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Scope of the conference 

Although the brand name ENOC is still used as the historical abbreviation, the 
present European Nonlinear Dynamics Conferences organized by EUROMECH aim at 
covering the complete field of Nonlinear Dynamics, including Multibody Dynamics 
and coupling to Stability, Identification, Control and (Structural) Optimization. 

Presently, ENOCs are the largest, high-quality, scientific events in the broad area of 
nonlinear dynamics not only in Europe but on a worldwide basis. Indeed, parallel 
important events organized by other Societies often cover partial aspects of the 
whole scientific area, for being either more theoretically or more engineering 
oriented. 

In contrast, ENOC encompasses many diverse topics ranging from dynamical systems 
theory to different engineering applications, and collects scholars from theoretical 
and applied mechanics as well as from applied mathematics and physics, within an 
actually cross-disciplinary framework. 

The 10th European Nonlinear Dynamics Conference (ENOC 2022) is held in Lyon, 
France and is organized by the University of Lyon at the Lyon Convention Centre. 
 

ENOC History 

Since 1992, EUROMECH organizes European Nonlinear Oscillations Conferences 
through the European Nonlinear Oscillations Conference Committee (ENOCC). 
Actually, these events have a much longer tradition, since they are successors of the 
former ICNO (International Conference on Nonlinear Oscillations) series held from 
1961 to 1990 in East-European countries. Starting from the 1st International 
Conference on Nonlinear Oscillations in Kiev, 1961, twelve ICNOs were organized till 
1990. Then, starting with the 1st European Nonlinear Oscillations Conference in 
Hamburg, 1992, nine ENOCs were organized till 2017 (Prague, Copenhagen, Moscow, 
Eindhoven, St. Petersburg, Rome, Wien and Budapest). 

Both the ICNO and ENOC series of conferences intend to be a meeting place for 
nonlinear dynamics' scientists from all over the world, where in particular "East 
meets West" 
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MS-20 Wave propagation in Mechanical Systems and Nonlinear Metamaterials 
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16:00 - 18:20 MS-14 Nonlinear Dynamics for Engineering Design (Rhone 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
16:00 - 18:20 MS-03 Computational Methods (Rhone 3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
16:00 - 18:20 MS-05 Slow-Fast Systems and Phenomena (Saint Clair 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
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16:00 - 18:20 MS-20 Wave propagation in Mechanical Systems and Nonlinear Metamaterials (Saint Clair 3B) . . . . . 250

Tuesday, July 19, 2022

08:30 - 10:30 MS-21 Nonlinear Dynamics in Acoustics (Saint Clair 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
08:30 - 10:30 MS-04 Experiments in Nonlinear Dynamics and Control (Rhone 3B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
08:30 - 10:30 MS-01 Reduced-Order Modeling and System Identification (Saint Clair 3B) . . . . . . . . . . . . . . . . . . . . . . . 304
08:30 - 10:30 MS-14 Nonlinear Dynamics for Engineering Design (Rhone 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
08:30 - 10:30 MS-13 Nonlinear Dynamics in Biological Systems (Saint Clair 3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
08:30 - 10:30 MS-16 Random Dynamical Systems - Recent Advances and New Directions (Saint Clair 1) . . . . . . . . . 349
08:30 - 10:30 MS-03 Computational Methods (Rhone 3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
08:30 - 10:30 MS-15 Energy Transfer and Harvesting in Nonlinear Systems (Rhone 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 375
08:30 - 10:30 MS-09 Nonlinear Dynamics in Engineering Systems (Auditorium Lumiere) . . . . . . . . . . . . . . . . . . . . . . . 388

13:30 - 15:30 MS-01 Reduced-Order Modeling and System Identification (Saint Clair 3B) . . . . . . . . . . . . . . . . . . . . . . . 406
13:30 - 15:30 MS-21 Nonlinear Dynamics in Acoustics (Saint Clair 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
13:30 - 15:30 MS-13 Nonlinear Dynamics in Biological Systems (Saint Clair 3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
13:30 - 15:30 MS-08 Nonlinear Phenomena in Mechanical and Structural Systems (Rhone 3B) . . . . . . . . . . . . . . . . . . . 453
13:30 - 15:30 MS-16 Random Dynamical Systems - Recent Advances and New Directions (Saint Clair 1) . . . . . . . . . 478
13:30 - 15:30 MS-12 Micro- and Nano-Electro-Mechanical Systems (Rhone 3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
13:30 - 15:30 MS-14 Nonlinear Dynamics for Engineering Design (Rhone 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
13:30 - 15:30 MS-15 Energy Transfer and Harvesting in Nonlinear Systems (Rhone 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 514
13:30 - 15:30 MS-09 Nonlinear Dynamics in Engineering Systems (Auditorium Lumiere) . . . . . . . . . . . . . . . . . . . . . . . 525

16:00 - 18:20 MS-01 Reduced-Order Modeling and System Identification (Saint Clair 3B) . . . . . . . . . . . . . . . . . . . . . . . 536
16:00 - 18:20 MS-10 Non-Smooth Dynamics (Saint Clair 3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
16:00 - 18:00 MS-07 Dynamics and Optimization of Multibody Systems (Saint Clair 2) . . . . . . . . . . . . . . . . . . . . . . . . . 571
16:00 - 18:20 MS-05 Slow-Fast Systems and Phenomena (Saint Clair 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
16:00 - 18:20 MS-08 Nonlinear Phenomena in Mechanical and Structural Systems (Rhone 3B) . . . . . . . . . . . . . . . . . . . 603
16:00 - 18:20 MS-06 Fractional Derivatives (Rhone 3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
16:00 - 18:20 MS-14 Nonlinear Dynamics for Engineering Design (Rhone 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
16:00 - 18:20 MS-15 Energy Transfer and Harvesting in Nonlinear Systems (Rhone 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 636
16:00 - 18:20 MS-09 Nonlinear Dynamics in Engineering Systems (Auditorium Lumiere) . . . . . . . . . . . . . . . . . . . . . . . 649

Wednesday, July 20, 2022

08:30 - 10:30 MS-22 Special session dedicated to L.I. Manevitch (Saint Clair 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
08:30 - 10:30 MS-16 Random Dynamical Systems - Recent Advances and New Directions (Rhone 2) . . . . . . . . . . . . . 677
08:30 - 10:30 MS-21 Nonlinear Dynamics in Acoustics (Saint Clair 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
08:30 - 10:30 MS-08 Nonlinear Phenomena in Mechanical and Structural Systems (Rhone 3B) . . . . . . . . . . . . . . . . . . . 726
08:30 - 10:30 MS-03 Computational Methods (Rhone 3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
08:30 - 10:30 MS-18 Control and Synchronization in Nonlinear Systems (Rhone 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754
08:30 - 10:30 MS-09 Nonlinear Dynamics in Engineering Systems (Auditorium Lumiere) . . . . . . . . . . . . . . . . . . . . . . . 773
08:30 - 10:30 MS-17 Time-periodic systems (Saint Clair 3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
08:30 - 10:30 MS-19 Fluid-Structure Interaction (Saint Clair 3B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808
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Thursday, July 21, 2022
08:30 - 10:30 MS-19 Fluid-Structure Interaction (Saint Clair 3B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826
08:30 - 10:30 MS-17 Time-periodic systems (Saint Clair 3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
08:30 - 10:30 MS-11 Systems with Time Delay (Saint Clair 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852
08:30 - 10:30 MS-02 Asymptotic Methods (Saint Clair 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
08:30 - 10:30 MS-08 Nonlinear Phenomena in Mechanical and Structural Systems (Rhone 3B) . . . . . . . . . . . . . . . . . . . 875
08:30 - 10:30 MS-12 Micro- and Nano-Electro-Mechanical Systems (Rhone 3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891
08:30 - 10:30 MS-16 Random Dynamical Systems - Recent Advances and New Directions (Rhone 2) . . . . . . . . . . . . . 904
08:30 - 10:30 MS-18 Control and Synchronization in Nonlinear Systems (Rhone 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909
08:30 - 10:30 MS-09 Nonlinear Dynamics in Engineering Systems (Auditorium Lumiere) . . . . . . . . . . . . . . . . . . . . . . . 920

13:30 - 15:30 MS-17 Time-periodic systems (Saint Clair 3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931
13:30 - 15:30 MS-11 Systems with Time Delay (Saint Clair 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942
13:30 - 15:30 MS-02 Asymptotic Methods (Saint Clair 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955
13:30 - 15:30 MS-12 Micro- and Nano-Electro-Mechanical Systems (Rhone 3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965
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Summary. Nonlinear gear dynamic response and rattle noise induced by vibroimpacts between gear teeth are investigated using a specific 
experimental set-up allowing the visualization of impacts thanks to a high-speed camera. The control parameters during the experiment are 
the drag torque, the mean drive gear rotational speed, and the velocity fluctuation amplitude and frequency. Most of the time, an almost 1T-
periodic response is observed with 2 impacts per period. A contact phase between gear teeth is observed after each impact instead of an 
instantaneous rebound. The number of successive tooth pairs crossing the meshing zone without any contact between gear teeth varies 
according to the ratio of the excitation frequency to the rotation frequency. Analytical and numerical works performed using a gear rattle 
model show good agreement with the experiments. Finally, the sound pressure emitted from the gear pair is measured. The acoustic power 
imputable to gear rattle is found to be proportional to the total kinetic energy transferred per second to the system by the successive impacts.  

Introduction 

Many geared systems, are subjected to such external excitations that contact losses between gear teeth may occur under 
some particular operating conditions (e. g. manual automotive gearbox [1], roots vacuum pump [2]). The nonlinear gear 
dynamic response is then characterized by impacts between the active and/or the reverse tooth flanks, leading to a 
broadband noise emitted from the mechanical system known as gear rattle noise. In this study, a specific experimental 
set-up is designed to analyse the rattle behaviour of a spur gear. Most of the key parameters governing the nonlinear 
dynamics are controlled during the experiments, that is to say the velocity fluctuation amplitude and frequency of the 
drive gear, the inertia of the output gear, the drag torque, and the gear backlash. Unlike most systems and experimental 
studies, the vibratory level of the drive gear is controlled independently of its mean rotational speed. Operation is 
performed without oil lubrication in order to allow simple modelling of the elastic and damping characteristics during 
impacts and easy direct visualization of the meshing zone, thanks to a high-speed camera. The occurrence of successive 
impacts between gear teeth obtained from video post-processing are then coupled with the gear dynamic transmission 
error measurement thanks to high resolution optical encoders. Finally, the sound pressure generated by successive impacts 
between gear teeth is also measured thanks to a microphone. 

 
Figure 1: Impact response (numerical transmission error, Poincaré section, experimental transmission error) for several velocity 

fluctuation frequency and amplitude. 
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Nonlinear gear dynamic responses 

The instantaneous drive gear velocity is: 
 𝛺ሺ𝑡ሻ = 𝛺0 + 𝛥𝛺 sinሺ𝜔𝑡ሻ (1) 
The piloting allows increasing and decreasing sweeps of the mean rotational speed 𝛺0, the velocity fluctuation amplitude 𝛥𝛺 and frequency 𝜔. Parameters are controlled independently. First, the effect of velocity fluctuation amplitude 𝛥𝛺 is 
analysed for a chosen excitation frequency 𝜔. Second, the effect of the excitation frequency 𝜔 is analysed for a chosen 
velocity fluctuation amplitude 𝛥𝛺. For a very low excitation, an almost permanent contact between the active flanks is 
observed. When the amplitude is increased, the rattle threshold is reached. Video post-processing (see figure 2) and 
dynamic transmission error response (see figure 1) show noticeable contact losses and impacts. First, impacts only occur 
between the active flanks with a low impacting velocity, because the excitation amplitude is still too low to cross the gear 
backlash. Larger excitation amplitude leads to successive impacts alternating between the active and the reverse flanks. 
The output gear crosses the gear backlash forward and backward. Each impact is followed by a persistent contact phase 
between the gear teeth. The free flight period and the following persistent contact phase show a duration of the same order 
of magnitude. Considering the period of the excitation 𝑇 = ʹ𝜋/𝜔, the gear dynamics corresponds to a 1T-periodic 
response with 2 impacts per period. Poincaré sections show that impact phases and impacting velocities are almost 
constant for all the successive impacts between the active flanks, as well as for all the impacts between the reverse flanks. 
Visualization confirms that the number of successive tooth pairs in contact and the number of successive tooth pairs 
crossing the meshing zone without any contact between gear teeth vary according to the ratio of the excitation frequency 
to the rotation frequency. 

 𝑡 = 0 
 𝑡 = 𝑇/ͺ 

 𝑡 = 𝑇/Ͷ 
 𝑡 = ͵𝑇/ͺ 

 𝑡 = 𝑇/ʹ 
 𝑡 = ͷ𝑇/ͺ 

 𝑡 = ͵𝑇/Ͷ 
 𝑡 = 𝑇/ͺ 

Figure 2: Sequence of images of the contact along a period of excitation.  
 

The gear rattle dynamics is modelled with a SDOF bouncing ball with two moving walls excited by the velocity 
fluctuation. After adjustment of the restitution coefficient modelling the damping characteristics during impacts, a very 
good agreement between experimental and numerical results is observed. A slight difference is confirmed between active 
flanks impacts and reverse flanks impacts for which the impacting velocity is slightly lower. The squared impacting 
velocity transferred to the system, shows a linear relationship with the product 𝜔𝛥𝛺. It is proportional to the impacting 
kinetic energy which is entirely transferred to the system, because of the persistent contact observed after the impact. 
Taking account of the number of impacts per second proportional to 𝜔, the assumption that the acoustic power generated 
by the successive impacts is proportional to the energy transferred to the system per second i.e. parameter 𝜔²𝛥𝛺, is 
validated by rattle noise measurement. For low amplitude of parameter 𝜔²𝛥𝛺, the successive impacts are clearly audible 
once they occur, but the sound pressure radiated from the system is mainly due to the gear whining noise. For larger 
amplitude of parameter 𝜔²𝛥𝛺, the rattle noise induced by the successive impacts becomes the main source of acoustic 
nuisance. 
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Ensemble Models for Identification of Nonlinear Systems with Stick-Slip

Ingrid Pires∗, Helon Vicente Hultmann Ayala∗ and Hans Ingo Weber∗
∗Department of Mechanical Engineering, Pontifical Catholic University, Rio de Janeiro, Brazil

Summary. The nonlinear interactions between the drilling equipment and the rock formation result in torsional, axial, and lateral
oscillations in oil drilling routines. Concerning torsional oscillations, the stick-slip phenomenon is the most severe stage. This kind of
self-sustained vibrations compromise the performance of mechanical systems. Accordingly, adequate mathematical models are required
to analyze these vibrations. In this work, we study two different ways of combining system identification techniques. We employ time-
domain data of an experimental setup to build ensemble models. Then we simulate the system and compare their effectiveness in
enhancing the accuracy of model predictions and reproducing the stick-slip phenomenon.

Introduction

The nonlinear interactions between the drilling equipment and the rock formation result in torsional, axial, and lateral
oscillations in oil drilling routines. The stick-slip phenomenon is the most severe stage of torsional oscillations. In these
drilling processes, the phenomenon of stick-slip is the alternation of two phases: the stick phase, in which the drill bit
remains stopped by the resistive torque, and the slip phase, which begins when the stored energy overcomes the resistive
torque, and the bit is set in motion.
Stick-slip oscillations compromise the performance of mechanical systems [1], therefore proper mathematical descriptions
are required to simulate and analyze the system. Extensive surveys on drill string modeling and dynamics can be found in
[2, 3].
A common practice is to model the nonlinear interaction between the drill string and rock as dry friction. Regarding the
stick-slip phenomenon, the complexity of the analysis lies in the fact that two different friction mechanisms govern the
motion. During the stick phase, the static friction rules the motion, while velocity-dependent kinetic friction governs it
during the slip phase [1].
Practical limitations of analytical analysis motivate the application of system identification, which comprises a set of
techniques for building data-based models. The author of [4] classifies system identification techniques in white, gray, and
black-box. They differ from each other by the amount of prior knowledge employed in the construction of mathematical
models.
This paper explores two different methods of building ensemble models for an experimental drill string setup. The
ensemble model, in this context, consists of a combination between grey and black-box approaches. The test rig used in
this study uses dry friction contact to simulate the nonlinear interactions present in drilling routines. We employ time-
domain data to build the ensemble models and compare their effectiveness in enhancing the accuracy of model predictions
and reproducing the stick-slip phenomenon. The main contribution of this work is the investigation of the suitability of
the ensemble of gray and black-box approaches for the identification of systems with friction-induced vibrations.

Experimental system

The test rig employed in this study is a horizontal apparatus composed of a DC motor connected to two solid discs by a
low stiffness shaft. The shaft transmits torque and motion from the DC motor to the discs, which are free to rotate. Figure
1 displays a picture of the experimental setup.

Figure 1: Experimental test rig composed of DC motor, solid discs, and low stiffness shaft.

The rig can replicate the undesired torsional vibrations present in drilling routines. Two braking devices act on the solid
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Figure 2: Measured time history of (top) disc angular velocity, ωd; and (bottom) motor torque, τm.

discs to induce friction torque, leading the system to exhibit torsional oscillations and stick-slip. Only the subsystem
composed of one of the discs, the intermediary one, and the shaft connecting it to the DC motor is considered in this work.

The dynamical model
Assuming that the subsystem composed of the intermediary disc and the shaft connecting it to the DC motor behaves as a
torsional pendulum and that the only resistive torque in the system is caused by the friction torque induced by the braking
device, we modeled it as:

Jdθ̈d + c(θ̇d − θ̇m) + cdθ̇d + k(θd − θm) = −Tf ,
Jmθ̈m + c(θ̇m − θ̇d) + cmθ̇m + k(θm − θd) = τm,

(1)

where the moments of inertia of the disc and the motor are Jd and Jm. The shaft stiffness is denoted by k and the internal
damping by c. cd and cm are the external dampings. θ, θ̇, and θ̈ are the angular displacement, angular velocity, and
angular acceleration of the inertias, respectively. The resistive friction torque on disc D2 is denoted by Tf , and the torque
transmitted to the mechanical subsystem is denoted by τm.

The experimental data
We utilized a LabView-based Data Acquisition System (DAQ) to measure forces, displacements, and velocities. Figure
2 shows the time histories of the disc angular velocity (top) the motor torque (bottom). The motor torque is the system
input, and the disc angular velocity is the system output.
We acquired these records for a nominal angular velocity of 5.76 rad/s and an average normal contact force between pin
and disc of 50 N . As we can observe in Fig. 2, this combination of nominal angular velocity and normal force leads the
system to exhibit stick-slip oscillations. The signals were recorded for 270 seconds.

Methodology

This analysis employs the test rig physical description in two different ensemble models to improve the precision of the
predictions. There are three approaches for system identification: white, gray, and black-box. The techniques differ from
each other by the amount of prior knowledge used in the mathematical models’ construction. The white-box approach
applies only physical insight, the gray-box uses less physical information, and the black-box does not involve a priori
knowledge. The ensemble models studied in this paper are combinations of gray and black-box components.
This study compares two different methods of building ensemble models. According to [5], one method to build an
ensemble model is to use a white-box as a mean function and fit the model residuals using a black-box algorithm. Instead,
in this study, we used the gray-box model as a mean function and modeled the residuals with a black-box algorithm:
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ŷe =

gray-box︷ ︸︸ ︷
f(x, u)+

black-box︷ ︸︸ ︷
g(ê, u) (2)

where ŷe is the predicted output of the ensemble model. ŷe is a sum of the predicted system model output ŷm = f(x, u)
and the predicted model residual ê = g(ê, u). The predicted system output ŷm is a function of the system input u, and
space states x, and the predicted error ê is a function of the system input u and itself. Another way to construct an
ensemble model is to use the information encoded in a white or a gray-box model as an additional input to the black-box.
Here, we used the gray-box model output as an input to the black-box as follows:

ŷe =

black-box︷ ︸︸ ︷
h(e, f(x, u)︸ ︷︷ ︸

gray-box

) (3)

h is a function of the model residual, e, and the output of the gray-box model f(x, u). For simplicity, we name (2) Model
1 and (3) Model 2 in the analysis. Figure 3 gives a general overview of the methodology employed for the formulation of
Model 1 and Model 2.

Simulated outputMeasured output

Test rig
Physical
model

Simulated error

Black-box
model

error

+ -

++

Simulated outputMeasured output

Test rig
Physical
model

Black-box
model

error

+ -

Model 1 Model 2

Figure 3: Methodological formulations for (right) Model 1, and (left) Model 2.

Gray-box model
Physical and semi-physical models are particular cases of gray-box models and are related to the estimation of the physical
parameters of a system. To estimate the physical parameters of the test rig described by (1), we defined the following
state-variables:

x =
[
δ θ̇d ˙θm

]T
,

where δ = θd − θm is the angular difference. Therefore, (1) can be rewritten as a state-space system as follows:

ẋ =




0 1 −1
−k/Jd −(c+ cd)/Jd c/Jd
k/Jm c/Jm −(c+ cm)/Jm


 x +




0 0
−1/Jd 0

0 1/Jm



[
Tf
τm

]

ym =
[
0 1 0

]
x

(4)

where ym is the output of our gray-box model. The system of (4) is nonlinear since resistive friction torque Tf is a
nonlinear function of the disc angular velocity ωd. Tf is given by:

Tf = Ffa, (5)

where a is the distance between the disc center and the disc-pin contact point. Ff is the friction force.
The Coulomb friction model states that friction opposes the relative motion between contacting surfaces, and its magnitude
is proportional to the normal contact force. The classical Coulomb friction model presents a velocity dependence by the
sign function that introduces a discontinuity in the system of ODEs. The regularized Coulomb friction model, instead,
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considers the hyperbolic tangent with the transition velocity, vt, approximation for this study to avoid discontinuities. The
following equation defines the regularized model:

Ff = FC tanh
(
v

vt

)
. (6)

where Ff is the friction force, FC = µkFN is the magnitude of the Coulomb friction, v is, from the perspective of the
body, the relative tangential velocity between the contacting surfaces, FN is the normal force, and µk is the kinetic friction
coefficient. For simplicity, we consider TC = FCa as the resistive torque related to the kinetic Coulomb friction.

Black-box model
Black-box models are constructed without a priori information. Data acquired from experimentation is used to capture
the system dynamics in this modeling. Regarding black-box, we utilized the AutoRegressive eXogenous (ARX) model
and the Nonlinear AutoRegressive eXogenous (NARX) model. The ARX structure is:

y(k) = −(a1y(k − 1) + a2y(k − 2) + ...+ any(k − ny))+
(b1u(k) + b2u(k − 1) + ...+ bn+1u(k − nu)),

(7)

where y(k), u(k) are the system output and input, respectively; and ny and nu are the maximum lags at the system output
and input, respectively.
The NARX models are a nonlinear extension of the ARX models [6, 7].The NARX structure is:

y(k) = F (y(k − 1), y(k − 2), ..., y(k − ny),
u(k − d), u(k − d− 1), ..., u(k − d− nu)),

(8)

F is some nonlinear function, and d is a time delay.

Results and Discussion

We evaluated the performance of the proposed identification methodology via simulation. First, we integrated (4) utilizing
the 5th-order Runge-Kutta numerical method with a time step equal to 0, 01 in Matlab. The simulations employed the
experimental data for input τm. The data set employed for the identification is composed of experimental data from 30 to
90 seconds. And the one used for the validation analyses is composed of experimental data from 120 to 180 seconds.
Table 1 gives the set of estimated parameters obtained employing the system dynamics forward simulation. Using the
estimated parameter depicted in Table 1, we simulated the system and calculated the error of prediction to build the
ensemble models.

Table 1: Estimated parameters values

k (Nm/rad) 0.1614
c (Ns/m) 0
cd (Ns/m) 0
cm (Ns/m) 0.0071
TC (Nm) 0.2278

For Model 1, the NARX model with motor torque τm as input, and error e as output was built as follows:

e(k) = α1e(k − 1) + α2e(k − 2) + β1τm(k − 1) + beta2τm(k − 2) +1 e(k − 1)τm(k − 1), (9)

where α1, α2, β1, β2, and γ1 are the parameters of the NARX model. We trained the black-box model with the recorded
input and output data of the time interval from 30 to 90 seconds of the recording in Fig. 2 and validated it by employing
the recorded input and output data of the time interval from 120 to 180 seconds. We constructed the ensemble model as
displayed in (2).
For Model 2, the ARX model with error e and ym as input, and ensemble model ye as output was built as follows:

ye(k) = −(a2e(k − 2) + b1ym(k − 1) + b2ym(k − 2)) + c1ye(k − 1), (10)

where a2, b1, b2, and c1 are the parameters of the ARX model. We trained the black-box model with the recorded input
and output data of the time interval from 30 to 90 seconds of the recording in Fig. 2 and validated it by employing the
recorded input and output data of the time interval from 120 to 180 seconds. We constructed the ensemble model as
displayed in (3).
Figure 4 depicts the free-run prediction obtained with Model 1 (top) and Model 2 (bottom), plotting the direct comparison
of experimental and estimated time histories of the disc angular velocity for the validation set. The two ensemble models
can reproduce the torsional oscillations with the stick-slip phenomenon observed in the experimental results. Figure 5
shows us one interval of the stick phase, comparing measurements and estimations for the two models.
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Figure 4: Comparison of measured and predicted disc angular velocity using: (top) Model 1, and (bottom) Model 2.
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Figure 5: Comparison of measured and predicted disc angular velocity, one stick phase interval, using: (top) Model 1, and (bottom)
Model 2.

Figure 6 plots the histogram of the prediction errors for both Models. From the graph of Fig. 6, we can conclude that
Model 2 presents the higher prediction errors. Table 2 presents the Root Mean Squared Error (RMSE) and the maximum
error for the two ensemble models. From Tab. 2, we see that the ensemble Model 1 presented the lowest RMSE score and
the lowest maximum error.

Table 2: RMSE and maximum error scores

RMSE max error
Model 1 0.0897 0.3065
Model 2 0.1514 0.4741

As we are interested in the accuracy of predictions and the reproduction of the dynamical phenomenon observed in
experimental tests, we also evaluate the average duration of the stick intervals. Table 3 presents the estimated mean stick
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Figure 6: Histogram of prediction errors for Model 1 and Model 2.

duration for the two ensemble models studied. The mean stick interval duration predicted with Model 1, 0.3715s, is the
one that gets closer to the calculated from experimental measurements, that is 0.3770s.

Table 3: Mean stick duration

Model 1 0.3715
Model 2 0.3913

We chose the RSME, the maximum errors, and the average duration of the stick intervals to compare the model’s effec-
tiveness in enhancing the accuracy of predictions and reproducing the stick-slip phenomenon. From the results presented
in Table 2 and Table 3, we can say that the ensemble Model 1 performs better in reproducing the test rig experimental
data when compared to the ensemble Model 2.

Concluding Remarks

In this work, we compared two different methods of combining system identification techniques. The investigated system
is a laboratory test rig that reproduces the torsional vibration of a drill string in drilling operations. We estimated the
mechanical parameters and dry contact friction parameters utilizing measured data. With the estimated parameters, we
built the ensemble models. Model 1 uses the gray-box model as a mean function and adds the black-box modeled
residuals; Model 2 uses the information encoded in the gray-box model as an input to a black-box model.
The proposed ensemble models combine the physics-based approach and ARX or NARX formulations to capture the
aspects of the dynamical response missed by the physical model alone. The hybrid formulations were proposed to increase
the accuracy of the predictions without losing interpretability.
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Summary. In this paper, control based continuation (CBC) is exploited to systematically characterise in a controlled manner the LCOs
of an airfoil during wind tunnel tests. Limit cycle oscillations (LCOs) are found in a wide range of engineering systems such as aircraft,
valves, towed wheels and machine tools. The development of corresponding mathematical models that can accurately predict the region
where LCOs exist is challenging, especially when the LCOs coexist with the stable equilibrium of the system. Experimental validation
is also challenging as the LCOs that can be observed during tests can have large amplitudes. Contrary to previous applications of CBC,
the present system is autonomous and the frequency of oscillation is therefore a priori unknown. A phase-plane (geometric) control
approach is used to overcome this difficulty. Experimentally measured bifurcation diagrams are then exploited for parameter estimation
and model validation.

Introduction

Limit cycle oscillations (LCOs) are found in a wide range of engineering systems such as aircraft, valves, towed wheels
and machine tools. In those systems, LCOs emerge from a Hopf bifurcation which can either be super- or sub-critical.
The latter is particularly problematic as the stable equilibrium of the system will coexist with LCOs that have potentially
large amplitudes. A transition from the equilibrium to such a large-amplitude LCO could cause unacceptable oscillation
amplitudes and even lead to catastrophic failures.
The development of mathematical models that can accurately capture the region where the equilibrium and the LCOs
coexist is key to the proper operation and safety of those engineering systems. However, this is very difficult task as
it often entails capturing complex nonlinear physical phenomena such as fluid-structure interactions (see example here
below). Furthermore, parameter estimation and model validation may not be able to exploit LCO data as it would be
unsafe to operate the system in this regime of motion.
In this paper, we overcome these difficulties using control-based continuation (CBC). CBC is an experimental scheme that
combines feedback control with path following techniques to systematically investigate the dynamic behaviour of physical
systems. CBC was applied to a wide range of mechanical experiments such as a impact oscillators, nonlinear energy
harvesters, and a cantilever beam with a nonlinear mechanism at its free tip [3, 2, 4]. Here, CBC is exploited to characterise
the dynamics of a two-degree-of-freedom airfoil exhibiting LCOs through a subcritical Hopf bifurcation. Testing such
a system with a feedback controller provides numerous advantages compared to classical open-loop experiments. If
properly designed, the controller maintains the response of the system around a prescribed operating point, avoiding
untimely transitions to other, potentially dangerous behaviours. The controller also modifies the linearization of the
dynamical system such that unstable responses are stable and hence observable. The unstable LCOs correspond to smaller
oscillation amplitudes which can be safely measured and exploited for parameter estimation and model validation.

Application of CBC to LCOs

The fundamental idea of CBC is to find a suitable target signal for the controller such that it becomes non-invasive and
does not modify the position in parameter space of the responses of the open-loop experiment of interest. The target signal
is usually described by a finite sum of Fourier modes whose coefficients can be found iteratively. Until now, the frequency
of the target signal was known a priori and identical to the frequency of the external excitation applied to the system (see,
for instance, [2]). This is no longer the case here where the system is autonomous.
To overcome this difficulty and obtain the appropriate frequency for the target signal, the fundamental component of the
target signal z∗(t) is phase locked with the measured response of the system z1(t). This is equivalent to locking the phase
between force and the response of the forced Hopf bifurcation. For simplicity, the target signal is also limited to a single
Fourier mode. Assuming that the measured signal z1 is analytic, it and it’s time derivative can be expressed as

z1(t) =A(t) cos (φ),

z2(t) =ż1(t) = −φ̇A(t) sin (φ)
(1)

where,A(t) is the instantaneous amplitude, φ is the instantaneous phase of the response, φ̇ is the frequency of the response.
The target signal can then be set as

z∗(t) = Â cos (φ) where φ = tan−1

(−z2(t)
φ̇z1(t)

)
(2)

and Â is the unknown amplitude of the control target. The amplitude coefficient Â is found such that the controller
becomes non-invasive. This is achieved by solving the zero problem Ξ = Â−A(Â) whereA is amplitude of the measured
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Figure 1: Picture of the flutter rig and CBC results of two systems. (a) Picture of the rig (b) CBC result and numerical
computation of LCO of the model (system 1) (c) CBC result and numerical computation of LCO of the model (system 2).
( ) is measured stable LCO, ( ) is measured unstable LCO, ( ) is computed LCO from the model.

response. This one-dimensional problem can be solved using Newton-like algorithms or, more simply, by testing a range
of target amplitudes and taking the one for which |Ξk| < δ, where δ is a user-defined tolerance.

