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Summary. Present study is devoted to analysis of fundamental problem of parametric instability of damped-driven bi-linear two-
oscillator model, given to the low-amplitude parametric forcing. Assuming the resonant excitation in the vicinity of similar NNMs,
we derive the reduced order model. Further, applying the method of isolated resonance we analyze asymptotically the most significant
family of sub-harmonic (m:1) resonance regions which reveal their peculiar properties.

Introduction

Response of bi-linear oscillatory systems subject to various types of forcing has become a subject of immense theoretical
and experimental research. These models are broadly applied for mathematical modeling of the response of various en-
gineering problems such as mooring towers [1], interlocking structures [2], suspension bridges [3], beams with breathing
cracks [4] and many more. Numerous analytical and numerical works have been devoted to the analysis of externally
forced, single bi-linear oscillator. Shaw and Holmes [5] were the first to develop the semi-analytical methods for the
analysis of stability and bifurcation structure of periodic orbits emerging in the harmonically forced piece-wise linear
oscillator (PWLO). In the same year, a thorough computational study of sub-harmonic orbits, bifurcations of periodic
solutions and chaotic motion of harmonically forced piece-wise linear oscillator has been reported by Thomson et al. [6].
Some initial experimental work by Shaw [8] has shown the superharmonic and sub-harmonic steady state regimes in the
experimental setup, mimicking the damped-forced response of piece-wise linear oscillator. We bring here some most fun-
damental theoretical works which considered the parametric instability phenomena arising in the various damped-driven
piece-wise linear setups [9, 10, 11].

Model

In the present study we consider the damped-driven system of two coupled identical, bi-linear oscillators which assume the
parametric excitation on the first oscillator. The non-dimensional equations of motion of the system under consideration
read,

ξ
′′

1 + ϵλξ
′

1 + [1 + αH(−ξ1)] ξ1 + β (ξ1 − ξ2) + ϵP cos(Ωt)ξ1 = 0 , (1a)

ξ
′′

2 + ϵλξ
′

1 + [1 + αH(ξ2)] ξ2 + β (ξ2 − ξ1) = 0 , (1b)

. Here ϵ is a formal, small non-dimensional system parameter. Where λ, P, α, β stand for the damping, forcing, bi-linear
nonlinearity and coupling parameters. The formal small system parameter 0 < ϵ << 1 is introduced for scaling the
magnitude of damping and forcing terms. This system can model the low amplitude vibrations of two linearly coupled,
damped pendulums where one out of the two pendulums, performs the prescribed vertical oscillatory motion on its point
of suspension.

It can be easily seen that OP NNN belongs to the special family of NNMs of similar type. Further setting the OP NNM to
be the resonating mode, we define the two auxiliary coordinates ξ1 − ξ2 = η and ξ1 + ξ2 = ζ. It is reasonable to assume
that in the resonant motion of the system being parametrically excited in the resonant region of OP NNM, the newly
defined η variable, dominates over ζ. Applying some rather simple algebraic manipulation and using the same resonant
assumption, one readily arrives at the following, reduced order model (ROM) i.e. the damped-driven, bi-linear oscillator
which recovers the entire resonance structure of resonating OP NNM.

η
′′
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′
+ (1 + αH(−η) + 2β) η + ϵ

P

2
cos((mΩN + ϵσ)t)η = 0 . (2)

Results

We rewrite Eq. (2) in the phase space form, as follows:

q
′
= p, p

′
= −ϵλp− (1 + αH(−q) + 2β) q + ϵ

P

2
cos((mΩN + ϵσ)t)q , (3)

It is worthwhile noting that the asymptotic analysis applied in the present work is valid up to O(ϵ) order. Therefore, the
terms of the higher asymptotic order are omitted in the following part of analysis. To derive the asymptotic approximation
for transition curves corresponding to the special family of (m:1) resonant tongues, we introduce the action-angle variables
[11, 12]
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1
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∂
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p(q, I)dq . (4)



ENOC 2020+2, July 17-22, 2022, Lyon, France

and using the method of isolated resonance derive the averaged flow in the neighborhood of (m:1) resonance tongues.Further
analysis of the averaged flow, reveals the closed form asymptotic approximations for the transition curves for different
resonance conditions (see e.g. [12]). Please note that ϵσ stands for the small detuning parameter, while the excitation
frequency in the vicinity of m:1 resonant neighborhood is taken as Ω = mΩ+ ϵσ. Here ΩN is a natural frequency of the
out-of-phase NNM. In Figure. 1 we present the stability charts for the three resonant cases. It can be readily seen that the
analytical approximation of transition curves (shown by black solid lines) are in very good agreement with the results of
numerical simulations of the full model (Eqs. (1a) and (1b)). In Figure.2 (left panel) we present the evolution of transition
curve w.r.t damping. In the limiting case of zero damping transition curves become straight lines whose slopes change
w.r.t the system parameter α. As is shown in 2 (right panel) the width of the instability regions, varies w.r.t the change
in the parameter of non-linearity, such that the well-known, fundamental, 2:1 parametric resonance tongue can become
narrower than the 1:1 tongue.

(a) (b) (c)

Figure 1: Stability chart for resonance conditions (a) 1 : 1, (b) 2 : 1, and (c) 3 : 1. Here green and red colours represent stable and
unstable regions, respectively obtained numerically from exact model in Eqs. (1a) and (1b) and black solid lines represent instability
boundaries obtained using A-A method. Parameters are α = 2, β = 0.5, λ = 0.005 and ϵ = 0.1.
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Figure 2: (a) Variations of the instability tongues with damping coefficient λ for resonance condition 2 : 1. (b) Variations of the slope
corresponding to each resonance condition with α.

Concluding Remarks

Present study has concerned the resonant parametric excitation of the symmetric system of two coupled bi-linear oscil-
lators. To derive the relatively simple analytical approximation to transition curves, we derive the reduced order model
which mimics the response of resonantly excited two-oscillator model in the vicinity of out-of-phase NNM. Boundaries of
the transition regions emerging in the original, parametrically forced system are approximated asymptotically. Transition
curves emerging from the analysis of effective bi-linear, parametric oscillator are in very good agreement with numerical
results of the original system. In this talk, we will also present the alternative analytical treatment for the case of resonant
system reduction in the vicinity of NNMs of the general type. This part of the talk is currently a work in progress.
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