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Shocks and solitary waves in series connected discrete Josephson transmission lines
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Summary. We analytically study the running waves propagation in the discrete Josephson transmission lines (JTL), constructed
from Josephson junctions (JJ) and capacitors. Due to the competition between the intrinsic dispersion and the nonlinearity, in the
dissipationless JTL there exist running waves in the form of supersonic kinks and solitons. The velocities and the profiles of the kinks
and the solitons are found. We also study the effect of dissipation in the system and find that in the presence of the resistors, shunting
the JJ and/or in series with the ground capacitors, the only possible stationary running waves are the shock waves, whose velocities and
the profiles are also found.

Introduction

The concept that in a nonlinear wave propagation system the various parts of the wave travel with different velocities,
and that wave fronts (or tails) can sharpen into shock waves, is deeply imbedded in the classical theory of fluid dynamics
[1]. The methods developed in that field can be profitably used to study signal propagation in nonlinear transmission lines
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In the early studies of shock waves in transmission lines, the origin of the nonlinearity was
due to nonlinear capacitance in the circuit [12, 13, 14].
Interesting and potentially important examples of nonlinear transmission lines are circuits containing Josephson junctions
(JJ) [15] - Josephson transmission lines (JTL) [16, 17, 18, 19]. The unique nonlinear properties of JTL allow to construct
soliton propagators, microwave oscillators, mixers, detectors, parametric amplifiers, and analog amplifiers [17, 19, 18].
Transmission lines formed by JJ connected in series were studied beginning from 1990s, though much less than transmis-
sion lines formed by JJ connected in parallel [20]. However, the former began to attract quite a lot of attention recently
[21, 22, 23, 24, 25, 26, 27, 28], especially in connection with possible JTL traveling wave parametric amplification
[29, 30, 31].
The interest in studies of discrete nonlinear electrical transmission lines, in particular of lossy nonlinear transmission
lines, has started some time ago [32, 33, 34], but it became even more pronounced recently [35, 36, 37]. These studies
should be seen in the general context of waves in strongly nonlinear discrete systems [38, 39, 40, 41, 42, 43, 44].
In our previous publication [45] we considered shock waves in the continuous JTL with resistors, studying the influence
of those on the shock profile. Now we want to analyse wave propagation in the discrete JTL, both lossless and lossy
The rest of the paper is constructed as follows. In Section we formulate quasi-continuum approximation for the discrete
lossless JTL. In Section we show that the problem of a running wave is reduced to an effective mechanical problem,
describing motion of a fictitious particle. In Section the velocity and the profile of the kink, and in Section - of the soliton
are found from the solution of the effective mechanical problem. In Section we rigorously justify the quasi-continuum
approximation for the kinks and solitons in certain limiting cases. In Section we discuss the effect of dissipation on
the waves propagation in the discrete JTL. In Section we briefly mention possible applications of the results obtained in
the paper and opportunities for their generalization. We conclude in Section . In the Appendix we propose the integral
approximation to the discrete equations.

The quasi-continuum approximation

Consider the model of JTL constructed from identical JJ and capacitors, which is shown on Fig. 1. We take as dynamical
variables the phase differences (which we for brevity will call just phases) ϕn across the JJ and the charges qn which have
passed through the JJ. The circuit equations are

~
2e

dϕn

dt
=

1

C
(qn+1 − 2qn + qn−1) , (1a)

dqn
dt

= Ic sinϕn , (1b)

where C is the capacitor, and Ic is the critical current of the JJ.
Everywhere in this paper we’ll treat qn(t) (ϕn(t)) as a function of two continuous variables (z, t), where z = nΛ, and
will make the simplest assumption,

qn+1 − 2qn + qn−1 = Λ2 ∂
2q

∂z2
+

Λ4

12

∂4q

∂z4
. (2)

(To keep in (2) only the first term would be an even simpler assumption, but the effects we’ll be talking about are absent
in this approximation.) We will call (2) the quasi-continuum approximation and will se later that in certain limiting cases
it can be rigorously justified.
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Figure 1: Discrete JTL (left) and discrete JTL with the capacitor and the resistor shunting the JJ and another resistor in series with the
ground capacitor (right).

