
 

ENOC 2020+2, July 17-22, 2022, Lyon, France 

 

 

Non-smooth inverted pendulum swing-up control optimization using a novel, Fourier 

series based numerical method 

 

 Marek Balcerzak
*
, Sandra Zarychta

*
, Volodymyr Denysenko* and Andrzej Stefanski

*
 

*
Division of Dynamics, Lodz University of Technology, Lodz, Poland

 

  
Summary. Swing-up control of an inverted pendulum is one of the classical tasks in dynamics and control theory. Optimization of the 

pendulum’s trajectory and the corresponding control function is not trivial, particularly when the controlled object is non-smooth (for 

example, due to presence of dry friction). This short paper contains a concise description of a novel, Fourier series based numerical method 

of control optimization, which is able to successfully solve such problem. It is expected that this algorithm will enable progress in control 

optimization of systems, for which typical approaches cannot be utilized.   

Introduction 

Optimal control is the one that minimizes the cost of performing a desired action [1]. In the case of systems described 

by a set of ordinary differential equations (ODEs), the necessary conditions for control optimality have been described 

by Pontryagin [2] in terms of variational calculus. Another classical approach to solving optimal control problems is the 

dynamic programming method, introduced by Bellman et al. [3]. However, the former cannot be utilized in non-smooth 

and discontinuous systems, whereas the latter requires significant computing power even in simple cases [1]. Therefore, 

there is a need for a simple method which solves optimal control problems in non-smooth systems. In this paper authors 

present a novel, Fourier series based numerical algorithm [4] applied in optimization of the swing-up control of an 

inverted pendulum [5] with a dry friction discontinuity. 

System description 

 
Figure 1: Scheme of the inverted pendulum system 

 

The inverted pendulum system [5], whose scheme is presented in Fig. 1, consists of the controlled cart, able to move 

along the   axis, with a mathematical pendulum of the mass   and the length   attached to it. Dry and viscous friction 

torque in the pendulum’s bearing is taken into account, i.e.                 . The swing-up control means moving 

the cart in such a manner that the pendulum stands up from the initial state             (pendulum hanging 

vertically downwards) to the final one               (pendulum standing vertically upwards). Defining the 

dimensionless time      with    
 

 
 , transforming the derivatives    

  

  

  

  
                       and 

introducing dimensionless parameters   
 

 
   

  

     
   

  

     
 yield the following dimensionless form of the 

model. 

 

                                
 

The quantity      
  

  
, a dimensionless counterpart of the cart’s velocity, is the controlled variable in the system. 

Obviously, velocity and acceleration of any physical drive are bounded. Moreover, the space in which the cart moves 

may be restricted. Therefore, the following constraints are assumed:                            
              , where                      . 

Optimization method 

Assume that the goal is to minimize two factors in parallel, motion time   and drive usage - the integral of    . 

Therefore, the cost functional can be defined as follows:             
 

 
, where   is a positive, real parameter. The 

proposed optimization method assumes that the control function      to be optimized is described using a finite number 

of harmonics of the Fourier series. 
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Bearing in mind that         and taking into account the boundary conditions                        , it 

can be easily shown that     ,        
   
   ,      

  

 

   
   . Consequently, the control function      depends on 

       independent parameters, which can be collected in a vector                                    . 

Taking a large enough value   enables to approximate      with arbitrarily high accuracy. Now an important fact must 

be noticed: the direction of the vector   in         is responsible for the shape of the function     , i.e. signs of its 

derivatives of all degrees, locations of local extrema and inflection points etc., whereas the length of   determines the 

span, i.e. the set of values and the global extrema of      [4]. Therefore, the shape of the function      for a fixed   

can be uniquely defined by a direction      , which in turn can be described by a point on a unit hypersphere 

immersed in      , i.e. on      , a (      dimensional one. Location of any point on such hypersphere depends 

on      angular coordinates, which uniquely define the shape of      [4]. Assume that this shape is already known. 

Now, as the continuous function         is constrained by                                  
        , there exists the smallest number     such that at least one of the constraints is violated by        if 

   . Consequently, as the shape of      is fixed, then          with a parameter         define all the 

admissible functions      of the shape defined by a point on      . Summing up,  -harmonics approximation of any 

Dirichlet control function                          can be described using        angular coordinates on 

      and the parameters    . Global optimization of all these parameters, for example using Differential Evolution 

method [6], leads to optimization of the control function      itself. When the proposed approach is utilized, 

smoothness of the controlled system is not required as long as the required trajectories exist and are unique. 

Results and conclusions 

The shape of the function      was optimized for         parametrized in terms of spherical coordinates on       

along with the parameters                    using the Differential Evolution method [6]. The results are 

presented in the graphs below. 

 

  
Figure 2: Results of optimizing the control function      with respect to the cost functional  .  

 

The optimized values of the cost functional             
 

 
 were approximately equal 13.93 (optimization with 2 

harmonics, i.e.      and 12.62 (optimization with 3 harmonics, i.e.    ). Therefore, it can be noticed that 

increasing number of harmonics in the optimized function      from     to     increases accuracy of control 

optimization. It is expected that larger values of   lead to better approximations of the optimal control. As it can be 

noticed, the method works successfully in the discontinuous system. Authors hope that this algorithm will enable 

progress in control optimization of systems, for which typical approaches cannot be utilized.   
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