (finite difference grid) where ( )q q =  (or ( )i iq q = in the discrete pressure domain) is the foil deformation in 

radial direction, see also Fig. 2a and Fig. 3b.  

1 cos sin , 1 cos sinj j i j i j i ih x y q h x y q   = − − + = − − +    (3) 

Boundary and initial conditions of the problem are defined in continue. Ambient pressure is assumed at the starting and 

ending angle of the foil (periodic boundary condition) in Eq. (4), in the continuous and the discrete pressure domain 

respectively. 

( ) ( ) 1, 1,, , , 2 , 1, 1
X0 0 j N jp z p z p p     += + = = =                   (4) 

Taking into account the symmetry of the lubrication problem, instead of assuming the gas pressure equal to the ambient

op  at the axial ends, ( ) ( )0 1 1p z p z= = = = , the boundary condition can be written in Eq. (5) (for the continuous and 

the discrete pressure domain). In this way the lubrication problem is solved in the half domain, reducing the evaluation 

cost severely. 

, /2 , /2 1

1/2

0, 0Z Zi N i N

z

p pp

z z

−

=

−
= =

 
    (5) 

Last, the initial conditions for the dimensionless form of the problem are defined in Eq. (6) (in the continuous and the 

discrete pressure domain). 
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( )
0

,0, , 1, 1
t

i jp z p = = =  and ( )
0

0, 0, 0
t

iq q = = =    (6) 

After evaluating gas pressure p (as ,i jp ), the nonlinear gas forces are determined in Eq. (7), where
Xx = 2 / N and 

Zz = 1 / N . 

( ) ( )( )
2 1

, ,

2 20 0

1 cos 1 cos
X ZN N

B X i j i

i j

F p dzd p x z



  
= =

= − − = − −                     (7a) 

( ) ( )( )
2 1

, ,

2 20 0

1 sin 1 sin
X ZN N

B Y i j i

i j

F p dzd p x z



  
= =

= − − = − −       (7b) 

In this way the aerodynamic problem renders
X ZN N  ODEs of 1st order with respect to the time derivative of the point 

pressure in Eq. (8) 

  ( ), , , , ,i j Bp= =p f p x x q q                      (8) 

The vectors x and q may be perceived as  
T

j j d dx y x y=x representing the journal motion (coupled to the disc 

motion through the rotor’s equations of motion) and  
T

1 1 XNq q q=q representing the foil motion (coupled to 

the journal motion through the Reynolds equation due to the gas film thickness function). 

It is important to mention that it is quite common that sub-ambient pressure arises in GFBs. The sub-ambient pressure 

can cause the top foil to separate from the bumps into a position in which the pressure on both sides of the pad is 

equalized. Heshmat et al. [1] introduced a set of boundary conditions accounting for this separation effect. More 

specifically, a simple Gümbel boundary condition is imposed, meaning that sub-ambient pressures are discarded when 

integrating the pressure in Eq. (7) to obtain the bearing force components 
,B XF ,

,B YF  essentially leaving the sub-

ambient regions ineffective. In terms of numerical calculations, the assumption made by Heshmat [1] can be simply 

explained as following: in case fluid pressure p  is lower than the ambient
0p , then the former should be considered 

equal to
0p and the foil deformation at these points will be zero ( )0for 1i iq p=  . 

The simplified model for the bump foil structure is depicted at Fig. 2b. The structure consists of 2XN − linear massless 

elements of stiffness 
fk (compliance 

f fa = 1 / k ) and damping fc . The springs and dampers mount the corresponding 

1XN − top foil stripes of area
bx L  (or dimensionless area 1x  ), see Fig. 3b. The top foil of the bearing is not 

covering a complete cylinder; a single gap can be found at 0 =  , see Fig. 2a, where the top foil is clamped to the 

bearing housing. Therefore, the moving top foil stripes are 1XN − , see Fig. 3b. The top foil stripes are assumed to 

remain parallel to the bearing longitudinal axis during their lateral motion, therefore no axial coordinate is required for 

the top foil motion. The geometry of the foil structure and its properties, shown in Figs. 2a and 3b, render the 

dimensionless compliance ( ) ( ) ( )
3 2

0 0 02 / 1 /f b rp l t v s c E = −  [14]. The motion of each of the top foil stripe is excited by 

the mean gas pressure
,m ip  acting on the top of it, creating the gas force ( )BF i , see Figs. 2b and 3b. The mean gas 

pressure 
,m ip  is defined in Eq. (9) (in the continuous and discrete pressure domain respectively), for dimensional and 

dimensionless form. 

