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Summary. Time-delayed dynamical systems (TDSs) materialize in situations where distant, point-wise, nonlinear nodes exchange
information that propagates at a finite speed. They are akin in their complexity to spatially extended dissipative and diffusive systems.
However, they are considered devoid of dispersive effects, which are known to play a leading role in pattern formation and wave
dynamics. It explains why the existence of nonlinear conservative TDSs remains an open problem. In this work we show how
dispersion may appear naturally in a wide class of delayed systems that can lead to conservative dynamics. We exemplify our result
considering a dispersive micro-cavity containing a Kerr medium coupled to a distant external mirror. At low energies and in the long
delay limit, a multi-scale analysis shows the equivalence with the nonlinear Schrödinger equation.

Introduction

Delayed dynamical systems describe a large number of phenomena in nature and they exhibit a wealth of dynamical
regimes such as localized structures, fronts and chimera states [1, 2, 3, 4, 5]. The presence of delayed terms is connected
with the finite propagation speed of signals, hence delayed systems are widely used to model, e.g., networks, map lattices
or optical systems. A fertile perspective lies in their interpretation as spatially extended diffusive systems which holds in
the limit of long delays [6]. This correspondence enables a direct interpretation of purely temporal phenomena in terms of
diffusive, dissipative spatio-temporal dynamics. It was shown recently[7] that a more general class of singularly perturbed
TDSs allows to cancel this generic diffusive behavior which lead to a dispersive response and the purely imaginary
eigenvalue spectrum typical of reversible systems. However, the question whether conservative solitons can be obtained
in such TDSs remains open. In this contribution, we demonstrate the existence, that remained elusive so far, of nonlinear,
time-reversible, conservative TDSs leading to conservative solitons.

Results
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Figure 1: a) A schematic of a micro-cavity enclosed by two
distributed Bragg mirrors with reflectivities r1,2. It is coupled to
a long external cavity with round-trip time τ which is closed by
a mirror with reflectivity re. E is the sum of the forward and
backward propagating fields that interfere upon the Kerr medium
while Y is the field impinging upon the top mirror. b) The
eigenvalue spectrum of Eqs. (3,4) for different values of h and re.
For h < 2 and re < 1 (red dots) the spectrum resemble an inverted
parabola. When h → 2 (blue dots) it flattens as γmτ = ln re. For
re → 1, the spectrum converges to the imaginary axis.

We consider a micro-cavity containing a nonlinear Kerr
medium coupled to an external mirror as depicted in
Fig. 1 (a). Our theoretical approach follows the method
developed in [8] and the dynamical model for the slowly
varying electromagnetic field envelopes in the micro-
cavity E and the external cavity Y reads

Ė =
(
−1 + i |E|2

)
E + hY , (1)

Y = ree
iφ [E(t− τ)− Y (t− τ)] . (2)

We scale time to the photon lifetime in the micro-cavity
and the cavity enhancement is scaled out allowing E and
Y to be of the same order of magnitude leading to a
simpler input-output relation: The cavity output O =
E − Y is the combination of the intra-cavity photons
transmitted by the micro-cavity and those reflected.
Finally, the field intensities are scaled by the intra-cavity
enhanced Kerr saturation parameter. The coupling between the fields E and Y is given in Eq. (2). Due to the absence
of the time derivative, the latter is a Delay Algebraic Equation (DAE) that takes into account all the multiple reflections
in the external cavity. The field is re-injected after a round-trip τ with the attenuation factor re e

iφ, where re is the
external-mirror reflectivity and the phase φ contains both the propagation phase as well as that of the external mirror.
The light coupling efficiency in the cavity is given by the factor h = (1 + |r2|)(1 − |r1|)/(1 − |r1r2|), where |r1,2| are
the upper and lower distributed Bragg mirror reflectivities (cf. Fig. 1 (a)). In particular, for a perfectly lossless bottom
mirror |r2| = 1 yields h = 2, which corresponds to the Gires-Tournois regime [9]. Second- and third-order dispersion are
naturally captured by Eqs. (1,2) as was shown in [7].
The system (1,2) possesses infinitely many degrees of freedom and its eigenvalue spectrum is a countably infinite set. In
the long delay limit τ → ∞ the spectrum becomes quasi-continuous [10] and the real part of the eigenvalues, obtained
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around the (E, Y ) = (0, 0) solution, λm = γm + iωm can be expressed as a function of its imaginary part as [7]