Newtonian equation

The running wave solutions are of the form

ϕ(z, t) = ϕ(x) , q(z, t) = q(x) , (3)

where x = Ut− z, and U is the running wave velocity. For such solutions, and after the truncation, Eq. (1) becomes the
ordinary differential equation

U
2 dϕ

dx
=
d sinϕ

dx
+

Λ2

12

d3 sinϕ

dx3
; (4)

in this paper, for any velocity V , V ≡ V
√
LJC/Λ, and LJ = ~/(2eIc). Integrating with respect to x we obtain

Λ2

12

d2 sinϕ

dx2
= − sinϕ+ U

2
ϕ+ F , (5)

where F is the constant of integration. Multiplying Eq. (5) by d sinϕ/dx and integrating once again we obtain

Λ2

24

(
d sinϕ

dx

)2

+ Π(sinϕ) = E , (6)

where

Π(sinϕ) =
1

2
sin2 ϕ− U2

(ϕ sinϕ+ cosϕ)− F sinϕ , (7)

and E is another constant of integration. Equation (6) can be integrated in quadratures in the general case.
We can think about x as time and about sinϕ as coordinate of the fictitious particle, thus considering (5) as the Newtonian
equation. We are interested in the propagation of the waves characterised by the boundary conditions

lim
x→−∞

ϕ = ϕ1 , lim
x→+∞

ϕ = ϕ2 , (8)

Thus the problem of finding the profile of the wave is reduced to studying the motion of the particle which starts from an
equilibrium position, and ends in an equilibrium position.
Using the expertise we acquired in mechanics classes, we come to the conclusion that the initial position corresponds to
maxima of the "potential energy" Π(sinϕ), and so does the final position. Either these are two different maxima, or the
same maximum. In the latter case the particle returns to the initial position after reflection from a potential wall. (See
Figs. 2 (above) and 3.) In the first case the solution describes the kink, in the second - the soliton.
One should compare the running wave velocity with the velocity u(ϕ1) of propagation along the JTL of small amplitude
smooth disturbances of ϕ on a homogeneous background ϕ1 [45]

u2(ϕ1) = cosϕ1 (9)

(in this paper we consider only the solutions which lie completely in the sector (−π/2, π/2).) From the fact that there is
a maximum of the "potential energy" at the point ϕ1, follows that

d2Π(ϕ)

dϕ2

∣∣∣∣
ϕ=ϕ1

< 0 . (10)

Calculating the derivatives we obtain

U
2
> cosϕ1 , (11)

that is the running wave is supersonic.
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The kinks

In the case of the kink, going in Eq. (5) to the limits x→ +∞ and x→ −∞ we obtain

U
2
ϕ1 = sinϕ1 − F , (12a)

U
2
ϕ2 = sinϕ2 − F . (12b)

Solving (12) relative to U
2

and F we obtain we obtain

U
2

=
sinϕ1 − sinϕ2

ϕ1 − ϕ2
≡ U2

sh(ϕ1, ϕ2) , (13a)

F =
ϕ1 sinϕ2 − ϕ2 sinϕ1

ϕ1 − ϕ2
; (13b)

the reason, why we have chosen subscript sh for the velocity in (13a), will become clear in Section .
The result for the kink velocity (13a) is more robust than it looks. In fact, summing up (1a) from far to the left of the kink
up to far to the right of the kink we obtain

~
2e

d

dt

∑
n

ϕn =
1

C
[(qn+1 − qn)1 − (qn+1 − qn)2] . (14)

From the running wave ansatz follows

d

dt

∑
n

ϕn =
U

Λ
(ϕ1 − ϕ2) . (15)

To deal with the r.h.s. of (14) we need to approximate the finite difference only far away from the kink, where everything
changes slowly, and the continuum approximation

qn+1 − qn = Λ
∂q

∂z
(16)

is enough. From (16) and the running wave ansatz follows

(qn+1 − qn)i =
Λ

U

(
dqn
dt

)
i

=
Λ

U
sinϕi . (17)

Substituting into (14) we recover (13a).
Returning to (13) and taking into account additionally the equality

