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Transient deformation of a beam travelling on a moving rough surface
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Summary. In this paper we study the quasi-static deformation of a beam pressed against a moving rough surface by the field of gravity.
While the beam is transported in the axial direction together with the travelling foundation, it deforms and slides in the lateral direction
because of the misaligned linear bearings at the boundaries of the control domain. Considering small deflections and a geometrically
linear beam model, we present a numerical approach to analyse the time evolution of the deformed state of the beam. Analytical
solutions are obtained for several specific cases of the boundary conditions and validated against the numerical results.

Introduction

Lateral deformation of axially moving slender structures with frictional contact is usually undesired in technical appli-
cations such as rolling mills [1] or transport belts [2, 3]. The highly nonlinear frictional response encountered in these
problems induces dynamical behaviour even at slow quasi-static motion, when inertial effects are negligible. Numerical
simulation tools, created to investigate the mechanics or to develop a model-based controller design, rely on the mathe-
matical models of moving contact of deformable bodies at non-material kinematic description. Simplified semi-analytical
approaches allow, however, to better understand the nature of the arising phenomena and to validate the complicated
numerical schemes. Thus, an analytical study of the motion of an endless beam, transported by a moving rough surface
across a control domain, has been presented in [4]. The beam is forced to enter the control domain and to leave it through
a pair of linear bearings, which are laterally misaligned relative to each other. The analysis shows, that, as long as the
misalignment is small and the maximal friction force is sufficiently large, the stationary deformed configuration of the
beam becomes self-similar with infinitely many segments of sliding friction in alternating directions.
It should be noted, that the time evolution of the deformation of the beam on a rough foundation because of the bending
moment on a free end has been thoroughly analysed earlier in [5], where the appearance of self-similar solutions was
demonstrated as well. A similar formulation with thermally induced bending moments and self-similar deformation
pattern studied in [6] relates to the cool down of railway rails after hot rolling. Nevertheless, the presently considered
moving contact problem with transport conditions is a novel formulation, described by a different mathematical model.

Problem formulation

In the present paper we extend the results of [4] by investigating the transient deformation of the beam owing to a given
law of the lateral motion of the bearing at the entry to the control domain. The model problem is depicted in Fig. 1. The
linear bearings, which constrain the motion of the beam at the boundaries, are considered as prismatic joints, such that the
deflection w takes on given values and the slope vanishes there, w′ = 0. The joint at the entry moves in lateral direction
over time t according to a given law w0(t). Under the condition of perfect adhesion, the beam would be transported along
the axial coordinate x with the velocity v of the travelling foundation and its deformed shape would become

w(x, t) = w0(t− x/v). (1)

However, the boundary conditions at the exit prismatic joint and the bending stiffness of the beam trigger sliding, thus
creating a system with a non-trivial dynamic behaviour.
In the geometrically linear setting, small lateral deflections do not affect the axial velocity of a particle of the beam, which
thus always coincides with the transport speed ẋ = v. The lateral component of the velocity of a particle

ẇ(x, t) = ∂tw + vw′ (2)

comprises the local (Eulerian) time derivative ∂tw, computed at a given axial position x = const, and a convective term
featuring the derivative with the spatial coordinate w′ = ∂xw. The relative velocity ẇ between the particle and the
foundation determines the Coulomb’s dry friction force q according to

ẇ > 0 : q = −q0, ẇ = 0 : −q0 < q < q0, ẇ < 0 : q = q0 (3)

Figure 1: Flexible beam transported across a control domain by a moving rough surface: 3D perspective and view from above
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Figure 2: Time evolution of the segments of sliding (gray areas), parameters: a = 1, q0 = 1, v = 1, unit length of the control domain;
left: linear growth with w̄0 = 1/300 and t0 = 0.2; right: harmonic excitation at the entry with w0 = sin(4πt)/300

with q0 being the sliding friction force, which bounds the static friction force. Now we demand that the beam is in static
equilibrium at all times:

aw′′′′ = q (4)

with a denoting the bending stiffness of the beam. Complemented with specific boundary conditions, the equations
determine the time evolution of the zones of stick and sliding friction as well as the motion of the beam.

Discussion of the solution strategies

The main difficulty in obtaining the solution in terms of w(x, t) and q(x, t) is that the nonlinear equations cannot be
resolved for the time derivative ∂tw, which would otherwise facilitate the direct time integration of the evolution law. A
regularization with a small inertial term and second-order time derivative would prohibit an analytical solution and require
a computationally costly numerical time integration with small time steps. The above outlined quasi-static problem may
be tackled numerically in a very efficient manner using the non-material finite element formulation with the transport
condition for the deflection field as discussed in [4].
While the stationary solution with ∂tw = 0 in case of constant deflections at the boundaries of the control domain is
extensively analysed in [4], the present study focuses on the transient behaviour in response to two distinct cases of the
imposed deflection at the entry w0(t):

• Linear growth followed by constant deflection:

w0 =

{
w̄0t/t0, t < t0
w̄0, t ≥ t0

(5)

Sliding is inevitable during the growth stage t < t0, as the boundary condition w′ = 0 at x = 0 contradicts the full
adhesion solution (1). One expects, that a "wave" of the length vt0 shall be transported by the travelling foundation
until it reaches the exit prismatic joint. However, a more complicated process with reverse sliding is suggested
by numerical analysis at higher values of the amplitude w̄0, see left part of Fig. 2. The stationary solution with
alternating segments of sliding friction and a self-similar deformed configuration establishes over time during the
subsequent transient stage.

• Harmonic excitation:
w0 = w̄0 sinωt. (6)

As long as the amplitude w̄0 is small, sliding shall again take place only in the vicinity of the entry point. The
length of the segment of sliding shall change in time according to a complicated law, which can approximately be
established in an analytical solution. Numerical analysis suggests, however, that higher values of w̄0 result into
more segments of sliding near the entry point, see right part of Fig. 2. Finding an estimate for the critical value of
the amplitude, at which the solution changes qualitatively, is a challenging mathematical task.
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