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Passive control of galloping vibrations by means nonlinear energy sinks
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Summary. The present paper aims to analyze the passive control of a structure subject to aeroelastic galloping by using nonlinear
energy sinks (NES). A lumped parameter model is adopted, and a steady approach to the aerodynamic loads is considered. A pure
cubic stiffness NES is placed inside the prismatic structure. A mathematical model is established, and the Method of Multiple Scales
(MMS) is used to build analytical solutions. Bifurcation diagrams can be drawn with these solutions, which allows characterizing the
suppression regimes induced by the absorber. The use of coupled NES seems reasonable to passively control the nonlinear aeroelastic
galloping.

Introduction

The galloping phenomenon comprises one of several engineering problems ruled by flow-induced vibrations. This phe-
nomenon is essentially nonlinear and characterized by a self-excited mechanism. Limit cycle oscillations (LCO) take
place from a particular flow speed, highlighting the galloping bifurcation. These motions can present very large ampli-
tude, leading to fatigue and failure of structural components [1]. In this way, the present paper aims to investigate the
application of NES to passive control galloping vibrations. NES consists of a dynamic vibration absorber with nonlin-
ear characteristics that works according with the Target Energy Transfer (TET) theory [2]. In particular to this work, a
pure cubic NES stiffness is considered and placed inside a prismatic body subjected to galloping excitation. A steady
and nonlinear approach to the aerodynamic loads is considered [1]. Asymptotic analysis is carried out using MMS. The
built analytical solutions allow accessing the amplitude and stability of the system’s motion with efficiency. Bifurcation
diagrams can be generated with these solutions, and the suppression regimes induced by NES can be characterized.

Mathematical Modeling and Asymptotic Analysis with MMS
The model assumes a rigid square prism with mass m, height h, and is supported by a suspension with linear stiffness k
and viscous damper coefficient c. An NES is embedded inside of the structure to promote a passive control effect, which
consists of an oscillator with a small massmn linked to the prism by a pure cubic spring (kn), and a linear viscous damper
(cn). The motion of prism and NES masses are accounted for by the y(t) and yn(t) degrees of freedom in the y-direction.
Figure 1 presents an illustration of a system immersed in airflow with velocity U aligned to the x-direction, promoting
the motion only in the y-direction.

Figure 1: Sprung prism coupled with NES to passive control of the galloping phenomenon.

The governing system’s equations of motion are given by:{
(1− ϵµ̂n)η

′′(τ) + η(τ) = ϵn̂
[
A1η

′(τ)−A3η
′ 3(τ)

]
− ϵλ̂nυ

′(t)− ϵγ̂nυ
3(τ)

ϵµ̂nυ
′′(τ) + λ̂nυ

′(τ) + ϵγ̂nυ
3(τ) = ϵµ̂nη

′′(τ)
. (1)

with τ = ωnt, ()′ = d()/dτ , ()′′ = d2()/dτ2, η(τ) = y(τ)/h, ωn =
√
k/m, υ(τ) = (y(τ) − yn(τ))/h, µn = mn/m,

γn = knh
2/(mω2

n), λn = cn/(mωn), n = ρh2/(2m), V = U/(ωnh), A1 = V Clf−2ζ/n, A3 = Ccf/V , ζ = c/(2mωn),
and (̂ ) = ( )/ϵ.
The MMS assumes the following expansion of the generalized coordinates, η(τ) = η0(τ0, τ1) + ϵη1(τ0, τ1) and υ(τ) =
υ0(τ0, τ1) + ϵυ1(τ0, τ1) [3]. Replacing this result in Eq. (1), and collecting the common terms with ϵ0 and ϵ, two set of
equations are obtained. The set ϵ0 comprises only the equivalent linear undamped motion of the prism, and its solution
can be written by η0(τ0, τ1) = C(τ1)e

jτ0 + [c.c.], where C(τ1) is the prism complex-slowly amplitude, j =
√
−1 is the

imaginary unity and [c.c.] refeers to the complex conjugate. Similarly, the NES motion is assumed to be υ0(τ0, τ1) =
B(τ1)e

jτ0 +[c.c.], with B(τ1) being the NES complex-slowly amplitude [3]. The ϵ-order problem can be solved by using
the previous expressions, and considering C = (1/2)aejα, B(τ1) = (1/2)bejβ . Thence, NES motion results in:

Xa = θ1Xb + θ2X
2
b + θ3X

3
b (2)
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where Xa = a2, Xb = b2, θ1 = 1 + λ̂2n/µ̂
2
n, θ2 = − 3

2 (γ̂n/µ̂n), and θ3 = 9
16 (γ̂

2
n/µ̂

2
n). Equation (2) defines the Slow

Invariant Manifold (SIM) structure, two folding points can be characterized, and a maximum NES critical damping can
be defined by λncrit

= (
√
3/3)µn (i.e., λn ≤ λncrit

) [3]. Similarly, the equation that describes the prism motion can be
combined with Eq. (2), and for the steady state condition the equilibrium points can be calculated by solving the following
polynomial equation:

X5
b + Γ1X

4
b + Γ2X

3
b + Γ3X

2
b + Γ4Xb + Γ5 = 0, (3)

with Γ1 = 2θ2
θ3

, Γ2 = 2θ1
θ3

+
θ22
θ23

, Γ3 = 2θ1θ2
θ23

+ ψ1

ψ2θ3
, Γ4 =

θ21
θ23

+ θ2ψ1

θ23ψ2
, Γ5 = (θ1ψ1−1)

ψ2θ23
, ψ1 = n̂A1

λ̂n
and ψ2 = − 3n̂A3

4λ̂n
. Con-

sidering the airspeed with parameter, bifurcations diagrams can be draft based on the solutions of Eqs. (2), (3), allowing
to access both amplitude and stability of the motions. These diagrams are essential to characterize the suppression regime
responses induced by NES and yours boundaries.

Results and Discussions
The system under study was analyzed considering the following parameters: n = 4.3×10−4, ζ = 1.96×10−3,Clf = 2.69,
and Ccf = 168 [1]. To validate the analytical approach, time integration results were obtained using the fourth-order
Runge-Kutta method with a time step of a 10−2 seconds. For each simulated case, an arbitrary initial condition is used to
find the steady state motions.
Figure 2(a) compares analytical and numerical bifurcations (♦, ×, ■) of the system considering µn = 0.05, γn = 1.5 and
λn = 0.03λncrit

, where a good agreement between the results is observed. Furthermore, a new bifurcation behavior is
induced in the structure by its dynamic interaction with the NES. Unstable branches take place, and news response regimes
are detected along the non-linear galloping boundary. The characterization of these suppression regimes is depicted in
Figure 2(b). The first one, referred to as CR, comprises a complete suppression of phenomenon. The second regime
(PS) occurs when partial suppression is observed through stable LCOs with small amplitudes. The third regime (SMR)
is distinguished by competing two different response regimes driven by the initial condition. When small perturbations
are imposed, the system exhibits strongly modulated responses (SMR) [2] with lower amplitudes. In contrast, for higher
levels, the system jumps to LCOs with larger amplitudes (WS), which results in a weak suppression performance. The
upper unstable branch depicts the basin of attraction that delimits these two different behaviors.
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Figure 2: (a) Validation of MMS-based bifurcation analysis of the system, (b) Characterization of suppression regimes.

Conclusions

The paper investigated the application of an NES with pure cubic stiffness to the passive control of the nonlinear aeroelastic
galloping. A benchmark lumped parameter model is used, and the aerodynamic loads are calculated through a nonlinear
steady approach. Analytical treatments are carried out based on the MMS, and the solutions are numerically validated.
Results comprise a study of the impact of the NES inclusion to the structure and the influence on the nonlinear response
in post-galloping with NES. Suppression regimes are characterized based on the bifurcation diagrams in the function of
responses induced by NES. To use this type of vibration absorber seems reasonable to control the galloping phenomenon.
Further investigation will comprehensively analyze the effect of NES parameters on the boundaries of suppression regimes
induced by it and establish the relationship between these regimes and the TET phenomenon.
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