E = Π(sinϕ1) = Π(sinϕ2) , (18)

we obtain

ϕ2 = −ϕ1 . (19)

Thus the kinks which can propagate in JTL are very special. We also obtain

F = 0 , (20a)

U
2

= U
2

sh(ϕ1,−ϕ1) =
sinϕ1

ϕ1
≡ U2

k(ϕ1) . (20b)

Π(sinϕ)− E =
1

2
(sinϕ− sinϕ1)2 − sinϕ1

ϕ1
[cosϕ− cosϕ1 − (ϕ1 − ϕ) sinϕ] . (20c)

Equation (20c) and the results of integration of Eq. (6) for this "potential energy" are graphically presented on Fig. 2
(above).
Consider specifically the limiting case |ϕ1| � 1. Expanding the "potential energy" with respect to ϕ and ϕ1 and keeping
only the lowest order terms we obtain the approximation to Eq. (6) in the form

Λ2

(
dϕ

dx

)2

=
(
ϕ2
1 − ϕ2

)2
. (21)

The solution of Eq. (21) is

ϕ(x) = −ϕ1 tanh
ϕ1x

Λ
. (22)

Equations (22) coincides with that obtained by Katayama et al. [36]. So does Eq. (20b), being expanded in series with
respect to ϕ1 and truncated after the first two terms:

U
2

k(ϕ1) = 1− ϕ2
1

6
. (23)
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Figure 2: The "potential energy" (20c) (left) and the kink profile calculated with this energy according to Eq. (6) (right). We have
chosen ϕ1 = .5.

The solitons

For the soliton ϕ2 = ϕ1, and two equations of (12) become one equation. As an additional parameter we take the
amplitude of the soliton (maximally different from ϕ1 value of ϕ), which we will designate as ϕ0. Adding to (12) the
equation

E = Π(sinϕ0) = Π(sinϕ1) (24)

and solving the obtained system we obtain

U
2

sol(ϕ1, ϕ0) =
(sinϕ1 − sinϕ0)

2

2[cosϕ0 − cosϕ1 − (ϕ1 − ϕ0) sinϕ0]
, (25a)

Π(sinϕ)− E =
1

2
(sinϕ1 − sinϕ)

2 − U2

sol(ϕ1, ϕ0) [cosϕ− cosϕ1 − (ϕ1 − ϕ) sinϕ] . (25b)

Equation (25b) is graphically presented on Fig. 3 (left).
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Figure 3: The "potential energy" (25b) (left) and the soliton profile according to Eq. (27) (right)

Considering the limiting case |ϕ1|, |ϕ0| � 1, expanding Eq. (25b) with respect to all the phases and keeping only the
lowest order terms we obtain Eq. (6) in the form

Λ2

(
dϕ

dx

)2

= (ϕ− ϕ1)
2

(ϕ− ϕ0) (ϕ+ 2ϕ1 + ϕ0) . (26)

Equation (26) can be integrated in elementary functions

ϕ = ϕ1 −
(4ϕ+ ∆ϕ)∆ϕ

4ϕ cosh2 Φ + ∆ϕ
, (27)

where ∆ϕ ≡ ϕ1−ϕ0, ϕ ≡ (ϕ1 +ϕ0)/2, Φ ≡
√

(3ϕ1 + ϕ0)∆ϕ x/(2Λ). Equation (27) is graphically presented on Fig.
3 (right).
In an another limiting case of weak soliton (∆ϕ cotϕ1 � 1), Eq. (6) takes the form

Λ2

(
dϕ

dx

)2

= 4 tanϕ1 · (ϕ− ϕ1)
2

(ϕ− ϕ0) . (28)

The solution of Eq. (28) is

ϕ = ϕ1 −∆ϕ sech2
(√

∆ϕ tanϕ1x/Λ
)
. (29)

Velocity of the soliton in this approximation is

U
2

sol(ϕ1, ϕ0) = cosϕ1 −
sinϕ1

2
∆ϕ. (30)
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The controlled quasi-continuum approximation

Let us return to Eq. (2). Looking at Eqs. (22) and (27) we realize that in the description of the kinks and solitons
with |ϕ1| � 1, the expansion parameter is ϕ2