( ) ( ) ( ) ( ) ( ), , , , ,
0

2 2 2

1 1 1 1
, ,

1

Z Z Z
b

N N N
L

m m i i j m i i j i j

j j jb b Z

p p dz p p z p p z p
L L N

 
= = =

= =  =  =                     (9) 

The foil stiffness and damping coefficient are given as 1/f fk =  and 
f fc k= for foil motion synchronous to the 

excitation. The 1XN −  ODEs that describe the radial displacement
iq of the stripe i  are defined in Eq. (10). 

, , 2,3,...,f i f i m i Xc q k q p i N+ = =                  (10) 

The ODEs in Eq. (10) may be written as in Eq. (11) to be used in continue. 

  ( ), , ,i Fq= =q f q p x x                      (11) 

Analytical model of the flexible rotor 

The equations of motion for the Jeffcott rotor shown in Fig. 1 are defined in Eq. (12) for the journal and the disc, in the 

two main directions, horizontal and vertical. 
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( ) ,
2

d

j s d j B X

j

m
x k x x F

m
= − +  , ( ) ,

2

d

j s d j B Y

j

m
y k y y F

m
 = − +  −                  (12a) 

( ) ,d s d j U Xx k x x F= − − + ,  ( ) ,d s d j U Yy k y y F = − − + −     (12b) 

The ODEs in Eq. (12) may be written in Eq. (13), in the state space representation, to be used in continue. 

( ), , , ,R=x f p x x q q                (13) 

In Eq. (12) 
sk is the dimensionless shaft stiffness coefficient, and  , are dimensionless parameters defined in Eq. (14). 

2 5

5

0

36
,

j r

LR

m p c


 =          

2 2

2 5

0

36

r

R g

p c


 =               (14) 

In addition, in Eq. (12), 
,U XF and 

,U YF  are the dimensionless unbalance forces defined in Eq. (15a) for constant rotating 

speed , and in Eq. (15b) for linearly varying rotating speed a  =  with constant acceleration a . 

2

, cosU X rF  =  , 2

, sinU Y rF  =  , r =                 (15a) 

( )2

, cos sinU X r rF a  =  + , ( )2

, sin cosU Y r rF a  =  − , 2 / 2r a =  (15b) 

Dimensionless unbalance eccentricity /u re c = follows in this paper the ISO unbalance grades (G-grades) for low, 

medium, and high unbalance as G1, G2.5 and G6.3 correspondingly. The unbalance located in the disc is of magnitude

( )2d j uu m m e= +  at each case, and the corresponding eccentricity
ue is given by Eq. (16), where the service speed of the 

system is selected at 2500rad/sr = .  

[mm] , 1, 2.5, 6.3
[rad/s]

u

r

G
e G= =


                 (16) 

Composition and solution of the dynamic system 

Eqs. (8), (11), and (13) compose a coupled ODE set which is composed by the discretized Reynolds equation in the
Bf

equations, the foil motion in
Ff equations, and the rotor motion in

Rf equations. The coupled nonlinear ODE set is 

defined in Eq. (17) expressing a non-autonomous dynamic system which will be studied with respect to the bifurcation 

parameter . The ODE set is characterized as non-autonomous due to the explicit time presence in the equations of 

unbalance forces, see Eq. (15). The state vector s and the respective functions f are defined in Eq. (18). 

( ), ,= s f s        (17) 

   
T T

, B F R= =s p q x f f f f      (18) 

The total number of equations in Eq. (17) (size of vector function f ) is ( ) ( )1 8X Z XN N N N=  + − + with the first term 

coming from the pressure equations, the second term coming from the foil equations, and the third term from the rotor 

equations in state space.  

