
 

ENOC 2020+2, July 17-22, 2022, Lyon, France 

 

 

A General Bayesian Nonlinear Estimation Method Using Resampled Smooth Particle 

Hydrodynamics Solutions of the Fokker-Planck Equation 

 

Michael Duffy*, Soon-Jo Chung** and Lawrence Bergman*** 
*Dept. of Aerospace Engineering, University of Illinois, Urbana, IL, USA 

  Current employer: Raytheon Missiles and Defense Co., Tucson, AZ, USA 
** Div. of Eng’g and Applied Science, California Institute of Technology, Pasadena, CA, USA 

*** Dept. of Aerospace Engineering, University of Illinois, Urbana, IL, USA 

 
  
Summary. The state estimation problem for noisy nonlinear systems remains a difficult problem, particularly as the dimension of the 

state space grows large. This presentation will consist of a brief introduction to the problem as a diffusion process and its solution 

employing smooth particle hydrodynamics (SPH) to advance the estimator through the state space in time. Performance comparisons 

between the current algorithm, the particle filter, and the extended Kalman filter for Duffing systems of two and four dimensions will 

be presented. 

Introduction 

The effectiveness of a nonlinear estimator in a noisy environment depends on many factors, one being the accuracy with 

which it can predict the state dynamics of the underlying dynamical system between measurements. It is well known 

that a memoryless nonlinear dynamical system driven by additive and/or multiplicative Gaussian white noise can be 

represented by a system of D nonlinear stochastic differential equations of the Ito form, where D is the number of 

system states. The  Bayesian optimal prior can be obtained by solving the corresponding Fokker-Planck Equation 

(FPE), governing the evolution of the transition probability density function of the system response over the state space 

[1]. The FPE is a degenerate, linear, elliptic-parabolic partial differential equation having D spatial dimensions, plus 

time, on an infinite spatial domain, for t ≥ 0. To date, for the nonstationary (transient) problem, analytical solutions exist 

only for the scalar case, D = 1, the exception being the linear system subject to additive noise for which the analytical 

solution can be found for arbitrary D. Thus, although computational solutions of the nonstationary FPE for nonlinear 

systems of dimension D = 3 have been tractable since the mid-1980s, solution remains problematic for realistic systems 

with D > 3 due to scaling issues caused by the well-known “curse of dimensionality,” and it remains extraordinarily 

difficult and costly to achieve accurate solutions to higher dimensional problems over the entire state space [2,3]. 

This presentation is a summary of our recent work addressing a general nonlinear filter based on solving the 

nonstationary FPE in RD using Smooth Particle Hydrodynamics (SPH) at lower resolution which, for the limited 

number of four-dimensional systems studied, appears to result in reasonably accurate state estimation results. The filter 

is enabled by an efficient heuristic resampling scheme of the SPH solution, also briefly discussed. The resulting FPE-

SPH filter appears able to replicate the accuracy of both the well-known, simulation-based  Particle Filter (PF) and 

linearization-based Extended Kalman Filter (EKF) for lower dimensional systems, while being more robust than the 

EKF, at least for the several higher-dimensional systems examined [4]. 

In the limited time available, a short exposition of the underlying theory will be given, followed by a comparison of 

results obtained for two-dimensional and four-dimensional Duffing oscillators. 

 

Background 

Consider a system of stochastic differential equations of the form  
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corresponding Fokker-Planck-Kolmogorov equation which defines the evolution in time of the transition probability 

density function of the system states, which takes the form 
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ijD  are the deviate moments derived from eq. (1). 
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Results and Conclusions 

For systems with simpler dynamics, the FPE-SPH, PF and EKF filters perform very similarly when properly 

parameterized. Differences emerge for systems such as the Duffing where the double-well potential of the PDF can 

result in rapid changes in an individual transient trajectory. In an estimation context sufficient process noise, 

measurement noise, and/or time between update steps can result in extreme EKF divergence. The PF and FPE-SPH 

filters on the other hand are robust against these sudden switches, which can be seen in the single run history below in 

Figure 1 and 25 run NEES in Figure 2.  

 

 
Figure 1: Example 2D Duffing estimated state histories (position, velocity) demonstrating EKF divergence. 

 

 
Figure 2: 2D Duffing NEES (25 Monte-Carlo runs, different initial conditions, common seeds between filters) 

 

Robustness of the FPE-SPH filter extends up to four-state systems where one of the oscillators possesses a Duffing 

term. The system parameters simulated are not severe enough to result in EKF divergence as with the two state Duffing, 

but the results confirm that the FPE-SPH Filter is an accurate estimator in higher dimensional systems. The RMS error 

is shown in Figure 3. 

  
Figure 3: RMS Errors for 4D Nonlinear System, separated by degree of freedom (10 runs) 

 

The FPE-SPH filter can accomplish this with only 5,000 particles using conservative runtime acceleration parameters 

compared to the PF’s 100,000. Improvements to the underlying algorithm to better handle higher dimensional behavior 

and more aggressive parameterization to further prioritize run time might allow for further scaling to tackle systems 

with more than four states. Please refer to the references for information about the algorithms employed. 
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