1; thus the quasi-continuum approximation (2) can be rigorously justified.
However, strictly speaking, truncation of the expansion should be performed in accordance with the truncation of the
series expansion of the sine function, and Eq. (4) in the consistent approximation should be written as

U
2 dϕ

dx
=
dϕ

dx
− 1

6

dϕ3

dx
+

Λ2

12

d3ϕ

dx3
. (31)

Equation (31) clearly shows the competition between the nonlinearity, described by the second term in the r.h.s. of the
equation, and the intrinsic dispersion, caused by the discreteness of the line, described by the third term. Note that (22) is
the exact solution of Eq. (31) (with U given by (23)).
Looking at Eq. (29) we realize alternatively, that the quasi-continuum approximation can be rigorously justified when it
is applied to the description of the solitons with tanϕ1 · (ϕ1 − ϕ0) � 1. The latter quantity is the expansion parameter
in the r.h.s. of Eq. (2) in this case. So in the consistent approximation, Eq. (2) should be written as

U
2 dψ

dx
= cosϕ1

dψ

dx
− sinϕ1

2

dψ2

dx
+ cosϕ1

Λ2

12

d3ψ

dx3
, (32)

where ψ = ϕ− ϕ1. Note that Eq. (29) is the exact solution of Eq. (32) (with U given by (30)).
Here we would like to attract the attention of the reader to the following issue. Common wisdom says that the continuum
approximation and the small amplitude approximation are independent - there could be a wave with small amplitude,
which allows to expand the sine function, but which varies fast in space (wavelength comparable to lattice spacing), so the
continuum limit is not justified. And there could be the opposite situation (large amplitude, long wavelength), in which
the sine needs to be retained but the continuum limit is allowed.
However, for the kinks and the solitons these approximations are not independent. Parametrically, the length scale of
the waves is of the order of the lattice spacing Λ, so, naively, the continuum (or even the quasi-continuum) limit is not
justified. What we have shown above, is that for the waves with small amplitude |ϕ1| (tanϕ1(ϕ1 −ϕ0)), the length scale
is Λ/|ϕ1| (Λ/(tanϕ1(ϕ1 − ϕ0))), thus justifying the quasi-continuum approximation.

The shocks

Consider JTL with the capacitor and resistor shunting the JJ and another resistor in series with the ground capacitor, shown
on Fig. 1 (right). As the result, Eq. (1) changes to

~
2e

dϕn

dt
=

(
1

C
+R

∂

∂t

)
(qn+1 − 2qn + qn−1) , (33a)

dqn
dt

= Ic sinϕn +
~

2eRJ

dϕn

dt
+ CJ

~
2e

d2ϕn

dt2
, (33b)

where R is the ohmic resistor in series with the ground capacitor, and CJ and RJ are the capacitor and the ohmic resistor
shunting the JJ.
Considering again the running wave solutions we obtain the generalization of Eq. (5)

Λ2

12

d2 sinϕ

dx2
+

(
CJ

C
+

R

RJ

)
U

2
Λ2 d

2ϕ

dx2
+

(
R

ZJ
cosϕ+

ZJ

RJ

)
UΛ

dϕ

dx
= − sinϕ+ U

2
ϕ+ F , (34)

where ZJ ≡
√
LJ/C is the characteristic impedance of the JTL, and we discarded the terms with the derivatives higher

than of the forth order.
We impose the boundary conditions (8) and try to understand what part of the analysis of Section can be transferred to
the present case. The results (12) are determined only by the r.h.s. of Eq. (5), so are (4), following from (12). Since the
r.h.s. of Eqs. (5) and (34) are identical, these equations are valid in the present case also. In particular, we obtain

U
2

= U
2

sh(ϕ1, ϕ2) , (35)

which explains the subscript we introduced in Eq. (13a).
On the other hand, the resistors, by introducing the effective "friction force", break the "energy" conservation law, which
means that the stationary kinks and the solitons we considered previously are no longer possible, however weak the
dissipation is. However in the lossy JTL the solutions with |ϕ2| 6= |ϕ1| (the shocks) are possible.
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The continuum approximation
Looking at Eq. (34) we understand, that when CJ and/or R are large enough, and/or Rj is small enough the first term in
the l.h.s. of (34) (the second term in (2)) can be discarded, hence the continuum approximation is valid, and (34) acquires
Newtonian form [45] (