The ODE set in Eq. (17) renders the time response of the physical system when time integration is applied [32]. The 

system is numerically stiff and special algorithms are applied in time integration [32]. Furthermore, the Reynolds 

equation can be reduced in size applying an order reduction method [12], improving the computational cost. The time 

integration can handle both cases of unbalance equations, for constant rotating speed or for run-up, see Eq. (15). 

An orthogonal collocation method [30] is applied for the computation of limit cycle motions produced by the ODE set 

in Eq. (17) at a constant ; Eqs. (15a) apply for unbalance forces at this case. Numerical continuation of limit cycles 

has been programmed by the authors according to pseudo arc length continuation method [29,33] with embedded 

collocation scheme [30]. The formulation of the method is defined also in Appendix A1. As the collocation method 

cannot handle non-autonomous ODE systems, Eq. (17) has to be converted to autonomous. This is achieved by 

coupling the ODE set of Eq. (17) with a two DoF oscillator, see Eq. (19), whose unique solution is a harmonic motion 

of frequency , see Eq. (20) [30]. 

( )1

2 2

N+1 N N+1 N+2 N+1 N+1 N+2s f s s s s s+= = + −  +      (19a) 

( )2

2 2

N+2 N N+1 N+2 N+2 N+1 N+2s  f = s s s s s+= − + −  +     (19b) 
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( ) ( )cos , sinN+1 N+2s s  = =        (20) 

The size of the final autonomous ODE set is 2N +  and is defined in Eq. (21) with the unbalance forces to be defined at 

constant rotating speed, in Eq. (22). 

( ),= s f s       (21a) 

   
T T

T T

1 2 1 2,N N N Ns s f f+ + + += =s s f f     (21b) 

2

,U X N+1F s=  , 2

, 2U Y N+F s=       (22) 

Results and Discussion 

The dynamic system defined in Eq. (19) in autonomous and in Eq. (20) in non-autonomous version is investigated on its 

potential to develop a variety of bifurcation sets with respect to the key design parameters, namely rotor stiffness 
sk , 

foil compliance 
fa , foil loss factor  , and unbalance magnitude u . In this paper, the key design parameters are 

defined within specific intervals, composing the case studies which are presented in continue. The design parameters 

follow a variation of “low”, “reference”, and “high”. This is interpreted to the rotor stiffness values 0.3,1,3sk =  

(flexible to rigid rotor), foil compliance values 0.01,0.1,1fa =  (stiff to flexible foil), foil loss factor 0.005,0.05,0.5 =  

(low to high foil damping), and unbalance magnitude ( ) ( ) ( )1 , 2.5 , 6.3u G u G u G  (low to high unbalance). A reference 

system is defined with the design parameters to be 1sk = , 0.1fa = , 0.05 = , and ( )6.3u G .  

   
(a) (b) (c) 

Figure 3: Reference system of 1sk = , 0.1fa = , 0.05 = , and ( )6.3u G  a) Transient response and continuation of limit cycles 

during run-up b) STFT of the response time history c) Floquet multipliers of the corresponding limit cycles 

 
  

(a) (b) (c) 

Figure 4: System of  ,s sk k− +
, 0.1fa = , 0.05 = , ( )6.3u G=  a) Continuation of limit cycles, b) STFT of the response time 

history sk +
, c) Floquet multipliers of the corresponding limit cycles. 

In Fig. 3a the time history of the journal motion in the vertical plane is presented together with the maximum and 

minimum values of the limit cycle at each rotating speed. It has to be clarified that the rotating speed is retained 

constant when limit cycles are evaluated, and the unbalance forces are applied with different formulas in the ODE 

system in the transient run-up and in the ODE system for constant rotating speed. A reference bifurcation set is 

established in Fig. 3a with PD, SN, and NS bifurcations to be presented. The frequency content of the time history 
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obtained during the run-up is depicted in Fig. 3b where time-frequency decomposition is applied. The Floquet 

multipliers in Fig. 3c provide information regarding the quality of bifurcations mentioned above. In Fig. 4 considers 

systems of different rotor stiffness, and two cases are presented in Fig. 4a for 3sk + = and 0.3sk − = . One may notice the 

difference compared to the reference case. Period doubling bifurcation is not noticed in this case. 