γm =
1

τ

(
ln re +

h− 2

1 + ω2
m

)
, (3)

ωmτ + 2arctanωm =
h− 2

1 + ω2
m

ωm + 2πm , (4)

with m ∈ Z, see the red dots in Fig. 1 (b). Note that for h = 2 the real part γm does not depend on ωm yielding a vertical,
yet lossy, spectrum which is shifted from zero by ln re/τ (blue dots). In what follows we consider the lossless cavity
limit that corresponds to (re, h) = (1, 2) and where λm converges towards the unitary spectrum presented in solid black
in Fig. 1 (b). In itself, a unitary spectrum is rather surprising in the context of TDSs since it implies the possibility to
integrate linear perturbations backward in time without any particular problem.
The link between Eqs. 4(1),(2) and the nonlinear Schrödinger (NLS) equation can be clarified by performing a multi-scale.
We introduce the two time representation by defining σ ∈ [0, τ ] and θ ∈ N so that time can be expressed a t [σ, θ] = σ+θτ .
Assuming a field with carrier frequency δ as E (t) = A (t) exp (iδt) one obtains the following amplitude equation

i (∂θ + υ∂σ)A+ φ̃A− β2

2
∂2
σA− i

β3

6
∂3
σA+ γ |A|2 A = 0, (5)

that is, the NLS equation with third order dispersion. Changing the carrier frequency allows to modify the sign and even
cancel the second order dispersion coefficient β2 which corresponds to the transition from anomalous to normal dispersion
while third order dispersion β3 can also cancel for some particular value of the carrier frequency δ± = ±1/

√
3. In this

case Eq. (5) is equivalent to the classical NLS equation up to fourth order. From this equivalence, we observed that in the
anomalous dispersion regime the Eqs. (1),(2) allows for the exisistence of bright hyperbolic secant solitons while we also
observed dark solitons for normal dispersion. Our results were confirmed using the continuation package ddebiftool [11].
Finally, one can rewrite the Eqs. (1),(2) as a Neutral Differential Delayed Equation (NDDE)

E + Ė − i |E|2 E =
(
Eτ − Ėτ + i |Eτ |2 Eτ

)
eiφ. (6)

The Eq. (6) is a so-called bilateral NDDE which preserves its type under time inversion. This property, as well as the
presence of a purely imaginary nonlinearity that corresponds to the Kerr effect allows to demonstrate the reversibility in
time of the dynamics under the parity-conjugation symmetry.

Conclusions

We discussed how second and third order dispersion can be implemented in delayed dynamical systems using delay
algebraic equations and how this particular form of dynamical systems appears naturally as a boundary conditions on
a partially reflecting micro-cavity. Using a realistic photonic example, we have demonstrated that nonlinear reversible
TDSs exist and that they can host conservative solitons in the long delay limit, thereby bridging the gap with the results
known for dissipative TDSs. The essential structure consists of a bilateral NDDE with an imaginary cubic nonlinearity
which preserves the solution smoothness upon forward and backward propagation and may generate a unitary spectrum.
The normal form identifies with the NLS equation, thereby allowing for bright and dark solitons. We believe that bilateral
NDDEs open an avenue for the potential realization of conservative nonlinear dynamics in TDSs, such as, e.g., the Fermi-
Pasta-Ulam-Tsingou [12] recurrence or the observation of the Korteweg-de-Vries solitons.
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