CJ

C
+

R

RJ

)
d2ϕ

dτ2
+

(
R

ZJ
cosϕ+

ZJ

RJ

)
dϕ

dτ
= − sinϕ+ U

2
ϕ+ F , (36)

where we have introduced the dimensionless time τ = x/(UΛ). In distinction from case of the kinks and the solitons,
now the fictitious particle trajectory connects the "potential energy" maximum with the "potential energy" minimum,
The shocks in the framework of the continuum approximation were studied in our previous publication [45]. In particular,
in the simple case when CJ = 0, R = 0 (when (36) is similar to equation describing the motion of a fluxon in biased long
JJ [42]) and for weak shock (∆ϕ · cotϕ1 � 1), where ∆ϕ ≡ (ϕ1 − ϕ2)/2, Eq. (36) takes the form

ZJ

RJ

dψ

dτ
= sinϕ

(
ψ2 −∆2ϕ

)
, (37)

where ϕ ≡ (ϕ1 + ϕ0)/2 and ψ ≡ ϕ− ϕ. The solution of (37) is

ψ = −∆ϕ tanh

(
RJ

ZJ
∆ϕ sinϕ · τ

)
. (38)

The qualitative analysis
For qualitative analysis of Eq. (34) in the general case, it is better to present it as a system of two first order differential
equations [

cosϕ

12
+

(
CJ

C
+

R

RJ

)
U

2
]

Λ
dχ

dx
=

sinϕ

12
χ2 −

(
R

ZJ
cosϕ+

ZJ

RJ

)
Uχ− sinϕ+ U

2
ϕ+F , (39a)

Λ
dϕ

dx
= χ . (39b)

Now, one important feature of shocks can be understood immediately. We are talking about the direction of shock
propagation. Linearising Eq. (39) in the vicinity of the fixed points (χ, ϕ) = (0, ϕ1) and (χ, ϕ) = (0, ϕ2) we obtain

Λ

(
dχ/dx
dϕ/dx

)
=

(
Mi Ki

1 0

)(
ϕ− ϕi

χ

)
, i = 1, 2 (40)

where

Ki =
U

2 − cosϕi

cosϕi/12 + (CJ/C +R/RJ)U
2 , (41)

and here we are not interested in Mi. From the fact that ϕ1 is the unstable fixed point, and ϕ2 is the stable fixed point we
obtain

cosϕ2 > U
2

sh(ϕ1, ϕ2) > cosϕ1 . (42)

The inequalities (42) allow only one direction of shock propagation - from larger cosϕ to smaller cosϕ. Taking into
account (9), we can present (42) as

u2(ϕ2) > U
2

sh(ϕ1, ϕ2) > u2(ϕ1) , (43)

thus establishing the connection with the well known in the nonlinear waves theory fact: the shock velocity is lower than
the sound velocity in the region behind the shock, but higher than the sound velocity in the region before the shock [1].
Let us write down inequalities (42) explicitly

cosϕ2 >
sinϕ1 − sinϕ2

ϕ1 − ϕ2
> cosϕ1 . (44)

We will combine the case we studied up to now, when ϕ1 was the phase before the shock and ϕ2 - behind the shock, with
the opposite case, which corresponds to indices 1 and 2 in (44) being interchanged. The points in the phase space of the
shock boundary conditions (ϕ1, ϕ2), for which neither (44), nor its interchanged version are satisfied, has very simple
geometric property. The point (ϕ1, ϕ2) belongs to that region, if the secant of the curve sinϕ between the points ϕ1 and
ϕ2 crosses the curve, like it is shown on Fig. 4 (below). Because sinϕ is concave downward for 0 < ϕ < π/2, and
concave upward for −π/2 < ϕ < 0, it never happens if ϕ1, ϕ2 have the same sign. Hence the shock can exist between
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Figure 4: The phase space of the boundary conditions on the ends of the JTL ϕ1 and ϕ2. The region, which corresponds to the forbidden
shock boundary conditions, is shaded (left). The geometric property of the points belonging to the shaded region (right).