 
  

(a) (b) (c) 

Figure 5: System of 1sk = , ,f fa a− +
, 0.05 = , ( )6.3u G= . a) Continuation of limit cycles, b) STFT of the response time 

history for 
fa +

, c) Floquet multipliers of the corresponding limit cycles. 

 
  

(a) (b) (c) 

Figure 6: System of 1sk = , 0.1fa = , , − +
, ( )6.3u G . a) Continuation of limit cycles, b) STFT of the response time history for 

 +
, c) Floquet multipliers of the corresponding limit cycles for  +

. 

 
  

Figure 7: System of 1sk = , 0.1fa = , 0.05 = . a) Continuation of limit cycles, b) STFT of the response time history, c) trajectory, 

Poincare map, and FFT at 0.97 = , d) Floquet multipliers of the corresponding limit cycles. 

In Fig. 5, systems of different foil compliance are considered, and two cases are presented in Fig. 5a, for 1fa + =  

(flexible foil) and 0.01fa − = (rigid foil). One may notice the different bifurcation sets compared to the reference case, 

and the previous case. The type of bifurcations are same to this at the reference case, but the speed in which they appear 

is different. 
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In Fig. 6, systems of different foil damping are considered, and two cases are presented in Fig. 6a, for 0.5+ =  (high 

foil damping) and 0.005 − =  (low foil damping). The influence of foil damping in the bifurcation set is not severe, 

compared to the reference design (see Fig. 3). 

In Fig. 7, systems of different unbalance are considered. It is worth noticing that the autonomous system of ( )0u G loses 

local stability of fixed point equilibria through an Andronov-Hopf bifurcation, at similar speed where the unbalanced 

systems lose local stability through NS bifurcations. Further to that, in the unbalanced systems, the higher the unbalance 

is, the lower the speed of NS bifurcations is. Stable limit cycles close to radial clearance occur with higher amplitude in 

the balanced system, than in the unbalanced systems. In the balanced system the limit cycles of amplitude close to radial 

clearance will lose stability through a NS bifurcation at high speeds. 

Energy flow and optimization for bifurcation elimination 

The work of the bearing forces is evaluated in Eq. (23a), the work of the bump foil forces is evaluated in Eq. (23b), and 

the work of unbalance forces in evaluated in Eq. (23c). 
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(a) (b) 

  
(c) (d) 

Figure 8: Evaluation of energy flow at the respective limit cycles for a) 3sk = , 0.1fa = , 0.05 = , ( )6.3u G  b) 1sk = , 

0.01fa = , 0.05 = , ( )6.3u G ,  c) 1sk = , 0.1fa = , 0.5 = , ( )6.3u G , and d) 1sk = , 0.1fa = , 0.05 = , ( )2.5u G . 

In Figs. 8a-d, both stable and unstable limit cycles are considered with the respective notation. At all cases, it is found 

that Neimark-Sacker bifurcations are triggered simultaneously to the reverse (from positive values to negative) of the 

dissipating work in the gas film 
cbW , meaning that energy is not dissipated in the gas film (when 0cbW  ) and self-

excitation takes place. The respective limit cycles for the cases in Fig. 8 can be found in the previous Section. In Figs. 

8a-d, the arrows depict the path that would be followed during the run-up of the system (time integration). 
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Figure 9: Dissipated energy in the gas film in one limit cycle for various values of foil compliance
fa and foil loss factor , at          

a) 0.2 = , b) 0.4 = , c) 0.6 =  

   
(a) (b) (c) 

Figure 10: Optimization of the dissipated energy in the gas film of the reference system with 1sk = and ( )6.3u G with respect to the 

foil compliance
fa and the foil loss factor , at a) 0.2 = , b) 0.4 = , c) 0.6 = . 

The optimization requires the minimization of an objective function OBJ , which is defined as the inverse of dissipated 

energy in the gas film, 1/ cbOBJ W= . Starting from random input values for foil compliance
fa and foil loss factor , 

the optimization pattern renders after some iterations the values of
fa and that maximize 

cbW  at every speed . The 

limit cycle is plotted in Figs. 11 and 12 with the respective values
fa and   at each speed, for various design cases. 

