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Summary. Acoustic waves, such as underwater sounds generated by earth-plate movements, and gravity waves, such as surface ocean
waves, are two types of waves that are thought to share very little in common. However, recently it has been shown theoretically that
acoustic—gravity waves can interact and share energy. Such interaction could explain natural phenomena such as microseisms (faint
earth tremor), but also has many implications from tsunami mitigation and energy harnessing, to creating new measurement techniques
that can be applied in invasive medical operations. In this talk I will present a review on nonlinear interaction of acoustic—gravity waves,
theory and applications.

Background
Acoustic (compression) waves and free-surface (gravity) waves are virtually decoupled for two main reasons. Firstly,
the speed of sound in water far exceeds the maximum phase speed of gravity waves. Secondly, the mode shape with
depth is oscillatory for acoustic modes, and exponentially decaying for gravity waves. Nevertheless, it has been argued
theoretically that these two types of wave motion could exchange energy via resonant triad nonlinear interactions [1, 2,
3, 4, 5]. There are two cases of interest this review talk focuses on: (I) two gravity waves interacting with an acoustic
mode of a comparable frequency (almost double) [1, 2, 3]; and (II) two acoustic modes interact with a gravity wave of
a comparable lengthscale [4, 5]. In the first case, the theory suggests that for a perfectly tuned triad almost all energy
initially stored in the gravity waves can transfer into the generated acoustic mode, whereas for wavepackets a maximum
of 40% energy transfer can be obtained [2]. This has implications at the ocean scale where interacting surface gravity
waves can generate microseism (faint earth tremor) deep at the ocean floor [6, 7]. Not less interestingly is the particular
solution where two gravity waves of identical frequency generate a standing acoustic mode [8]. Such setting might explain
a physical phenomenon known as time reversal [9, 10]. The same solution might explain the evolution of Faraday waves
[8, 11] that find various applications in physics. In the second case, the interaction of two acoustic modes with one
gravity wave has implications on underwater communication [4], wave energy harnessing, or more ambitiously tsunami
mitigation [5].
Amplitude evolution equations

We consider the propagation of surface-gravity waves interacting with acoustic wave disturbances in water of constant
depth over a rigid bottom. The equation governing the velocity potential in the fluid interior is obtained by combining
continuity with the unsteady Bernoulli equation, i.e cubic nonlinear wave equation. The boundary conditions are the
standard higher order kinematic and dynamic conditions, at the surface; and the no-penetration condition at the bottom.
In the first case, resonance is possible among two surface -gravity waves and a single acoustic mode. The conditions for
resonance comprise an interplay of the frequencies o + o_ = w, and wavenumbers k. + k_ = K, where o4 and ki
represent the two gravity waves, which combined form the acoustic mode represented by w and . To derive the evolution
equations we employ multiple-scale analysis, which yields
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where A and S, are the amplitudes of the acoustic and two gravity waves, ¢ is the interaction timescale, V is the gradient
(03, 0y), and ¢; and ¢, are constants. The derived evolution equations allow quantifying the parameters (i.e. frequency,
wavelength, and amplitude) needed to finely tune the interaction, which controls the energy exchange. Following a similar
approach we derive the amplitude evolution equations for two acoustic modes interacting with a gravity wave. Now, the
conditions for resonance become w; + w_ = o, and wavenumbers k4 + x_ = k and the evolution equations are
fundamentally different. The following are some examples that will be discussed.

Example 1: Faraday Waves

This case is analogous to a surface gravity disturbance (Gaussian) of frequency w over a fluid layer that is subject to a con-
tinuous vertical oscillation, e.g. due to underwater tremor, at double the frequency. The interaction excites subharmonic
standing field of Faraday-type waves of frequency 2w, as shown in the figure 1 (from [11]).
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Figure 1: Evolution of Faraday-type waves from a gravity disturbance interacting with a long-crested acoustic mode [11].
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Example 2: Time-Reversal

A mathematical model for the evolution of a time-reversed gravity wave packet from a nonlinear resonant triad perspective
is derived [8]. Here the sudden appearance of an acoustic mode is analogous to a sudden vertical oscillation of the liquid
film, which resonates with the original surface-gravity wave packet causing the generation of an oppositely propagating
(time-reversed) surface-gravity wave of an almost identical shape, see figure 2

10

— 0.02
g
9.999 0.01
9.998 AT
-10 -8 -6 -4 -2 0 2 4 6 8 10
X

Figure 2: Amplitude evolution of time reversal triad: (a) original disturbance; (b) time reversed disturbance; (c) sudden acoustic mode.

Example 3: Tsunami Mitigation
A tsunami interaction nonlinearly with two acoustic modes. The tsunami envelope is redistributed behind over a larger
space and its amplitude is reduced, see figure 3.
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Figure 3: Amplitude evolution. A tsunami propagates from right to left (top), exchanges energy with two acoustic waves (middle and
bottom), that propagate from left to right, [5].
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