any such points. It is not so for ϕ1 and ϕ2 having opposite signs. We present the phase space of shock boundary conditions
on Fig. 4 (above). The forbidden region is shaded.
When the asymptotic phases on the two sides of the JTL belong to the shaded region, probably there exists some inter-
mediate ϕin in between, such that the shocks between ϕ1 and ϕin, and between ϕ2 and ϕin are allowed. Say, when the
phases are ϕ1 and −ϕ1, the system can chose the intermediate value ϕin = 0. In this hypothetical case, the shocks move
in the opposite directions, and the central part with the phase ϕin = 0 expands with the velocity 2Ush(ϕ1, 0). However,
the case of multiple shocks being simultaneously present in the system demands further studies.

The numerical integration
Equation (34) can be easily integrated numerically. For aesthetical reasons let us simplify it by puttingR = 0 andCJ = 0.
(Actually, the physical meaning and the relevance of the resistor in series with the ground capacitor is not obvious. We
included it because we were able to do it for free. The capacitance of the JJ is certainly physically relevant. Anyhow,
when CJ/C � 1, it can be ignored.) After the simplification and substitution of the results for U and F from (4), the
equation becomes

cosϕ

12
Λ2 d

2ϕ

dx2
=

sinϕ

12

(
dϕ

dx

)2

− ZJ

RJ
UΛ

dϕ

dx
− (sinϕ− ϕ2)(ϕ1 − ϕ)− (sinϕ1 − sinϕ)(ϕ− ϕ2)

ϕ1 − ϕ2
.

The result of the numerical integration are shown on Fig. 5 (compare with Figs. 2 (below) and ??).
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Figure 5: The shock profile according to Eq. (45). We have chosen ϕ1 = 1, ϕ2 = .5, ZJ/RJ = .005.

Dissipation is always present in real experiments. And yet we can observe solitary waves (though they are nonstationary,
but practically identical to the corresponding stationary solitons at any given moment of time) in case if dissipation is
weak enough. Looking at Fig. 5 we realize that weak dissipation does not completely kill solitary waves, it just makes
them nonstationary/attenuating. Such solitary waves are observed in numerical calculations and in experiments, as was
the case with granular chains [41, 43]. On the other hand, there is a critical rate of dissipation which transforms oscillating
stationary shock waves into monotonous [47].

Discussion

Recently, quantum mechanical description of JTL in general and parametric amplification in such lines in particular
started to be developed, based on quantisation techniques in terms of discrete mode operators [48], continuous mode
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operators [49], a Hamiltonian approach in the Heisenberg and interaction pictures [50], the quantum Langevin method
[51], or on partitions a quantum device into compact lumped or quasi-distributed cells [52]. It would be interesting to
understand in what way the results of the present paper are changed by quantum mechanics. Particularly interesting looks
studying of quantum ripples over a semi-classical shock [53] and fate of quantum shock waves at late times [54]. Closely
connected problem of classical and quantum dispersion-free coherent propagation in waveguides and optical fibers was
studied recently in Ref. [55].
Finally, we would like to express our hope that the results obtained in the paper are applicable to kinetic inductance
based traveling wave parametric amplifiers based on a coplanar waveguide architecture. Onset of shock-waves in such
amplifiers is an undesirable phenomenon. Therefore, shock waves in various JTL should be further studied, which was
one of motivations of the present work.

Conclusions

We analytically studied the running waves propagation in the discrete Josephson transmission lines (JTL), constructed
from Josephson junctions (JJ) and capacitors. Due to the competition between the intrinsic dispersion in the discrete JTL
and the nonlinearity, in the dissipationless JTL there exist running waves in the form of supersonic kinks and solitons. The
velocities and the profiles of the kinks and the solitons were found. We also studied the effect of dissipation in the system
and find that in the presence of the resistors, shunting the JJ and/or in series with the ground capacitors, the only possible
stationary running waves are the shock waves, whose velocities and the profiles were also found. We have proposed the
integral approximation, which is alternative to the quasi-continuum approximation.
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