Different rotor stiffness is considered in Fig. 11, and different unbalance magnitude applies in Fig. 12; the efficiency of 

the methodology to suppress bifurcations at a desired speed range is depicted. The operating speed range is limited by 

the limit values for the foil compliance
fa and the foil loss factor , here defined as 0.01 2fa  and 0.0005 10  . 

These values may be considered differently according to the design limitations in each application of the rotating 

system. Considering the bifurcations sets evaluated in Section 3.2 for various designs, Figs. 15 and 16 depict 

elimination of bifurcations in approximately double speed range. It is also worth noticing that the bifurcation-free speed 

range is limited by a secondary Hopf (Neimark-Sacker) bifurcation at all cases of design. 

   
(a) (b) (c) 
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Figure 11: Elimination of bifurcations at a speed range for the system of ( )2.5u G and 0.1sk = , 1sk = , 3sk = a) journal motion 

limit cycles and corresponding values for b) compliance
fa ,c) loss factor ,d) Floquet multipliers e) dissipating work in the gas film 

   
(a) (b) (c) 

 

  

 

 (d) (e)  

Figure 12: Elimination of bifurcations at a speed range for the system of 1sk =  and ( )1u G , ( )2.5u G , ( )6.3u G a) journal motion 

limit cycles, and corresponding values for b) compliance
fa c) loss factor ,d) Floquet multipliers e) dissipating work in the gas film 

   
(a) (b) (c) 
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Figure 13: Elimination of bifurcations at a speed range for the system of ( )2.5u G and 0.1sk = , 1sk = , 3sk =  a) journal motion 

limit cycles, and corresponding values for b) compliance
fa ,c) loss factor d) Floquet multipliers e) dissipating work in the gas film 

   
(a) (b) (c) 

 

  

 

 (d) (e)  

Figure 14: Elimination of bifurcations at a speed range for the system of 1sk =  and ( )1u G , ( )2.5u G , ( )6.3u G  a) journal motion 

limit cycles, corresponding values for b) compliance
fa ,c) loss factor ,d) Floquet multipliers e) dissipating work in the gas film 

An alternative objective function was investigated, in Figs. 13 and 14, on the potential to extend the operating speed 

range without bifurcation, at higher speeds. At each limit cycle
i

s , the highest magnitude of the Floquet multipliers was 

defined as objective function, ( )max μ jOBJ = , neglecting the one existing always at the unity circle, point ( )1,0+ . In 

this way, all Floquet multipliers are retained inside the unity circle, μ 1j  . The evaluation time of limit cycles was 

lower at this case, as the computation of dissipative work is not required. However, the applicability in a real system is 

questioned as it not of the authors’ knowledge whether Floquet multipliers can be evaluated in real time. However, 

different index for stability is investigated by the authors though operational modal analysis. 

Conclusions 

The bifurcation set of a rotating shaft on gas foil bearings is presented in this paper for various design cases of rotor 

stiffness and gas bearing properties, in a certain range of rotating speed which acts as the bifurcation parameter. The 

periodic limit cycle motions are evaluated applying a pseudo arc length continuation method with embedded orthogonal 

collocation. The work of the non-conservative and nonlinear damping force of the gas film is evaluated at each limit 

cycle motion, even when unstable, as the collocation method allows for this possibility. The dissipative work of the gas 
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film forces is found to be correlated to the self-exciting mechanism which triggers bifurcations of the solution branches 

for elastic unbalance response (stable motion). The loss of this local stability (through Neimark-Sacker bifurcation) 

occurs simultaneously with the reversal in the energy flow in the gas film, meaning that the dissipative work changes 

sign when the NS bifurcation takes place. At each limit cycle, an optimization pattern utilizing successive polls is 

applied to maximize the dissipated work in the gas film, defining the values for bump foil stiffness and damping, and 

thus avoid bifurcations according to the previous notation. The optimization pattern reveals that bifurcations are 

avoided when reducing the foil stiffness, doubling the operating speed range without bifurcations to take place. The 

procedure is repeated for several design scenarios of rotor stiffness and unbalance magnitude, and similar efficiency is 

noticed regarding bifurcation elimination. Research on design solutions to implement the change of foil damping and 

stiffness in a real system belongs to ongoing work. 
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