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Summary. The concept of the non-linear Euler-Lagrange controller aims to combine the advantages of passive and active vibration
control. The flexibility and adaptability of active control is combined with the intuitive design of a passive tuned vibration absorber.
To verify this statement, an intuitive tuning procedure, which is inspired by the tuned vibration absorber, is stated. An energy-inspired
approach is used to proof (asymptotic) stability using Lyapunov’s direct method. A three-link planar manipulator with one actuator at
the base is controlled to mitigate vibrations in the unactuated links. The controller contains a non-linear damper. Finally, some different
experiments should give insight whether it is necessary to capture all modes, with the disadvantage that the number of controller
parameters increases drastically. Also, a non-linear damper is compared to a linear one.

System description

The system that needs to be controlled, also referred to as the process, is a planar three-link manipulator. The joints are
assumed to be frictionless. Between the links a spring creates a restoring force. At the base of the first link no spring is
attached. The equation of motion is given by the general differential equation:

D(q)q̈ + C(q, q̇)q̇ +K(q) = −Mu (1)

with the generalized coordinates the relative angles between the links q =
[
q1 q2 q3

]′
and ·′ the transpose. The

inertia matrix D(q) = D(q)′ > 0 ∈ Rnp×np with np = 3 the number of generalized coordinates of the process,
C(q, q̇) ∈ Rnp×np the coriolis/gyroscopic and damping terms, stiffness matrix K(q) ∈ Rnp , and u ∈ Rnp . The matrices
for this system can be found in [3].
The controller consists of two blocks that are placed in parallel: a proportional controller u1 = KpM

′q and an Euler-
Lagrange controller {

D0z̈ + ∂F
∂ż (ż) +K0(z) = −N1M

′q −N2M
′q̇

u2 = ν1z + ν2ż
(2)

with z ∈ Rnc the generalized coordinates of the controller, D0 ∈ Rnc×nc the inertia matrix, ∂F/∂ż ∈ Rnc non-linear
damping function, K0(z) ∈ Rnc stiffness matrix of the controller, N1, ν

′
1 ∈ Rnc×np the amplification of the position

coupling with the process in the input and output equation respectively, and N2, ν
′
2 ∈ Rnc×np the amplification of the

velocity coupling with the process in the input and output equation respectively.
The controller effort in (1) is then given by u = u1 + u2. Notice the similarity with adding a mechanical structure to the
system. However, the difference with adding a tuned vibration absorber is the way of connecting the controller and the
process. Furthermore, in the differential equations M = diag({0, 1}) ∈ Rnp×np forces a collocated control strategy.
For the compound system to be an Euler-Lagrange system, the following must hold: ν1 = N ′1.

Asymptotic stability: Lyapunov’s direct method

The stability is proven using Lyapunov’s direct method. Let xe be an equilibrium point for

ẋ(t) = f(x(t)) (3)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn, with xe ∈ D. Let VL : D → R be a
continuously differentiable function, such that

VL(xe) = 0, VL(x) > 0 in D \ {xe}, V̇L(x) ≤ 0 in D, and V̇L(x) < 0 in D \ {xe} (4)

with V̇L(x) = ∂VL(x)
∂x f(x). Then xe is asymptotically stable.

Here, the HamiltonianH is chosen to be the Lyapunov function. This leads to four conditions for the controller parameters
that need to be fulfilled:

1. dK0

dz should be continuous, invertible and positive definite,

2. dK(q)
dq +MKp −Mν1

dK0(z)
dz

−1
ν′1M

′ > 0,

3. ν′2 = −N2, and

4.
(
∂F
∂ż

)′
ż ≥ 0.
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Controller tuning

This research focusses on mitigating vibrations due to impulse impacts on the third link. After impact, the open-loop
system will vibrate infinitely, as there is no damping present. It is not possible to apply a controlled torque to the second
or third joint, what complicates diminishing these vibrations. The topology of the controller allows the introduction of
tuning techniques from passive vibration control. One can try to make the controller sensitive to the main system, such
that easy energy transfer occurs from the process to the controller. Once the energy is transferred, it can be dissipated in
this controller [1].

Eigenfrequency matching
To facilitate an easy energy flow from the process to the controller, eigenfrequency matching is well-known strategy [2]. In
this work, this is done in two steps. Firstly, the eigenfrequencies of the substructures are matched by tuningKp in the case
that ν1 = ν2 = 0. Secondly, the eigenfrequency of the process and controller are matched. Let Ω2 = diag(ω2

1 , ω
2
2 , ω

2
3)

with ωi an eigenfrequency of the process. Now, the controller is tuned to have the same eigenfrequency

K0(z) = D0Ω2z (5)

Notice that depending on np the number of modes that are captured can be altered. To achieve stability, ωi 6= 0, as all
conditions on dK0

dz are then fulfilled. The second condition leads to the expression kp,1−ν2111/ω1−ν2112/ω2−ν2113/ω3 > 0

with Kp = diag(kp,1, kp,2, kp,3) and ν1 =

ν111 ν112 ν113
ν121 ν122 ν123
ν131 ν132 ν133

 =

ν111 ν112 ν113
0 0 0
0 0 0

 , which is equivalent as only

the first link can be actuated.

Optimization
Without loss of generality it can be assumed that D0 is an identity matrix [4]. This leaves us with three unknown
matrices: ν1, ν2, and ∂F

∂ż . As ν2 introduces a conservative coriolis force and due to non-linear damping, the analysis is
too complex to be carried out analytically [5, 6]. Therefore, the remaining parameters will follow from an optimization.
The optimization algorithm will use four objective functions:

f1 = Ts,1ω1; f2 = Ts,2ω1; f3 = Ts,3ω1; f4 =

∫
H(t)

maxH
dt (6)

with settling time Ts,i of link i the time after which the time signal stays within 5% of the maximal deviation around
equilibrium, and ω1 the slowest eigenfrequency.
As mentioned before, the controller’s damping will be a non-linear function

∂F

∂ż
= c1ż + c2 arctan

(
c0 − c1
c2

ż

)
≈

{
c0ż if ż ≈ 0

c1ż + cst if |ż| → ∞
(7)

with ci > 0. Then
(
∂F
∂ż

)′
ż > 0 if c0 > c1.

Results

In this section different controllers are compared. First of all, increasing the number of generalized coordinates of the
controller, nc, leads to capturing all modes of the process. However, it also increases the number of controller parameters
drastically, thus increasing the optimization time. Next to that, a non-linear Euler-Lagrange controller will be compared
to a linear one. All simulations will be the result of an impulse on the tip of the third link.

Conclusions

A planar underactuated three-link manipulator will be controlled with a non-linear Euler-Lagrange controller. Next to
stability, a tuning strategy based on tuned vibration absorbers will be validated. The number of generalized coordinates
of the controller (nc) will be varied from one to three to observe whether the increase in tuning parameters leads to an
significantly improved result. Also, the difference between linear and non-linear damping is examined.
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