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Summary. The dynamic behavior of jointed assemblies exhibiting friction nonlinearities features amplitude-dependent dissipation
and stiffness. To develop numerical simulations for predictive and design purposes, macro-scale High Fidelity Models (HFMs) of
the contact interfaces are required. However, the high computational cost of such HFMs impedes the feasibility and efficiency of the
simulations. To this end, we propose a model-driven method for constructing hyper-reduced order models of such assemblies. Focusing
on steady-state analysis, we use the Multi-Harmonic Balance Method (MHBM) to formulate the equations of motion in frequency
domain. Next, the reduction basis is constructed through solving a set of vibration problems corresponding to fictitious interface
conditions. Subsequently, a Galerkin projection reduces the order of the model. Nonetheless, the necessary fineness of the mesh of
nonlinear elements on contact interfaces represents a bottleneck for achieving high speedups. Thus, we implement an adapted Energy
Conserving Weighing and Sampling (ECSW) technique for Hyper Reduction (HR) for joint problems, thereby allowing significant
speedups for meshes of arbitrary fineness. This feature is particularly advantageous since analysts typically encounter a trade-off
between accuracy and computational cost when deciding on the mesh size, whose estimation is particularly challenging for problems
of this type. Finally, the accuracy and efficiency of the method are demonstrated through a case study.

Introduction

Friction along the interfaces of jointed assemblies, which are commonly found in mechanical and aerospace engineering
applications, results in a significant dissipation of energy under dynamic loading. One contact model used to model
friction contact in HFMs consists of a Jenkins element with a unilateral spring in the normal direction [1], assigned to
each mating node pair on the contact interface. This formulation is capable of reproducing states of sticking, slipping, and
separation, locally on the interface.
Projection-based ROM techniques reduce the size of the dynamical system by projecting it on a suitable low-dimensional
subspace, thus providing accurate and efficient solutions. Recently, Gastaldi et al. [2] presented the Jacobian-Projection
(JP) method, where the reduction basis is constructed in the frequency-domain in a multi-harmonic context, taking into
account the harmonic coupling induced by the nonlinear forces. Additionally, we augment the JP basis using vectors
representing forced responses of linear systems, which are essential for a high accuracy on forces. Since the evaluation
of the non-smooth nonlinear forces across the interface impedes significant speedups, we employ an energy-conserving
sampling and weighing (ECSW) hyper reduction strategy [3], adapted to the MHBM context of our problem, with training
that does not require any HF simulations.

Method

Problem Formulation
For a Finite Element (FE) discretization of the mechanical system, we assume the equation of motion to be written in the
form

M ü +C u̇+Ku+ f(u) = pext(t), pext(t) = p0 + pE(Ωt), (1)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, f (u) is the vector of nonlinear forces,
p0 is a vector representing the static loads (e.g. preclamp forces), and pE(Ωt) is the periodic force acting on the system
with a time period T = 2π/Ω. We use the Multi-Harmonic Balance Method (MHBM) to formulate our Ansatz of the
displacements steady-state response in the frequency domain as

uh(t) = U0 +

H∑
j=1

(
Uc

j cos(jΩt) +Us
j sin(jΩt)

)
(2)

where U0 collects the coefficients of the 0-th harmonic, while Uc/s
j represents the cosine/sine components of the j-th

harmonic.

Augmented JP Method
We extend the JP projection method proposed in [2] by not only considering the free vibration modes arising from
linearization at different fictitious contact forces, but also including the corresponding linearized forced response in the
basis. The fictitious contact forces (and related Jacobians) are obtained by imposing the linear steady-state solution at
different scaling factors. For each scaling factor, we thereby solve an eigenvalue problem, and a linear forced response
problem:

(Jk − λk
i M)ϕk

i = 0, ZkUk
lin = Pext (3)
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where Jk is the multi-harmonic stiffness of the structure incorporating the Jacobian of the nonlinear forces corresponding
to the k-th system, M is the multi-harmonic mass matrix, λk

i is an eigenvalue, ϕk
i is the corresponding eigenvector, Zk

is the dynamic stiffness matrix involving the multi-harmonic mass, damping, and stiffness matrices, and Uk
lin is the linear

dynamic response of the k-th system. After computing, and normalizing the vectors ϕ and Ulin, the harmonic components
of the vectors are partitioned. Finally, a Singular Value Decomposition (SVD) procedure is applied to the collected vectors
to form a well-conditioned basis for each harmonic component. The steady-state solution is thus approximated by

uh(t) = U0 +

H∑
j=1

(
Uc

j cos(jΩt) +Us
j sin (jΩt)

)
≈ V0Q0 +

H∑
j=1

(
V c

j Q
c
j cos(jΩt) + V s

j Q
s
j sin (jΩt)