Experimental results

CBC was applied to a flutter rig (Figure 1(a)) with a rigid NACA-0015 wing profile and two degrees of freedom (heave
and pitch). The heave motion was measured using a laser displacement sensor and the control force was applied to the
heave motion using an APS Electro-Seis Shaker. The CBC algorithm were run on a laptop computer connected to a
real-time controller (RTC). The RTC consists of a BeagleBone Black on which is fitted with a custom data acquisition
board [1] in which the real-time feedback controller was implemented. Measurement and actuation was performed with a
sampling frequency of 5 kHz.
The bifurcation diagram obtained using CBC is presented in Figure 1 (b)-(c). LCOs measured at different wind velocities
represent either unstable ( ) or stable ( ) LCOs of the underlying uncontrolled experiment. The location of the sub-critical
Hopf bifurcation and the LCOs represent valuable information that was exploited to estimate the nonlinear parameters of
the mathematical model. This models accounts for the presence of linear and nonlinear stiffnesses in heave and pitch. It
also includes an unsteady representation of the aerodynamics. The bifurcation diagrams found for this model are shown
in Figure 1(b)-(c) for two diffrent configurations. The agreement between the model and the unstable responses is very
good. The significant difference observed at high amplitudes between the model and the experimentally-measured stable
LCOs is thought to be due to complex aerodynamic phenomena that are not included in the model.

Conclusions

Control-based continuation was exploited to characterise the limit cycle oscillations of a flutter rig in wind tunnel tests.
The control target signal was phase-locked with the response of the system to find and match the frequency of oscillation.
Identified LCOs were exploited to estimate parameters of a model and reproduce numerically the bifurcation diagram of
the system.
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Summary  
Bistable cantilever shells subjected to harmonic base excitation have been experimentally investigated with the aim of extending previous 
quasi-static studies [1] and characterizing their nonlinear dynamic behavior. The tested shells have rectangular planform and almost 
cylindrical shape. Their shorter edge, flattened by means of a specifically designed clamp, has been excited using an electrodynamic 
shaker. Sensors and dedicated interface electronics for forward and backward frequency sweeping and control have allowed the 
identification of the nonlinear resonance curves. Such curves describe the intrawell nonlinear dynamics around the stable equilibrium 
configurations of the tested shells and have clearly exhibited the expected softening behaviour. Moreover, the experimental campaign 
provided insights on the dynamic regimes enabling to trigger snap-through mechanisms.  

Introduction 

The possibility to design and manufacture bi- or multi-stable structures is interesting for both technological and 
scientific reasons. As an example, a bistable device consisting of a ferromagnetic cantilever elastic beam and two fixed 
magnets has been proposed in [2]; for such a system the bistability is the result of the interaction between the magnetic 
field yielded by the magnets and the beam. The authors found the occurrence of nonlinear phenomena, including chaos; 
in this case the bistability has been exploited to harvest energy from the beam motion. More complicated bistability or 
multistability systems are presented in the doctoral dissertation [3], where potential applications in aircraft and 
aerospace industries are suggested. A special class of cantilever composite shells exhibiting multi-stability has been 
presented by the authors in [1]. Finite element numerical simulations confirmed by experimental tests demonstrated the 
existence of two or four stable equilibrium configurations, depending on the shape of the natural stress-free 
configuration of the shell. While therein the research was limited to quasi-static analysis, in this contribution the aim is 
to perform experimental tests for characterizing the nonlinear dynamics of the multi-stable shells. 

Tested composite shells and experimental setup 

The manufactured shells are made of carbon-epoxy unidirectional eight-layers composite with stacking sequence [45/-
452/45/-45/452/-45]. Each prototype has been manufactured using autoclave technology; we refer to [1] for all the 
details about the shell geometry and the constitutive properties. During the manufacturing process different moulds 
have been used to obtain the two shapes chosen for the prototypes. These latter have an almost cylindrical shape and 
differ only in length; we label A the longer shell, B the shorter. The natural stress-free configuration of A and B shells is 
shown in Figure 1. After flattening and clamping one of the shorter edges both shells turn out to be bi-stable, with I or C 
stable shape configurations (see reference [1]). 
The shells are clamped into a special holder and then mounted on the electrodynamic shaker armature. The structure is 
then kinematically excited with the shaker controller set in sine mode with a constant acceleration of amplitude ashaher. 
The excitation frequency f(t) has been swept forward and then backward and the shell response has been measured by a 
piezoelectric triaxial accelerometer (ax,ay, az). Based on the measured signals, the experimental resonance characteristics 
have been identified. 
 

 
Figure 1: Shell shape before clamping, variant A and B. 

Experimental results 

The experimental results for the (longer) shell A are shown in Figure 2 for I (Figure 2 a) and C stable shapes (Figure 
2b), respectively (accelerometer at the free end). For the I stable shape the softening effect is clearly visible: when 
incrementing the excitation amplitude the resonance is shifted towards lower frequencies. In contrast, for the C stable 
shape the resonance shifting is not so evident. 
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a)      b) 

 
 

Figure 2: Resonance characteristics of A shell; a) I stable configuration, b) C stable configuration 
solid line - frequency sweep forward, dashed line - frequency sweep backward  

 
a)      b) 

 
 

Figure 3: Resonance characteristics of B shell; a) I stable configuration, b) C stable configuration 
solid line - frequency forward, dashed line - frequency backward  

 
The experimental curves for the (shorter) shell B are shown in Figure 3 (accelerometer at the clamped end). As 
expected, the resonance frequencies of the shorter shell are higher than those of the longer shell. For example, the 
natural frequency of the I stable configuration is about 11 Hz for the shell B (Figure 3a) and about 7 Hz for the shell A 
(Figure 2a). In this case the softening effect is evident on both Figures 3a and 3b: for the shorter shell, as the excitation 
amplitude is increased, the resonance frequencies for both the I and C stable shapes are shifted towards lower values. 

Conclusions 

In this contribution the nonlinear dynamics of bi-stable composite shells has been experimentally investigated. The intrawell 
dynamics around the stable configurations has shown a softening behaviour for both the manufactured prototypes. While 
the snap-through phenomenon has not been found in the present experimental set-up, further on-going tests are devoted to 
trigger a shape jump between the I and C stable configurations. The obtained data will be used to validate numerical models 
as well as reduced order semi-analytical models. 
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Summary. We study experimentally and numerically the propagation of an air bubble through a fluid-filled, geometrically-perturbed
Hele-Shaw channel; a system which supports several stable modes of steady bubble propagation. During its transient evolution, a
bubble may undergo several topological changes in the form of breakup and coalescence, depending on both initial conditions and
control parameters. Long-term, either a single asymmetric or symmetric bubble is recovered or else multiple bubbles remain, whose
relative separation increases with time. We explore how the transient and long-term evolution is controlled by edge states available to
the bubble, which may change with each new topological configuration.

Introduction

Two-phase displacement flow in a confined geometry is a fundamental problem in fluid mechanics with applications in
biomechanics, geophysics and industry. A canonical example is the viscous fingering instability which occurs when air
displaces a viscous fluid in a Hele-Shaw channel of width much greater than its depth. An initially flat interface evolves
into a single finger of air, symmetric about the centreline of the channel [1]. When the nondimensional driving flux is
above a threshold, which depends on the roughness of the channel, this finger is observed to become unstable to tip-
splitting leading to the emergence of complex patterns [2]. As the steady solution is linearly stable for all computed flow
rates [3], these further instabilities must arise subcritically. For both air fingers (i.e. of semi-infinite extent) and bubbles
(with fixed volume), models of the system also contain alternative, weakly-unstable families of multiple-tipped symmetric
solutions and asymmetric solutions in addition to the linearly stable solution branch [4].
The system can be perturbed by introducing a small depth-perturbation to the channel cross section (see figure 1a, b)
(termed a ‘rail’) which discourages propagation in the centre of the channel. The perturbed system is axially uniform
and can support invariant propagation modes, which are broadly similar to those in the Hele-Shaw channel of rectangular
cross-section. However, their stability is altered so that multiple linearly stable steady solutions occur for the same driving
parameters (figure 1c). Hence, several long-term outcomes are possible for a bubble propagated from a centred initial
position. For small flow-rates the bubble will readily settle on a stable off-rail state (see figure 1c) but for larger flow-
rates the bubble shape will become increasingly deformed and a large range of transient behaviour is observed, including
tip-splitting, and oscillatory behaviour [5]. Our previous studies have focused on a single-bubble configuration, where
we showed that the bubble evolution is guided by transient exploration of the stable manifolds of weakly unstable edge
states of the system [5]. In this paper, we explore in particular the behaviour at flow rates where the propensity for bubble
breakup and topological changes can have a profound effect on the governing dynamics and lead to the bubble exploring
multiple topological configurations before reaching its final state.

Experiment
The experimental channel is shown schematically in figure 1a,b. An air bubble of controlled volume is injected at one
end of the channel and propagated by infusing silicone oil at a constant flow rate. We impose different initial conditions
corresponding to bubbles of different initial widths by allowing a controlled relaxation period prior to flow initiation. The
channel aspect ratio is fixed at 40, and the rail occupies 25% of the channel width and 2.4% of its height.

Numerical model
We use a depth-averaged model for bubble propagation in this large-aspect ratio channel. This model, which qualitatively
captures all observed modes of finger propagation in the constricted Hele-Shaw channel [6], was recently extended to

Figure 1: (a) Top-view of the experimental channel with an axially uniform, centred rail. (b) Cross-section of the channel. (c) Numerical
bifurcation diagram depicting the steady modes of bubble propagation in terms of the bubble velocity as a function of the flow rate [5].
Stable and unstable modes are indicated by solid and dashed lines, respectively.
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Figure 2: Sensitivity to initial conditions. (a) and (b) show different bubble evolutions for similar bubbles with initial
bubble width and large .

EXPERIMENT

The experimental channel is shown schematically in Fig.1a,b. An air bubble of controlled volume is injected
at one end of the channel and propagated by infusing silicone oil at a constant flow rate with a non-dimensional
flow rate ∗ ∗ ∗σ , where is the dynamic viscosity of the oil, σ the surface tension, ∗ ∗ the
cross-section of the channel and ∗ the dimensional flow rate. We impose controlled initial conditions by
deforming a centred bubble to a width ∗ ∗, and propagating it from rest. We track its evolution in
top-view with a camera that moves with the bubble.

RESULTS

We find that depending on the initial bubble shape and the value of the flow rate, an initially centred bubble
may evolve towards the on-rail or off-rail invariant modes or undergo a change in topology by breaking up into
two bubbles, whose relative distance increases as they propagate. There is a rich variety of transient evolution
scenarios leading to these long-term outcomes, which each occurs in well-defined regions of the parameter plane
spanning flow rate and initial bubble width.

Above a threshold flow rate, initially slender bubbles tend to evolve towards off-rail invariant modes while
initially wide bubbles will break up into two separating bubbles. Examples of these long-term outcomes are
shown in the images of the final states in figure 2, where the off-rail state is a compound bubble. This is because
the transient evolution towards these final states often involves break-up and recombination events.

For moderate flow rates, the early-time evolution of the bubble is to a double-tipped bubble reminiscent of
the weakly unstable state shown in figure 1c. As the bubble propagates, the two tips elongate until break-up
into two bubbles on either side of the rail. These two newly formed bubbles may either remain on separate
sides of the rail or one may migrate over the rail to recombine with the other. Numerical simulations of this
process indicate that the evolution of this newly formed two-bubble system is orchestrated by weakly unstable
two-bubble steady solutions whose existence depends on the value of the flow rate and the relative bubble sizes.

For larger values of the flow rate, the early-time evolution is to a triple-tipped bubble similar to the weakly-
unstable steady solution in figure 1c. This is the scenario depicted by figure 2. The triple-tipped bubble breaks
up into three bubbles which recombine into a compound bubble before breaking up again into two bubbles. In
figure 2a these recombine into a weakly off-rail, compound bubble, while in figure 2b, the two resultant bubbles
separate as they propagate. Figure 2 also illustrates the increased sensitivity to initial conditions as the flow
rate is increased because the initial bubble width is approximately the same in both cases.

For even larger flow rates, the evolution becomes increasingly disordered and the bubble can break up into
multiple parts, some of which are sufficiently small to rapidly separate from the larger bubbles as they propagate
resulting in a loss of volume of the remaining parts.
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Figure 2: Examples of experimentally-observed transient bubble dynamics showing bubble breakup and recombination, leading to
distinct outcomes (a) the compound bubble will eventually recombine to a single bubble and (b) two asymmetric bubbles which will
eventually drift apart.

include bubble breakup and coalescence and to describe the motion of one or more bubbles. The use of a simplified model
allows the computational effort to be concentrated on capturing the 2D interface as viewed in the experiment, enables
a much wider range of computations, and also allows us to directly isolate different physical mechanisms. We solve
our model equations using a finite-element method in the open-source library oomph-lib, and have access to steady
solutions, bifurcation tracking, initial value problems, linear stability and weakly nonlinear stability analysis.

Results
An initially centred bubble may eventually reach the on-rail or off-rail single-bubble steady solutions, or else form two or
more bubble fragments which drift away from each other as they propagate. These long-term outcomes can be reached
via a surprisingly rich range of transient evolution scenarios, with the transient evolution depending on both control
parameters and the initial bubble width. Only for the smallest flow rates does the bubble always remain simply connected
throughout its evolution. Above a threshold flow rate, initially slender bubbles evolve towards on-rail steady states, while
initially wide bubbles will break up into two or more separating bubbles. For example, figure 2 shows scenarios for two
very similar bubbles. In each case the bubble first splits into three smaller bubbles, which then undergoes a complicated
sequence of recombination and splitting, and eventually reach two different outcomes.
In order to explore the interactions between multiple bubbles and how these select the eventual fate, we concentrate on
situations where the first topological change usually involves the bubble breaking into two near-equal size fragments. The
subsequent evolution depends on the volume ratio selected by breakup and the relative position of each bubble, along
with the driving parameters. We calculate steady solutions for the two-bubble configuration numerically using our depth-
averaged model. Nearly all of these states are weakly unstable, but we find strong evidence that they act as edge states
controlling whether the newly-formed bubbles remain on different sides of the rail (and hence usually separate) or whether
they migrate across the rail to recombine.

Conclusion

This system exhibits rich transient evolutions, some of which involving bubble breakup into two or more bubbles, and can
be followed by other topological reorganisations of the system. The problem is amenable to experiments and numerical
simulations using a simplified model. We provide evidence that the dynamics of both single and multiple bubble systems
are organised by weakly unstable solutions or “edge states”, and can calculate these using our simplified model. As the
flow rate increases, transient bubble shapes are increasingly deformed and the number of breakups and recombinations
undergone by the bubble increases. We suspect that this increase in complexity is due to a subcritical transition to disorder
above a threshold that depends on the roughness of the occlusion, reminiscent of the transition to turbulence in shear flow.
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A Nonlinear Piezoelectric Shunt Absorber with 2:1 Internal Resonance
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Summary. This abstract presents the design of a new nonlinear vibration absorber that aims to attenuate the vibration of an elastic
structure near its resonance frequency. This absorber is formed by connecting the elastic structure via a piezoelectric patch to an
electrical shunt circuit consisting of a resonant shunt (R-L circuit), combined in series with a quadratic voltage component. The
2DOF reduced order model showed that, for suitable tuning, a 2:1 internal resonance could be generated leading to a creation of an
anti-resonance in the response of the elastic structure at the resonance frequency of the mode to be attenuated. The anti-resonance
amplitude is shown to remain constant after a threshold excitation level giving this absorber an advantage over the linear absorbers.

Nonlinear Piezoelectric Shunt Absorber Design

The shunt absorber is designed by connecting an electric shunt circuit, consisting of a resistor R and an inductor L in
series with a quadratic nonlinear voltage component, to an elastic structure through a piezoelectric patch, as shown in
Fig. 1. The quadratic nonlinear term is set to be proportional to the square of the voltage across the piezoelectric patch Vp
by a gain equals to β. By introducing this quadratic non-linearity in the shunt circuit and by tuning the electrical resonance

PE Patch
R

L
Vp

β V 2
p

Elastic Structure

External Forcing

Q

Q̇

Nonlinear Shunt Circuit

Figure 1: Nonlinear shunt circuit schematic

frequency to be at one half of the resonance frequency of the structure mode to be attenuated, a 2:1 internal resonance
would occur. Such an internal resonance, when forcing above a threshold level, leads to an energy transfer from the mode
to be attenuated to an electrical mode at the first sub-harmonic frequency. As a result, a kind of anti-resonance at the
resonance frequency of the structure is created and the amplitude of the anti-resonance is shown to be independent of the
excitation level, leading to a saturation phenomenon [1, 2].

Reduced Order Model and Numerical Results

The main equations governing an elastic system subjected to harmonic excitation and connected to a nonlinear resonant
shunt circuit through a piezoelectric patch as shown in Fig. 1, are: (see [3])

Mü+Du̇+Ku+KcVp = F cos(Ωt) , (1a)

CpVp −Q−Kcu = 0 , (1b)

Vp + LQ̈+RQ̇+ βV 2
p = 0 , (1c)

where M, K, and D are the mass, stiffness, and damping matrices respectively. Kc is the electro-mechanical coupling
coefficients vector, Cp is the piezoelectric patch capacitance, and F is the excitation force vector. A reduced order model
is constructed by performing two modal expansions. The first one is obtained by expanding the displacement vector
denoted by u on the basis of the N linear modes. This would lead to a linearly coupled 2DOF system in terms of the
charge Q and the modal displacement qi, by truncating the displacement at the i-th mode to be attenuated. Then, a second
modal expansion is done, on a basis of two modes to obtain the following fully quadratic differential system:

ẍ1 + 2µ1ẋ1 + ω2
1x1 + Λ1x

2
1 + Λ2x1x2 + Λ3x

2
2 = f1 cosΩt , (2a)

ẍ2 + 2µ2ẋ2 + ω2
2x2 + Λ4x

2
1 + Λ5x1x2 + Λ6x

2
2 = f2 cosΩt . (2b)

Eq. (2) is solved using the Multiple Scales Method (MSM) to have a closed form solutions that are used to study the effect
of each design parameter on the response, so an optimized parameters selection could be established to achieve the highest
attenuation. In addition, the Harmonic Balance Method (HBM), coupled with a numerical continuation procedure based
on the Asymptotic Numeric Method (ANM) [4, 5], is used for results validation. Then, the results could be transferred
back to the physical coordinates, which are plotted in Fig. (2). It can be observed that the stable solution of qi stems from
the principal resonance curve through a branching point bifurcation, reaching a minimum at the resonance frequency.
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Linear Response
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2
)

Figure 2: Numerical Results of the amplitudes of qi (left) and Q (right) based on HBM. Solid line for stable solution and
dotted line for unstable solution.

Experimental Setup and Results

Experimental tests are conducted on a cantilever beam to attenuate the first bending mode by connecting the nonlinear
shunt circuit through a piezoelectric patch glued at the beam bottom. The excitation is done on the beam tip by inducing
a current in a coil-magnet system, as shown in Fig. 3. The nonlinear shunt circuit consisted of an Antoniou synthetic
inductor, to achieve a high inductance value, in series with a multiplier circuit composed of a set of Op-Amps and a signal
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Figure 3: Experiment Setup
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Figure 4: Experimental Results

multiplier, to generate the quadratic voltage behaviour. The time signal of the velocity is measured also at the beam tip
using a laser vibrometer, and the voltage across the piezoelectric patch is measured using a voltage probe, which is then
fed back to the input of the multiplier circuit. The harmonics amplitude could be extracted from the time signal, and the
experimental results are shown in Fig. 4, which clearly validate the numerical results in Fig. 2.

Conclusions

In this study, a semi-passive nonlinear piezoelectric shunt absorber is designed for the first time to attenuate the vibration
level using the 2:1 internal resonance features. A 2DOF reduced order model has been constructed, in which the numerical
and experimental results appeared to be in full accordance. In addition, when connecting the absorber to a cantilever beam,
a high attenuation is achieved near the resonance frequency of the first bending mode.
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A numerical study on passive suppression of vortex-induced vibration (VIV) using an
elastic rotative non-linear vibration absorber

Guilherme Rosa Franzini
Offshore Mechanics Laboratory, Escola Politécnica, University of São Paulo, Brazil

Summary. The focus of this contribution is to present a numerical study on passive suppression of the vortex-induced vibration phe-
nomenon (VIV) using an elastic rotative non-linear vibration absorber (ERNVA). The cylinder (structure to be controlled) is constrained
to oscillate only in the cross-wise direction (i.e., the direction orthogonal to the direction of incoming flow). The hydrodynamic loads
are modeled using a wake-oscillator model. Curves showing the efficiency of the device are presented and discussed.

Introduction

Vortex-induced vibration (VIV) is a particular flow-induced vibration phenomenon particularly important on risers’ dy-
namics. Phenomenlogical aspects of the phenomenon can be found in the surveys [1] and [2]. Its self-excited and
self-limited character plays a role in the structural lifespan due to fatigue. Hence, VIV suppression is of interest for both
industrial and academic communities.
A number of studies focusing on VIV suppression can be found in the literature. For the sake of conciseness of this
extended abstract, focus is placed on investigations using rotative non-linear vibration absorbers (RNVAs) or non-linear
energy sinks (RNES). A rotative NVA is composed of a rigid arm fitted with a tip-mass, linked to the main structure by
means of a linear dashpot in which energy is dissipated.
References [3, 4] bring numerical studies focusing on the behavior of a cylinder fitted with a RNVA subjected to VIV. In
both papers, the cylinder was constrained to oscillate in the cross-wise direction and the forces applied by the fluid to the
solid are computed using computational fluid dynamics (CFD) techniques. In these references, the authors point out the
existence of strongly modulated responses for the cylinder and a decrease in the cylinder response. [5] also deals with
the passive suppression of VIV using a RNVA, but using reduced-order models based on wake-oscillators for calculating
the hydrodynamic load. The latter reference numerically investigates the cases in which the cylinder is constrained to
oscillate in one or two directions of the horizontal plane. Due to the lower computational cost compared to the CFD, [5]
presents maps showing the sensitivity of the response with respect to the RNVA parameters.
This paper extends the work presented in [5]. Instead of considering a rigid arm, an elastic linear spring allows motion
of the suppressor mass in the radial direction. This type of suppressor is herein defined as elastic non-linear vibration
absorber (ERNVA). At least to the author’s knowledge, this is the first application of such device for VIV suppression.

Mathematical model and results

Consider the problem sketched in Fig. 1. The rigid cylinder has mass M , length L, diameter D and is immersed in a fluid
of specific mass ρ and characterized by an uniform free-stream velocity U∞. The cylinder is assembled onto a viscoelastic
support of stiffness ky and damping constant cy and its cross-wise displacement is Y . The ERNVA is composed of a point
mass mN placed at the tip of an elastic arm of axial stiffness and damping constant of constant kr and cr respectively.
The elastic arm is hinged to the cylinder by means of a dashpot of constant cθ. The instantaneous radial position of the
point mass is r0 + r(t), r0 being the unstretched length of the arm. Two reference frequencies can be defined, namely
ωn,y = 2πfn,y =

√
ky/(M +mN +ma) (ma is the potential added mass) and ωr =

√
kr/mN . Now, consider the

dimensionless quantities defined in Eq. 1.

Figure 1: Schematic representation of the problem. The cylinder is constrained to oscillate in the cross-wise direction.
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y =
Y

D
, η =

r

D
, τ = ωn,yt, r̂ =

r0
D
, m̂ =

mN

M +mN
, ζr =

cr
2mNωr

, ζy =
cy

2(M +mN +ma)ωn,y
, ω̂ =

ωr

ωn,y

Ur =
U∞
fn,yD

,m∗ = 4
(M +mN )

ρπD2L
,Ca = 4

ma

ρπD2L
(1)

In addition to the above quantities, the mathematical model also depends on the Strouhal number St, the amplitude of the
lift coefficient obtained for a fixed cylinder ĈL and the mean drag coefficient (also for a fixed cylinder) CD. Following
the wake-oscillator model proposed in [6], the loads due to the fluid-structure interaction can be obtained by coupling a
van der Pol equation to the structural oscillator by means of empirically calibrated parameters, namely Ay and ǫy . Using
this approach, the mathematical model is governed by the following dimensionless mathematical model:

ÿ + 2ζy ẏ + y =
1

2π3

U2
r

(m∗ + Ca)

√
1 +

(
2πẏ

Ur

)2(
qy
q̂y
ĈL − CD

2πẏ

Ur

)
= ε

[
2 sin θη̇θ̇ − η̈ cos θ + (r̂ + η)

d

dτ
(θ̇ sin θ)

]

(2)

(r̂ + η)2θ̈ + (2ζθ r̂
2 + 2(r̂ + η)η̇)θ̇ = (r + η)ÿ sin θ (3)

η̈ + 2ζrω̂η̇ + (ω̂2 − θ̇2)η = r̂θ̇2 − ÿ cos θ (4)

q̈y + ǫyStUr(q
2
y − 1)q̇y + (StUr)

2qy = Ay ÿ (5)

where ε = (m̂m∗)/(m∗ + Ca). Equations 2 - 5 are numerically integrated using the Mathematica® NDSolve function
during τmax = 1000. For the sake of limitation on the number of pages of this extended abstract, just one set of parameters
is tested. The chosen parameters for the cylinder and the ERNVA are m∗ = 2.6, ζy = 0.0001, ζr = ζθ = 0.10, ω̂ = 1,
r̂ = 0.5 and m̂ = 0.07. The investigated reduced velocity is Ur = 5.5, a favorable scenario for VIV. Only two non-trivial
initial conditions are considered, namely, θ(0) = π/6 and qy(0) = 0.10.
Fig. 2(a) shows two displacement time-histories y(τ), one of them being labeled as “Pure VIV” and corresponding to the
condition in which no suppressor is attached to the cylinder. From this figure, one clearly notice that the presence of the
ERNVA decreased the characteristic oscillation amplitude from Ây ≈ 0.94 (“Pure VIV” case) to Ây ≈ 0.65, a reduction
close to 33%. The complete curve of characteristic oscillation amplitude as a function of reduced velocity is depicted in
Fig. 2(b), which shows that the ERNVA is able to suppress VIV for a certain range of reduced velocities corresponding
to the lock-in.
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Conclusions

This extended abstract presented a numerical investigation on passive suppression of VIV using an elastic rotative non-
linear vibration absorber (ERNVA). Considering the ERNVA mass equal to 7% of the total oscillating mass, it was found
that a decrease in the characteristic oscillation amplitude has been achieved, specially close to Ur = 5.5. In the full paper
and at the conference, more comprehensive studies will be presented.
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Broadband vibration energy harvesting based on a weakly coupled nonlinear periodic 
system  

 
 Kaouthar Aouali, Najib Kacem and Noureddine Bouhaddi 
Univ. Bourgogne Franche-Comté, FEMTO-ST Institute, CNRS/UFC/ENSMM/UTBM, Department 

of Applied Mechanics, 25000 Besançon, France 
  
Summary. In this work, a broadband vibration energy harvester based on a weakly coupled nonlinear periodic N-Dofs system is proposed.  
In order to enlarge  the  frequency bandwidth of the harvester, the multimodal property induced by the system periodicity and the nonlinear 
hardening and softening behaviors are functionalized.  
 
 
Over the past decades, many efforts have been made to harvest energy from ambient vibrations. Various techniques for 
vibration energy harvesting (VEH) based on different energy conversion mechanisms have been achieved and proved 
their potential to enhance the output performances of the harvesters. Although the conversion’s mechanisms are various 
and the development of harvesters is continuous, VEHs still have limitations. In fact, most devices have a narrow 
operating bandwidth. Consequently, their implementation is limited in real-life applications where energy prevails over a 
wider bandwidth. To overcome this limitation, several approaches have been proposed namely the adoption of multimodal 
configurations and the introduction of nonlinearity.  
In the following, we are interested in the enhancement of the performances of a vibrating energy harvester based on 
electromagnetic transduction. The present work investigates the benefits of the multimodal approach and the introduction 
of the nonlinearity. The multimodal approach involves operating multiple modes in a periodic N-Dofs discrete system. 
This technique proves its potential to enlarge the frequency bandwidth [1,2,3]. Concerning the nonlinearity, it is used also 
to extend the frequency bandwidth and diverse works have shown the remarkable improvement of the bandwidth while 
using this method [4,5,6]. In this work, we functionalized simultaneously the nonlinear softening and hardening behaviors 
of different Dofs.  
Numerical simulations on 5 and 10-Dofs systems have been performed to highlight the benefits of the proposed approach. 
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Determination of performance parameters of nonlinear galloping energy harvesters using 
Jacobi elliptic functions 
 
 Filip Sarbinowski*, Roman Starosta *  

*Institute of Applied Mechanics, Poznan University of Technology, Poznan, Poland 

 
  
Summary. In the work, through analytical considerations, the peak efficiency of three different variants of galloping energy harvester was 
defined. For this purpose, the authorial method based on elliptic harmonic balance was employed, consisting of comparison of impossible 
to analyze, accurate high order solutions, and simplified solutions of a linearized model. Research has shown that the peak efficiency 
of the hardening and bistable devices is greater by 17% and 30% respectively in regards to the linear device, while application of softening 
stiffness always leads to a loss of efficiency. 

Introduction 

In the era of the idea of the Internet of Things, the desire of scientists, engineers, medics, and even not-professionals 
is to continuously measure countless physical phenomena that occur both in our surroundings and at great distances 
beyond direct human reach. This increases the requirements for measuring devices and thus for their power supply – 
if  access to the operating device is limited, it may not be possible to route the power cables or periodically exchange 
the batteries. The solution to this problem may be the application of autonomous devices - equipped with their generator 
harvesting ambient energy. An example of such a generator is the galloping energy harvester (GEH) - the device 
that allows to harvest the energy of vibrations induced by the flow. 
In its simplest version, the GEH can be considered as a body (resonator) mounted on the elastic element, coupled 
to the piezoelectric (Fig. 1.), described by the mathematical model (1) – (2). If an appropriately shaped body is used, 
the geometry of which is represented by the coefficients 𝑎ଵ and 𝑎ଷ, at a certain flow velocity, called the critical velocity, 
negative damping will be induced in the system and thus stability of the system will be lost. 
 

 
Figure 1: Model of the aeroelastic energy harvester 𝑚 𝑧ሷሺ𝑡ሻ + ܵ(𝑧ሺ𝑡ሻ) − 𝑣ሺ𝑡ሻ ߠ = − ͳʹ 𝜌ℎ ቆ𝑎ଵ 𝑈 𝑧ሶሺ𝑡ሻ + 𝑎ଷ  𝑧ሶሺ𝑡ሻଷ𝑈 ቇ ሺͳሻ 

 𝐶𝑝𝑣ሶሺ𝑡ሻ + 𝑣ሺ𝑡ሻܴ + 𝑧ሶሺ𝑡ሻߠ = Ͳ ሺʹሻ 

where: m – mass of the body, ܵሺ𝑧ሺ𝑡ሻሻ = 𝑘 𝑧ሺ𝑡ሻ – restoring force, 𝑧ሺ𝑡ሻ – displacement, ሺሻሶ  and ሺሻሷ  – first and second time 
derivative, h – characteristic length of the body, 𝜌 – fluid density, U – flow velocity, 𝑎ଵ,  𝑎ଷ  – experimentally determined 
coefficients, 𝑣ሺ𝑡ሻ – voltage, ߠ – piezoelectric coefficient, R – circuit resistance, 𝐶𝑝 – circuit equivalent capacity. 

