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Summary. This work presents results of experimental investigation and a low-order model development for resonant complex dynamics of 
a cantilever macro-plate. The plate is fabricated from a ‘hyperelastic’ material using 3D printing technology. The geometry of the plate with 

cut-outs is optimized such that the second linear bending mode frequency 𝜔02 is nearly twice the linear first twisting mode frequency 𝜔11 . 

Based on the observed 2:1 resonant response under harmonic excitation near 𝜔02, a low-order 2 DOF dynamic model is developed to 

simulate the plate response. The unknown model parameters are extracted using Harmonic Balance solutions and curve fitting techniques. 

A good agreement is observed between the analytical and the experimental results for different excitation levels. 

Introduction 
Modal coupling and their influence on system response continues to attract much interest and has been the subject of 

several review papers that study the influence of mode interactions on different structures from the macro to the micro 

scale and their potential applications [1]. Internal resonance is among the primary nonlinear coupling mechanisms 
between the different modes of vibration which can be triggered when the ratio between the frequencies of coupled modes 

is commensurate and the directly excited response amplitude exceeds a certain threshold [1]. Parameter estimation 
techniques have received significant attention for developing models that can predict the complex dynamics of a structure 

under loading conditions that are difficult to test experimentally [2]. Most of the prediction techniques rely on error 

minimizing algorithms that minimize the difference between predictions of the analytical model and the experimental 
results. Conventionally, one system state is experimentally measured, and the other states are derived using numerical 

integration or differentiation techniques which amplify noise at low or high frequency. Processing the signal to reduce 

the high frequency noise might remove the response at higher harmonics and also introduce aliasing in the data [2]. 
Frequency response approach based on curve fitting eliminates the issues associated with signal processing but requires 

more theoretical effort and a comprehensive understanding of the system model and the effects of different coefficients 

on the response [2]. In this work, the plate geometry, Fig. 1a, is designed following the topology optimization procedure 

described in [3] such that for the cantilever plate, the second bending mode 𝜔02 (71 𝐻𝑧) and the first twisting mode 

𝜔11 (35.5 𝐻𝑧) are in 2:1 ratio. The plate is fabricated using 3D printing technology from a hyperelastic material thus 

incorporating material nonlinearity. To study the plate dynamics, a TIRA shaker is used to actuate the plate at different 

acceleration levels and a laser Doppler vibrometer is used to record the response. 

                       
                                                           (a)                                                                        (b) 

Figure 1: (a) The dimensions of the optimized plate are in millimeters showing the laser measurements point. Plate thickness =
 1.27 𝑚𝑚. (b) The FFT of the impulse response showing the first three modes of vibration (insets: Corresponding mode shapes). 

Results and discussion 
To capture the modal interaction of the two modes in the cantilever plate response, two coupled oscillators described by 

generalized coordinates 𝑢(𝑡) and 𝑣(𝑡) are considered. The directly driven mode 𝑢(𝑡) is modeled as nonlinear oscillator 

with linear natural frequency 𝜔02 along with cubic 𝛼𝑐𝑢3(𝑡) and quadratic 𝛼𝑞𝑢2(𝑡) nonlinear stiffness forces. The 

experimental data for the directly excited mode shows a nonlinear dependence of the damping on the amplitude of 
vibration implying that a nonlinear dissipation mechanism needs to be incorporated. Here, a nonlinear damping model 

compromising of quadratic displacement multiplied by the velocity 𝑢2(𝑡)𝑢
.
(𝑡) is assumed. The secondary mode amplitude 

𝑣(𝑡), the mode only excited due to its coupling with the primary mode, is modeled with a linear oscillator of frequency 

𝜔11 which equals to half the driven mode frequency 𝜔02, and a nonlinear interaction term. The interaction between the 

two oscillators is assumed to be nonlinear in the form of (𝑣(𝑡))
2
 acting on the driven oscillator and 𝑢(𝑡)𝑣(𝑡) acting on 

the secondary oscillator. The equations of motion normalized by the modal masses 𝑚1,2 are then: 

𝑢
..

(𝑡) + 2𝜉2𝜔02𝑢
.
(𝑡) + (𝜔02)2𝑢(𝑡) + 𝛼𝑞𝑢2(𝑡) + 𝛼𝑐𝑢3(𝑡) + 2𝜉𝑛𝑜𝑛𝜔02𝑢2(𝑡)𝑢

.
(𝑡) = 

𝛾2(𝑣(𝑡))
2

+ 𝑟𝐴 cos(Ω𝑡)                                                                                                                                                                      (1) 

𝑣
..

