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Stability of a driver-vehicle system with steering and throttle control
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Summary. The stability of a vehicle’s driving state depends on the mechanical properties of the vehicle and the road conditions, but to
a large amount also on the characteristics of the human driver. The aim of this talk is to study the influence of the driver’s reaction on the
stability of the steady cornering motion, which for constant control input is asymptotically stable.

Introduction

The stability of a vehicle’s driving state depends on the mechanical properties of the vehicle and the road conditions, but
to a large amount also on the characteristics of the human driver. The human driver might be replaced by a robot in the
case of an automated vehicle. The aim of this talk is to study the influence of the driver’s reaction on the stability of the
steady motion, which for constant control input is asymptotically stable.
We investigate the loss of stability of a controlled understeering vehicle along a steady-state cornering motion, according
to the model described in [1]. To control the trajectory of the vehicle, the human driver is assumed to either adjust the front
steering angle δF or the driving torque MR of the rear wheels, according to the deviation of a point P from a reference
circle (Fig. 1). If we denote the deviation of the point P from the reference circle by ∆rP and the deviation of the control
input u ∈ {δF ,MR} from the stationary value by ∆u, the “simplified precision model” [2] takes the form

TM
d∆u(t)

dt
+∆u(t) = cP∆rP (t− τ) + cD

d∆rP
dt

(t− τ), (1)

with human reaction time τ . Delay time TM , the control gains cP and cD depend on the driver’s skills and on the handling
behaviour of the vehicle. A similar control loop with delay for a vehicle dynamics was investigated in [3].
While frequently used driver models, based on the above modelling approach, are applied for a linear driving regime, a
nonlinear design is focussed here. In particular, the brush tyre model, [4] is used for the nonlinear tyre forces at higher
lateral accelerations. The driver model is able not only to control the given trajectory with the steering angle, but also
with the longitudinal tyre force resulting from the rear wheel drive. This is a skill of a human (expert) driver, but rarely
addressed in human driver modelling, but will become in particular important also at automated driving, when individual
drive torques may be used to stabilise critical driving manoeuvres in the nonlinear driving regime.
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Figure 1: Geometric relations for the driver’s preview model: To
follow a circle with radius r0, the driver spots a point P at a
distance LP straight ahead, which should move along a circle
with radius rP0.

Figure 2: Handling diagram for for the considered vehicle for a
steady cornering motion along a circle with radius 80 m. For the
considered steady velocity v = 20m/s the equilibrium point is
asymptotically stable.

Preliminary results

In order to investigate the linear stability of the cornering motion, we choose parameters and control inputs, for which
the steady state cornering motion is asymptotically stable. As an example for such a stable motion we select the point
indicated in Fig. 2, corresponding to a constant speed v = 20m/s. Neglecting the reaction time τ we select control gains,
for which the vehicle-driver model is still asymptotically stable. Fixing these parameters, we vary the reaction time τ and
determine the critical parameter values, for which a loss of stability due to a Hopf bifurcation occurs.
As can be seen from Figs. 3 and 4, the steering control depends very sensitively on the reaction time for the considered
parameter values, whereas the critical reaction time τc for pure throttle control is far beyond the usual values.
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Figure 3: Critical reaction time τc for the occurence of a Hopf
bifurcation for varying preview length LP and control gain cP ,
varying from 0.1rad/m (blue) to 0.5rad/m (magenta) with fixed
value cD = 0.02rad s/m for pure steering control.

Figure 4: Critical reaction time τc for the occurence of a Hopf
bifurcation for varying preview length LP and control gain cP
varying from varying from 2N (blue) to 10N (magenta) with
fixed value cD = −30Ns for pure Throttle control.

Further research

We plan to outline realistic estimates for the drivers’ control behaviour and explore the resulting driving conditions.
Further we will investigate the nonlinear system after loss of stability. In the uncontrolled system considered in [1]
we already observed Canard explosions and relaxation oscillations; the feedback control (1) for the drivers’ behaviour
introduces further time scales into the system dynamics, so we are expecting interesting slow-fast dynamic behaviour of
the model.
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