The efficiency of the device 

One of the most important parameters describing energy generators is peak efficiency ߟ𝑝𝑒𝑎𝑘. In [1], the maximum 
efficiency was derived for the simplified linear GEH model, in which the harvested was defined as structural damping. 
In work [2], we confirm the validity of the obtained results also for the full electromechanical model. These results indicate 
that the peak efficiency of such a device depends only on the geometry of the resonator and has a form: 
𝑝𝑒𝑎𝑘ߟ  = − 𝑎ଵଶ 𝑎ଷ ሺ͵ሻ 

 

ENOC 2022, July 17-22, 2022, Lyon, France

32



 

ENOC 2020+2, July 17-22, 2022, Lyon, France 
 

The natural path of exploring this matter are studies of the possibilities offered by the application of a system with different 
types of non-linear stiffness characteristics. Although there already studies that compare different GEH variants, e.g. [3], 
but none of them have defined the efficiency of the devices. 
Our earlier studies proved that the analytically formulated limit cycle of the model of the device can be obtained through 
the harmonic balance assuming some form of the model solution. In the case of devices with a more complex structure, 
the solutions obtained with this method are, however, too complicated to draw appropriate conclusions from them. 
Preliminary studies indicate that an excellent alternative may be the elliptic harmonics balance method, where the solution 
of the model is assumed in the form of elliptic Jacobi functions. Because of that, in the paper, we propose a method 
of solving this problem based on a comparison of a linearized, easy-to-analyze solution and a very precise one, obtained 
with elliptic harmonic balance method. The analytical forms of both solutions are very similar, and the value of the factors 
by which they differ can be strictly defined at extreme points. 

Results and conclusions 

Employing the elliptic harmonics balance, the expressions describing the efficiency of various variants of devices were 
obtained as a function of the flow velocity in the form of ߟ𝑁 = 𝐿ߟ 𝐿 𝛹, whereߟ =  𝐿ሺ𝑈ሻ is the efficiency of linear deviceߟ
and 𝛹 = 𝛹ሺ𝑚ሻ (Fig. 2) is the coefficient that describes the impact of nonlinearity on the efficiency of the device 
in function of the modulus of elliptic function 𝑚. Depending on the nature of the nonlinearity, the value modulus 
is bounded in the following ranges: for hardening stiffness Ͳ < 𝑚 < Ͳ.ͷ, for softening stiffness Ͳ < 𝑚 < ͳ 
and for bistable system Ͳ.ͷ < 𝑚 < ͳ, it is therefore, possible to strictly determine the value of the 𝛹 coefficient at extreme 
its extreme values. 
 

 
Figure 2: 𝛹 values as a function of 𝑚 for different ܴ  values and different stiffness variants: a) hardening, b) softening, c) bistable 

Based on the above information, it can be concluded that: a) the function  𝛹ሺ𝑚ሻ for the system with hardening stiffness 
depends on the values of the system parameters, but for the 𝑚 = Ͳ.ͷ it always has the same, maximum value 𝛹ሺͲ.ͷሻ ≈  ͳ.ͳ, b) maximum value of 𝛹ሺ𝑚ሻ for the system with softening stiffness is reached for 𝑚 = Ͳ and 𝛹ሺͲሻ = ͳ 
therefore, the softening stiffness will lead to a decrease in peak efficiency, c) regardless of the system parameters, the peak 
value of 𝛹ሺ𝑚ሻ for the bistable system is 𝛹ሺͲ.ͺ͵ሻ ≈ ͳ.͵Ͳ.  
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Summary. This work studies a problem of passive mitigation by means of one nonlinear energy sink (NES) of a dynamic instability
arising from two unstable modes of a primary structure. For that, a phenomenological friction model with four-degrees-of-freedom
(DOF) having two unstable modes (the primary structure) is coupled to a NES. We investigate analytically, using an asymptotic analysis,
the response regimes resulting from the interaction between the two unstable linear modes of the primary structure and the NES. The
analytical results are compared and complemented by direct numerical simulations of the coupled system. In each situation, a good
agreement is observed which allows us to validate the presented asymptotic analysis.

Introduction

In the context of passive control of dynamic instabilities, the Nonlinear Energy Sinks (NESs) are now well-known means.
For example, NES have been used to suppress aeroelastic instability [1], regenerative chatter in machine tool vibra-
tions [2], helicopter ground resonance instability [3] or friction-induced vibrations due to mode coupling instability [4].
The NES operate on the basis of Targeted Energy Transfer (TET) concept. In general, a NES consists of a light mass, an
essentially nonlinear spring (here cubic) and a viscous linear damper. Because of its essentially nonlinear stiffness, a NES
can adjust its frequency to that of the primary system and therefore engage in resonance over a large frequency range.
Whether for a system under impulsive, harmonic or broadband frequency excitation or whether for an auto-oscillating
system, TET results from nonlinear mode bifurcations. In general, the phenomenon of TET can be described as a 1:1
resonance capture [5].
In this work a friction system is considered as a primary system, it consists in a simple four-DOF (two linearly coupled
well-known Hultèn’s models, see Fig. 1) [6]. The model has two unstable modes, i.e. the associated eigenvalues have
positive real parts with also the same order of magnitude. Moreover, the imaginary parts (the frequencies) are chosen to
be incommensurable. We study the mitigation by means of a single NES of the friction-induced vibrations resulting of the
presence of two unstable modes and having therefore two frequency components. Moreover, because the system (without
NES) is linear, it undergoes, when it is unstable, an exponential growth of its amplitude.
Preliminary numerical simulations of the coupled system show that the single NES is effectively capable to interact with
the two unstable modes and mitigate the double instability. Inter alia, the mitigation may be performed through periodic
regimes (see Fig. 2(a) where ǫ is a small parameter related to the mass ratio between the NES and the primary structure)
or Strongly Modulated Responses (SMR, see Fig. 2(b)).
In order to understand these interactions and the mitigation processes, based on the procedure presented by the authors [7],
an analytical framework is presented. The obtained results are compared and completed by direct numerical integration
of the coupled system. The method and the major results of the study are summarized below.

NES

NES
Friction Friction Friction

Figure 1: The phenomenological system under study.
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Figure 2: Possible mitigation responses obtained from direct numerical integration of the coupled system.

Method and results

The analytical method begins with the so-called biorthogonal transformation to diagonalize the primary friction system.
Then, the resulting diagonalized system is reduced keeping only the two unstable modes and ignoring the two stable
modes. Afterwards, the slow-flow motion of the system is obtained using the complexification-averaging (CA-X) method
within the assumption of two simultaneous 1:1-1:1 resonances to the natural frequencies of the two unstable modes.
The slow-flow, which also depends on the small parameter ǫ, is analyzed in the framework of the Geometric Singular
Perturbation Theory (GSPT) [8] in which it is defined as a (4, 2)-fast–slow system. Each of the two slow variables
characterizes one of the two unstable modes of the primary system whereas the four fast variables describe the NES
motion (amplitude and phase of each of the two frequency component).
The Critical Manifold (CM) of the slow-flow is obtained, it is a two-dimensional parametric surface (with respect to two
of the four fast variables) which evolves in the six-dimensional variable space. The shape of the CM and its stability
properties allow us to contemplate some mitigated responses, in agreement with the preliminary numerical simulations.
Indeed, the critical manifold appears as the union between a normally hyperbolic attracting domain with four closed
normally hyperbolic saddle type domains.
First, equilibrium positions of the slow-flow are deduced from the knowledge of the CM. A stable equilibrium position
(which is on the attractive part of the CM) characterizes a mitigation regime through a periodic response of the initial
system if one of the frequency component is completely suppressed, otherwise the response is quasi-periodic with two
frequency components. Secondly, because two of the normally hyperbolic saddle type domains meet the attracting part at
fold curves, mitigation regimes through Sustained relaxations oscillations of the slow-flow - i.e SMR for the initial system
- are possible. Contrary to the case with only one unstable mode, because of the two-dimensional CM, multiple SMR
scenarios are possible with different levels of complexity. Fig. 2(b) show an example of a "complex" SMR.
The analysis also suggests that the system may have simultaneous stable attractors (two stable equilibrium positions, one
stable equilibrium position with stable sustained relaxations oscillations . . . ).

Numerical simulations valid the possibility of a competition between two stable attractors and allowing us to study their
basins of attractions. In each considered situation, a good agreement has been observed between theoretical results and
numerical simulations which validates the proposed asymptotic analysis.

To conclude, this study confirms that a NES is able to mitigate simultaneously two unstable modes.
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Application of the ODE Integration Methods for Multibody Systems With and Without
Redundant Constraints
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Summary. The multibody approach is commonly used in analyzing complex mechanical systems. Simulation of multibody systems
(MBSs) may be a challenging task. Some problems are present for both overconstrained and non-overconstrained MBSs. The other dif-
ficulties concern only overconstrained MBSs. Various formulations and numerical solution approaches may be used to simulate MBSs.
Some of them allow us to transform the DAEs into ODEs and have different computational properties, especially in the presence of
redundant constraints. These methods are investigated in this paper. The numerical methods were compared with respect to the integra-
tion method used. The following methods are considered: the Zero Eigenvalue Method, the Pseudo Upper Triangular Decomposition
method (two forms—with the Householder Transformation and the Gauss Decomposition), the Schur Decomposition Method, the SVD
Method, the QR Decomposition Method, the Direct Integration Method, the Coordinate Partitioning Method, the Udwadia-Kalaba For-
mulation, the Least-squares Block Solution (two forms), the Udwadia-Phohomsiri Formulation, and the Wang Huston Formulation.
For these methods, both the non-stiff ODE solvers (ode45, ode23, ode113) and stiff solvers (ode15s, ode23t, ode23tb, ode23s) of
MATLAB R© were considered. The methods were tested on two exemplary MBSs described in absolute coordinates—overconstrained
and non-overconstrained robotic manipulators.

Introduction and motivation

The method of multibody systems (MBSs) may be used in many areas, e.g., to describe robots, mechanisms, machines,
and vehicles. It may also be used for less common applications, e.g., molecular modeling, biomechanical systems, or
modeling of contact or impact. The analysis of MBSs may cause some problems.
During simulations of MBSs, various numerical difficulties may occur. One source of the problems may be related to the
type of equations to solve. Usually, the MBSs are described by differential-algebraic equations (DAEs). In this set, the
algebraic equations describe the constraint equations that represent loop closing kinematic pairs—in the case of relative
joint coordinates—or all kinematic pairs—in the case of absolute coordinates.
The DAEs are usually more challenging to solve than ordinary differential equations (ODEs). Depending on the multi-
body formulation employed, DAEs may have a different index, which determines the computational complexity of the
equations. Large DAEs may also be challenging to integrate. Some methods allow us to transform the DAEs into ODEs.
These methods are investigated in this paper.
A significant group of MBSs is the group of systems with redundant constraints. The introduction of redundant constraints
into the structure of the system is usually the result of a conscious decision of the designer, made after considering the
advantages (e.g., greater strength) and disadvantages (e.g., the requirement of greater accuracy of manufacturing of the
bodies and the introduction of assembly stresses) of such systems.
Redundant constraints cause further problems in the simulation of the system. In the case of overconstrained MBSs,
additional numerical issues result from the fact that the Jacobian/constraint matrix of the considered MBS is rank-deficient.
These problems may be reduced by using the appropriate methods to analyze overconstrained MBSs (see, e.g., [2, 1, 5, 6]).
Some publications compare selected ODE approaches that are applicable to simulate multibody systems with or without
redundant constraints, e.g., [4, 2, 1, 6, 5]. However, a limited number of integration methods were tested in these publica-
tions. Hence, a natural question arises: will the obtained results regarding the relative effectiveness of these methods
be the same when other integration schemes are used, and will all integration algorithms give the results at all?
This paper presents the preliminary results of research conducted in this research field.

Numerical methods

In this paper, selected approaches used for the simulation of the MBSs are considered. These methods allow for the
integration of the DAEs by using methods for ODEs. The following methods are used: the Zero Eigenvalue Method
[4, 6, 2, 1], the Pseudo Upper Triangular Decomposition method (two forms—with the Householder Transformation and
the Gauss Decomposition) [4, 6, 2, 1], the Schur Decomposition Method [4, 6, 2, 1], the SVD Method [4, 6, 2, 1], the QR
Decomposition Method [4, 6, 2, 1], the Direct Integration Method [5], the Coordinate Partitioning Method [4, 6, 2, 1], the
Udwadia-Kalaba Formulation [4, 5, 2, 1], the Least-squares Block Solution (two forms) [5, 2, 1], the Udwadia-Phohomsiri
Formulation [5, 2, 1], and the Wang Huston Formulation [6, 2, 1].
Several integration schemes were considered for these methods, i.e., the non-stiff ODE solvers (ode45, ode23, ode113)
and stiff solvers (ode15s, ode23t, ode23tb, ode23s) of MATLAB R©. The ode45 is the Runge-Kutta method based on the
Dormand-Prince (4,5) pair [7], which is frequently the first-choice method [3]. The ode23 is the Runge-Kutta method
based on the Bosacki-Shampine (2,3) pair [7]. The ode113 is an application of the Adams-Bashforth-Moulton approach
[7]. The ode15s is quasi-constant step size NDFs/BDFs method [7]. The ode23t is trapezoidal rule method [8]. The
ode23tb is the Runge-Kutta method with a trapezoidal rule and second-order BDF (TR-BDF2 method) [3]. The ode23s is
modified Rosenbrock code [7].
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Examples and results

Two MBSs described by absolute coordinates are studied—redundantly constrained and non-redundantly constrained
robotic manipulators (see Fig. 1). Both the systems are spatial. The non-overconstrained manipulator was created by
removing the redundant body no. 7 of the other MBS. The Euler angles (zxz) are used for the orientation description of
the systems to allow us to consider the numerical methods that do not work in the case of a singular mass matrix.
The manipulators are built from the bodies of the same parameters, i.e., length l = 0.5m, mass m = 5 kg, and moments
of inertia Jx = 0.025 kgm2, Jy = Jz = 0.12 kgm2. Revolute joints connect the bodies. The gravity acts in the negative
direction of axis z0, and its acceleration |g| = 9.80665m/s2. During the simulations, the manipulators were loaded with
forces.
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Figure 1: Considered robotic manipulators—overconstrained (on the left) and non-overconstrained (on the right)

The 10-second simulations of motion were performed for selected error tolerance values. MATLAB R© run in single-thread
mode during the calculations to obtain more reliable time results (which are not disturbed by the time needed to exchange
data between multiple threads).

Conclusions

It turns out that the efficiency of the methods depends not only on the selected integration method but also on the structure
of MBS. The non-stiff ODE solvers gave results for both the overconstrained and non-overconstrained manipulators. In
contrast, the stiff solvers had trouble getting a solution, especially (but not only) in the case of the redundantly constrained
manipulator. In addition, not all the methods had produced results in a reasonable time. Some simulations were interrupted
when no result was obtained within approximately 15 minutes. It should be emphasized that the obtained results cannot be
considered valid for all MBSs. However, based on this work, it can be supposed which of the studied simulation methods
will be better for the other systems. This work also provides a reasonable basis for further research in numerical methods
for MBSs.
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A rockfall simulation scheme which preserves the stability properties of rotating rocks
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Summary. The stability properties of a freely rotating rigid body are governed by the intermediate axis theorem, i.e. rotation around the
major and minor principal axes is stable whereas and rotation around the intermediate axis is unstable. The stability of the principal axes
is of importance for the prediction of rockfall. Current numerical schemes for 3D rockfall simulation, however, are not able to correctly
represent these stability properties. In this paper we give a proof using Lyapunov functions of an extended intermediate axis theorem,
which not only involves the angular momentum equations but also the orientation of the body. Inspired by the stability proof, we present
an novel scheme which respects the stability properties of a freely rotating body and which can be incorporated in numerical schemes for
the simulation of rigid bodies with frictional unilateral constraints.

Introduction

A full 3D simulation technique for rockfall dynamics, taking rock shape into account and using the state-of-the-art meth-
ods of multibody dynamics and nonsmooth contact dynamics, has been developed in [3]. The rockfall simulation tech-
nique is based on the nonsmooth contact dynamics method with hard contact laws. The rock is modeled as an arbitrary
convex polyhedron and the terrain model is based on a high resolution digital elevation model. The developed numerical
methods have been implemented in the code RAMMS::ROCKFALL, which is being actively used in the natural hazards
research community, and is to date the only 3D code which takes rockshape into account [2].
Field observations of natural rockfall events as well as high precision measurements with instrumented experimental
rocks [1] have shown that platy disk-shaped rocks have the tendency to roll and bump down the slope around their major
principal axis1. Simulations with the present implementation of RAMMS::ROCKFALL, however, fail to represent the
observed rolling phenomenon.
The intermediate axis theorem is a result of the Euler equations describing the movement of a rigid body with three
distinct principal moments of inertia. The theorem describes the following effect: rotation of a rigid body around its
minor and major principal axes is stable, while rotation around its intermediate principal axis is unstable. The classical
intermediate axis theorem, however, only involves the Euler equations for the three components of the angular velocity.
In this paper, we describe the dynamics of a freely rotating body in state-space form using as states the three angular
velocity components and an arbitrary parametrization of the orientation of the body with respect to the inertial frame.
Using the method of Lyapunov functions we rigorously prove an extended version of the intermediate axis theorem in the
full state-space.
In this paper we will show that the present scheme, which is fully explicit during flight phases of the rock, does not respect
the intermediate axis theorem. Furthermore, we will present an alternative implicit scheme which correctly describes the
stability properties of a freely rotating body.

Equations of motion of a free spinning body

Let V be the Euclidean vector space. To describe the orientation of the rock, we will use a body-fixed frame K =
(~eKx , ~e

K
y , ~e

K
z ) as well as an inertial frame I = (~eIx, ~e

I
y, ~e

I
z). An arbitrary vector ~a ∈ V can be expressed in the K-frame

through the tuple K~a ∈ R3, which is related to its representation I~a in the inertial frame through

~a = AIKK~a, (1)

where AIK =
(
I~e

K
x I~e

K
y I~e

K
z

)
∈ SO(3) is the transformation matrix describing the orientation of the rock. Let K

~Ω
denote the angular velocity of the body expressed in the body-fixed frame K. The spin of the body is defined by

~NS = ΘS
~Ω (2)

where ΘS is the inertia tensor. The inertia tensor takes a constant form in the body-fixed frame, which we choose to be
aligned along the principal axes of inertia, such that

Θ := KΘS =



A 0 0
0 B 0
0 0 C


 (3)

where A,B,C > 0 are the principal moments of inertia around the minor, intermediate and major axis respectively. We
will denote Θ := KΘS as inertia matrix to have a short-hand notation. During flight, the rotational motion of the rock is

decoupled from the translational motion and fully described by the spin invariance ~̇NS = ~0, yielding

K
~̇NS + K

~Ω× K
~NS = ~0 (4)

1https://youtu.be/oWkTfTGeAEo
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in the body-fixed frame, which lead to the Euler equations for a freely rotating rigid body

Θω̇ + ω × (Θω) = 0. (5)

Herein, we used the short-hand notation ω = K
~Ω. The evolution of the orientation of the body is described by

ȦIK = AIKω̃, (6)

where ω̃ is the skew-symmetric matrix such that ω̃c = ω × c for all c ∈ R3. The orientation of the body may be
freely parameterized using for instance unit-quaternions q ∈ R4 or axis-angle notation (n,χ). The matrix differential
equation (6) results in a set of ordinary differential equations for the chosen parametrization. If a quaternion q = (p0,p

T)T

representation is used then the rotation matrix is parametrized as

AIK = I +
2

p20 + pTp
(p̃p̃+ p0p̃) (7)

resulting in
q̇ = F (q)ω (8)

with

F (q) =
1

2‖q‖

(
pT

p̃+ p0I

)
. (9)

Invariants of motion of the Euler equations

The body has the rotational kinetic energy

T =
1

2
ωTΘω (10)

being a constant of motion as, using (5),

d
dt
T = ωTΘω̇ = −ωT

(
ω × (Θω)

)
= 0 . (11)

A second invariant follows from the spin
I
~NS = AIKΘω, (12)

which is constant in the inertial frame, i.e.

d
dt

(
I
~NS

)
= ȦIKΘω +AIKΘω̇ = AIK (ω × (Θω))−AIK (ω × (Θω)) = 0. (13)

When expressed in the body fixed frame, the spin K
~NS is not constant but keeps a constant magnitude

d
dt
||K ~NS ||2 =

d
dt
(K ~NT

S K
~NS) = 2(Θω)TΘω̇ = −2(Θω)T

(
ω × (Θω)

)
= 0 . (14)

Stationary motion

A rigid body may undergo a stationary motion for which its angular velocity is constant, i.e. ω̇ = 0. We will denote
such a stationary motion in state-space as (AIK⋆(t),ω⋆). From the Euler equations (5) we infer that stationary motion
is only possible if the term ω × (Θω) vanishes. Stationary motion therefore implies that ω⋆ is in an eigendirection
of Θ, resulting in three stationary directions of motion K~e

K
x ,K~e

K
y ,K~e

K
z . Without loss of generality, let ω⋆ = Ωe⋆,

where e⋆ = e3 =
[
0 0 1

]T
agrees with K~e

K
z . The vector e⋆ may be complemented by e1 =

[
1 0 0

]T
and

e2 =
[
0 1 0

]T
to form an orthonormal basis. The evolution of the orientation of the body during stationary motion

AIK⋆(t) = AIK⋆(0)e
ω̃⋆t (15)

follows from the closed form solution of the matrix differential equation (6). Without loss of generality, we set AIK⋆(0) =
I . From

I~e
K⋆
z (t) = AIK⋆(t)e3 = eω̃⋆te⋆ = e⋆ = I~e

I
z (16)

it follows that ~eK⋆
z = ~eIz for all t. The stationary motion (AIK⋆(t),ω⋆) itself cannot be stable, irrespective of the principal

axis which is considered, because a small error ∆Ω in the magnitude of the angular velocity ω = (Ω+∆Ω)e⋆ will cause
AIK(t) to diverge from AIK⋆(t). Hence, instead of the stationary motion we need to study the stability of the axis of
rotation, or, more precisely, of a manifold in state-space related to that. Hereto, we consider the distance between the axes
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of rotation ~eK⋆
z = ~eIz of the stationary motion and ~eKz of an arbitrary motion, which we express in the K-frame using the

quantity
d(t) = K~e

K⋆
z − K~e

K
z = K~e

I
z − K~e

K
z = AKI(t)e⋆ − e⋆. (17)

Furthermore, to parametrize the transformation matrix AIK(t), we also introduce the time-dependent quantities

h1(t) = AKI(t)e1 − e1, (18)

h2(t) = AKI(t)e2 − e2. (19)

The transformation matrix may therefore be expressed as

AT
IK(t) = I +

[
h1(t) h2(t) d(t)

] [
e1 e2 e⋆

]−1

= I +
[
h1(t) h2(t) d(t)

]
.

(20)

Furthermore, we introduce the quantity
α(t) = ω(t)− ω⋆ (21)

to express the difference in rotation speed, which is being governed by the Euler equations (5)

Θα̇+ (ω⋆ +α)× (Θ(ω⋆ +α)) = 0. (22)

Having introduced the quantities d and α, we can define the manifold of stationary rotation in a straightforward way

M =
{
(AIK ,ω) ∈ SO(3)× R3 | d = 0,α = 0

}
. (23)

The dynamics of the distance to the axis of stationary rotation is given by

ḋ(t) = ȦKI(t)e⋆ = (AIK(t)ω̃(t))
T
e⋆

= −ω̃(t)AKI(t)e⋆

= − (ω̃⋆ + α̃(t)) (d(t) + e⋆)

= −ω̃⋆d(t)− α̃(t) (d(t) + e⋆)

(24)

being only dependent on d and α. It holds that ḋ(t) = 0 if d = α = 0 and α̇(t) = 0 if α = 0. Hence, the manifoldM
of stationary rotation is invariant. The differential equations (24) and (22) can be gathered using y(t) =

(
dT αT

)T
in

the system of ordinary differential equations
ẏ(t) = f(y(t)), (25)

which is time-autonomous. The stability of the axis of rotation now bears down to the stability of the invariant manifold
M, i.e. the stability of the equilibrium y⋆ = 0 of system (25). The stability properties of stationary rotation in the
6-dimensional state-space y will be referred as the extended intermediate axis theorem.

Extended intermediate axis theorem

Stability of rotation around the major principal axis
We consider motion in the vicinity of the stationary rotation ω⋆ = Ωe⋆, Ω > 0, and C ≥ max(A,B) such that e⋆ is
the major principal axis of inertia. Herein, the K⋆-frame is the body fixed frame of stationary motion, whereas we will
reserve the K-frame for the body fixed frame of an arbitrary motion in the vicinity of the stationary motion. The frames
are related through AKK⋆ = AKIAIK⋆ = AT

IKAIK⋆ and it therefore holds that

AKK⋆e⋆ = AKIAIK⋆e⋆ = AKIe⋆ = d+ e⋆. (26)

In order to set up a Lyapunov function, we consider the function

V̄ (d,α) = ‖I ~NS − I
~NS⋆‖2 = ‖K ~NS − K

~NS⋆‖2. (27)

The spin ~NS⋆ can be easily expressed in the K⋆-frame as K⋆
~NS⋆ = Θω⋆ = CΩe⋆, which can be cast in the K-frame

through
K
~NS⋆ = AKK⋆ K⋆

~NS⋆ = CΩAKK⋆e⋆ = CΩ(d+ e⋆). (28)

Using K
~NS = Θω = Θ(α+ ω⋆) = Θα+ CΩe⋆ we arrive at

V̄ (d,α) = ‖Θα− CΩd‖2 = (Aαx − CΩdx)2 + (Bαy − CΩdy)2 + (Cαz − CΩdz)2. (29)

Furthermore, we introduce the function

V̂ (α) = 2C T (ω)− ‖ ~NS(ω)‖2 + 1

Ω2
(2 T (ω)− 2 T (ω⋆))

2 , (30)
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which can be expressed as

V̂ (α) = CωTΘω − ωTΘ2ω +
1

Ω2
(ωTΘω − ωT

⋆ Θω⋆)
2

= (α+ ω⋆)
T(CΘ−Θ2)(α+ ω⋆) +

1

Ω2

(
(α+ ω⋆)

TΘ(α+ ω⋆)− ωT
⋆ Θω⋆

)2

= αT(CΘ−Θ2)α+
1

Ω2

(
αTΘα+ 2CωT

⋆ α
)2

= A(C −A)α2
x +B(C −B)α2

y +
1

Ω2
(Aα2

x +Bα2
y + Cα2

z + 2CΩαz)
2

(31)

To prove stability of the trivial equilibrium of (25) for C ≥ max(A,B), we consider the Lyapunov candidate function

V (y) = V̄ (d,α) + V̂ (α), (32)

which purely consists of the invariants of motion ~NS = const. and T (ω) = const. and is therefore constant, i.e. V̇ = 0
along solutions of the system. The (local) positive definiteness of V remains to be investigated in the following.
First, we show that V̂ (α) is a local positive definite function in α. We infer that V̂ (α) ≥ 0 for arbitrary α ∈ R3 as it is
a sum of squares with positive coefficients for C ≥ max(A,B). Moreover, the points where V̂ (α) = 0 are characterized
by αx = 0, αy = 0 and αz(αz + 2Ω) = 0. This implies that V̂ vanishes at the origin and at the point α = (0 0 − 2Ω)T

and is strictly positive for all other α ∈ R3, proving that V̂ (α) is locally positive definite.
As V is the sum of V̄ (d,α) ≥ 0 and V̂ (α) ≥ 0, it may only vanish if V̄ (d,α) and V̂ (α) vanish simultaneously. From
the local positive definiteness of V̂ (α) it is clear that, in the neighborhood of the origin, V may only vanish for α = 0.
Now we consider V̄ (d,α) and note that V̄ (d,0) = C2Ω2‖d‖2 can only vanish if d = 0. This proves local positive
definiteness of V and, thereby, that rotation around the major principal axis is stable. This result may be viewed as an
extended intermediate axis theorem, as it not only proves that the angular velocity ω remains close to ω⋆ (i.e. the classical
intermediate axis theorem), but also proves that d remains small, i.e. the orientation of the axis of rotation is stable.

Stability of rotation around the minor principal axis
We now consider the stability of stationary rotation around the minor principal axis by setting again ω⋆ = Ωe⋆, Ω > 0
with e⋆ = e3 but assuming C ≤ min(A,B). The proof of the stability of stationary rotation around the minor principal
axis is completely analogous to the proof for the major principal axis.
We consider again the Lyapunov candidate function of the form

V (y) = V̄ (d,α) + V̂ (α), (33)

where the function

V̄ (d,α) = ‖Θα− CΩd‖2 = (Aαx − CΩdx)2 + (Bαy − CΩdy)2 + (Cαz − CΩdz)2 (34)

is defined as before, but V̂ (α) is chosen as

V̂ (α) = −CωTΘω + ωTΘ2ω +
1

Ω2
(ωTΘω − ωT

⋆ Θω⋆)
2

= A(A− C)α2
x +B(B − C)α2

y +
1

Ω2
(Aα2

x +Bα2
y + Cα2

z + 2CΩαz)
2

(35)

The Lyapunov function is constant along solutions and is locally positive definite for C ≤ min(A,B), proving stability
of rotation around the minor principal axis.

Fully explicit scheme

We briefly discuss the fully explicit scheme (or pseudo-implicit scheme) which is currently implemented in RAMMS:rockfall.
Let ωk denote the angular velocity of the rock at time instant tk. The present scheme calculates the angular velocity ωk+1

at time instant tk+1 = tk +∆t (in the absence of contact with the terrain) through

Θ(ωk+1 − ωk) +
∆t

2
G(ωk)(ωk+1 + ωk) = 0 , (36)

where G(ω) = Θω̃ + ω̃Θ, resulting the explicit velocity update

ωk+1 =

(
Θ+

∆t

2
G(ωk)

)−1(
Θ− ∆t

2
G(ωk)

)
ωk = ωk −

(
Θ+

∆t

2
G(ωk)

)−1

G(ωk)ωk, (37)
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where the last step is a simplification explained in [5]. The rotation matrix is parametrized using a quaternion qk with a
midpoint update rule

qk+1
pre = qk+ 1

2 +
∆t

2
F (qk+ 1

2 )ωk+1, qk+1 =
qk+1

pre

‖qk+1
pre ‖

, (38)

where qk+ 1
2 = qk + ∆t

2 ωk.
The rationale behind the explicit scheme is that it preserves the kinetic energy. The change in kinetic energy over the time
step is

T (ωk+1)− T (ωk) =
1

2
(ωk+1)TΘωk+1 − 1

2
(ωk)TΘωk

=
1

2
(ωk+1 + ωk)TΘ(ωk+1 − ωk).