(𝑡) + 2𝜁1𝜔11𝑣
.
(𝑡) + (𝜔11)2𝑣(𝑡) = 𝛾1𝑢(𝑡)𝑣(𝑡)                                                                                                                           (2)                                                                              

where 𝜉2, 𝜉1 are the modal damping ratios acting on the driven and the secondary oscillators, respectively. 𝜉𝑛𝑜𝑛 is the 

nonlinear damping coefficient. 𝛾2 , 𝛾1 are the coupling coefficients between the two modal amplitudes, A is the amplitude 
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of the base excitation acceleration, and r is the projected modal force acting on the driven oscillator. To extract the 

unknown parameters, the system of equations are initially numerically integrated for different values of the parameters 
and the numerical results are compared with experimentally recorded data. Also, the effect of each parameter on the final 

response is studied which helps in understanding its influence on the system response. Subsequently, the harmonic balance 

method is used to solve for steady state solutions of Eq. (1) and Eq. (2) in which the response is assumed to have the form 
of a truncated Fourier series. In the current analysis, two harmonics plus the constant term are utilized. To find the 

unknown parameters, the parameter extraction procedure is divided into multiple steps. The resonant frequencies values 

𝜔02 and 𝜔11 can be inferred from the impulse response results given in Fig. 1b and are found to be 𝜔11 = 35.5 𝐻𝑧 and 

𝜔02 = 71 𝐻𝑧. Then, the response in which only the directly excited mode has non-zero response and the internal 

resonance has not yet activated is considered, see Fig. 2 for the case of 1.65g base excitation. The system of equations 

assuming zero coupling coefficients, that is, 𝛾1 and 𝛾2  are set equal to zero, are solved for different values of the unknown 

parameters 𝜉2, 𝛼𝑞, 𝛼𝑐, 𝜉𝑛𝑜𝑛, and 𝑟 until the simulation results match the experimentally recorded frequency response, as 

shown in Fig. 2. To extract the coupling coefficients 𝛾1 and 𝛾2, the experimental response at 1.75 g, Fig. 3, is considered, 

and the 2 DOF model in Eq. (1) and Eq. (2) is solved for different sets of coupling coefficients until error is minimized 
between the harmonic balance results and the experimental response curve. Summary of the all the extracted parameters 

is given in Table 1. To verify the 2DOF model with the extracted parameter values, Eq. (1) and Eq. (2) are used for higher 

excitation levels and the simulation results are compared with the corresponding experimental data. As shown in Fig. 4, 
the harmonic balance results at various excitation levels are in reasonable agreements with the experimental 

measurements.

 
Figure 2: Experimental and harmonic balance frequency 

response results (HB) for the 1.65 g excitation case. 
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                      (a)                                          (b)     

Figure 3: Experimental and harmonic balance frequency 
response results (HB) for the 1.75 g excitation case with 

internal resonance activated. (a) Near 𝜔02. (b) Near 𝜔11 . 

 
                                          (b)

Fig. 1: Frequency response of the macroplate to a harmonic base excitation at different acceleration levels with internal resonance 

activated. (a) Experimentally recorded results. (b) Harmonic balance results. 

Table 1: Summary of the extracted parameters. 

Parameter 𝜔11 𝜔02 𝜉2 𝛼𝑞 𝛼𝑐 𝜉𝑛𝑜𝑛 𝑟 𝛾1 𝛾2  𝜉1 

Value 35.5  71  2.5 × 10−3 6 × 107 1.54 × 1010 1.5 × 104 0.525 1.45 × 107 2.3 × 106 0.1 

Summary and Conclusions 
A two-mode nonlinear model to predict the resonant response of a 3D printed cantilever macroplate to a base excitation 

is developed. The system is modeled with two nonlinearly coupled oscillators. The plate is designed such that the linear 

natural frequencies 𝜔02 and 𝜔11are in 2:1 frequency ratio. A harmonic balance analysis is used to approximate the 

response of the coupled oscillators using curve fitting techniques to extract the unknown parameters. The parameter 
estimation procedure is divided into three steps. In each step, the experimentally recorded results are used to find a subset 

of the unknown parameters. The final estimated parameters are used to predict the response at higher excitation levels. 

The analytical model predictions are seen in good agreement with experimental data.  
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