)
. (4)

where V0, Q0 are the reduced basis and the reduced coordinates for the 0-th harmonic component, and V c/s
j , Qc/s

j are the
reduced basis and reduced coordinates of the cosine/sine components of the j-th harmonic, respectively. Next, we perform
a Galerkin-projection of the forces of the system to obtain the reduced system

Z̃Q+ F̃(WQ) = P̃ext, (5)

where Z̃ is the reduced dynamic stiffness matrix, Q is a vector collecting the reduced degrees of freedom of the system,
W is the block-diagonal reduction basis, F̃(WQ) is the projected nonlinear force vector, and P̃ext is the projected
external force vector.

ECSW Hyper Reduction
The idea of the ECSW method is to approximate the nonlinear force vector through attributing weights only to a subset of
the nonlinear elements of the mesh in such a way that it approximates an energy-like quantity within a specified tolerance

F̃ =

ne∑
e=1

W T
e Fe(WeQ) ≈

∑
e∈E

ξeW
T
e Fe(WeQ) = F̃HR (6)

where ne is the number of nonlinear elements, and E represents only a subset of elements for which the weights ξe are
computed such that the following inequality is satisfied with the least amount of non-zero elements:

∥Gξ − b∥2 ≤ τ∥b∥2, (7)

where G is a matrix that stores the element-wise contributions to the training snapshots, which in our case are snapshots
of the nonlinear forces readily available from the Alternating-Frequency Time (AFT) scheme involved in the construction
of the reduced basis. The entries of vector b represent the assembly of the energy-like quantity from all the elements for
the different training snapshots, and τ is set tolerance.

Numerical Results

We apply the proposed method to study the frequency response (FR) of a forced jointed beam. A sketch of the structure is
shown in the top left portion of Fig. 1. The Ansatz consists of 5 harmonics. The plot in Fig. 1 features the FR curves for
4 different amplitudes driving the structure at a frequency close to the first bending mode. As demonstrated in the figure,
the HR model reproduces the HF results with high accuracy.
The model whose response is shown Fig. 1 has a mesh of 121 nonlinear elements along the contact interface. This model
is denoted by Model (1). Table 1 shows that speedups for Model (1) ranging from 5.5 to 7, demonstrating the efficiency
of the method. Another model, Model (2), was created to test the convergence of the model with respect to the number
of nonlinear elements. This latter has a mesh of 241 nonlinear elements. The FR curves obtained were identical to those
shown in Fig.1. This made it possible to conclude that the coarser mesh was sufficient. The speedups of Model (2) are
also shown in table 1. They now range from 9.5 to 42.8. It can be noted that also that the HR wall-clock time for Model
(2) is only marginally higher than that of Model (1), thanks to the limited number of elements picked by ECSW. In other
words, the proposed procedure could alleviate tedious mesh convergence studies, as one could efficiently reduce larger
than optimal models.

Conclusion

We presented a hyper-reduced order modelling method for analyzing the steady-state frequency response of jointed struc-
tures. The accuracy of the method was shown to be satisfactory for the case studied, and the associated speedups have
been presented. A particularly advantageous feature of the proposed method is that the speedups improve as the HF mesh
increases in size, thanks to the sparsity of the hyper-reduction scheme.
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Figure 1: A sketch of the structure is shown in the top left. The plot shows the FR curves for F = 0.1N, 2N, 5N, 10N for the 1st bending
mode of the structure using 5 harmonics. The results of the HFM and the HR ROM are denoted by HF and HR, along with the relative
forcing. The properties of the structure are: E = 189 GPa, A = 6.25e-4 m2, L = 0.42 m, ρ = 7820 Kg/ m3, xF = 0.24 m, Lc = 0.12 m,
bolt load = 1.25 KN, µ = 0.4, kt = 7.5e9 N/m, kn = 10e10 N/m

Mesh (1) Mesh (2)
Force [N] HR [s] HF [s] Speedups HR [s] HF[s] Speedups Ratio of Speedups

0.1 N 29.5 206.4 7.0 57.7 550.7 9.5 1.4
2 N 68.7 404.2 5.9 100.9 1864 18.5 3.1
5 N 85.7 473.5 5.5 115.7 3217.6 27.8 5.0

10 N 95.1 520.4 5.5 129.7 5547.8 42.8 7.8

Table 1: Online computational cost of constructing the FRF curves and associated speedups. Model (1) and Model (2) refer to meshes
with 121 and 241 nonlinear elements at the contact interface, respectively. The costs of the bases constructions are respectively 28.4s
for Mesh (1) and 97.5s for Mesh(2). The total HR training time for each of the models is less than 1s.
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