(39)

Substitution of the explicit scheme (36) yields

T (ωk+1)− T (ωk) = −∆t

4
(ωk+1 + ωk)TG(ωk)(ωk+1 + ωk) = 0 (40)

due to the skew-symmetry of G(ω) which shows that the kinetic energy is conserved. A stationary solution ω⋆ = ωk =
ωk+1 of the scheme respects

G(ω⋆)ω⋆ = ω⋆ × (Θω⋆) = 0 , (41)

and corresponds to a stationary rotation of the Euler equations around principal axes.
Let αk be the perturbation of the angular velocity with respect to the stationary rotation ω⋆ = Ωe⋆ around the principal
axis e⋆ = e3. The perturbation dynamics is obtained using ωk = ω⋆ +αk as

Θ(αk+1 −αk) +
∆t

2
G(ω⋆)(α

k+1 +αk) +
∆t

2
G(αk)(αk+1 +αk) + ∆tG(αk)ω⋆ = 0 , (42)

where the linearity of G and (41) have been used. For small perturbations we can neglect higher order terms in αk giving
the linearized perturbation dynamics

0 = Θ(αk+1 −αk) +
∆t

2
G(ω⋆)(α

k+1 +αk) + ∆tG(αk)ω⋆

=

[
Θ+

∆t

2
G(ω⋆)

]
(αk+1 −αk) + ∆t

(
G(αk)ω⋆ +G(ω⋆)α

k
)
.

(43)

The linearized perturbation dynamics can be solved for αk+1 explicitly. Hereto, the second term is reformulated as

G(αk)ω⋆ +G(ω⋆)α
k = Θα̃kω⋆ + α̃kΘω⋆ +Θω̃⋆α

k + ω̃⋆Θαk

= α̃kΘω⋆ + ω̃⋆Θαk

= αk × (Θω⋆) + ω⋆ × (Θαk)

=: Aαk ,

(44)

where A = −(̃Θω⋆) + ω̃⋆Θ. Next, the matrix B = Θ+ ∆t
2 G(ω⋆) in (43) has the inverse

B−1 =
1

detB




BC ∆t
2 ΩC(A+B) 0

−∆t
2 ΩC(A+B) AC 0

0 0 detB
C


 , (45)

where the determinant of B is given by detB = ABC + ∆t2

4 C(A + B)2. Hence, the linearized perturbation dynamics
can be given in the explicit form

αk+1 =
(
I −∆tB−1A

)
αk = Dαk , (46)

in which the matrix D has the non-zero components

D11 = 1− ∆t2

2 detB
Ω2C(A+B)(A− C), D12 = − ∆t

detB
ΩAC(A− C),

D21 = − ∆t

detB
ΩBC(C −B) D22, = 1 +

∆t2

2 detB
Ω2C(A+B)(C −B),

D33 = 1.

(47)
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The stability of rotation around the major principal axis is determined through the eigenvalues of D, being the roots of
the characteristic polynomial

det(λI −D) = (λ− 1) [(λ−D11)(λ−D22)−D12D21)]

= (λ− 1)
[
λ2 − (D11 +D22)λ+ (D11D22 −D12D21)

] (48)

given by

λ1/2 =
b±
√
b2 − 4c

2
and λ3 = 1. (49)

Herein, the parameters b = D11 +D22 and c = D11D22 −D12D21 can be calculated as

b = 2− ∆t2Ω2

2 detB
C(A+B)(A+B − 2C), c = 1 +

∆t2Ω2

2 detB
C ((A+B) (A+B − 2C)− 2 (A− C) (C −B)) .

The eigenvalues λ1/2 in (49) take the form

λ1/2 = 1− d

2
±
√
d2 + 4e

2
(50)

with

d =
∆t2

2 detB
Ω2C(A+B)(A+B − 2C), e =

∆t2

detB
Ω2C(A− C)(C −B) (51)

For rotation around the major principal axis it holds that C ≥ max(A,B) from which follows that d < 0. Therefore,
at least one of the eigenvalues has a magnitude larger than unity which proves instability of rotation around the major
principal axis, contrary to the intermediate axis theorem. Hence, the explicit scheme cannot correctly represent the
stability properties of a freely rotating body.

A stability preserving implicit scheme

Here, we propose an alternative scheme for rockfall simulation with RAMMS:rockfall which preserves the stability prop-
erties of the principal axes of rotation in accordance with the intermediate axis theorem. The alternative scheme consists
of two parts:

1. as update rule for the angular velocity, we use the implicit scheme proposed by [5]

2. as update rule for the orientation parametrization, we propose a novel scheme which preserves the spin.

The implicit scheme for the angular velocity calculates ωk+1 at time instant tk+1 = tk +∆t during a flight phase as

Θ(ωk+1 − ωk) + ∆tωk+ 1
2 × (Θωk+ 1

2 ) = 0 with ωk+ 1
2 =

1

2
(ωk + ωk+1) . (52)

Substitution of the scheme (52) in the kinetic energy expression (39) yields

T (ωk+1)− T (ωk) = −∆t

2
(ωk+ 1

2 )T
[
ωk+ 1

2 × (Θωk+ 1
2 )
]
= 0 . (53)

showing that the kinetic energy is preserved by the implicit scheme. The magnitude of the spin ‖ ~NS‖ = ‖K ~NS‖ =
‖Θω‖, defined by (12), is only dependent on the angular velocity. The implicit scheme for the angular velocity also
conserves the magnitude of the spin as follows from

|| ~Nk+1
S ||2 − || ~Nk

S ||2 = (Θωk+1)TΘωk+1 − (Θωk)TΘωk

= (Θωk+ 1
2 )TΘ(ωk+1 − ωk)

(52)
= −∆t(Θωk+ 1

2 )T
[
ωk+ 1

2 × (Θωk+ 1
2 )
]
= 0 .

(54)

We now propose an update rule for the orientation parametrization. The update of the orientation Ak+1
IK is chosen such

that the spin remains constant, i.e.
I
~Nk+1
S = I

~Nk
S , (55)

and such that the kinematic equation is correctly approximated in the sense that

lim
∆t↓0

Ak+1
IK −Ak

IK

∆t
= ȦIK(tk) (56)
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where ȦIK = AIK(t)ω̃. We choose an update of the form

Ak+1
IK = Ak

IKeω̃
k+1

2 ∆tB(ωk,ωk+1) (57)

where the matrix B depends on ωk and ωk+1 and needs to fulfill BTB = I to ensure that (Ak+1
IK )TAk+1

IK = I .
Furthermore, we demand that B(x,x) = I for all x such that

lim
∆t↓0

B(ωk,ωk+1) = B(ωk,ωk) = I (58)

from which follows the kinematic consistency (56).
To ensure the conservation of spin we demand

Ak+1
IK Θωk+1 = Ak

IKΘωk (59)

which, after substitution of the update rule, gives

Ak
IKeω̃

k+1
2 ∆tB(ωk,ωk+1)Θωk+1 = Ak

IKΘωk. (60)

The matrix B will now be chosen such that

eω̃
k+1

2 ∆tB(ωk,ωk+1)Θωk+1 = Θωk (61)

and therefore
B(ωk,ωk+1)Θωk+1 = e−ω̃

k+1
2 ∆tΘωk (62)

from which we see that it is indeed only dependent on ωk and ωk+1. The matrix B is a pure rotation.
Using Rodrigues formula, every pure rotation R around the unit vector k with rotation angle θ can be represented as

R = I + sin θK + (1− cos θ)K2 (63)

where K = k̃. If k and θ are chosen as

k =
b× c

‖b× c‖ , cos θ =
b · c
‖b‖‖c‖ (64)

then it holds that Rb = c if ‖b‖ = ‖c‖. Furthermore, it holds that R→ I for b→ c.
Hence, we choose B = I + sin θK + (1− cos θ)K2 with

k =
Θωk+1 × (e−ω̃

k+1
2 ∆tΘωk)

‖Θωk+1 × (e−ω̃
k+1

2 ∆tΘωk)‖
, cos θ =

Θωk+1 · (e−ω̃
k+1

2 ∆tΘωk)

‖Θωk+1‖‖Θωk‖ . (65)

To prove that the proposed scheme has the desired stability properties of the principal axes of rotation, we use the Lya-
punov functions V (yk) for the major and minor principal axes as presented before. As the proposed scheme conserves
the kinetic energy and the spin by construction it holds that V (yk+1) = V (yk), whereas positive definiteness has al-
ready been shown. The proposed scheme therefore preserves the stability properties of the principal axes of rotation in
accordance with the extended intermediate axis theorem.

Numerical results

We compare the explicit and the implicit scheme on a numerical example. We consider a cuboid of mass m = 1 kg with
length a = 3 m, width b = 2 m and height c = 1 m in the ~eKx , ~eKy and ~eKz ) direction, respectively. The principal moments
of inertia are therefore A = m

12 (b
2 + c2), B = m

12 (a
2 + c2) and C = m

12 (a
2 + b2) such that A < B < C. Rotation

in the neighborhood of stationary rotation ω⋆ = Ωe⋆ around the major principal axis e⋆ = e3 is considered. As initial
conditions we choose AIK(0) = I and ω =

(
ωx ωy ωz

)T
=
(
10−3 10−3 10

)T
rad/s. We simulate 20 s using a

time-step of ∆t = 0.01 s using the explicit and implicit scheme. The results of both schemes are shown in Figures 1 and 2.
The body initially rotates in the vicinity of the major principal axis with angular velocity ωz = Ω = 10 rad/s, which is
stable as follows from the extended intermediate axis theorem. However, in the numerical solution of the explicit scheme,
the body deviates from stationary rotation around the major principal axis (approximately at t = 10 s) and tends to stable

rotation around the minor principal axis with angular speed ωx = −
√

C
AΩ. If a smaller time-step is taken in the explicit

scheme, then the change of axis will be slower and will take place at a later point in time. The solution of the implicit
scheme remains very close to the major principal axis, both in angular velocity and in the distance d(t) = K~e

K⋆
z − K~e

K
z

and is therefore much more accurate.
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Figure 1: Angular velocities: left the explicit scheme, right the implicit scheme
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K⋆
z − K~e

K
z : left the explicit scheme, right the implicit scheme

Simulation results with RAMMS::ROCKFALL

In rockfall events the rotation of platy disk-shaped rocks around their major principal axis is a remarkable phenomenon
which has been recently precisely measured in experiments [1]. In order to capture these rock dynamics, we have fully
implemented the newly proposed implicit scheme into RAMMS::ROCKFALL and have performed simulations in both
idealized and actual rockfall environments. As a control group, the original explicit scheme employed in the current
RAMMS:ROCKFALL version has been utilized to obtain rockfall simulations under the same boundary conditions.
The first group of simulations was performed with a disk-shaped rock going downward an idealized inclined slope of
40◦. The rock has a uniformly distributed mass of 1000 kg and has a geometry size of 1.16, 1.14 and 0.35 m along its
three principal axes, respectively (see Tab. 3). In total 300 simulations were performed with only changing the initial
rock orientation. The same initial rock orientation set and time step (0.002 s) was employed for both the explicit and
the implicit scheme [4]. Fig. 3 compares for both numerical schemes the kinetic rock energy using the statistic mode of
RAMMS::ROCKFALL (first row). The trajectory mode (second row) shows for a single simulation the development of
rock rotations along its principal axes. The implicit scheme tends to give significantly lower and much more homogeneous
values of the kinetic energy. Furthermore, it takes a much shorter distance for rocks calculated with the implicit scheme
to enter the mode rotating around their major principal axes, which remains stable until the rock reaches the horizontal
deposition zone. Tab. 1 compares the corresponding mean and standard deviation values obtained for the both numerical
schemes. The second group of simulations was performed with a so-called EOTA-shaped rock (see Tab. 3) which was
used in rockfall experiments with instrumented rocks at Chant Sura in Davos, Switzerland [1]. The rock mass is 780 kg,
homogeneously distributed in a rigid body of 0.93, 0.93 and 0.47 m along the three principal axes. Also 300 simulations

Table 1: Comparison of 300 rocks behavior on an idealized slope for the explicit and the implicit schemes.

Parameter Explicit Implicit
Mean Standard Deviation Mean Standard Deviation

kinetic energy (kJ) 127.95 107.25 78.13 43.08
translational velocity (m/s) 13.35 6.29 10.59 3.48
rotational velocity (rot/s) 3.01 1.39 2.47 0.77
jump height (m) 1.23 1.24 0.87 0.84
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Table 2: Comparison of 300 rocks behavior at Chant Sura for the explicit and the implicit schemes.

Parameter Explicit Implicit
Mean Standard Deviation Mean Standard Deviation

kinetic energy (kJ) 64.60 46.50 76.48 47.79
translational velocity (m/s) 10.74 4.58 11.64 4.45
rotational velocity (rot/s) 2.71 1.10 2.98 1.03
jump height (m) 1.07 0.85 1.10 0.84

Table 3: Comparison of the computational time for the explicit and the implicit schemes (300-rock simulation).

Simulation case Explicit Implicit

idealized slope (ramp) 47 s 57 s

actual slope (Chant Sura) 9 s 15 s

were carried out here, setting the same initial rock orientations and time step (0.002 s) for both the explicit and the implicit
schemes. The implicit scheme gives a more concentrated run-out zone for the rocks, see the first row in Fig. 4 and the
distribution of rock kinetic energy looks “smoother” when compared with the explicit scheme. Most interestingly, the
implicit scheme captures well the fast rotation of the flat rock during the entire trajectory while the explicit scheme cannot
reproduce the rock’s stable rotation around its major principal axis. Tab. 2 lists the mean and standard deviation values for
both the numerical schemes. Finally, Tab. 3 displays the computational time recorded for the 300-rock simulations under
the explicit and the implicit schemes. The implicit scheme is a bit slower in comparison to the explicit scheme, which
is expected as the updating of rock rotations requires more computational effort. However, the former does respect the
stability properties of rotating 3D objects, which is a key improvement for RAMMS::ROCKFALL. Future simulations
will be carefully validated against the real rockfall events and experiments. It is anticipated that for extremely long rolling
phases of platy rocks the differences between the explicit and the implicit schemes could be even larger.

Conclusions

In this paper an extended intermediate axis theorem has been proven using Lyapunov functions. Using the same Lyapunov
functions, we have given a rigorous proof that the implicit scheme presented in [5] respects the extended intermediate axis
theorem. The computational cost per time-step is larger for the implicit scheme than the explicit scheme, as Newton
iterations are needed to solve the implicit equations. However, numerical simulations show that the implicit scheme is far
more accurate as it respects both the energy conservation and the invariance of the spin. The implicit scheme therefore
allows to take larger time-steps without excessive error, making it a suitable scheme for 3D rockfall simulation.
Numerical simulations with RAMMS::ROCKFALL using the newly developed implicit scheme show that for the down-
ward motion of a platy rock on an actual slope the rotation around the major principal axis is stable, even in the presence
of intermediate collisions and contact phases with the slope. This is in correspondence with data from field experiments.
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Figure 3: Disk-shaped rock rolling down an idealized inclined slope: left the explicit scheme, right the implicit scheme.

Figure 4: EOTA-shaped rock rolling down an actual slope at Chant Sura (Davos, Switzerland): left the explicit scheme,
right the implicit scheme
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A Three-Dimensional and Nonlinear Virtual Test Car
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Summary. Virtual testing procedures have become a standard in vehicle dynamics. The increasing complexity of driver assistance sys-
tems demand for more and more virtual tests, which are supposed to produce reliable results even in the limit range. As a consequence,
simplified vehicle models, like the classical bicycle model or 4-wheel vehicle models, have to be replaced by a fully three-dimensional
and nonlinear vehicle model, which also encompasses the details of the suspension systems. This paper presents a passenger car model,
where the chassis, the four knuckles, and the four wheels are described by rigid bodies, the suspension system is modeled by the generic
design kinematics, and the TMeasy tire model provides the tire forces and torques in all driving situations.

Keywords: Virtual Test Car (VTC), Design Kinematics, TMeasy, Equations of Motion, Transient Response

Introduction

The multibody approach has become a standard in vehicle dynamics [1]. General multibody software packages, like
Adams/Car [2], ReCurDyn [3], or SIMPACK [4] make it possible to assemble vehicle models of different complexities.
Commercial products, like CarSim [5], CarMaker [6], or DYNA4 [7] provide ready to use vehicle models, which are
real-time capable and may be used in Hardware-in-the-Loop (HIL) test rigs, in driving simulators, or for all kind of virtual
driving tests including parameter optimization or autonomous drive. A basic multibody model of a standard passenger
car is usually supplemented by a handling tire model, like Pacejka [8] or TMeasy [9], and it is extensible by subsystems
for the steering system and the drive train [10]. Sophisticated model approaches combined with an efficient and robust
solver provide an excellent runtime performance [11]. Nevertheless, simplified and rather crude three-dimensional vehicle
models are still applied in the context of lap-time optimization [12] and autonomous driving [13]. However, this reduces
such investigations to the level of basic studies, because the impact of the suspension properties and the road roughness
on vehicle dynamics is not taken into account. This paper demonstrates, that a virtual test car (VTC), properly modeled
by a three-dimensional and nonlinear multibody system, is able to achieve a much faster-than-real-time performance even
on standard personal computers, although it includes the nonlinear suspension kinematics and the wheel/tire dynamics.

The VTC-Model

Model Structure
A virtual test car, valid for typical passenger cars in all driving situations, is represented by a three-dimensional multibody
model which consists at least of the chassis, four knuckles, and four wheels, Figure 1. The virtual test car (VTC) is

Figure 1: Multibody model structure of a passenger car

operated with the TMeasy tire model, which represents a handling model, where the tire acts as a massless force element.
The suspension kinematics allows each knuckle to perform relative to the chassis a hub motion h and a steer motion s.
This generic model approach makes it possible to investigate the influence of different suspension designs, including all-
wheel steering, on the handling and dynamics of a vehicle. The steer motions of passenger car front wheels are typically
coupled by a rack and pinion steering system and the rear suspension often incorporates no active steer motions at all.
Each of the four wheels, consisting of the rim and the tire, rotates with the angle φ about a knuckle-fixed axis, defined
by the unit vector eyW . The generalized coordinates xV , yV , zV , ψV , θV , and φV describe the momentary position and
orientation of the vehicle-fixed, within the VTC model also chassis-fixed, reference frame V with respect to an earth-
fixed frame 0. The points C and K denote the gravity centers of the chassis and the knuckle. In practice, the wheels of
passenger cars are sufficiently balanced. Then, the wheel center W will be located on the wheel rotation axis and is fixed
to the knuckle as a consequence.
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The multibody system, providing the basis of three-dimensional passenger car model, has up to f = 6 + 4 ∗ 2 + 4 = 18
degrees of freedom if each of the four knuckles is modeled with a hub and a steer motion. The total number of degrees
of freedom is reduced to f = 16 if the rear wheels are not actively steered. More complex but still real-time capable
vehicle models including the drive train, the steering system, and dynamic force elements are described in [11] and
[14]. Appropriate road models provide the road height z and the friction coefficient µ as a function of the contact point
coordinates x and y [15].

Reference Frame and Nontrivial Generalized Velocities
The momentary position and orientation of the chassis-fixed or vehicle-fixed reference frame V is provided by the position
vector r0V,0 and the rotation matrix A0V defined in the VTC model as

r0V,0 =



xV
yV
zV


 and A0V =



cosψV − sinψV 0
sinψV cosψV 0

0 0 1






cos θV 0 sin θV
0. 1 0

− sin θV 0 cos θV





1 0 0
0 cosφV − sinφV
0 sinφV cosφV


 (1)

where xV , yV , zV , φV , θV , and ψV serve as generalized coordinates. The comma separated index 0 indicates that the
components of the vector r0V pointing from 0 to V are expressed in the earth-fixed reference frame 0.
The components of the velocity vector v0V and the angular velocity vector ω0V can both be expressed in the vehicle-fixed
frame. The set of kinematical differential equations



ẋV
ẏV
żV


 = AT

0V



vx
vy
vz




︸ ︷︷ ︸
v0V,V

and



φ̇V
θ̇V
ψ̇V


 =

1

cos θ



cos θ sinφ sin θ cosφ sin θ
0 cosφ cos θ − sinφ cos θ
0 sinφ cosφ





ωx

ωy

ωz




︸ ︷︷ ︸
ω0V,V

(2)

provides then the time derivatives of the generalized coordinates ẋV , ẏV , żV , φ̇V , θ̇V , ψ̇V as a function of the generalized
velocities vx, vy , vz , and ωx, ωy , ωz . As shown in [16] this particular choice of nontrivial generalized velocities reduces
the complexity of the equations of motion significantly.

Relative Kinematics
The vehicle model, shown in Figure 1, consists of n = 9 rigid bodies: the chassis, four knuckles, and four wheels. The
absolute position and orientation of an arbitrary body j is defined by

r0j,0 = r0V,0 +A0V rV j,V and A0j = A0V AV j (3)

where r0V,0 and A0V are defined by (1) and rV j,V and AV j describe the position and orientation of body j relative to the
vehicle-fixed reference frame V.
The vector of the absolute body velocity v0j can be expressed in the vehicle-fixed frame

v0j,V = v0V,V +AT
0V

d

dt
(A0V rV j,V ) = v0V,V + ω0V,V × rV j,V + ṙV j,V (4)

where according to (2) the components of the vectors v0V,V and ω0V,V are entirely defined by the nontrivial generalized
velocities vx, vy , vz , ωx, ωy , ωz . The movements of body j relative to the vehicle-fixed frame V can be characterized by
a certain set of generalized coordinates, which may be collected in the vector yj . Then, the vector rV j,V describing the
momentary position of body j relative to V depends on this set of generalized coordinates, rV j,V = rV j,V (yj) and its
time derivative with respect to frame V results in

ṙV j,V =
d

d t
rV j,V (yj) =

∂ rV j,V

∂ yj
ẏj = tj,V (yj) ẏj (5)

where the term tj,V represents the partial velocity of the body j motions. Similarly, the vector of the absolute body angular
velocity, expressed in the vehicle-fixed frame V, reads as

ω0j,V = ω0V,V + ωV j,V = ω0V,V + dj,V (yj) ẏj (6)

where the term dj,V describes the partial angular velocity of the body j motions.
The absolute acceleration and the absolute angular acceleration of body j, both expressed in the vehicle-fixed frame V,
are at first provided by

a0j,V = AT
0V

d

dt
(A0V v0V,V ) = ω0V,V × v0j,V + v̇0V,V + r̃ T

V j,V ω̇0V,V + ω0V,V × ṙV j,V + r̈V j,V

α0j,V = AT
0V

d

dt
(A0V ω0V,V ) = ω0V,V × ω0j,V + ω̇0V,V + ω̇V j,V

(7)
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where the cross product ω̇0V,V × rV j,V was transferred via ω̇ × r = −r × ω̇ = −r̃ ω̇ = r̃T ω̇ to the multiplication of a
transposed skew-symmetric matrix with a vector. The velocity v0V,V and the angular velocity ω0V,V depend entirely on
the generalized velocities. The relative velocity ṙV j,V and the relative angular velocity ωV j,V are provided in (5) and (6).
Their time derivatives result in

r̈V j,V = tj,V (yj) ÿj + ṫj,V (yj) ẏj and ω̇V j,V = dj,V (yj) ÿj + ḋj,V (yj) ẏj (8)

The trivial choice zj = ẏj of generalized velocities is always possible. Then (7) reads as

a0j,V =
[

I3×3 r̃ T
V j,V . . . tj,V . . .

]
ż + ω0V,V × (v0j,V + ṙV j,V ) + ṫj,V ẏj =

∂ v0j,V
∂ z

ż + aR0j,V

α0j,V =
[

03×3 I3×3 . . . dj,V . . .
]
ż + ω0V,V × ω0j,V + ḋj,V ẏj =

∂ ω0j,V

∂ z
ż + αR

0j,V

(9)

where the vector
z =

[
vx vy vz ωx ωy ωz ẏ1 . . . ẏn

]T
(10)

collects the generalized velocities of the vehicle model. The symbols I3×3 and 03×3 represent 3 × 3 matrices of identity
and zeros. The 3 × f matrices ∂ v0j,V /∂ zj and ∂ ω0j,V /∂ zj , where f denotes the number of degrees of freedom,
represent the partial velocities and partial angular velocities of the absolute body j motion. The symbols aR0j,V and αR

0j,V

abbreviate the remaining acceleration and the remaining angular acceleration terms, which do not explicitly depend on
the time derivatives of the generalized velocities.
Passenger car suspensions force the knuckles to perform rather complex nonlinear but smooth motions relative to the
chassis or the vehicle-fixed reference frame V respectively. In addition, the damper elements in a vehicle suspension
systems reduce the relative velocities ẏj to moderate values. As a consequence, the terms ṫj,V ẏj and ḋj,V ẏj can be
neglected compared to the other terms in the remaining acceleration and the remaining angular acceleration which results
in a non-perfect multibody model, but safes a significant amount on computation effort and still provides an acceptable
accuracy [17].

Chassis
The first body, the chassis, represents a special case, because the vehicle-fixed reference V frame is fixed to the chassis.
As a consequence, the position vector rV 1,V = rV C,V is constant and the rotation matrix is simply defined by the 3 × 3
matrix of identity, AV 1 = AV C = I3×3. Then

∂ v0C,V

∂ z
=
[

I3×3 r̃ T
V C,V 03×fr

]
and

∂ ω0C,V

∂ z
=
[

03×3 I3×3 03×fr

]
(11)

provide the partial velocities and the partial angular velocities of the chassis, where fr = f − 6 denotes the degrees of
freedom of the motions relative to the chassis.

Generic Suspension
The kinematics of standard suspension systems, like the double wishbone, the MacPherson, or the multi-link suspension,
can be solved online or approximated by lookup tables or more efficiently by smooth two-dimensional functions [18].
Regardless of the type of an independent suspension the position and orientation of the knuckle fixed reference frame K
relative to the chassis or vehicle-fixed frame V can be described by a position vector and a rotation matrix

rVW,V = rVW,D +



ξ
η
ζ


 and AV K = Aγ AαAβ (12)

where rVW,D describes the design position of the wheel center W, which on a balanced wheel is located on the wheel
rotation axis and hence fixed to the knuckle. The rotation matrix is composed of three elementary rotations, where γ
describes the steer motion, α the wheel camber, and β the pitch motion of the knuckle.
In particular at kinematic and compliance (KnC) tests, the wheel center W is used as a reference point to monitore and
measure the knuckle/wheel movements. The coordinates ξ = ξ(h, s), η = η(h, s), ζ = ζ(h, s) as well as the rotation
angles α = α(h, s), β = β(h, s), γ = γ(h, s) depend on the hub and steer motions h and s. In general, the hub motion
can be described by the vertical displacement of the wheel center, ζ = h. A least square approximation of measured or
computed KnC tests delivers the design kinematic parameters, which for a typical double wishbone suspension on the
left front wheel are listed in Table 1. It provides column by column the parameter sets required for the two-dimensional
design kinematic functions f = f(h, s), where h and s represent the hub and the steer motion. The columns hold for
the constraint knuckle motions ξ = ξ(h, s) to γ = γ(h, s), the spring and damper displacements uS = uS(h, s) and
uD = uD(h, s), as well as the vertical movement zarb = zarb(h, s) of the anti-roll bar attachment point. Each parameter
set consists of the range limits (dh, ds), the initial inclinations (dfdh0, dfds0), as well as the four center (fp0, f0p, f0n,
fn0) and the four corner points (fpp, fpn, fnp, fnn) as defined in [18].
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Table 1: Design kinematics parameters for a typical double wishbone front left suspension including force element displacements

ξ η α β γ uS uD zarb
+0.08096 +0.08096 +0.08096 +0.08096 +0.08096 +0.08096 +0.08096 +0.08096 dh

+0.07240 +0.07240 +0.07240 +0.07240 +0.07240 +0.07240 +0.07240 +0.07240 ds

-0.02765 -0.07112 +0.44734 -0.32329 +0.11453 +0.89260 +0.89323 +0.67524 dfdh0

+0.30806 -0.14963 +1.20972 +1.20120 -8.21459 -0.19082 -0.16794 -0.01680 dfds0

+0.01559 -0.03140 +0.11704 +0.10749 -0.57684 +0.01238 +0.05418 +0.05251 fpp=f(+dh,+ds)

-0.00218 -0.01604 +0.05305 -0.02603 +0.00908 +0.07213 +0.07291 +0.05257 fp0=f(+dh, 0 )

-0.03338 -0.01630 -0.12277 -0.11642 +0.78398 +0.01970 +0.07544 +0.05581 fpn=f(+dh,-ds)

+0.01826 -0.01635 +0.06099 +0.10629 -0.61014 -0.04529 -0.01864 -0.00030 f0p=f( 0 ,+ds)

-0.03167 +0.00089 -0.14875 -0.05932 +0.79015 -0.04802 +0.00026 +0.00311 f0n=f( 0 ,-ds)

+0.02081 -0.02134 +0.02840 +0.11802 -0.63890 -0.10653 -0.08846 -0.05699 fnp=f(-dh,+ds)

+0.00224 -0.00420 -0.02389 +0.02663 -0.00885 -0.07249 -0.07190 -0.05673 fn0=f(-dh, 0 )

-0.02946 -0.00217 -0.14831 -0.02219 +0.78449 -0.11015 -0.07223 -0.05396 fnn=f(-dh,-ds)

The Matlab function provided in the following Listing computes the kinematics of a generic suspension modeled by
the design kinematics. It provides the orientation of the knuckle-fixed reference frame, the momentary position of the
wheel center which serves as a reference point for the knuckle motion, as well as the corresponding partial velocity and
partial angular velocity. The 3×1-vector ufe collects the displacements of the spring uS , the damper uD, and the vertical
movement zarb of the anti-roll bar. The 3×2-matrix dufedyf contains the changes of ufe with respect to the hub and steer
motions collected in the 2× 1-vector yk = [h;s]. They are used within the VTC environment to compute the contribution
of the suspension forces to the vector of generalized forces directly via the virtual power. The additional 5 × 1 output
vector ao collects the constraint motions resulting from the Matlab function dk_fun, which evaluates the two-dimensional
functions as described in [18].

Listing: Matlab function computing the kinematics of a generic suspension via the design kinematics
function ... % v t c u t i l i t y
[ avk ... % orientation of knuckle fixed frame
, dkv ... % part. angular velocities knuckle
, rvwv ... % position of wheel center
, twv ... % partial velocities wheel center
, ufe ... % force element displacements
, dufedyf ... % change of ufe due to yf
, ao ... % additional output
] = dk_susp ... % generic suspension via design kinematics
( yk ... % generalized suspension coordinates yk = [ h; s ]
, rvkd ... % design position of wheel center
, dkin ... % matrix of design kinematics parameter
)

% constraint wheel motions ( yk(1) = hub , yk(2) = steer )
[ xw ,dxwdyf (1), dxwdyf (2) ] = dk_fun( yk(1), yk(2), dkin (:,1) );
[ yw ,dywdyf (1), dywdyf (2) ] = dk_fun( yk(1), yk(2), dkin (:,2) );
[ al ,daldyf (1), daldyf (2) ] = dk_fun( yk(1), yk(2), dkin (:,3) );
[ be ,dbedyf (1), dbedyf (2) ] = dk_fun( yk(1), yk(2), dkin (:,4) );
[ ga ,dgadyf (1), dgadyf (2) ] = dk_fun( yk(1), yk(2), dkin (:,5) );

% sine - and cosine functions as well as combinations
sal = sin(al); sbe = sin(be); sga = sin(ga);
cal = cos(al); cbe = cos(be); cga = cos(ga);
salsbe = sal*sbe; salcbe = sal*cbe; calsga = cal*sga; calcga = cal*cga;

% rotation matrix of chassis -> knuckle (elementary rotations: ga -al -be)
avk(1,1) = cbe*cga - salsbe*sga;
avk(2,1) = cbe*sga + salsbe*cga;
avk(3,1) = -sbe*cal;
avk(1,2) = -calsga;
avk(2,2) = calcga;
avk(3,2) = sal;
avk(1,3) = sbe*cga + salcbe*sga;
avk(2,3) = sbe*sga - salcbe*cga;
avk(3,3) = cal*cbe;

% partial angular velocities due to hub and steer
dkv = zeros (3 ,2);
for j=1:2

dkv(1,j) = cga*daldyf(j) - calsga*dbedyf(j);
dkv(2,j) = sga*daldyf(j) + calcga*dbedyf(j);
dkv(3,j) = sal*dbedyf(j) + dgadyf(j);

end

% actual position of wheel center
rvwv = [ rvkd (1)+xw; rvkd (2)+yw; rvkd (3)+yk(1) ];

% partial velocities due to hub and steer
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twv = [ dxwdyf (1) dxwdyf (2) ; ...
dywdyf (1) dywdyf (2) ; ...

