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Summary.  The past decade has witnessed renewed interests to nonlinear model reduction and many differently motivated techniques are 

proposed, including nonlinear normal modes (NNMs), direct multi-scale method (dMSM, full-basis), normal form (NF), sub-spectral 

manifolds (SSMs), quadratic manifolds (QM, using a mode derivative concept), low-order elimination technique (LOE). There is indeed 

demand for unified perspectives on the whole nonlinear model reduction matter, aiming at a better understanding of subtle connections 

among all these reduction methods.  

In this talk, the recent low-order elimination (LOE) technique using a passive pattern concept will be first discussed, and then used to 

outline some unified perspectives on nonlinear model reduction, which are developed based upon two different basic problems, i.e., 

truncation order and truncation degree. The former refers to the common reduced dimension or number of dominant modes, while the 

latter refers to truncation degree of polynomials employed to approximate invariant manifold/transformation/passive pattern.  

An explicit theoretical correspondence among these reduction methods will be detailed, placing in particular NNMs/dMSM/NF/LOE 

within a unified framework in the sense of refined finite mode truncation, which justifies various claims/observations in literature that all 

these refined reduction methods correct the routine/flat Galerkin (say, single-mode) truncated model.  

Another unified perspective is built by focusing on various reduced-order models (ROMs) of general quadratic/cubic nonlinear 

structures, produced by different reduction methods with two-, three-, and four-degree truncations. It turns out that all the truncations 

produce valid and equivalent, but seemingly different, ROMs. Through translating invariant manifolds and nonlinear transformation 

terminology into low-order elimination language using passive patterns, we frame various reduction approaches within the same 

formulation and finally give a unified elucidation of distinct reduction methods in the sense of truncation degree. 

Model truncation issues 

We take a quadratic/cubic nonlinear structure as an archetypical model 
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structure’s linear, quadratic and cubic spatial operators, respectively. Using single-mode truncation (m-th mode is 

assumed to dominate asymptotic dynamics), we deduce routine Galerkin model for model (1) 

    2 2 3

32 , , , +, ,
m m m m m m m m m m m m

q q N q N q            (2) 

where   2
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L        , with i and i  being i-th modal frequency and shape. However it is often 

criticized due to completely neglecting non-essential modes ,
l

q l m , which leads to possible error predictions. 

Truncation order problem: refined finite mode truncation 
(1) The NNMs method introduces the following invariant manifolds  
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to enslave the non-essential modes ( l m ) to the dominant one, satisfying manifold equations (say, up to second order) 
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(2) The full-basis or direct perturbation method designs a ‘ladder-type’ expansion scheme like 
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to dynamically condense the non-essential modes ( l m ) to the dominant one ,
m m

q q  (satisfying Eq.(6) at O(2
)) 
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(3) The (simplified) normal form method introduces the following nonlinear near-identity transformations 
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to reformulate the original full-basis discretized Galerkin model as 
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satisfying the simplified homological equations (say, up to second order) 
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(4) The low-order elimination technique [1] designs a new displacement decomposition augmented by passive patterns 
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leading to so-called low-order elimination in the reference model 

    
2

3

2 2 32
0 , , , ,

k k k

k p

m m m m m m m m m
L q N N q p N q

t
     

  

 


       



 
        

 
   (14) 

Quite interestingly, the four distinctly motivated reduction methods above are equivalent to each other, and a theoretical 

correspondence can be established [2]. 

Truncation degree problem 
Due to the correspondence/equivalence above, the truncation degree problem in nonlinear model reduction is developed 

in the low-order elimination formulation using passive patterns. We consider full/non-full truncations of degree two 
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and also full/non-full truncations of degree three 
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Note non-full truncation means the pattern shape functions 
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  and ˆ
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  are incomplete with master components 

being skipped. It turns out that the NNMs method (invariant manifolds) can always be regarded as a non-full truncation 

(thus non-full elimination) technique, while the existing normal form method can be regarded as either a non-full three-

degree truncation, or a full two-degree truncation with further third order simplification. Interestingly, for 

quadratic/cubic structures, all the reduction methods, either degree two or three, full or non-full, lead to equivalent 

third-order ROMs. Furthermore, in degenerate case, a four-degree truncation will be required [3]. 

The two unified perspectives on nonlinear model reduction are further illustrated in Fig.1 and the numerical results are 

obtained by applying the reduction methods above to a nonlinear foundation beam example. 

  
  (a)                                                    (b) 

Fig.1 Unified perspectives and numerical illustrations: (a) truncation order problem [2]; (b) truncation degree problem (degenerate 

dynamics) [3] 
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