1 0 ];

% displacements and partial derivatives of force elements
[ ufe(1), dufedyf (1,1), dufedyf (1,2) ] = dk_fun( yk(1), yk(2), dkin (:,6) );
[ ufe(2), dufedyf (2,1), dufedyf (2,2) ] = dk_fun( yk(1), yk(2), dkin (:,7) );
[ ufe(3), dufedyf (3,1), dufedyf (3,2) ] = dk_fun( yk(1), yk(2), dkin (:,8) );

% provide constraint motions as additional output
ao = [ xw; yw; al; be; ga ];

end

The generic suspension model provides the position of the wheel center rvwv→ rVW,V and the orientation of the knuckle
avk→ AV K relative to the vehicle-fixed reference frame V as well as the 3× 2-matrices dkv→ dK,V and twv→ tW,V

which provide the partial angular velocities of the knuckle and the partial velocity of the wheel center. The velocity of the
wheel center and the angular velocity of the wheel are then determined by

v0W,V = v0V,V + ω0V,V × rVW,V + tW,V

[
ḣ
ṡ

]
and ω0W,V = ω0V,V + dK,V

[
ḣ
ṡ

]
+ eyW,V φ̇ (13)

where eyW,V = AV K eyW,D provides the knuckle-fixed wheel rotation axis and ωKW,V = eyW,V φ̇ describes the angular
velocity of the wheel rotation relativ to the knuckle. The momentary position of the knuckle center K and its partial
velocities are defined by

rV K,V = rVW,V +AV K rWK,D = rVW,V + rWK,V and tK,V = tW,V + dK,V × rWK,V (14)

where rWK,D denotes the design position of the knuckle center K relative to the wheel center W.

Equations of Motion
The state of a generic VTC model, as proposed here, is defined by f = 18 generalized coordinates and f = 18 generalized
velocities collected in the vectors

y =
[
xV yV zV φV θV ψV h1 s1 h2 u2 h3 u3 h4 u4 φ1 φ2 φ3 φ4

]T

z =
[
vx vy vz ωx ωy ωz ḣ1 ṡ1 ḣ2 u̇2 ḣ3 u̇3 ḣ4 u̇4 φ̇1 φ̇2 φ̇3 φ̇4

]T (15)

Jourdain’s principle of virtual power delivers the equations of motion as a set of two first order nonlinear systems of
differential equations

ẏ = K(y) z and M(y) ż = q(y, z, u, w) (16)

where the vectors u and w collect all model inputs and additional dynamic states, required for dynamic tire and dynamic
suspension forces. A kinematic matrix K which does not coincide with the matrix of identity, makes it possible to define
non-trivial generalized velocities, as done here in (2) for the overall vehicle motions. The elements of the mass matrix M
and the vector of generalized forces and torques q applied to the vehicle are generated for the n = 9 bodies of the VTC
model via

M =
n∑

j=1

{(
∂v0j,V
∂z

)T
mj

∂v0j,V
∂z

+

(
∂ω0j,V

∂z

)T
Θj,V

∂ω0j,V

∂z

}
(17)

q =

n∑

j=1

{(
∂v0j,V
∂z

)T[
F a
j,V −mj a

R
0j,V

]
+

(
∂ω0j,V

∂z

)T[
T a
j,V −Θj,V α

R
0j,V −ω0j,V ×Θj,V ω0j,V

]}
(18)

wheremj and Θj,V describe the mass and inertia of body j, F a
j,V and T a

j,V represent the resulting vectors of the forces and
torques applied to body j. Equations (6) and (9) provide the angular velocities ω0j,V , the partial velocities ∂v0j,V ∂z, the
partial angular velocities ∂ω0j,V /∂z, as well as the remaining acceleration aR0j,V and the remaining angular acceleration
αR
0j,V . The partial velocities of the front right knuckle (K2) and the front right wheel (W2) are, for example, defined by

∂ v0K2,V

∂ z
=
[

I3×3 r̃ T
V K2,V 03×2 tK2,V 03×2 03×2 03×1 03×1 03×1 03×1

]

∂ ω0K2,V

∂ z
=
[

03×3 I3×3 03×2 dK2,V 03×2 03×2 03×1 03×1 03×1 03×1

] (19)

∂ v0W2,V

∂ z
=
[

I3×3 r̃ T
VW2,V 03×2 tW2,V 03×2 03×2 03×1 03×1 03×1 03×1

]

∂ ω0W2,V

∂ z
=
[

03×3 I3×3 03×2 dW2,V 03×2 03×2 03×1 eyW2,V 03×1 03×1

] (20)
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The TMeasy model [9] provides the tire forces FT1,0 to FT4,0 and the torques TT1,0 to TT4,0 applied to the four wheel
centers. In particular, the slip based longitudinal and lateral tire forces strongly depend on the velocity state v0W and ω0W

of the wheel. The velocity state of the wheel depends, according to (13), on the velocity state of the vehicle (v0V,V and
ω0V,V ) and on the kinematical properties of the suspension systems represented by the symbols tW,V , dK,V , and eyW,V ,
which describe the partial velocity of the wheel center, the partial angular velocity of the knuckle, and the position of
the wheel rotation axis. Hence, neglecting the suspension kinematics partly or completely, as done in simplified vehicle
models, inevitably results in poorly modeled tire forces and tire torques.
The vehicle dynamics represented by (16) is driven by the vector of generalized forces and torques. The contribution of
front right tire, part of the front right knuckle (K2) and wheel (W2) combination, to the vector of generalized forces and
torques is, for example, provided by

overall vehicle: q1:6 = q1:6 +

[
FT2,V

TT2,V + rVW2,V ×FT
T2,V

]

hub and steer motions front right: q9:10 = q9:10 + tTW2,V FT2,V + dTK2,V TT2,V

wheel rotation front right: q16 = q16 + eTyW,V TT2,V

(21)

The relations FT2,V = AT
0V FT2,0 and TT2,V = AT

0V TT2,0 transform the resulting tire force vector and the resulting
tire torque vector from the earth-fixed into the vehicle-fixed frame. The amount of contribution depends on the partial
velocity of the wheel center tW2,V , the partial angular velocity of the knuckle dK2,V , and the wheel rotation axis eyW,V .
Tire forces, which support and guide the vehicle, may change very quickly and can increase to considerable values, in
particular in critical driving situations. That is why, even rather small changes in the kinematical suspension properties,
represented by the symbols tW,V , dK,V , and eyW,V , result in significant contributions to the vector of generalized force
and torques. Which magnifies the error in neglecting the specific properties of the suspension kinematics.

Example: Braking in a Turn

The numerical solution of differential equations, like the ones in (16), is discussed in [19]. A straightforward implementa-
tion of the virtual test car (VTC) entirely realized in MATLAB provides an easy to use simulation environment including
plotting and animation facilities, Figure 2. As typical for standard passenger cars on dry road, the left plot in Figure 2

t = 3.8 s t = 2.6 s t = 1.4 s t = 0.2 s

t=3.80
t=2.60

t=1.40
t=0.20

Figure 2: Emergency braking in a turn without ABS of a typical midsize passenger car illustrated by animation screenshots and plots.

indicates a maximum deceleration of approximately 8 m/s2. The wheel load transfer from inner to outer during cornering
and from rear to front when braking causes the inner rear wheel to lock in the time interval t ≈ 3 s to t ≈ 4 s, center plot
in Figure 2. The VTC model handles wheel lock without any problems and the TMeasy tire model provides a smooth
transition to stand still in addition.
The numerical integration in the time interval 2 ≤ t ≤ 6 s performed with the standard MATLAB solver ode45, an
explicit Runge-Kutta formula of order 4 and 5 with step size control, took a 2,7 GHz Quad-Core Intel Core i7 just 4.72
seconds. This is already close to real-time performance (6 − 2)/4.72 = 0.85 even in the comparatively slow MATLAB
interpretation mode.

ENOC 2022, July 17-22, 2022, Lyon, France

54



ENOC 2020+2, July 17-22, 2022, Lyon, France

Influence of the Suspension Kinematics on the Vehicle Dynamics

From a Standard to a Simplified Suspension Kinematics
Table 1 provides the design kinematics parameter matrix for the front left suspension of a typical passenger car. The
initial inclinations dα/d h = +0.44734 rad(m, d β/d h = -0.32329 rad(m, and d β/d h = +0.11453 rad(m indicate
that the knuckle performs significant rotations induced by the hub motion. As typical for front axle suspensions, the
first, second, and third rotation produces a partial camber compensation, counteracts the brake pitch, and generates a
slight self-steering effect. The axis of the knuckle-fixed coordinate system are parallel to the corresponding axis of
the vehicle-fixed reference frame. That is why, the design kinematics takes f00=f(0,0)=0 for granted. Then, center
points with different absolute values at vanishing steering angles (s=0), like fp0α = α(+dh, 0) = +0.05305 rad and
fn0α = α(−dh, 0) = -0.02389 rad specify a nonlinear behavior, which in general is not a simple side effect but a
well design feature of the suspension kinematics. The design kinematics approach makes it easy to tune or design the
suspension kinematics. Replacing the first row in the parameter matrix of Table 1 by

+0.00000 +0.00000 +0.00000 +0.00000 +0.00000 +0.08096 +0.08096 +0.08096 dh

just switches off the influence of the hub motion h on the constraint motions ξ, η, α, β, and γ by leaving the force element
displacements uS , uD, and zarb unchanged. Simple 4-wheel vehicle models just take the steer motions into consideration
by neglecting the vertical suspension motions in addition, thus providing a far worse approximation.

Transient Vehicle Response
The DIN ISO directive 7401 lists the step steer input as one of the standard open loop maneuvers to reveal insight into
the transient response of vehicles. In practice, an ideal step input is not possible. The VTC environment realizes the steer
input s at the front and optionally at the rear axle via the rack displacements. Table 2 provides the time history of the

Table 2: Define step steer input within the VTC environment via lookup tables

0.0000 0.5000 0.6000 6.0000 time sample points τSi in s
0.0000 0.0000 -0.0050 -0.0050 steer input front left ϱ1(tSi) in m
0.0000 0.0000 -0.0050 -0.0050 steer input front right ϱ2(tSi) in m

steer inputs at the front axle which correspond here to the rack displacement ϱ1 = ϱ2 = ϱ of a standard rack and pinion
steering system. The rear wheels are not steered in this example ϱ3 = ϱ4 = 0. The steering forces applied to the knuckles
1 to 4 are defined by

FSi = cSi (ϱi − si) + dSi (ϱ̇i − ṡi) , i = 1(1)4 (22)

The constants cSi, dSi summarize the stiffness and damping properties of the tie rods and the steering lever. The time
histories of the steer inputs deliver also their time derivatives ϱ̇1 to ϱ̇4. The steer motions of the knuckles s1 to s4 and their
derivatives ṡ1 to ṡ4 are part of the vectors of generalized coordinates y and generalized velocities z as defined in (15).
Table 2 approximates the step by a continuous ramp, where the rack is moved in the time interval 0.5 ≤ τS ≤ 0.6 s from
its center position s1 = s2 = 0 to the right s1 = s2 = −5 mm and then (τS > 0.6 s) kept constant. This input generates
the wheel steering angles displayed as dotted black and dotted grey lines in plot (a) of Figure 3.

Figure 3: VTC step steer results, where solid and broken lines characterize vehicles with standard and simplified suspension kinematics

The VTC model represents here a fullsize passenger car with a wheel base of a = 2.9 m, a track width of s ≈ 1.5 m, and
wheel loads of Fz1 = Fz2 = 5.39 kN and Fz3 = Fz4 = 5.06 kN at the front and rear. The steady state values of the
lateral acceleration ay = v2/R = 6.658 m/s2 and the yaw angular velocity ψ̇ = v/R = 0.2665 rad/s deliver a cornering
radius of R = 94 m and a vehicle velocity of v = 25 m/s in this example. A PI-controller keeps the vehicle velocity
constant during the whole manuever by generating appropriate drive torques applied to the rear wheels.
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The plots in Figure 3 compare the results of the VTC model with standard double wishbone suspensions at the front
and the rear to a VTC model where the influence of the hub motion on the constraint suspension motions is completely
switched off. As a consequence, the wheel steering angles of the simplified VTC model, represented by the dotted gray
and dotted black lines in plot (a) of Figure 3, correspond perfectly to the step or more precisely to the ramp steer input.
The nonlinear suspension kinematics of the front wheels incorporates a roll steering which reduces the steering angles
with increasing body roll. That is why the steering angles drop down in the average from 2.35 to 2.15 degree when the
roll angle, solid line in plot (c) of Figure 3, increases from 0 to 3.25 degree. This roll steer effect is a well designed
feature of the suspension kinematics. It automatically reduces the impact of the steer input at fast cornering but keeps the
maneuverability in the lower lateral acceleration range.
For a fair comparison of the standard vehicle to a vehicle with simplified kinematics the steer input of the standard vehicle
is increased such that both VTC models end up in the same lateral acceleration. The results are displayed in Figure 4,
where the steering wheel angles, plotted on the left, are zoomed to the interesting range from 2.0 to 2.5 degrees. In general,
the kinematics of passenger car steering linkages is designed according to the Ackermann geometry which results in larger
steering angles at the curve inner wheel compared to the curve outer wheel. The roll steering effect of the VTC model
with the standard suspension kinematics even counteracts the Ackermann geometry, solid black and grey lines in the left
plot of Figure 4. This is a smart suspension design, because during fast cornering the outer wheels are much more loaded
than the inner ones and hence the steering angle of the outer wheel is the one that counts.

Figure 4: VTC step steer results with simplified and standard suspension kinematics with adjusted steer input

Both VTC models end up now in the same lateral acceleration and the same yaw angular velocity, plots (b) and (c) in
Figure 4. But, the time histories of the roll angle and the side slip angle still differ in their steady state values, plots (d)
and (e) in Figure 4.

Standard Versus Simplified Kinematics
In practice, the suspension kinematics of a passenger car is carefully designed to meet certain requests arising from the
longitudinal and lateral dynamics [20]. The Figures 5 and 6 show the three-dimensional motions of the front left knuckle
for the VTC model with the simplified suspension kinematics and for the VTC model with the standard suspension
kinematics.
At real passenger car suspension systems a steer motion causes the knuckle to rotate about the inclined kingpin axis which
in addition has a longitudinal and lateral offset to the wheel center. That is why, the centers 1 and 2 of the steered front
wheels perform longitudinal ξ and lateral η motions as well as elementary rotations α, β, γ about the x-, y-, and z-axis
which in case of the simplified suspension entirely depend on the steer input s, Figure 5. The vertical displacements of the
wheel centers are unconstrained and described by the hub motion ζ = h. Bump stops in the suspension systems restrict
the jounce motions (h > 0) at the curve outer wheels 2 and 4, upper right plot in Figures 5 and 6. The plots in Figure 6
reveal the complexity of standard passenger car suspension systems. The distinct longitudinal motions ξ of the wheel
center 3 and the distinct pitch rotations β of the knuckle 3 indicate for example the ability of the rear suspension to reduce
a brake pitch. The lateral motions η and the rotations α about the x-axis provide the roll support and a partial camber
compensation. The former brings down the roll angle from 3.59 to 3.39 degrees, plot (d) of Figure 4. The roll support
and the camber compensation at the front and rear wheels, which are carefully coordinated to each other, reduce further
on the side slip angle from -2.71 to -2.56 degrees, plot (e) of Figure 4.
The steering forces FS = [FS1 FS2 FS3 FS4]

T and the driving torques TD = [TD1 TD2 TD3 TD4]
T as well as the braking

torques TB = [TB1 TB2 TB3 TB4]
T define the inputs of the VTC model. The steering forces are directly applied to the

knuckles. Each of the driving torques acts between the chassis and the corresponding wheel at conventional drive trains or
between knuckle and wheel in case of wheel motors. The braking torques specify the maximum torques usually defined
by the braking pressures distributed to the wheels. An enhanced dry friction model, as described in [20], generates the
individual braking torque acting between knuckle and wheel. All inputs may be defined as simple feed forward time
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Figure 5: Simplified suspension kinematics neglecting hub influence

Figure 6: Standard suspension kinematics with adjusted step steer input

histories or provided by external controllers or by the output of additional subsystems. Hence, the VTC environment is
able to simulate vehicles with all kind of steering, driving and braking modes.
Jourdain’s principle combined with non-trivial generalized velocities and the idea of a non-perfect multibody system
approach result in equations of motion of minimal complexity. A partial implicit solver, as described in [21], provides an
extremely fast numerical solution of sufficient accuracy and stability.

Consequences
Human drivers and automated drivers too are very sensitive to the roll angle and to the side slip angle, in particular. Hence,
a vehicle model which neglects some or all properties of the suspension kinematics is not able to reproduce the dynamics
of a real passenger car with reliable accuracy. Virtual tests to investigate the dynamics and the stability of vehicles as well
as the development and further improvement of driver assistance systems require at least vehicle models which incorporate
the nonlinearities of the suspension kinematics. Otherwise just basic studies will be possible, which of course may serve
as starting points for further and reliable investigations.
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Conclusion

Simplified vehicle models, like the classical bicycle model, 4-wheel vehicle models, or even three-dimensional vehicle
models neglecting the specific kinematical properties of the suspension systems, are not able to reproduce the dynamics
of vehicles properly. Such models are restricted to basic studies. The VTC environment takes the three-dimensional
motions of the chassis, four knuckles, and four wheels into account. The generic design kinematics suspension model is
able to describe the nonlinear properties of standard passenger car suspension systems with sufficient accuracy and with
a minimum of computation effort. The VTC model operated with the TMeasy tire model is valid in any driving situation.
A straightforward implementation of the virtual test car (VTC) entirely realized in MATLAB provides an easy to use
simulation environment including plotting and animation facilities. A VTC implementation coded in C achieves on a
standard personal computer with a 2,7 GHz Quad-Core Intel Core i7 a real-time factor (real-time/cpu-time) of 160 which
is magnitudes faster than real-time. Thus making the Virtual Test Car to an ideal platform for modern simulation tasks.

References

[1] . Bruni S. et al. (2020) State-of-the-art and challenges of railway and road vehicle dynamics with multibody dynamics approaches. Multibody System
Dynamics 49, 1-32.

[2] Adams/Car. https://www.mscsoftware.com/de/product/adams-car, last accessed on March 11, 2022.

[3] RecurDyn. https://www.functionbay.org, last accessed on March 11, 2022.

[4] SIMPACK. https://www.3ds.com/products-services/simulia/products/simpack/, last accessed on March 11, 2022.

[5] CarSim. https://www.carsim.com, last accessed on March 11, 2022.

[6] CarMaker. https://ipg-automotive.com/en/products-solutions/software/carmaker/, last accessed on March 11, 2022.

[7] . DYNA4. https://www.vector.com/int/en/products/products-a-z/software/dyna4/, last accessed on March 11, 2022.

[8] Pacejka, H. B. (2002) Tire and Vehicle Dynamics, Butterworth-Heinemann, Oxford.

[9] Rill, G. (2013) TMeasy – The Handling Tire Model for all Driving Situations. Proceedings of the XV International Symposium on Dynamic Problems
of Mechanics (DINAME)

[10] Rill, G. (2006) Vehicle Modeling by Subsystems. Journal of the Brazilian Society of Mechanical Sciences & Engineering - ABCM 4, 431-443.

[11] Rill, G. (1997) Vehicle Modeling for Real Time Applications. Journal of the Brazilian Society of Mechanical Sciences - RBCM XIX.2 , pp. 192-206.

[12] Gabiccini, M. et al. (2021) Analysis of driving styles of a GP2 car via minimum lap-time direct trajectory optimization Multibody System Dynamics
53 pp. 85-113. https://doi.org/10.1007/s11044-021-09789-7 last accessed on March 11, 2022.

[13] Vu, T. M. et al. (2021) Model Predictive Control for Autonomous Driving Vehicles. Electronics 2021, 10, 2593. https://doi.org/10.3390/
electronics10212593.

[14] Rill, G. et al. (2019) VTT – a virtual test truck for modern simulation tasks. Vehicle System Dynamics 0, 1-22.

[15] Rill, G. (2019) Sophisticated but quite simple contact calculation for handling tire models. Multibody System Dynamics 2, 131-153.

[16] Rill, G. (1994) Simulation von Kraftfahrzeugen. Vieweg, Braunschweig/Wiesbaden. Reprint at https://www.researchgate.net/publication/
317037037_Simulation_von_Kraftfahrzeugen#fullTextFileContent

[17] Rill, G. and Schaeffer, Th. (2017) Vehicle Modeling by non-perfect Multibody-Systems. 88th GAMM Annual Meeting, Weimar. https:
//www.researchgate.net/publication/328049816_Vehicle_Modeling_by_non-perfect_Multibody_Systems#fullTextFileContent last
accessed on March 11, 2022.

[18] Rill, G., Castro, A. A. (2020) A Novel Approach for Parametrization of Suspension Kinematics. Advances in Dynamics of Vehicles on Roads and
Tracks, 1848-1857.

[19] Arnold, M. et al. (2011) Numerical methods in vehicle system dynamics: State of the art and current developments. Vehicle System Dynamics 49,
1159-1207.

[20] Rill, G. and Castro, A. A. (2020) Road Vehicle Dynamics: Fundamentals and Modeling with MATLAB® CRC Press, Ed. 2.

[21] Rill, G. (2006) A modified implicit Euler Algorithm for solving Vehicle Dynamic Equations. Multibody System Dynamics, 15(1) 1-24.

ENOC 2022, July 17-22, 2022, Lyon, France

58



ENOC 2020, July 5-10, 2020, Lyon, France

Abscissa minimization for self-stability of bicycles and nonholonomic acceleration when
riding out of the saddle
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Summary. The model of a two-mass-skate (TMS) bicycle is reconsidered from the point of view of optimization of its self-stability,
i.e. asymptotic stability of its vertical position in a uniform straight motion with respect to small perturbations of its leaning and steering
angles. The critical Froude number for the onset of the self-stability is found explicitly. Minimization of the spectral abscissa is then
performed yielding a new scaling low that links together the geometric and the mass parameters of the TMS bicycle. The scaling law
fits well the relations between the geometric and mass parameters of a recent experimental realization of the TMS bicycle. Modification
of the TMS model by including into it a mass moving periodically in the direction perpendicular to the frame of the bicycle is discussed
as a step to understand nonholonomic acceleration of bicycles when riding out of the saddle.

Self-stability of bicycles and its optimization

The bicycle is easy to ride, but surprisingly difficult to model. Refinement of the mathematical model of a bicycle has con-
tinued over the last 150 years with contributions from Rankine, Boussinesq, Whipple, Klein, Sommerfeld, Appel, Synge
and many others [1, 2, 3]. The canonical, nowadays commonly-accepted model goes back to the 1899 work by Whipple
[1, 4, 5]. The Whipple bike is a system consisting of four rigid bodies with knife-edge wheels making it non-holonomic,
i.e., requiring for its description more configuration coordinates than the number of its admissible velocities.

Self-stability of a riderless bicycle is a well-known empirical phenomenon that can be easily reproduced in an experi-
ment with the majority of known practical designs of bicycles. Namely, a bicycle in its uniform motion along a straight
path keeps the vertical position of the plane of its frame under small perturbations if its forward speed is high enough.
Moreover, perturbations of its leaning and steering angles die out, so that one can say about asymptotic self-stability of
the vertical position of the bicycle. The fact of the asymptotic self-stability has been theoretically supported already by
Whipple [1]. The self-stability has a number of important practical implications. For instance, the bicycle designs that
do not present the self-stability are difficult for a person to ride; in other words, more stable bikes handle better. Hence,
deeper understanding of the passive stabilization can provide new principles for the design of more safe and rideable bi-
cycles, including compact and foldable models. Furthermore, it is expected to play a crucial part in formulating principles
of the design of energy-efficient wheeled and bipedal robots [6].

However, the theoretical explanation of the self-stability has been highly debated throughout the history of bicycle dy-
namics to such an extent that a recent news feature article in Nature described this as “the bicycle problem that nearly
broke mathematics” [7]. The reason as to why “simple questions about self-stabilization of bicycles do not have straight-
forward answers” [8] lies in the symbolical complexity of the Whipple model that contains 7 degrees of freedom and
depends on 25 physical and design parameters [2]. In recent numerical simulations [1, 4, 5], self-stabilization has been
observed for some benchmark designs of the Whipple bike. These results suggested further simplification of the model
yielding a reduced model of a bicycle with vanishing radii of the wheels (which are replaced by skate blades), known as
the two-mass-skate (TMS) bicycle [3, 9, 10]. Despite the self-stable TMS bike having been successfully realized in recent
laboratory experiments [3], its self-stability still awaits a theoretical explanation. In this lecture we find explicitly the
critical Froude number for the onset of-self-stability of the TMS bicycle and will show how minimization of the spectral
abscissa [11, 12] allows one to find hidden symmetries in the model, suggesting further reduction of the parameter space
and, finally, providing explicit relations between the parameters of stability-optimized TMS bikes [13, 14].

Nonholonomic acceleration due to honking or riding out of the saddle

Honking means cycling out of the saddle. Cyclists use this way of riding to accelerate. In this process, the body of the cy-
clist moves rhythmically side to side with respect to the plane of the bicycle, while the frame of the bicycle rocks or sways
with respect to the vertical position. It is known, however, that the commonly accepted modern bicycle models, stemming
from the Whipple model of 1899, are non-holonomic and conservative. On one hand, this implies the conservation of
energy, and on the other, non-conservation of the phase volume, which results in the possibility of the asymptotic stability
of a straight vertical position of a bicycle that is riding along a straight path if the forward velocity is high enough, which
is a well-known empirical fact [2, 3]. A natural question is: where the energy of dying leaning and steering motions flows?
Actually, the energy in the lean and steer oscillations is transferred via a nonlinear coupling to the forward speed rather
than being dissipated, as it was shown in numerical simulations in [2]. This effect suggests a method of acceleration of
the bicycle due to periodic movements of a mass in the direction perpendicular to the plane of the frame of the bicycle.
It can therefore be conjectured that when cycling out of the saddle, the periodical movement of the cyclist’s mass pumps
energy into the forward motion leading to the desired acceleration.

Recently, acceleration due to a periodic motion of an internal mass has been theoretically discovered in a non-holonomic
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Chaplygin sleigh model [15, 16] and linked to the mechanism of acceleration of particles moving between periodically
oscillating walls in the Fermi-Ulam model [17]. In the present talk we will discuss the ways of extending the model
of a TMS bicycle to take into account a periodically moving mass for investigation of the nonholonomic Fermi-like
acceleration during cycling out of the saddle.
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double-support phases
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Summary. The paper aim is to define an original walking for a 2D biped with a trunk, two identical legs with knees and massless feet.
This walking is composed of a ballistic single-support phase and a distributed in time double-support phase. The ballistic movement in
single support is defined by solving a boundary value problem with initial and final biped configurations and velocity conditions. These
conditions ensure that at the beginning of the single support the toe of the rear leg rises without touching the ground again and at the
landing of the heel there is no impact. In the double-support phase, the orientation of the two feet and other generalized coordinates
which are used to define the configuration of the biped, are chosen as Bezier functions of time. The torques and ground reaction forces
resulting from this double-support phase are determined by solving for the biped the inverse dynamic problem.

Statement of the problem

The walking motion
We design biped periodic walking, which consist of distributed in time single- and double-support phases. Ballistic single-
support motion is designed. During this motion the torques in all joints are zeroes except the torque in the ankle-joint of
the stance leg. The torque in the ankle-joint of the stance leg is applied in order to keep its foot in the equilibrium. During
double-support motion the torques are applied in all the six joints; during this time both feet rotate: foot of the rear leg -
around its toe, foot of the front leg - around its heel. To explain our statement of the problem more clearly, we show Fig. 1
with several stick-figures, which results from our numerical investigations.

a) b) c) d) e)
Figure 1: a) Initial configuration of biped in single support. b) Intermediate configuration in single support. c) Final configuration in
single support − initial one in double support. d) Intermediate configuration in double support. e) Final configuration in double support
− initial one in the next single-support motion.

Mathematical model and design of the walking
The absolute orientation of the shins and thighs are defined with angles q1, q2, q3, q4 (see Fig. 2). The orientation
of the trunk is defined by angle q5. Cartesian hip-joint coordinates are x and y. The orientation of both feet are
described by angles qp1 and qp2. It is assumed that there are no sliding motion and no take-off of the support legs.

q1

q2

q3

q4

xy

q5

Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

qp1

qp2

Figure 2: Generalized
coordinates, and inter-link
torques.

In real human walking, the double-support motion is distributed in time, and consequently the
configuration of the human at the beginning of the double support differs from the configura-
tion at the end of this double support. Consequently for the human walking the configurations
at the beginning and at the end of the single-support motion are also different. Vector x of
the generalized coordinates for the biped with massless feet is x = [q1, q2, q3, q4, q5, x, y]

⊤.
Superscript ⊤ means transposition. The mathematical model of the biped is:

A(x)ẍ + h(x, ẋ) = DΓ+ J⊤
r1
r1 + J⊤

r2
r2, (1)

where A(x) is a 7 × 7 symmetric positive definite inertia matrix, h(x, ẋ) is a 7 × 1 vector,
which groups the centrifugal, Coriolis, and gravity forces. Γ is 6×1 vector of the joint torques
applied by the biped. We consider six torques applied in the hip-, knee- and ankle-joints.
Vectors ri = (rix, riy)

⊤, with i = 1, 2, are the ground reactions applied to the massless feet
and consequently to the ankle-joints. The following constraint equations are correct when the
front or/and rear leg is/are on the bearing surface.

Jri ẍ+ J̇ri ẋ = 0 for i = 1 or/and 2. (2)

Single-support motion: Boundary value problem
In the single-support phase, the ballistic movement takes place on the supporting leg with a flat-foot contact, Fig. 1. A
torque is applied only in the ankle-joint of this stance leg in order to maintain the equilibrium of its foot. Let a2, t2, and
h2 refer to the ankle, toe and heel of the transferred leg (shown in Fig. 1 by blue color). The five initial velocities q̇i(0),
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length of the step d and duration TSS of the single-support motion are calculated to reach the final configuration from
the initial one and to satisfy the two following velocity conditions Va2(0) · a2t2 = 0 and Va2(TSS) · a2h2 = 0. They
respectively ensure that the toe t2 of the rear foot rises from the ground without touching the ground again and there is an
impactless landing of the heel h2 on the ground at the end of the single-support motion.

Double-support motion: problem definition
At the end of the single-support phase, the landing massless foot touches the ground with its heel, Fig. 1 c). The other
foot keeps contact with the ground through its toe. In double-support phase both feet rotate, Fig. 1 d), the double support
motion is ended when the foot of the front leg touches the ground with the toe and the rear foot rises. At this instant, the
single-support motion of the next step starts. Variables qp1, qp2, q1, q2, q5 and r1x are defined with Bezier polynomial
functions Pj(τ) with five control point pj (j = 0, · · · , 4) and τ = (t− TSS) /TDS , TDS being the duration of the
double-support motion. At each sampling time the knowledge of Pj(τ) allows us to calculate the trajectory of x, y, xa1,
xa2, q3 and q4, by using geometric and kinematic models, (2), and thus the left term of (1).

Numerical results
Figure 3 a) shows that the evolutions of angles qp1 and qp2 are synchronized during the double-support phase. Figure 3 b)
shows that the magnitude of the torque in the ankle-joint of the rear leg is much greater than the magnitude of the torque in
the ankle-joint of the front leg. This seems physically coherent because the biped pushes on the rear leg to move forward
during the double-support phase.
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Figure 3: Front leg (solid lines) and rear leg (dashed lines) in double-support phase: a) Orientation angles of feet . b) Ankle torques.

Conclusions

The definition of a walking with a distributed in time double support is a complex problem, [4]. In the papers [1–3], we
studied ballistic single-support motion coupled with instantaneous double-support phase. The torques in the biped joints
at the instantaneous double support are impulsive one. The distribution in time of the double support allows to get a cyclic
gait with the torques of finite magnitude. The future objective is to increase the time of the single-support motion and
decrease the time of double-support motion in order to get biped walking closer to human one.
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Poland)

14:30 - 14:50
Experimentally validated geometrically exact model for nonlinear dynamic analysis of cantilevers undergoing extreme
motions
FAROKHI Hamed∗, XIA Yiwei, ERTURK Alper
∗University of Northumbria at Newcastle (Newcastle City Campus, 2 Ellison Pl, Newcastle upon Tyne NE1 8ST, United
Kingdom United Kingdom)

14:50 - 15:10
Model order reduction of nonlinear piezoelectric microstructures through direct parametrisation of invariant manifolds
OPRENI Andrea, VIZZACCARO Alessandra, TOUZÉ Cyril, FRANGI Attilio∗
∗Politecnico di Milano (Piazza Leonardo da Vinci, 32 20133 Milano Italy)

15:10 - 15:30
Modeling Nonlinearities in MEMS Micro Mirrors: From Single Chip to Wafer Level
NABHOLZ Ulrike, MEHNER Jan, DEGENFELD-SCHONBURG Peter∗
∗Robert Bosch GmbH, Corporate Research (71272 Renningen Germany)

63



ENOC 2020, July 5-10, 2020, Lyon, France

Optimal design and tuning of an SMA-assisted PTMD system
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Summary. This work presents a first step to using a phenomenological model of an SMA spring as an auxiliary damping mechanism in
a Pendulum Tuned Mass Damper (PTMD) setup under stochastic excitation. An SMA superelasticity model was considered to approach
the hysteretic behaviour of an SMA material. In provision for susbsequent simulations, this model’s optimal damping parameters were
derived with particular care for the implicit relationship between the SMA model parameters and system mean square response.

Introduction

In the field of Pendulum Tuned Mass Dampers (PTMD), many damping modalities have been investigated. This paper
presents a novel way of using hysteretic aspects of Shape Memory Alloy (SMA) spring as a damping mechanism in a
PTMD system. This investigation looks into damping for a single SMA spring, allowed to move in a one-dimensional
space along the horizontal displacement of the pendulum mass. It presents the results of the optimal parameters cor-
responding to maximum structure displacement variance reduction. The methods address the derivation of moment
equations through symbolic computing and solving. These are then used to optimise the system parameters through
numerically solving implicit relationship between the SMA parameters and the system’s mean square response through
an iterative process proposed in [2].

Methods

The system under consideration is presented in Fig. 1. The main structure was assumed to move only along the x-axis.
The pendulum is attached to the structure at point A and has length L and angle of inclination θ. The SMA spring is
attached at the bottom of the ball mass and at the side floor of the structure. The top floor and wall were assumed to move
as a rigid body and the excitation, applied along the x-direction, is modeled as a white noise excitation.

Figure 1: Schematic of the system under consideration

The elongation of the spring, denoted by s, has a minimum length of s0. The restoring force g of the SMA spring is here
assumed to behave according to the Yan-Nie equivalent linearization model [3],

g(s, ṡ) = αks+ (1− α)kz (1)

where,

z = ceṡ+ kes ce =
b− a√
2πσṡ

[
1− erf

(
a√
2σs

)]
ke =

a+ b√
2πσs

e
− a2

2σ2
s (2)

Here a and b are constants defining the phase transition lengths of the SMA material. Note that in order to use this
linearized model for the restoring force, the standard deviations σs and σṡ of the elongation displacement and velocity
must be known. In this case, according to the law of cosines, the elongation displacement s and velocity ṡ could be
expressed as,

s = s0 − L sin θ (3)

ṡ = L cos θθ̇ (4)
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This system’s dynamics under white noise excitation can be described by,
(
M +m mL cos θ
mL cos θ mL2

)(
ẍ

θ̈

)
+

(
C −mL sin θθ̇
0 (1− α)kceL2 cos θ2

)(
ẋ

θ̇

)(
K 0
0 0

)(
x
θ

)

=

(
0

−mgL sin θ − (αk + (1− α)kke)(L2 sin θ cos θ + Ls0 cos θ)

)
(5)

where M , C and K are the primary structure mass, damping and stiffness, respectively. The constant m represents the
pendulum mass. Here, k = F0mg

b where g is the acceleration due to gravity. F0, the normalized transformation strength,
therefore drives the SMA stiffness. It was chosen to investigate the system with a mass ratio m

M = 0.2, a frequency of
oscillation of 1.5 Hz and a damping ratio of 0.017. The SMA parameters were chosen to be a = 0.005m, b = 0.08m and
α = 0.06.
Throughout the study, all the state variables (the structure displacement x and pendulum angle θ) were assumed to be
zero-mean stationary Gaussian random variables. The following quantities were therefore determined using a small-angle
approximation,

σ2
s = L2E[θ2] σ2

ṡ = L2E[θ̇2] (6)

Since the relationship between Eqs. (2) and (6) is implicit, it was proposed to use the iterative process described in [2]
to determine adequate values for ce and ke upon convergence. This was allowed by first deriving the moment derivatives
of this system, derived using principles devised in [1]. Additionally, this system’s optimal operating point in a domain
L ∈ [0, 1], F0 ∈ [0.1, 0.95] was determine through the optimization of a performance index defined by the ratio of
the optimized variance (σ2

optim) and the determined uncontrolled primary structure’s variance (σ2
r ). For the purpose of

optimization, the MATLAB® fmincon function was used. Namely,

min
L,F0

σ2
optim

σ2
r

s.t. 0 ≤ L ≤ 5 (m)

0.1 ≤ F0 ≤ 0.95

(7)

Results

Figure 2 demonstrates the results of a parameter sweep performed for the described range of values of L and F0. It also
presents the optimal operating point for this system with L = 0.4932 m, F0 = 0.2066 with an optimal reduction of the
variance to 13.88% of the uncontrolled structure’s variance.

Figure 2: Contour plot of the ratio of derived variance to uncontrolled variance as a function of length and normalized transformation
strength
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Summary: Most sensory systems in biology exhibit properties that resemble the behaviour of nonlinear dynamic systems [1]. 

The auditory sensing system is no exception with its nonlinear transfer characteristics enabling amplification and selection 

features [2]. It was suggested that biological auditory sensing can be modelled as a system tuned near/at a Hopf bifurcation 

[2]. Theoretical studies showed that the tuning to the bifurcation point can be achieved also if sub-threshold Hopf oscillators 

are coupled via their output signals [3]. Here, we study experimentally and numerically the properties of a nonlinear cantilever-

based acoustic sensing system in dependence of the coupling strength. We show that coupling not only yields a transition 

between linear and nonlinear characteristics and increases sensitivity but it can be used for bandwidth enhancement of the 

system as well, enabling coverage of larger frequency ranges. 

Introduction 

Introducing bio-inspired signal pre-processing into speech and sound processing system strongly increases the 

performance, as recently shown by Araujo et al [4]. The main pre-processing components are thereby frequency 

decomposition of the signal, nonlinear (compressive) amplification, and adaptation of sensing properties to 

different inputs. Nevertheless, software-based implementations prevent real-time performance and high 

efficiency. Thus, hardware-based implementations are required. These can further improve the signal-to-noise 

ratio and the above mentioned properties if implemented into the sensing stage directly. We developed an acoustic 

sensing system with integrated bio-inspired pre-processing based on a silicon cantilever beam with real-time 

feedback [5]. Thereby, frequency decomposition is obtained using resonant operation. We demonstrated that 

nonlinear operation similar to a Hopf oscillator can be obtained using certain real-time feedback mechanism [5]. 

Since the linear or nonlinear characteristics are controlled by the feedback loop, dynamic adaptation of sensor 

properties can be introduced easily.  

The exact mechanism, generating nonlinear dynamics in the inner ear, is still under discussion [6]. However, one 

proposed mechanism is coupling of the receptor cells and/or the hair bundles on top of these cells. This coupling 

increases the tolerance against noise and improves the range of non-linear regime [6]. Gomez et al. [3] 

theoretically showed that coupling of sub-threshold Hopf oscillators can induce a bifurcation as well. This yields 

an increase of the parameter range for the occurrence of the Hopf bifurcation and improves the sensitivity of the 

complete system. Here, we study the influence of output-signal coupling on the properties of our acoustic sensing 

system, consisting of nonlinear cantilevers. In particular, we analyse (i) if a Hopf bifurcation can be achieved due 

to the coupling, (ii) how the critical coupling strength depends on the sensor properties, and (iii) how the coupling 

affects sensor properties like sensitivity and bandwidth. 

Implementation 

Figure 1 schematically shows the coupled cantilever system. We use micro-electro-mechanical systems (MEMS)-

based silicon beams with integrated deflection sensing and actuation [7]. After a first amplification stage and 

decomposition of the sensing signal 𝑥𝑥 into an AC and a DC part using a high-pass and low-pass filter, respectively, 

feedback and output-signal coupling are realised using the FPGA structure of a STEMLAB-125 board. Two 

cantilevers with different characteristic frequencies ω are coupled and analysed. Coupling is implemented by first 

multiplying the sensing signal 𝑥𝑥1 of one cantilever by the coupling factor Cf, then adding an offset 𝑢𝑢𝐷𝐷𝐷𝐷, and finally 

using the resulting signal 𝑦𝑦2 = 𝐶𝐶𝑓𝑓,1𝑥𝑥1 + 𝑢𝑢𝐷𝐷𝐷𝐷  to drive the actuation of the second cantilever (see figure 1). 

Similarly, the signal 𝑥𝑥2 from the second cantilever drives the actuation 𝑦𝑦1 of the first cantilever. The coupling 

between both cantilevers is symmetric, i.e. 𝐶𝐶𝑓𝑓,1 = 𝐶𝐶𝑓𝑓,2. Furthermore, self-feedback given by 𝑎𝑎1𝑥𝑥1 is added to the 

actuation signal, yielding 𝑦𝑦1 = 𝐶𝐶𝑓𝑓,1𝑥𝑥2 + 𝑎𝑎1𝑥𝑥1 + 𝑢𝑢𝐷𝐷𝐷𝐷 . In this work, the critical coupling strength Ccritical, at which 

the bifurcation is observed, is determined in dependence of the characteristic frequencies 𝜔𝜔1,2 of the sensors and 

the distance 𝜇𝜇 = 𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑎𝑎1,2 of the feedback strength 𝑎𝑎 from its critical value 𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  at the Hopf bifurcation. Then, 

the response of the sensing system to sound stimuli of various frequencies and amplitudes is analysed. 
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Results 

Figure 2 shows the critical coupling strength Ccritical in dependence of the ratio of characteristic frequencies 𝜔𝜔1/𝜔𝜔2  

of the two coupled cantilevers and the distance 𝜇𝜇 from the Hopf bifurcation. It is observed that Ccritical increases, 

if 𝜔𝜔1/𝜔𝜔2 or 𝜇𝜇 increase, as was expected from the theoretical studies of Gomez et al. [3]. However, for a fixed 𝜔𝜔1/𝜔𝜔2 and increasing 𝜇𝜇, the slope of 𝑑𝑑𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑑𝑑𝜇𝜇 is decreasing in the experiment while it is increasing for the 

theoretical prediction by Gomez etal., which is based on a normal form for the Hopf oscillators. To study, if this 

deviation arises from the coupling mechanism or the oscillator model, we will compare the experimental results 

with simulations of the system, using a sensor-specific model, and simulations of an adapted Gomez system.  

Regarding the sensing properties, we observe higher sensitivities for the coupled system, as expected from the 

theoretical predictions. Nonlinear transfer characteristics occur, if the system of both cantilevers is tuned near the 

bifurcation point. Additionally, the range of frequencies, for which the system is sensitive, increases strongly (up 

to 10 times larger bandwidth). In this case, both sensors do not only show a stronger response to sound frequencies 

at the two characteristic frequencies, but also in the frequency range in between. This enables bio-inspired acoustic 

sensing systems covering the auditory frequency range with only a few cantilevers with nonlinear characteristics. 

Figure 1: Schematic for feedback and coupling mechanism 

Figure 2: Ccritical as a function of ω1/ω2 and µ for different pairs of coupled cantilevers obtained from experiments. 
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Dynamic loads produced by swinging bells – experimental and numerical investigation of 
the novel yoke-bell-clapper system with variable geometry  
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Summary. Dynamics of the swinging bells is a timely problem considered when the bell’s supporting structures are designed or monitored. 
The geometry of the yoke and the magnitude of excitation force are the crucial parameters determining the yok-bell-clapper system 
response for a given size and shape of the bell. In this paper we present novel yoke-bell-clapper system with variable geometry and 
adjustable excitation force. We introduce mathematical model based on the existing prototype. We validate the mathematical model and 
then assess the influence of the yoke geometry and excitation force on the system response. The simulations are done using sample-based 
approach. The system that undergoes investigation in the paper is non-linear, piecewise and discontinuous. Created numerical tool can 
reliably predict the ringing scheme of the bell and associated reaction forces in the supports. 

Introduction 

Dynamics of the swinging bells is a timely problem that is recently widely considered by scientific community. The 
phenomena that are the most widely investigated are the bell to the clapper impact modeling, different bell’s working 
regimes, the dynamics of bell towers and the magnitudes of forces transferred between the bells and their supporting 
structures. The loads generated by swinging bells are in special interest because they may have severe consequences on 
the bell’s supporting structure as recently reported by [1,2,3]. For a given size and shape of the bell, the crucial 
parameter that determines it’s dynamics are the geometry of the yoke and magnitude of excitation force. In the existing 
studies, when modeling the dynamics of the bell supporting structure the loads generated by swinging bells are either 
measured by accelerometers placed on the existing constructions or estimated according to some semi-empirical 
formulas [4].  
In this paper we present novel yoke-bell-clapper system with variable geometry and adjustable excitation force. We 
introduce the mathematical model of the system that is based on the existing prototype and validate it. Our goal is to 
assess the influence of the yoke’s geometry and the excitation force on the bell’s and clapper’s oscillations amplitude 
and associated reaction forces in the supports. The simulations are done using sample-based approach, values of system 
parameters are randomly sampled from the analyzed set of parameter values. As a result we obtain an effective and 
robust numerical tool that can trustworthy predict the bell's ringing scheme and produced loads. 

Experimental stand and mathematical model validation 

Figure 1 presents the experimental rig based on the project and patent of the Lodz University of Technology. The rig 
consists of the yoke, the bell, the clapper, the moving beam and the supporting frame. The idea behind the moving beam 
is that we can alter the geometry of the yoke, therefore reproduce different bell mounting types and analyze the 
influence of the parameters describing the yoke’s geometry on the system response. The rig is equipped with sensors 
that measure the kinematics and the dynamics of the system.  
The mathematical model representing the yoke-bell-clapper system is build based on the physical model that is also 
schematically presented in the figure 1. It is a four degree of freedom (DoF) system accommodating the yoke with the 
bell, the clapper and the yoke’s supports. The clapper to the bell collisions are described using a discrete mathematical 
model based on the coefficient of restitution. The analyzed yoke-bell-clapper system is propelled with a linear motor 
activated when the bell goes through its stable equilibrium position. The excitation mathematical model is therefore 
piece-wise and depends on the period of the system.  

 
 
Figure 1: Experimental rig and schematic model of the experimental rig along with its physical and geometrical quantities involved 

in the mathematical model of the system. 
 

ENOC 2022, July 17-22, 2022, Lyon, France

68



 

ENOC 2020+2, July 17-22, 2022, Lyon, France 
 

The mathematical model is validated by performing the series of simulations for chosen yokes’ geometries. Each time 
numerical results were compared with data obtained experimentally. Good matching between experimental data and 
numerical results is achieved in all scenarios. It shows that our model can accurately represents reality regardless of the 
yoke’s geometry. Important aspects from engineering point of view including: The period of the system, its dynamics, 
reaction forces, and ringing scheme of the bell are reliably determined.  

The influence of the yoke geometry and excitation on the system response 

Using validated mathematical model we investigate the influence of the yoke geometry and the excitation force 
magnitude on the system response. In the analysis we focus on the aspects crucial from practical point of view namely: 
working regime, amplitude of the bell and clapper motion and dynamical loads acting on the supporting structure. We 
perform a series of 100,000 simulations using sample-based approach. The results are presented in a form of two 
parameters color maps. In each map on the horizontal axis there is a parameter determining the yoke’s geometry and on 
the vertical axis the excitation force amplitude. Figure 2(a) shows the variety of ringing schemes that can be obtained 
depending on the geometry and excitation. Figures 2(b) and 2(c) present the amplitudes of dynamic reaction forces in 
the yoke supports in the horizontal and vertical direction consecutively.  

 
Figure 2: Two parameters colormaps showing a) the behavior of the system after reaching its attractor, amplitude of the reaction 

force in the supports in the a) horizontal and b) vertical direction. 

Conclusions 

We present that transition from one ringing scheme to another is usually associated with a step change of produced 
reaction forces and oscillations amplitude. We also show that for a given yoke's geometry different ringing schemes are 
possible depending on the excitation force.  
Developed numerical algorithm can serve as a reliable tool for engineers during the design phase of the bells, yokes and 
their supporting structures.  
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Summary. A unique characteristics of cantilevered beams is their capability of undergoing very large-amplitude oscillations,

which has been used in various applications such as energy harvesting and bio-inspired actuation. To examine cantilever motions

of extremely large amplitudes, the third-order inextensible nonlinear model cannot be used, hence requiring the application of a

geometrically exact model. This study presents an experimental and theoretical investigation on nonlinear extreme dynamics of

cantilevers under base excitation. A rotation-based geometrically exact model is developed using Euler-Bernoulli beam theory and

inextensibility assumption to examine the cantilever response at extreme motion amplitudes. Precise experiments are conducted

using a state-of-the-art in vacuo base excitation experimental set-up to drive the cantilever to extremely large motion amplitudes,

and a high-speed camera is used to capture the motion. Extensive comparisons are conducted between experimental and theoretical

results and it is shown that the proposed exact model can be used reliably to capture cantilever motions of extreme amplitudes.

Introduction

Cantilevered beams are present in different engineering applications such as vibration energy harvesters, micro gyroscopes,

and piezoelectric sensors and actuators. Owing to have one end free, they can undergo large-amplitude vibrations. However,

analysing large-amplitude vibration is a difficult task, not only due to the presence of different sources of nonlinearity,

but also the fact that the amplitude could grow extremely large, rendering nonlinear truncated models inaccurate and

requiring a geometrically exact model. Many investigators have examined the vibrations of cantilevers over the last few

decades, starting with the well-known third-order model developed by Crespo da Silva and Glynn [1, 2], which was later

further examined by Nayfeh and Pai [3, 4]. Many other studies utilised the third-order model to examine the behaviour of

cantilevers, namely Dwivedy and Kar [5] and Mahmoodi et al. [6]. Farokhi et al. [7] continued the studies on this topic by

developing a dynamical version of the rotation-based exact nonlinear cantilever model, originally used for static buckling

of an elastic continuum [8], capable of capturing motions of extreme amplitudes. This study reports detailed experimental

results on extremely large vibrations of a cantilever and shows comparisons between experimental and theoretical results.

Model Development

To derive the rotation-based geometrically exact equation of motion, a cantilevered beam is considered of length L, cross-

sectional area A, second moment of area I, Young’s modulus E, mass per unit length m, and material damping coefficient

η, under harmonic excitation in the form of z0 sin(ωzt). Making use of the inextensibility assumption, and in the context

of the Euler-Bernoulli beam theory, the longitudinal (u) and transverse (w) displacements of the cantilever (the latter with

respect ot the clamped end), can be formulated in terms of the centreline rotation ψ as

u(s, t) =
∫ s

0

(

cosψ(ξ, t) − 1
)

dξ, w(s, t) =

∫ s

0

sinψ(ξ, t) dξ. (1)

Assuming a vertical configuration for the cantilever with the clamped end at the bottom (see Fig. 1(a)) and taking into

account the gravity, the geometrically exact equation of motion for centreline rotation of the cantilever can be derived as

J∂ttψ + m sinψ

∫ L

s

∫ s∗

0

(

∂ttψ(ξ, t) sinψ(ξ, t) +
(

∂tψ(ξ, t)
)2

cosψ(ξ, t)
)

dξ ds∗

+ m cosψ

∫ L

s

[

− z0ω
2
z sin(ωzt) +

∫ s∗

0

(

∂ttψ(ξ, t) cosψ(ξ, t) −
(

∂tψ(ξ, t)
)2

sinψ(ξ, t)
)

dξ

]

ds∗

− EI∂ssψ − ηI∂tssψ − mg(L − s) sinψ = 0.

(2)

in which J = ρI with ρ being the mass density, g is the acceleration due to gravity, and ∂s ≡ ∂/∂s. Equation 2 is then

nondimensionalised and discretised into a 6-degree-of-freedom system using the Galerkin technique while keeping all

terms geometrically exact. The resultant set is solved using a continuation technique.

Results

Figure 1(b) shows the in vacuo base excitation experimental set-up used to excite the cantilever in the primary resonance

region and to drive it to extremely large amplitude. A high-speed camera system was used to capture vibration response

of the cantilever. An image processing code was then developed to extract the beam deformed shape and the motion

amplitudes from the videos. In order to examine oscillations of extremely large amplitudes, the cantilever was excited
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Figure 1: (a) Schematic of the cantilever. (b) In vacuo base excitation experimental set-up. (c, d) Frequency response

of the cantilever tip transverse and longitudinal vibration at 0.5g RMS acceleration level, respectively. (e) Motion of the

cantilever at peak amplitude in one period of oscillation. In sub-figure (c)-(e), circles denote experimental results and lines

show geometrically exact model predictions.

at base acceleration of 0.5g RMS under near-vacuum conditions (i.e. 9% atmospheric pressure). The theoretical and

experimental frequency responses of the cantilever are illustrated in Fig. 1(c) and 1(d), and the oscillation of the cantilever

at its peak resonance amplitude in one period of oscillation is shown in Fig. 1(e). It is seen in Fig. 1(c, d) that the

exact model works very well even at this extreme oscillation amplitude and predicts a frequency response amplitude very

close to the experimental one. Additionally, as shown in Fig. 1(e), the exact model does an excellent job at capturing the

extreme vibrations of the cantilever, even when the tip of the cantilever bends backwards, as confirmed by the experimental

observations. Hence, these results prove the validity of the proposed geometrically exact model and that it can be used

reliably for studying cantilever vibrations of extremely large amplitudes.

Conclusions

Nonlinear extreme dynamics of a cantilever was examined experimentally and theoretically. For the experimental part, an

in vacuo experimental set-up was used to excited the cantilever in the primary resonance region and to drive the cantilever

vibration to extremely large amplitudes, and for the theoretical part, a geometrically exact model based on Euler-Bernoulli

beam theory was developed. Comparisons between experimental and theoretical results showed that the proposed exact

model is fully capable of capturing vibrations of extremely large amplitudes reliably.
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Summary. Piezoelectric actuation represents the most effective out-of-plane actuation mechanism for resonant microstructures as
scanning micromirrors and piezoelectric ultrasonic transducers. Nevertheless, predicting the dynamic response of such devices at
their design stage is often impractical since numerical computation of periodic orbits from finite element systems is computationally
demanding. In this work, we propose a model order reduction strategy based on the direct parametrisation for invariant manifolds
tailored for nonlinear piezoelectric structures. The innovative aspect of the method is the introduction of nonlinear terms that arise due
to piezoelectric coupling in the reduction procedure.

Introduction

Among the actuation techniques available for the development of micro-electro-mechanical systems (MEMS), piezoelec-
tric actuation is the most effective to achieve large out-of-plane displacements in resonant actuators as scanning micromir-
rors and piezoelectric ultrasonic transducers. Indeed, its enhanced linearity, fast feedback response, and high exerted
forces provide a mean to achieve high performance with moderate power consumption and easy control of the device.
However, the large amplitudes developed by devices as scanning micromirrors are still affected by geometric nonlinear-
ities and by the hysteretic behaviour of piezoelectric materials, which in turn makes the dynamic response of the device
nonlinear. Such effects need to be predicted at the design stage of MEMS components, hence making numerical methods
of paramount importance for their design. Since full-order numerical simulations are computationally demanding for
performing parametrised analyses of mechanical components, dimensionality reduction techniques are essential [1, 2].
Within the context of vibratory systems, the Direct Parametrisation for Invariant Manifolds (DPIM) [3, 4] represents the
most effective method for deriving accurate reduced models of structures actuated at resonance. In the present work, we
derive an extension of the method initially introduced for systems subjected to geometric nonlinearities to account for
the nonlinear converse piezoelectric effect as modeled by the Landau-Devonshire theory of ferroelectrics. The proposed
approach is applied to predict the nonlinear dynamic response of MEMS micromirrors and its results are compared with
experimental data.

Method

The dynamic response of piezo-MEMS undergoing large displacements and subjected to converse piezoelectric effect is
governed by the conservation of linear momentum formulated as follows [5]:

∫

Ω

ρ ü ·w dΩ+

∫

Ω

(Se − Sp) : δe dΩ = 0, (1)

where all quantities are reported in material configuration Ω. ρ is the density, w is the test function, δe is the first variation
of the Green-Lagrange strain tensor. The second Piola-Kirchhoff stress tensor is decomposed in elastic Se and inelastic
components Sp, which in the present framework are given by the following constitutive models [6]:

Se = A : e, Sp = Q : A : (p⊗ p), (2)

with A elasticity tensor, Q electrostrictive tensor, and p polarisation vector. In general p is time-dependent and with
non-zero average value. Upon finite element discretisation of Eq. (1) and addition of damping the following discrete
system of ordinary differential equations is retrieved:

MÜ+CU̇+KU+G(U,U) +H(U,U,U) = Fp(U,p), (3)

with p function of time. Dimensionality reduction of Eq. (3) is achieved by parametrising the motion of the system along
an invariant-based span of the phase space. We recast Eq. (3) in first order by introducing the velocity V = U̇ and we
introduce a nonlinear coordinate change between the normal coordinates z that describe the motion of the system along
the embedding and the nodal degrees of freedom of the model [7, 8]:

U = Ψ(z), V = Υ(z). (4)

The dynamics along the defined subspace is expressed as:

ż = f(z), (5)
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Figure 1: (a) optical microscope image of the tested device. (b) Preliminary comparison between experimental data and numerical
frequency response curves. Numerical curves are obtained using a complex normal form style parametrisation.

with f(z) reduced dynamics. An important remark of the presented formulation is that the polarization field p is assumed
as known. In the present work, the polarisation is measured from experimental data and fed to the model to compute
the piezoelectric forces Fp(U,p) beforehand. This provides an efficient modeling approach as already evidenced in past
works. When combined with the proposed model order reduction strategy it provides an efficient framework for predicting
the nonlinear dynamic response of piezoelectrically actuated microstructures.

First results reported on a MEMS device are reported in Fig. 1. Fig. 1(a) reports the device under consideration, which
is a MEMS micromirror developed by STMicroelectronics. In Fig. 1(b) a preliminary comparison between numerical
simulations and experimental data is reported, highlighting the remarkable agreement of the proposed approach.

Conclusion

We here reported a model order reduction method for nonlinear piezoelectric structures based on the direct parametri-
sation for invariant manifolds. The starting equation is the conservation of linear momentum for structures subjected
to finite transformations and to converse piezoelectric effect, the latter modeled using the Landau-Devonshire theory of
ferroelectrics. The resulting system exhibits a follower force controlled by the polarization of the piezoelectric material
and by the displacement of the structure, which in turn modifies the vibratory response of the system. Preliminary results
obtained on a real MEMS device show promising results both in terms of computational performance and accuracy.
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Summary. The performance requirements for MEMS sensors and actuators, such as scanning micro mirrors, are increasing as emerging
applications in the fields of highly-automated driving or augmented reality are in increasing demand. During final testing, a device is
rejected as soon as it does not fulfil the performance specifications which decreases yield and thus increases the overall cost. In
many cases, unexpected device failure or performance issues can be traced back to nonlinear system behaviour. This entails the need
for system models which take nonlinear sensor dynamics into account and a fundamental understanding of the underlying nonlinear
physics is often essential for an improved MEMS design. Here, we present a comprehensive analysis of nonlinear dynamics in scanning
MEMS micro mirrors ranging from careful measurements and modeling of nonlinear system behaviour on the level of individual chips
up to wafer-level testing of several hundred devices. The underlying nonlinear mode-coupling phenomenon, known as spontaneous
parametric down-conversion (SPDC) exhibits a sudden transition from mostly linear to nonlinear system behaviour. The threshold
amplitude or rather critical point only lies within the operational amplitude of a device, when a specific frequency resonance condition
(a 1:1:1 internal resonance) for the mechanical modes of the device is closely matched. Due to fabrication imperfections of MEMS
process technologies small deviations in the geometry between several devices of the same design occur which consequently influences
the frequency spectrum strongly influence the frequency spectrum of each individual device and therefore decide about the fulfilment
of the resonance condition. We demonstrate the benefits that can be achieved by employing the insights gained from single-chip
measurements and models to the analysis of a large number of devices on wafer level and suggest a possible path towards successful
design iterations. Moreover, above the threshold we show that the micro mirror displays fundamental nonlinear behavior ranging from
stationary state bifurcations to dynamical instabilities.

Introduction

One main requirement for scanning MEMS micro mirrors for automotive as well as for consumer applications is the
reachable deflection angle. Yet, our experimental observations show that even micro mirrors of the same design layout
often show drastic differences in their maximum deflection [3]: Some devices reach the required deflection angle while
others exhibit instabilities in their deflection and sometimes even fracture.
These drastic differences in the device behaviour can be attributed to small differences in the mode spectrum caused
by geometry variations due to the process tolerances of surface micromachining. In the case of the scanning MEMS
micro mirror at hand, the nonlinear dynamic behaviour which occurs in some cases is due to a fundamental nonlinear
model, more prominently known from nonlinear optics, namely spontaneous parametric down-conversion (SPDC). In the
mechanical domain, where the nonlinear mode coupling originates from geometric nonlinearities, SPDC or three-wave
mixing has only been studied in recent years [1, 3].
For SPDC, a model of an externally driven, damped Duffing oscillator with a cubic nonlinearity is used for the drive
mode. Additionally, two so-called parasitic modes of the same type are coupled to the drive mode through a three-wave
coupling term. In addition, as discussed in [2], a nonlinear damping term needs to be included.

Full Model for Single Chips

With the a simple model of three nonlinearly coupled ordinary differential equations, the observed effects can be simu-
lated and thus explained physically. They include bifurcations and hysteresis, as well as unstable behaviour caused by a
resonant actuation of parasitic modes and thus amplitude depletion of the drive mode. Additionally, critical slowing-down
and limit cycles can explain the observed phenomena.
The system parameters needed to emulate the behaviour can be measured directly using laser doppler vibrometry. They
can also be obtained from simple optical measurements, where the deflection angle is measured during the undisturbed
and during the disturbed operation of the mirror.
Fig. 1 shows the modelled behaviour of a micro mirror that shows SPDC behaviour. As mentioned above, SPDC is a
spontaneous process and thus, the figure shows the behaviour below threshold (identical to the nonlinearly damped Duff-
ing oscillator) as well as the behaviour above threshold, where the two parasitic modes gain amplitude and disturb the
oscillation of the drive mode. The critical point model represents the threshold deflection angle, that is the transition from
uncoupled behaviour to SPDC behaviour with the two additional parasitic modes. This model is of vital importance for
the large scale application and wafer level testing that will be elaborated on in the next section.

Critical Point Model for Wafer Level

The simple analytical model for the critical deflection angles that was shown as a red line in Fig. 1, becomes relevant
when measurements need to be carried out for a larger number of devices in order to assess their nonlinear behaviour.
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Thus, it is especially important for engineering applications, since it allows for a differentiation between devices that lie
within the specifications and devices that lie outside
As we show in [3], mode coupling can be predicted with low computational effort. The result of the prediction only
includes at what angle mode coupling occurs in a specific mirror and does not characterize the full range of nonlinear
dynamic effects as was the case for the full model above. Yet, this prediction is sufficient for the decision on whether
or not a device meets the requirements pertaining to the deflection angle. It points out the individual chips with critical
deflection angles below a certain threshold. Apart from this, it increases knowledge about the design and thus provides
input for design iterations and optimization.
Fig. 2 show the results of the critical point model [4]. The design parameter δ = f0,d − f0,p1

− f0,p2
on the horizontal

axis gives the relation of the linear mode frequencies of the three coupled modes, where f0,0 denotes the frequency of the
drive mode and f0,p1

and f0,p2
the frequencies of the two parasitic modes. In other words, δ represent the 1:1:1 internal

resonance condition.

Drive mode

Parasitic modes

Critical point model

Figure 1: Transient representation of a sweep with increasing fre-
quency. The drive mode is shown in blue, for the case of mode
coupling, the line is solid. For comparison, the dotted blue line
represents the behaviour of the drive mode without any mode
coupling. The dashed lines in grey and black show the two par-
asitic modes during mode coupling. The red line denotes the
critical point model which depicts the onset of SPDC and will be
of great importance in the following section.

Figure 2: Validation of the critical point model: The measured
critical deflection angles (631 points) which mark the onset of
mode coupling, where red dots and blue circles distinguish crit-
ical angles below and above the specified deflection angle, are
compared to the prediction from the critical point model, shown
as a black line.

Conclusion

We showed that when the modes of a mechanical structure fulfil an internal resonance condition and show a large cou-
pling strength, nonlinear phenomena such as SPDC can occur. The behaviour of single chips was modelled using the
full model for three coupled equations of motion with the relevant nonlinear terms from structural mechanics. Wafer
level testing of the critical threshold for the onset of mode coupling was successfully matched with the prediction of the
much simpler critical point model. The design parameter δ provides leverage for adjusting the mode coupling of a MEMS
design. Thus, we explained both the underlying nonlinear dynamics effects and their implications for unwanted nonlinear
system behaviour. Connecting these two parts is highly relevant for the development of not only MEMS micro mirrors,
but any resonant MEMS sensor or actuator. A range of similar coupling mechanisms due to geometric nonlinearities is
also conceivable.
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A fast, efficient algorithm for quantification of rare events in dynamical systems

Antoine Blanchard∗, Themistoklis P. Sapsis∗
∗Department of Mechanical Engineering, Massachusetts Institute of Technology, USA

Summary. We introduce a fast, efficient algorithm for quantification of rare events in dynamical systems. The algorithm iteratively
learns the “black-box” relationship between parameters (the inputs) and extreme observations (the outputs). To keep the number of
black-box evaluations to a minimum, the algorithm cleverly selects the “next-best point” that it should sample based on how much that
point will improve our estimate of the output statistics. “Improvement” is quantified by the so-called Q-criterion whose computation
(and that of its gradient) can be done analytically, which allows for the possibility of the input space being high-dimensional. We show
that the proposed sampling algorithm outperforms other standard sampling approaches.

Background

Extreme events may be thought of as short-lived episodes during which an observable (e.g., drag force, temperature, or
stock price) significantly deviates from its mean value. They often have disastrous consequences, as with rogue waves,
avalanches, wildfires or extreme weather conditions (see figure 1 and [1]). Quantification of extreme events is particularly
difficult because they often arise in complex, high-dimensional, nonlinear systems, and give rise to heavy-tail probability
density functions (pdf). The fact that extreme events occur with very low probability means that reliable quantification of
the statistics requires an unfathomable amount of data. If the data is collected from a large-scale experiment or a computer
simulation with millions of degrees of freedom, the task of extreme-event quantification is virtually hopeless. Thus, the
challenge is to come up with a way to estimate the heavy-tail statistics of the system using as few samples as possible.

(a) Rogue waves (b) Avalanches (c) Wildfires (d) Hurricanes

Figure 1: Examples of extreme events arising in nature.

Mohamad & Sapsis [2] recently proposed a sampling strategy for quantification of extreme events in dynamical systems.
The basis for their approach was to approximate the unknown “black box” y = F (x) as the realization of a Gaussian
process. Specifically, starting from an initially small dataset, their algorithm uses Gaussian process (GP) regression [4]
to construct a surrogate map, and then determines the next-best sample for which evaluation of the black box will most
improve knowledge of the statistics. At each iteration, the sought-after pdf can be approximated using the posterior
distribution of the surrogate map. In their work, the criterion used to determine the next-best point is problematic for two
reasons. First, it takes the form of an integral over the input space, which is intractable in high dimensions. Second, there
is no closed-form expression for the gradient of their criterion, which forces them to use non-gradient-based optimizers.

Overview of the algorithm

Our algorithm is inspired by that of Mohamad & Sapsis [2], but considerably improves its scope and efficiency. Assuming
that we have available a dataset of input–output pairs Dn = {xi, F (xi)}ni=1, we proceed iteratively as follows:

Step 1. Train a GP regressor on Dn, and compute surrogate mean fn and covariance σ2
n.

Step 2. Determine the next-best point by solving the minimization problem

x∗ = argmin
x

Q(x; fn,Dn). (1)

Step 3. Evaluate the expensive map F at the new point, and append {x∗, F (x∗)} to Dn. Then, go back to Step 1.

To compute the criterion Q(x̃; fn,Dn) at some candidate point x̃, we proceed as follows:

Step Q1. Construct D̃n by appending {x̃, fn(x̃)} to Dn. (Note that we use the surrogate map fn rather than F .)
Step Q2. Predict the covariance σ̃2

n using the GP regressor trained on Dn, and return

Q(x̃; fn,Dn) =

∫
σ̃2
n(x)px(x)

pn(fn(x))
dx. (2)

In the above, px(x) and pn(fn(x)) respectively denote the joint pdf of the inputs (which is assumed to be known) and
the approximate pdf of the output as predicted by the surrogate map. Criterion (2) is already an improvement over the
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A Multi-Dimensional Atlas Algorithm for Variable-Mesh Boundary-Value Problems
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Summary. In development since 2007, the MATLAB-based, object-oriented, software platform COCO provides general-purpose sup-
port for construction of nonlinear constraints and, in applications to optimization, the corresponding adjoint conditions. COCO atlas
algorithms implement continuation strategies that grow constraint manifolds successively from an initial solution guess. Until recently,
an alpha implementation in COCO of the multi-dimensional MULTIFARIO package in the atlas-kd atlas algorithm was unable to han-
dle problems with changing dimension and/or interpretation of variables and constraints, e.g., boundary-value problems with adaptive
meshes. This paper describes a recent upgrade to the atlas-kd atlas algorithm that not only provides a resolution to this conundrum,
but makes problem-dependent implementation straightforward and consistent with the existing COCO paradigm for construction of
constraints and monitor functions. Here, in lieu of a definition of an inner product on an underlying infinite-dimensional vector space,
the manifold geometry is characterized using the Euclidean inner product on a suitably-defined finite-dimensional projection. Sev-
eral examples are considered from the theory of periodic orbits in autonomous and periodically-excited nonlinear dynamical systems.

Fundamentals

The trajectory collocation problem
Following [1], consider the autonomous differential equation ẏ = f(y, p) on the interval [0, T ] for some positive real
number T . Here, the vector field f : Rn×Rq 7→ Rn is parameterized by a vector of problem parameters p ∈ Rq . Choose
the integers N and m and the sequence {κj}Nj=1 such that

∑N
j=1 κj = N . Let u =

(
υbp, T, p

)
∈ RNn(m+1)+1+q , where

υ⊤bp =
(
· · · υ⊤(m+1)(j−1)+1 · · · υ⊤(m+1)j · · ·

)
(1)

and j ranges from 1 to N . Then,

ỹ(t) =
m+1∑

i=1

Li

(
2N

Tκj

(
t− T

N

j−1∑

k=1

κk

)
− 1

)
υ(m+1)(j−1)+i (2)

is a candidate approximant for y(t) on the interval T
N

(∑j−1
k=1 κk + [0, κj ]

)
for every j = 1, . . . , N . Here, Li is the i-th

Lagrange polynomial of degree m defined on the uniform partition of [−1, 1]. We obtain a system of (N − 1)n+Nnm
nonlinear equations by imposition of continuity on ỹ and the collection of collocation conditions

0 =
dỹ

dt

(
T

N

(
j−1∑

k=1

κk +
κj
2
(1 + zl)

))
− f

(
ỹ

(
T

N

(
j−1∑

k=1

κk +
κj
2
(1 + zl)

))
, p

)
(3)

for j = 1, . . . , N and l = 1, . . . ,m, where zl is the l-th root of the Legendre polynomial of degree m on the interval
[−1, 1]. Provided that a solution u∗ to these equations is regular, there exists an n+ q + 1-dimensional manifold through
u∗ so that every local solution lies on this manifold. The imposition of up to n+ q+1 additional constraints (satisfied by
u∗) then reduce consideration to lower-dimensional submanifolds of the original solution manifold. The conditions

υ1 − υN(m+1) = 0 = υ̃⊤ · υbp (4)

for some suitably constructed υ̃ reduce consideration to a local q-dimensional manifold of periodic orbits.

Continuation with a variable mesh
The periodic-orbit problem in the previous section is characterized by the integers N and m, corresponding to the number
of mesh intervals and polynomial degree, respectively, the sequence {κj}Nj=1 of scaled interval widths, and the reference
discretization υ̃, all of which may change during analysis of the collection of solutions obtained for different values of the
problem parameters p. Indeed, υ̃ is usually updated before each new solution is sought, using a discretization υbp from a
previously located, nearby solution. Similarly,N and {κj}Nj=1 (and, less often,m) may be updated every so often in order
to satisfy a desired error tolerance. Each such choice restricts attention to a particular variable space, with its unique inter-
pretations and numbers of problem variables and problem constraints (but identical manifold dimension). As long as one
is not concerned with global comparisons between solutions obtained at different stages of the analysis, sequences of solu-
tions may be generated iteratively through a predictor-corrector framework as implemented in an atlas algorithm, wherein
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interpolation is used by the predictor to accommodate changes to N or {κj}Nj=1. When global comparisons are of con-
cern, as is the case for closed one-dimensional manifolds and all manifolds of dimension ≥ 2, these may additionally be
implemented on the approximant ỹ rather than on the problem discretizations (cf. [2]). Alternatively, as proposed recently
in [3], comparisons may be performed in a projected space in terms of invariantly defined solution properties, sufficient
in number to ensure a regular embedding of the solution manifold for the underlying infinite-dimensional problem.

A software implementation

The COCO (https://sourceforge.net/projects/cocotools/) software development originates in an effort to provide general-
purpose, problem-independent support for i) the construction of composite continuation problems (i.e., decomposable into
glued-together subproblems with an excess of unknowns relative to the total number of constraints) without concern for
the sought manifold dimensionality, and ii) the subsequent analysis of the solution manifold for a given choice of dimen-
sion. COCO’s construction paradigm allows for solution properties to be defined in terms of subsets of problem variables
defined at different stages of construction, for example, the difference between the periods of the individual solutions
to two coupled periodic-orbit problems. For variable-mesh problems, such solution properties are said to be invariantly
defined if they correspond to a discretized evaluation of a property of the solution to the underlying infinite-dimensional
problem, e.g., the mean of a variable or the magnitude of a complex-valued Fourier coefficient. In a recent upgrade to
COCO, an implementation of the MULTIFARIO (https://sourceforge.net/projects/multifario/) package for multi-dimensional
continuation [4] in the atlas-kd atlas algorithm that previously offered no support for variable-mesh continuation prob-
lems now provides such support, independently of the nature of the original problem. This functionality is achieved by
performing global comparisons in a projection onto a finite-dimensional Euclidean space in terms of invariantly defined
solution properties that may be constructed solely in terms of individual discretizations. As an example, Fig. 1 depicts the
two-dimensional frequency-amplitude response surface of a hardening Duffing oscillator obtained with atlas-kd by
performing all global comparisons in the five-dimensional projection onto the excitation period T , excitation amplitude
A, first-harmonic Fourier coefficients (scaled by T/2), and first-harmonic Fourier amplitude |c1| (scaled by T/2).

Figure 1: Two-dimensional frequency-amplitude response surface for a hardening Duffing oscillator.

Conclusions

The COCO construction paradigm provides general-purpose support for the definition of small numbers of solution prop-
erties that can be used for detecting special points during continuation. Remarkably, the same functionality supports a
low-complexity approach for multi-dimensional continuation of variable-mesh boundary-value problems without requir-
ing a user-defined inner product in terms of pairs of discretizations with different interpretations and numbers of problem
variables and constraints. The COCO-compatible atlas-kd atlas algorithm implements this new paradigm with only
minimal modifications to the algorithms inherited from MULTIFARIO.
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Summary. Co-simulation is used to enable global simulation of a coupled system via the composition of simulators. Within this work, a new 
co-simulation approach is developed for mechanical systems with nonlinear components. Specifically, a model two-degree-of-freedom 
oscillator, including Duffing type nonlinearities, was investigated first by applying the method of multiple scales. This provided reliable 
information on its dynamics under primary external resonance. Moreover, the new co-simulation approach was presented and compared 
with the classical co-simulation methods from the literature. Here, the main focus is placed on mechanical subsystems. However, the new 
methods have general validity and can be applied to couple arbitrary solvers. 

Introduction 

Co-simulation or solver coupling has already been applied extensively to various engineering fields [1, 2]. The basic 
idea consists in a decomposition of the global model into two or more sub-models. The different subsystems are 
connected by coupling variables, which are exchanged only at the macro-time points (also called communication 
points). Between these points, the subsystems integrate independently from each other, using their own solver. 
Generally, the subsystems can be coupled by physical force/torque laws (applied forces/torques) or by algebraic 
constraint equations (reaction forces/torques) [3, 4].  
Two well-known co-simulation approaches are used: a parallel and a sequential, known as Jacobi and Gauss-Seidel, 
respectively, as their properties are similar to the respective linear iterative solvers. Furthermore, co-simulation 
approaches can be subdivided into explicit, implicit and semi-implicit methods. Finally, concerning the decomposition 
of the overall system into subsystems, three different possibilities can be distinguished. Namely, force/force, 
force/displacement and displacement/displacement decomposition. 
 

 

Figure 1: Example mechanical model 

Description of the new co-simulation method 

Within this work, emphasis is placed on the proper decomposition of the original system into two (or more) subsystems. 
Specifically, the decomposition takes place only at constraints of the initial model, which are artificially introduced 
through auxiliary bodies, in case they do not exist. The previously described procedure for the original mechanical 
model, shown in Figure 1, is depicted in Figure 2. Moreover, following recent work of the authors, the constraint 
equations and the equations of motion of each sub-model are formulated as a system of exclusively second-order 
ordinary differential equations (ODEs), bypassing numerical challenges associated with differential-algebraic equations 
[6, 7]. The distinct difference of the proposed approach, in comparison to the formerly developed co-simulation 
methods, lies in the dynamic nature of the master/orchestrator, which is now treated as a separate subsystem. Finally, 
through an appropriate weak formulation, the constraint equations and the OEMs of interface (master) model are 
expressed in a convenient and consistent first order ODE form, which carries over all the advantages of the 
corresponding second order ODE form [8]. 
 

 

Figure 2: Equivalent model of initial mechanical model (Figure 1) 
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Numerical results and discussion 

Here, a mechanical system with nonlinear components is examined [9, 10]. Specifically, the dynamic behavior of a two-
degree-of-freedom oscillator involving stiffness characteristics modelled by linear and cubic terms is investigated by 
applying the method of multiple scales (see Figure 1). In the cases examined, the external forcing possesses a component 
with frequency close to one of the natural frequencies of the linearized model (for typical results, see Figure 3). A detailed 
analysis of the convergence and the numerical error behavior is carried out in order to examine the different properties of 
the new co-simulation scheme developed, in comparison to the already existing approaches. A set of characteristic results 
are presented in Figure 4. Despite the fact that the models examined are simple and purely mechanical, the techniques 
used can also be extended and applied to arbitrary multibody or structural dynamics systems. 
 

 

Figure 3: Normalized displacement amplitude for linear and non-linear system 

 

Figure 4: Convergence plots for Jacobi communication pattern, explicit scheme and force-force decomposition (classical approach) 
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Summary. Dimensionality reduction through parametrisation of the system motion along a low dimensional invariant-based span of
the phase space represents the most efficient technique for deriving reduced order models (ROM) of structures vibrating with large
amplitudes. In this work we present the first release of an efficient software for deriving reduced models of structures based on the
Direct Parametrisation of Invariant Manifolds (DPIM). The package exploits an algorithmic implementation of the method tailored
for mechanical systems, hence achieving low memory consumption and unprecedented speed. Examples of large scale systems of
industrial interest are shown and comparisons with experimental data and full order numerical simulations are reported.

Introduction

The computation of periodic orbits in large scale finite element models of vibrating structures represents a major chal-
lenge from a numerical standpoint. Indeed, full order simulations have computational times and memory requirements that
make numerical integration schemes directly applied to finite element models rarely applicable at an industrial level [1].
As a result, dimensionality reduction techniques need to be applied. In this framework, the lack of invariance of modal
subspaces hinder the applicability of linear projection methods as the modal decomposition or the proper orthogonal de-
composition [2], since the embedding defined by this class of techniques is not invariant. Furthermore, the identification
of coupled modes, that need to be accounted for in order to define a proper ROM, is generally impossible. As a result,
nonlinear reduction methods are expected to provide higher accuracy and cheaper computational demands [3]. Among
this class of techniques, the Direct Parametrisation Method for Invariant Manifolds [4, 5] allows deriving invariant sub-
spaces together with the dynamics along such sets in an efficient manner. In this work, we report a numerical package that
exploits a specific implementation of the method tailored for vibratory systems. Examples of structures of industrial rele-
vance analysed with the proposed method are reported, together with validation against full order numerical simulations.

Method

Nonlinear vibrations of continuous structures discretised by the finite element method and featuring geometric nonlinear-
ities are considered. In this framework, the discretised equations of motion stemming from the FE procedure leads to the
following system of differential equations:

MV̇ +CV +KU+G(U,U) +H(U,U,U) = F,

U̇ = V,
(1)

with M mass matrix, C damping matrix, K stiffness matrix, U nodal displacement, V nodal velocity, G(U,U) quadratic
nonlinearity tensor, H(U,U,U) cubic nonlinearity tensor, and F external forcing vector. ˙(·) denotes the time derivative
operator. The number of degrees of freedom of Eq. (1) typically between 103 and 109. Dimensionality reduction is
performed using the DPIM. To this aim, we introduce a nonlinear change of coordinates aimed at parametrising the
system motion along a low dimensional invariant based-span of the phase space. The mappings introduced to parametrise
nodal displacement and velocity are defined as [6]:

U = Ψ(z), V = Υ(z), (2)

where z are normal coordinates, i.e. the coordinates that describe the system motion along the embedding. The reduced
dynamics is given as:

ż = f(z). (3)

Both mappings Ψ(z), Υ(z) and reduced dynamics f(z) are obtained upon their substitution into Eq. (1), operation that
yields the following invariance equations:

M∇zΥ(z)f(z) +CΥ(z) +KΨ(z) +G(Ψ(z),Ψ(z)) +H(Ψ(z),Ψ(z),Ψ(z)) = 0,

M∇zΨ(z)f(z) = MΥ(z).
(4)

The resulting reduced model can then be solved to retrieve the frequency response curve of the associated structure.
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Figure 1: (a) Computing times required to reach a given parametrisation order, for a mesh of 9732 degrees of freedom. (b) Computing
times required to perform an order 5 parametrisation for meshes of increasing refinement. All the analyses were performed on a desktop
workstation with an AMD®Ryzen 5950X processor and 128GB RAM.

Mappings and reduced dynamics are polynomial functions of the normal coordinates and for each monomial the linear
system of the associated homological equation needs to be solved. The DPIM is formulated from the general theory pro-
vided by the parametrisation method for invariant manifold, see [7], and has been applied to FE structures in [5] and [4].
In the proposed software, the homological equations are solved at the elementary level for 3D elements, which in turn al-
lows avoiding the computation of the full nonlinearity tensor of the system beforehand, leading to very important savings
in memory consumption. Furthermore, we leverage the symmetries of the formulation to avoid computing all monomials
associated to the expansion, the latter extensively detailed in [4]. This in turn allows deriving an efficient formulation and
yields a technique applicable to large finite element models.

The resulting algorithm has been implemented in a Julia package that provides a mean to identify frequency response
curves of structures actuated at resonance with high accuracy and performance. An example of the performance provided
by the technique is reported in Fig. 1, where results obtained for a single master mode reduction are highlighted. Fig. 1(a)
reports the expected time required to parametrise a system of 9732 degrees of freedom up to an asymptotic development
of order 15. Fig. 1(b) details the computational time and memory required to parametrise finite element systems of
increasing number of degrees of freedom.

Conclusions

In the present contribution we provide an overview of algorithms and results provided by an open-source model order
reduction package. This software aims at providing a tool for fast and accurate analysis of nonlinear structures, hence
accelerating the design of structural components. Example applications highlight how the proposed package can play a
major role in several fields as the semiconductor industry.
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Summary. In this contribution, a port-Hamiltonian reformulation of the full von-Kármán dynamical model for geometrically non-
linear plates is detailed, including the collocated boundary control and observation. Starting from the canonical equations, a set of
variables is chosen so as to make the total energy quadratic. The model, reformulated in these variables, highlights a port-Hamiltonian
structure ruled by a state-modulated interconnection operator.

Classical model

The classical full von-Kármán dynamical model is presented in Bilbao et al. [2015]. The problem, defined on an open
connected set Ω ⊂ R2, takes the dimensionless form

ü = DivN ,

ẅ = − divDivM + div (N gradw),

N = Φ(ε),

M = Φ(κ),

ε = Gradu+ 1/2 gradw ⊗ gradw,

κ = Grad gradw,
(1)

where u ∈ R2 is the in-plane displacement,w is the vertical displacement, ε is the in-plane strain tensor, κ is the curvature
tensor, N is the in-plane stress resultant and M is the bending stress resultant. The notation a ⊗ b = ab⊤ denotes the
dyadic product of two vectors. The div operator is the divergence of a vector field, and grad the gradient of a scalar
field. The operator Grad = 1

2

(
∇+∇⊤) designates the symmetric part of the gradient (i. e. the deformation gradient

in continuum mechanics). For a tensor field U : Ω → R2×2, with components Uij , the divergence Div(U) is a vector,
defined column-wise as

Div(U) :=

2∑

i=1

∂xiUij , ∀j = {1, 2}.

The linear tensor mapping Φ is positive and preserves symmetry:

Φ(A) = ν Tr(A)1+ (1− ν)A, A = A⊤ =⇒ Φ(A) = Φ(A)⊤, where 1 = Diag(1, 1).

The total energy of the model (Hamiltonian functional)

H =
1

2

∫

Ω

{
‖u̇‖2 + ẇ2 +N .. ε+M .. κ

}
dΩ, where A ..B = Tr(A⊤B) (2)

consists of the kinetic energy and both membrane and bending deformation energies. This model proves conservative, see
Bilbao et al. [2015]. Indeed, this implies that a port-Hamiltonian realization of the system exists. We shall demonstrate
how to construct a port-Hamiltonian realization, equivalent to (1).

The equivalent port-Hamiltonian system (pHs)

To find a suitable port-Hamiltonian system, we first select a set of new energy variables to make the Hamiltonian functional
quadratic. The selection is the same as for both the linear plate problems in Brugnoli et al. [2019a,b]:

αu = u̇, αw = ẇ, Aε = ε, Aκ = κ. (3)

The energy is quadratic in these variables

H =
1

2

∫

Ω

{
‖αu‖2 + α2

w +Φ(Aε) ..Aε +Φ(Aκ) ..Aκ

}
. (4)

By computing the variational derivative of the Hamiltonian, one obtains the so-called co-energy variables:

eu := δαuH = u̇, ew := δαwH = ẇ, Eε := δAεH = Φ(Aε), Eκ := δAκH = Φ(Aκ). (5)

Before stating the final formulation, consider the operator C(w)(·) : L2(Ω,R2×2
sym )→ L2(Ω) acting on symmetric tensors

C(w)(T ) = div(T gradw). (6)

Proposition 1 The formal adjoint of the C(w)(·) is given by

C(w)∗(·) = −1

2
[grad(·)⊗ grad(w) + grad(w)⊗ grad(·)] . (7)
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Proof 1 Consider a smooth scalar field v ∈ C∞
0 (Ω) and a smooth symmetric tensor field U ∈ C∞

0 (Ω,R2×2
sym ) with

compact support. The formal adjoint of C(w)(·) satisfies the relation

〈v, C(w)(U)〉L2(Ω) = 〈C(w)(v)∗, U〉L2(Ω,R2×2
sym ) . (8)

The proof follows from the computation

〈v, C(w)(U)〉L2(Ω) = 〈v, div(U gradw)〉L2(Ω) , Integration by parts,

= 〈− grad v, U gradw〉L2(Ω,R2) , Dyadic product properties,

= 〈− grad v ⊗ gradw, U〉L2(Ω,R2×2
sym ) , Symmetry of U ,

= 〈−1/2(grad v ⊗ gradw + gradw ⊗ grad v), U〉L2(Ω,R2×2
sym ) .

(9)

This means

C(w)∗(·) = −1

2
[grad(·)⊗ grad(w) + grad(w)⊗ grad(·)] , (10)

leading to the final result.

The pH realization is then given by the following system

∂

∂t




αu

Aε

αw

Aκ


 =




0 Div 0 0
Grad 0 −C(w)∗ 0
0 C(w) 0 − divDiv
0 0 Grad grad 0







δαu
H

δAε
H

δαw
H

δAκH


 , (11)

The second line of system (11) represents the time derivative of the membrane strain tensor. To close the system, variable
w has to be accessible. For this reason, its dynamics has to be included. The augmented system reads

∂

∂t




αu

Aε

w
αw

Aκ




=




0 Div 0 0 0
Grad 0 0 −C(w)∗ 0
0 0 0 1 0
0 C(w) −1 0 − divDiv
0 0 0 Grad grad 0




︸ ︷︷ ︸
J




δαuH
δAε

H
δwH
δαw

H
δAκ

H



. (12)

Given the results in Brugnoli et al. [2019a,b] and Proposition 1, the operator J is formally skew-adjoint. If only the
kinetic and deformation energies are considered, it holds δwH = 0. In general this terms allows accommodating other
potentials, for example the gravitational one. Suitable boundary variables are then obtained considering the power balance

Ḣ = 〈γ0eu, γ⊥Eε〉∂Ω + 〈γ0ew, γ⊥⊥,1Eκ + γ0(Eεn · gradw)〉∂Ω + 〈γ1ew, γ⊥⊥Eκ〉∂Ω , (13)

where γ0eu = eu|∂Ω is the Dirichlet trace, γ⊥Eε = Eεn|∂Ω is the normal trace (n is the outward normal vector),
γ⊥⊥,1Eκ = −n · DivEκ − ∂s(n⊤Eκs)|∂Ω is the effective shear force at the boundary (s is the tangent versor at the
boundary), γ1ew = ∂new|∂Ω is the normal derivative trace and γ⊥⊥Eκ = n⊤Eκn is the normal to normal trace. The
boundary conditions are consistent with the ones assumed in Puel and Tucsnak [1996] for deriving a global existence
result for this model.

Conclusions

We have presented a pHs formulation of the full von-Kármán model. The dynamics of the system exhibits a state mod-
ulated interconnection operator, while the energy remains quadratic in the chosen variables. Of particular interest is the
discretization of such a model for simulation and control purposes. The Partitioned Finite Element Method (PFEM), an
extension of mixed finite elements to pHs, seems to be particularly suitable to achieve a structure-preserving discretization
of this model, as in Cardoso-Ribeiro et al. [2020] for the 2D Shallow Water Equation, which exhibits the same kind of
polynomial nonlinearity.
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Summary. Methods to analyze the macroscopic behaviour of systems which are either given as discrete agent-based model or as
laboratory experiments are discussed. For demonstration, we address a challenging real-live experiment as application problem within
the social sciences: a simplified evacuation scenario is considered where pedestrians have to pass a corridor manoeuvring around a
triangular obstacle either left or right. Their decision is influenced by the shortest route to the exit and the route choice of nearby
pedestrians. The route choice is investigated under varying the position of the obstacle and by this the length of each route. The
macroscopic measure defined as difference of the pedestrian flux left and right from the obstacle shows bistability and a hysteresis
behaviour. The branch of unstable flow situations separating the two stable branches where all pedestrians pass the obstacle either left
or right was succesfully detected by using a control based continuation. In addition to the analysis of stable and unstable pedestrian flow
situations in the pedestrian experiments with humans, a particle model is presented for which the control based continuation algorithm
computed the branch of unstable flow situations and reproduced the findings of the pedestrian experiments.

Control-Based Continuation for Laboratory Experiments and Microscopic Simulations

Typically, information from laboratory experiments or microscopic simulations is restricted to ω-limit sets, in the simplest
case to stable stationary states. By definition, a system state is moving away from unstable states which can therefore
not be directly observed in laboratory experiments or direct simulations. Furthermore, a detailed understanding of the
parameter dependent behavior is missing as this would require exhaustive experimental runs or microscopic computations
scanning the parameter space. In contrast to this, macroscopic mathematical models successfully formulated for many
problems in science and engineering, often allow for a detailed understanding of parameter dependencies of the dynamical
behaviour as there are tools available for low-dimensional mathematical models to perform an analytical or numerical
bifurcation analysis.
In the present work a method is presented which allows to perform a continuation of stable as well as unstable stationary
states in laboratory experiments or microscopic simulations. This approach stabilizes unstable states by adding a non-
invasive control which vanishes at the stationary state. The non-invasive control doen’t change the stationary state itself
but its neighborhood and by this its stability proporties. Often, the dynamic properties of the macroscopic behaviour of
a considered laboratory experiment or microscopic simulation system depends on one or several parameters and it is of
interest to explore the dynamics depending on such a parameter and to perform a continuation of e.g. stationary states.
This approach is called control based continuation [1, 2, 3, 4, 5] and allows to detect also branches of unstable states in
addition to the stable branches of the bifurcation diagram.
Suppose the system of interest is represented by

ẋ = f(x), (1)

where the function f : R → R is not explicitly given but the system can be explored by experimental observations
measuring the time series x(t).
A non-invasive feedback control is added to the system (1) so that a stationary state of the system with control is also a
stationary state of (1) but unstable states are changed to stable ones. This requires that the laboratory experiment and the
microscopic simulation is accessible by a control altering the original set-up slightly. The control algorithm used follows
a suggestion of [6] and is a feedback control with state observer:

ẋ = f(x) + a · (y − x) (2)

ẏ = b · (y − x) (3)

Equation (2) consists of the original system (1) by adding a control term a · (y − x) which forces for a > 0 and a
large enough the system to the control target y. The aim is to choose y as unknown unstable stationary state and to
stabilize this state with the control. In [2, 3, 4, 5] the unknown target y is computed by using a Newton-method which
requires derivative information of suitable quality. The second equation (3) finds this state automatically and for a suitable
parameter b unstable stationary states are changed to stable ones.
Varying now a parameter crucial for the system dynamics by changing its value using predictor-corrector methods and
adding ideas like pseudo-arclength continuation it is possible to perform a control-based continuation along branches of
the bifucation diagram consisting of stable as well as unstable states and also passing saddle-node bifurcation points.

Pedestrian Evacuation Scenario: Real Experiment with Humans and Particle Simulations

The above described approach for control based continuation is demonstrated and tested for a simplified evacuation
scenario for pedestrian crowds. In this set-up, pedestrians have to pass a corridor maneuvering around a triangular obstacle
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Pedestrian flow around obstacle

Figure 1: Macroscopic measure of pedestrian flux difference left and right from the obstacle. The insets show the microscopic pedestrian
flow situation. The upper and lower branch are stable ones which basins of attraction are separated by an unstable branch. The control-
based continuation detected also the unstable branch.

either left or right [7]. The pedestrian’s decision is influenced by the shortest route to the exit and the route choice of other
pedestrians in a certain neighborhood. The symmetry of the set-up is broken by changing the position of the obstacle and
by this the length of each route. The macroscopic measure to be investigated is defined as the difference of the pedestrian
flux left and right from the obstacle using the obstacle position as parameter.
As result, the considered pedestrian evacuation scenario shows bistability and a hysteresis behaviour both for the particle
model as well as for a real pedestrian experiment with humans. The bifurcation diagram of the particle simulation is
shown in Fig. 1. The control-based continuation detects in addition to the two stable branches where all pedestrians pass
the obstacle either left or right also an unstable state of the pedestrian flow separating the two stable branches. The insets
show the microscopic particle configuation of the observes stable and unstable states of the pedestrian flow.

Conclusion and Outlook

The presented approach is applicable to a wide range of applications in complex systems given by microscopic models
or experiments. It extends the gained insight one gets by direct simulations and experiments by adding information
about unstable states and by computing the branches of bifurcation diagrams effecively summing up parameter dependent
macroscopic system information.
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Adiabatic phenomena in particle accelerators
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Summary. In the hadron colliders the transverse dynamics of a charge particle in a magnetic lattice is well modeled by a Hamiltonian
formalism and the Poincaré map of the system is a polynomial symplectic map with a elliptic fixed point (reference orbit) in two or
three degrees of freedom. The presence of fast-slow variables or slow modulations in the dynamics has been considered to estimate
the dynamic aperture (i.e. the transverse phase space region that guarantees a long term stability of the orbits) or to perform the
beam shaping in the synchroton motion. Recently, the possibility of slowly modulating the linear frequencies of the reference orbit
(linear tunes) in presence of non-linear resonances in the phase space has been proved to provide a very efficient mechanism for beam
extraction by means of the adiabatic resonance trapping phenomenon (Multiturn Extraction). The multiturn extraction has been verified
in real experiments at PS (CERN). Here, we propose a new approach for adiabatic extraction by considering time dependent symplectic
maps, where the adiabatic trapping is induced by a modulated dipole or quadrupole kicker. This approach can be particularly relevant
when the modulation of the linear tunes is not workable. We discuss the extension of the adiabatic theory results to the symplectic map
models and the possible applications to leptonic collider where the dissipation and fluctuations effects are not negligible. We illustrate
the results by numerical simulations.

Multi-turn extraction in hadron storage rings using modulated dipole or quadrupole

The adiabatic trapping phenomenon into a nonlinear resonance and the possibility of adiabatic transport in the phase space
have been experimentally proven to provide an very efficient extraction mechanism (Multi Turn Extraction (MTE) in high
energy hadron storage rings [2, 3]. In the experiments, sextupole and octupole magnets are used to excite a non-linear
resonance in transverse phase space [4] and the linear frequencies (linear tunes [4]) are slowly modulated crossing the
resonance value and performing the adiabatic trapping of particles. The transverse beam dynamics is described by the one-
turn symplectic map (Poincaré map) and the main issues are to extend the adiabatic theory results for Hamiltonian systems
to the case of slowly modulated symplectic map in the neighborhood of an elliptic fixed point where the dynamics is almost
integrable and the perturbation theory applies. The application to the beam extraction problem requires to optimize and
control the trapping efficiency and the quality of the extracted beams [5]. To extend the applicability of this techniques
to hadron accelerators, where the change of the linear tunes and the multipolar components in a magnetic lattice can be a
complex procedure, we consider the possibility of controlling the adiabatic trapping in the phase space using a dipole or
quadrupole ‘kicker’ in the magnetic lattice whose frequency is slowly modulated to excite a resonance condition with the
linear tunes and whose amplitude can be used to optimize the trapping efficiency. The optimization of the MTE is a key
issue since the loss of particles in the phase space decreases the luminosity of the beam and create parasitic losses in the
accelerator. One of the goal of MTE is to divide the original beam into a fixed number of beamlets with the almost the
same number of particle and a defined emittance [1]. The advantage of introducing a modulated kicker is twofold: from
one hand it allows to introduce new control parameters in the dynamics that can be easily varied to optimize the efficiency
of MTE; from the other hand, the changes of the kicker parameters are easily implemented in a magnetic lattice. The
simplest, though non-trivial, model of betatron motion in a hadron storage ring is the 2-dimensional symplectic map

M
(
qn
pn

)
=

(
qn+1

pn+1

)
= R(ω0)

(
qn

pn + k3q
2
n + k4q

3
n + ε(n) cosω(n)n

)
(1)

where R(ω0) is the rotation matrix evaluated at the frequency ω0 (linear tune), n is the turn number and ε(n) and ω(n)
are the amplitude and the frequency of a dipole kicker that can be adiabatically varied as a function of n. The kicker
frequency crosses a resonance value with the linear tune ω0 (i.e. ω = mω0 + δ with δ varying adiabatically in the interval
δ ∈ [−δ0, δ0]). Using the perturbation theory it is possible to prove that the adiabatic trapping phenomenon in the phase
space of the map (1) is described by an interpolating Hamiltonian provided by the Birkhoff Normal Forms Theory

H = ω0 J +
ω2

2
J2 + εAmJ

3/2 cos(mθ − ωt) (2)

and to give an explicit correspondence among the parameters of the modulated map (1) and that of the interpolating
Hamiltonian (2). According to the results of adiabatic theory [6], we have explicitly computed the trapping probability
in the nonlinear resonance for the Hamiltonian system (2) and we have pointed out the dependence of this probability
from the kicker parameters. We have numerically checked the applicability of trapping probability estimates in the case
of the map (1) (see next section) and that could be extended to more realistic models of the betatron motion defined by
4-dimensional symplectic maps, under suitable conditions.
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Figure 1: Left: example of the beam splitting obtained by modulating adiabatically the parameters of a dipole element.
Right: efficiency of the trapping mechanism as a function of the final dipolar perturbation strength (see Eq. 3) evaluated
numerically together with the analytical formula.

Numerical simulations and results

We have performed accurate numerical simulations of the map (1) to study the adiabatic trapping into a 3-order resonance
and to check the validity of the trapping probability analytic estimate obtained from the Hamiltonian (2). In Fig. 1 (left)
we show an example of the beam splitting obtained modulating adiabatically the parameters of a dipole element according
to the following equations

ε(n) =

{
εf n/N n < N

εf N ≤ n ≤ 2N
ω(n) =

{
ωi n < N

ωi + (ωf − ωi)(n−N)/N N ≤ n ≤ 2N
(3)

whereas in Fig. 1 (right) we plot the efficiency of the trapping mechanism (i.e. the fraction of particles trapped in the
resonance region with respect to the total number of particles in the initial beam given the initial particle distribution)
comparing the numerical results with the analytical formulas.
Using the results of the Birkhoff Normal Forms theory for symplectic maps near an elliptic fixed point, we propose
a theoretical approach that justifies the use of the interpolating Hamiltonian for a modulated map and point out the
applicability conditions of the adiabatic theory results to symplectic maps in a neighborhood of an elliptic fixed point.

Conclusions

The adiabatic trapping into resonance for Hamiltonian systems is a robust phenomenon that can be extended to modulated
symplectic maps in the neighborhood of an elliptic point when a resonance condition is satisfied in the phase space. Even
if a rigorous proof is not yet available, our results show that it is possible to get estimates of the trapping probability
for a particle distribution and to apply the adiabatic theory to realistic model of particle dynamics in hadron colliders.
This step is not only relevant in itself, but it is also an essential one in view of applications. Indeed, recently, it has
been possible to make adiabatic theory the basis of a successful and novel operational beam manipulation that splits
the beam transversely into several beamlets to enable loss-free multi-turn extraction. The new results presented here
allow extending the capabilities of performing beam splitting beyond what is know today, thus opening new scenarios
for accelerator physics. The ultimate goal of this research is to open the possibility of performing these novel beam
manipulations in lepton circular rings.
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A surface of connecting orbits between two saddle slow manifolds
in a return mechanism of mixed-mode oscillations
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Summary. We employ a Lin’s method set-up to compute a surface of heteroclinic connections between two saddle slow manifolds in
the four-dimensional Olsen model for peroxidase-oxidase reaction. As will be shown, this surface organises the return mechanism of
mixed-mode oscillations that involve a slow passage through a Hopf bifurcation.

We consider a model for peroxidase-oxidase reaction first introduced by Olsen [6], which we study here in the scaled
form presented in [4]; it is given as the system of ordinary differential equations





Ȧ = µ− αA−ABY,
Ḃ = ε(1−BX −ABY ),

Ẋ = λ(BX −X2 + 3ABY − ζX + δ),

Ẏ = κλ(X2 − Y −ABY ),

(1)

for the vector of chemical concentrations (A,B,X, Y ) ∈ R4. The system parameters are fixed here, as in [4], to
α = 0.0912, δ = 1.2121 × 10−4, ε = 0.0037, λ = 18.5281, κ = 3.7963 , µ = 0.9697, and ζ = 0.9847. For this
choice, the three concentrations A, X , and Y can be considered as fast and B as slow. System (1) has been of interest be-
cause it exhibits mixed-mode oscillations (MMOs), which are characterised by a mixture of small-amplitude oscillations
(SAOs) that usually arise locally in phase space and large-amplitude oscillations (LAOs) that are generally associated with
a global return to the region of SAOs. To date, mechanisms for MMOs are quite well understood in slow-fast systems of
dimension three; see, for example, the survey paper [5] as an entry point to the literature on MMOs. For four-dimensional
slow-fast systems, on the other hand, new mechanisms and types of MMOs may arise. The case study of the Olsen
model (1) presented here shows that the return mechanism of the MMOs involves heteroclinic connecting orbits between
two saddle slow manifolds. It follows on from earlier work in [1], where the same parameter regime was considered but a
model reduction to a three-dimensional system (via a quasi-steady-state assumption) was performed. In contrast, we now
consider and compute all relevant objects in the full (A,B,X, Y )-space of system (1).

In the spirit of geometric singular perturbation theory [3], we start with the limit of ε = 0 and consider the three-
dimensional fast subsystem for the fast variables A, X , and Y , where the slow variable B is now a parameter. The
equilibria of the fast subsystem, which are parametrised by B, form the critical manifold C in the (A,B,X, Y )-space of
system (1). A linear stability analysis shows that C consists (in the physically relevant region of positive A, B, X , and
Y ) of four branches of hyperbolic equilibria of the fast subsystem: a branch denoted C4

+ of stable equilibria; a branch C3

of saddle equilibria with one unstable eigenvalue; a branch C2 of saddle equilibria with two unstable eigenvalues; and a
second branch C4

− of stable equilibria. These branches connect at points F1 and F2 of fold bifurcation and H of Hopf
bifurcation, and the superscipts indicate the dimensions of their stable manifolds in (A,B,X, Y )-space.

Our specific interest is in the two branches C3 and C2 because they are saddle objects with different dimensions of stable
and unstable manifolds. While C3 and C2 only exist for ε = 0, according to Fenichel threory [3], they persist as locally
invariant slow manifolds S3 and S2 for sufficiently small ε > 0; note that orbit segments on a slow manifold remain
slow for O(1) time. Moreover, the one-dimensional manifolds S3 and S2 lie O(ε) close to C3 and C2, and they have
stable and unstable manifolds of the same dimensions as those of C3 and C2. Hence, S3 has a three-dimensional stable
manifold W s(S3), consisting of orbit segments that, in forward time, approach S3 along a fast direction and then remain
slow while following S3; similarly, S2 has a three-dimensional unstable manifold Wu(S2) consisting of orbit segments
that, in backward time, approach S3 along a fast direction and then remain slow while following S3.

The two three-dimensional objects W s(S3) and Wu(S2) are expected to intersect generically in a two-dimensional sur-
faceH of connecting orbits between S3 and S2; in forward time, any such connecting orbit first slowly follows the curve
S2, makes a transition across to the curve S3, and then follows it slowly. In order to find H, we use two ingredients:
firstly, we adapt the technique in [2] for the computation of one-dimensional slow manifolds and their (un)stable man-
ifolds to the four-dimensional setting of system (1) and, secondly, we employ a Lin’s method approach [7] to define
two orbit segments, in W s(S3) and Wu(S2), respectively, that have end points in a chosen three-dimensional section.
Closing the gap between them along a specified direction, by continuation of solutions to an overall boundary value prob-
lem, allows us to find a first heteroclinic orbit, which is then swept out in a further continuation run to obtain the surfaceH.

Figure 1 shows the two-dimensional surface H in projection onto the three-dimensional (B,A,X)-space of system (1),
together with the critical branches C4

+ , C2, C4
− and C3. Notice that H spirals out from the saddle branch C2 and then

approaches the saddle branch C3 in a non-spiralling fashion; here, S2 and S3 (not shown) are indistinguishably close to
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Figure 1: Three-dimensional projection onto (B,A,X)-space of the MMO periodic orbit Γ and the surface H = W s(S3) ∩Wu(S2)
(red-blue faded) of system (1) for ε = 0.0037, shown in relation to the following objects for ε = 0: the curves C4

+ (black), C2 (dashed
raspberry), C4

− (black) and C3 (dashed teal) of the critical manifold; the fold point F1 (orange dot) and the Hopf bifurcation point H
(pink dot); the singular jump branch J from F1 to C4

− and its counterpart J ∗ (magenta curves) from the counterpoint on C2, at equal
distance from H , to C3; and the surface P (transparent midnight grape) of periodic orbits arising from H .

C2 and C3 on the scale of Fig. 1. The surface H consists of orbit segments of an intermediate timescale in both W s(S3)
and Wu(S2), namely those that “make it all the way across” in forward time from near C2 (where H is shaded red) to
near C3 (whereH is shaded blue). As we checked, orbit segments close to but not onH quickly diverge from this surface
in both forward and backward time in the X- and Y -directions.

Figure 1 is for ε = 0.0037 when one finds a stable MMO periodic orbit Γ, which is also shown. Starting near the at-
tracting branch C4

−, observe the SAOs of decreasing and then increasing amplitude that are generated by a slow passage
through the Hopf bifurcation point H . Well past H and the surface P of periodic orbits of the fast subsystem, Γ leaves
the branch C2 by following the surface H very closely to a vicinity of the critical branch C3. Somewhat past the fold
point F1, it subsequently has a sudden excursion in theX- and Y -directions to return back toC4

−; the process then repeats.

We conclude that the surface H of connecting orbits is a crucial part of the return mechanism that is responsible for a
single LAO per period of Γ. We further observe that Γ returns to C4

− very near where the critical jump orbit J from
F1 for ε = 0 returns (this point is given by the B-value of F1). Similarly, the take-off point on C2 is close to that
of the counterpart J ∗ of J , which lies on the other side of H at the same B-distance. The suggestion from Fig. 1 is,
hence, that the concatenation of J and J ∗ with the respective parts of C4

−, C2 and C3 acts as a singular limit of Γ as
ε approaches 0. Indeed, how the MMOs of the Olsen model (1) depend on parameters is a subject of our ongoing research.
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Analysis of a Singularly Perturbed Continuous Piecewise Linear System

A. Yassine Karoui∗ and Remco I. Leine∗
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Summary. The dynamics of piecewise linear systems can often be reduced to lower dimensional invariant cones using an appropriate
Poincaré map. These invariant cones can be understood as a generalization of the center manifold concept to nonsmooth systems. In
this paper, we show that the singular perturbation technique applied to a slow-fast continuous piecewise linear system can deliver a
good approximation of the invariant cone. The proposed approximation approach is demonstrated on an oscillator with a unilateral
spring as an example of a continuous piecewise linear system in R3.

Introduction

Recently, there has been a greater focus placed upon piecewise linear systems, due to their ability to model many complex
physical phenomena. Typical applications range from mechanical systems involving dry friction [10], to neuron models
[5], electronic circuits [2] and control systems [11]. Furthermore, continuous piecewise linear systems (hereafter, CPWL)
are widely used to reproduce and understand various bifurcation phenomena of smooth nonlinear dynamical systems. The
dynamics of CPWL systems can exhibit very interesting effects, which are impossible to observe in smooth systems [4].
A prominent example of this rich dynamic behavior was reported in [4], where the continuous matching of two stable
subsystems can result in an unstable dynamics. The authors show that this behavior is possible, only if the CPWL
system has an invariant cone, which is characterized by a fixed point of a corresponding Poincaré map and serves as a
reduced system to investigate the stability and bifurcations of the full system. Therefore, the existence and computation of
invariant cones for systems lacking smoothness are of interest. Unfortunately, the generation of invariant cones requires
the numerical solution of a system of nonlinear equations and is therefore not suitable as a constructive reduction method
towards a lower-dimensional dynamical model. However, the invariant cones can be understood as a generalization of
center manifold theory to piecewise linear systems with an equilibrium on the switching manifold. Moreover, the long-
term behavior of the full system can be described by a lower-dimensional model obtained from reducing the system to its
dynamics on the invariant cone, if the latter is attractive. This perspective shows a clear similarity between invariant cones
of piecewise linear systems and smooth invariant manifolds, which are used to obtain reduced order models for general
differentiable systems.
For smooth nonlinear systems, projections to linear subspaces are usually used for model reduction, even though these are
not invariant with respect to the original nonlinear dynamics. A reduced dynamics on an attractive invariant set, however,
constitutes a mathematically more justifiable model reduction, since the trajectories of the reduced system on the invariant
set are actual solutions of the full system. Relying on smoothness properties of the system, the existence and uniqueness of
smooth invariant manifolds, seen as an extension of the underlying linear subspaces, have been addressed in the framework
of spectral submanifolds (SSMs) [6]. The idea of model reduction in the framework of SSMs is based on a specific choice
of slow variables, which determine the steady-state behavior of the system and are used as master coordinates to enslave
the remaining state variables, therefore giving birth to a reduced model containing the long term characteristics of the full
system. This fundamental idea emanated originally from a slow-fast decomposition using singular perturbation theory for
smooth nonlinear systems. Therefore, the investigation of slow-fast CPWL systems using perturbative approximations
could pave the way for the development of novel reduction methods for systems with nonsmooth nonlinearities.
The aim of this paper is to derive an approximation in closed form of the eigenvector defining the invariant half-lines of
the cone for a specific homogeneous CPWL mechanical system using the theory of singular perturbations. This allows to
obtain a reduced order model, for which the switching plane is modified such that the reduced dynamics is also of CPWL
nature.
This paper is organized as follows. A brief overview on invariant cones along with an important result from [4] on their
existence and stability are presented in next section. Then, the theory of singular perturbations is described with a focus on
piecewise linear systems. In the last section, a slow-fast oscillator in R3 with a unilateral spring is analyzed. An explicit
expression for its invariant half-lines is derived using singular perturbation theory, and a reduced model with a modified
switching condition is obtained.

Invariant cones of continuous piecewise linear systems in R3

Without loss of generality, we consider a CPWL system with a single switching plane Σ = {x ∈ R3 : y = 0} written as:

ẋ = F(x) =

{
A+x for y ≥ 0

A−x for y < 0
, (1)

where x =
(
x1 x2 y

)T ∈ R3 and A± are 3 × 3 real constant matrices satisfying the continuity condition
A+ −A− = (A+ −A−)e3eT3 , with e3 being the third vector of the standard basis of R3. Therefore, both matrices
are only different in the third column.
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For the sake of brevity, we will use the compact form

Υ(η) = Υ± =

{
Υ+ if η ≥ 0

Υ− if η < 0
, (2)

where Υ± are either matrices or scalars. Hence, system (1) can be written as ẋ = A(y)x = A±x. The origin is always
an equilibrium point of system (1), and it is the unique equilibrium if A± are both nonsingular. Suppose that an initial
condition x0 lies in one of the domains U± = {x ∈ R3 : y ≷ 0}, and that the corresponding trajectory remains in the
same domain for any given time t ∈ (0,∞) and therefore does never reach the switching plane Σ. In this case, the system
behaves purely in a smooth fashion and the conventional theory for differentiable systems can be applied. The interesting
behavior occurs, however, if the trajectory crosses Σ at a finite time, which can lead to various dynamical behaviors in
general piecewise linear systems, such as direct crossing, sliding, grazing or jumping. In this work, we consider the class
of CPWL systems, for which the dynamics can only include direct crossing behavior and the uniqueness of solutions for
every initial condition is ensured. To understand the composed motion of both subsystems, we consider the following
subsets of Σ:

Σ> := {x ∈ Σ : eT3 A
+x = eT3 A

−x > 0}, Σ< := {x ∈ Σ : eT3 A
+x = eT3 A

−x < 0}

For x∗ ∈ Σ< or x∗ ∈ Σ>, the flow transitions from one domain into the other through x∗. In the following, we will
assume that initial values x0 are chosen from the set x0 ∈ Σ<. A trajectory is then given by φ(x0, t) = eA

−tx0 and
enters U

− by means of the flow of the system ẋ = A−x. It reaches the switching plane again for the first time at
x1 ∈ Σ>. Hence, there is a positive finite time t−(x0) = min{t > 0 : eT3 e

A−tx0 = 0, eT3 e
A−tA−x0 > 0}. Similarly

t+(x1) can be defined for x1 ∈ Σ>. Since the flow is piecewise linear, one can see that t− and t+ are constant on
half-lines, i.e. t±(λx) = t±(x) with λ ∈ (0,∞). For initial conditions x0 ∈ Σ, the following half-maps are defined:

P− :Σ< → Σ

x0 7→ eA
−t−(x0)x0 =: P−(x0)

P+ :Σ> → Σ

x1 7→ eA
+t+(x1)x1 =: P+(x1)

Hence, the Poincaré map reads:

P (x0) := P+(P−(x0)) = eA
+t+(P−(x0))eA

−t−(x0)x0 (3)

Since system (1) is positively homogeneous and the vector field satisfies F(µx) = µx, ∀x ∈ R3, µ > 0, the Poincaré map
P transforms half-lines contained in Σ and passing through the origin into half-lines contained in the same plane, also
passing through the origin. A more general construction is given by the following theorem stated in [7]:

Theorem 1 Let x ∈ Σ be an eigenvector of the nonlinear eigenvalue problem P (x) = µx, with some real positive
eigenvalue µ. Then there is an invariant cone for system (1). Moreover,

• If µ > 1, then the origin is an unstable equilibrium.

• If µ = 1, then the cone consists of periodic orbits.

• If µ < 1, then the stability of the origin is dependent of the stability of P w.r.t. the complimentary directions.

Therefore, system (1) has an invariant cone if there exists a half-line contained in Σ that is invariant for the Poincaré
map P . The nonlinear eigenvalue problem P (x) = µx determines the invariant cone and involves the six independent
variables x ∈ R3, µ, t−(x) and t+(P (x)), which can be obtained numerically as solution of the nonlinear equation system
given by:

0 = G(x, t−, t+, µ) =




eA
+t+eA

−t−x− µx
eT3 e

A−t−x
eT3 x

xTx− 1


 (4)

This system of equations includes the definition of the Poincaré map, the first return to Σ at the time t−, the location of
the initial condition on Σ and a normalization. The zeros of G can be solved numerically to obtain the 6 independent
unknows characterizing the invariant cone. Although the problem of existence and number of invariant cones in general
piecewise linear systems is still open, it has been proved that there exists at most one invariant cone for some degenerate
CPWL cases in [3] and [4] and at most two invariant cones for observable three dimensional CPWL cases in [1]. For the
sake of completeness, we recall here an important result from [4] (Theorem 2 - Statement (a)) on the number and stability
of invariant cones for a specific case, which is considered in the mechanical system studied in this work.
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Theorem 2 Suppose that system (1) satisfies the observability condition, i.e. the observability matrix

O =




eT3
eT3 A

−

eT3 (A
−)2




has full rank. Further, assume that the eigenvalues of matrices A± are λ±1 = λ± and λ±2,3 = α± ± iβ±, with β± > 0
and introduce the parameters

γ+ =
α+ − λ+
β+

, and γ− =
α− − λ−
β− .

Then the following statement holds: If γ+γ− > 0, then system (1) has only one invariant cone, which is two-zonal (i.e.
lives in the two linear zones) and hyperbolic, asymptotically stable for γ+ + γ− > 0 and unstable for γ+ + γ− < 0.

Note that due to the continuity condition, the observability matrix is independent of the chosen matrix, A+ or A−.
In the next section, a brief introduction to singular perturbation theory with an emphasis on CPWL system is given.

Singular perturbation theory for CPWL systems

For an n-dimensional smooth system having s slow variables and a small perturbation parameter ε, which is responsible
for a time-scale separation, classical geometric perturbation theory can be used to obtain a reduced-order model. The
limiting case ε→ 0 gives an f -dimensional critical manifold Mc, where f = n− s. According to Fenichel’s theorem, if
Mc is normally hyperbolic, then there exists an f -dimensional slow invariant manifold Ms, on which the dynamics is a
perturbation of order O(ε) of the dynamics on Mc. This theorem can be applied to slow-fast CPWL systems only on the
subsets of the state space that do not include the switching manifold. This yields two linear locally invariant slow half-
manifolds M±

s , each aligned with the slow eigenspaces of A+ or A−. Furthermore, a forward invariant neighborhood
enveloping the linear critical manifold, which is continuous at the switching manifold, has been shown to exist under
suitable conditions [9]. For this, the critical manifold Mc, which is not normally hyperbolic on Σ, has to be attracting.
Consider a slow-fast ODE system of the form:

ẋ =

{
f+(x,y; ε) for h(x,y) ≥ 0

f−(x,y; ε) for h(x,y) < 0

εẏ =

{
g+(x,y; ε) for h(x,y) ≥ 0

g−(x,y; ε) for h(x,y) < 0,

(5)

where x =
(
x1 · · · xs

)T ∈ Rs are the slow variables, y =
(
y1 · · · yf

)T ∈ Rf are the fast variables, 0 ≤ ε ≪ 1

is the small parameter and ˙(·) := d(·)
dt denotes the derivative with respect to the "slow" time scale t. The switching

manifold is therefore given by the scalar function h(x,y) = 0. We assume that the functions f±,g± and h are linear with
respect to x and y and that the system is continuous at the switching manifold. Furthermore, suppose that h(0,0) = 0.
At the origin, we also assume that the switching manifold is not tangent to all fast directions, which means that ∇h
has at least one non-zero component. Without loss of generality, one can assume ∂h

∂y1
̸= 0. This assumption leads to

a more general configuration, where both the slow and fast dynamics contain a switch. Otherwise, a degenerate system
is obtained, where only the slow dynamics has a switch and the fast dynamics is g± = g. In order to simplify the
switching condition, an invertible transformation (x,y)→ (x̃, ỹ) is introduced, with a new set of coordinates x̃ = x and
ỹ =

(
h(x,y) y2 y3 · · · yf

)T. Since ỹ1 is a new fast variable, the slow-fast system has the same form as (5) except
that the switching manifold is determined by ỹ1 = 0. Taking the new coordinates and setting the small parameter ε = 0
in (5) yields the critical system

ẋ = f±(x,y; 0) (6)

0 = g±(x,y; 0) (7)

where the (̃·) is dropped for simplicity, and the ± switch is governed by equation (2) with y1 = η.
The critical manifold is obtained as Mc = {(x,y) ∈ Rs+f : y = h±

c (x)}, where y = h±
c (x) are the solutions of the

two algebraic constraints (7) and describe the behavior of the fast variables as a function of the slow variables. Note that
h±
c are both linear functions of x and that the matching from both linear subsystems is continuous. The dynamics on Mc

is governed by
ẋ = f±(x,h±

c (x); 0). (8)

The Jacobians ∂g±

∂y (x)
∣∣∣
y=h±

0 ,ε=0
along both critical manifolds are assumed to fulfill the stability condition, so that a

relevant reduction to the slow dynamics can be obtained. For CPWL systems, the existence of a forward invariant neigh-
borhood around the critical manifold has been shown in [9], if Mc is globally exponentially stable. Therefore, and for the
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sake of brevity, we assume global exponential stability of the critical manifold, which is naturally given for the specific
example considered in this work. We refer to [9] for more details on the stability properties of Mc and the proof of
the existence of a forward invariant neighborhood. For systems of the form (1), the singular perturbation technique is
performed on each linear subsystem to obtain the linear locally invariant slow half-manifolds. This is described in the
following, where the ± switching is dropped for simplicity and only the linear region defined by y1 ≥ 0 is considered.
Obviously, the approach is analogous for the other linear region. The matching of both linear invariant half-manifolds and
the corresponding switching condition are discussed explicitly for the example in the next section.
The s-dimensional, locally invariant slow manifold is defined as M+

s = {(x,y) ∈ Rs+f : y = h+
s (x)}. Since the state

space is decomposed into two linear parts, the invariance property of M+
s must be understood in a local way. Inserting

y = h+
s and ẏ =

∂h+
s

∂x

∣∣∣
x,ε

ẋ into the fast dynamics εẏ = g+(x,y, ε) yields:

ε
∂h+

s

∂x
f+(x,h+

s ; ε) = g+(x,h+
s ; ε). (9)

In each linear region, the asymptotic expansion given by

h+
s (x) = h+

0 (x) + εh+
1 (x) +O(ε2) (10)

is used in the invariance equation (9). By equating the coefficients of powers of ε one can see that h+
c (x) = h+

0 (x),
which means that the critical manifold is the zero-order approximation of the slow manifold. Moreover, the first order
term h+

1 (x) is obtained as:

h+
1 =

∂g+

∂y

∣∣∣
−1

y=h
+
0 ;ε=0

[
∂h+

0

∂x
f+(x,h+

0 ; 0)−
∂g+

∂ε

∣∣∣
x,h+

0 ;0

]
. (11)

Three-dimensional oscillator with a unilateral spring

The approximation of the invariant cone by means of singular perturbation theory is demonstrated on the CPWL system
shown in Figure 1. The system consists of a mass m and a massless rod, each coupled to the environment by a spring-
damper element. In addition, the mass is connected to the rod by one linear and one unilateral spring, with stiffnesses k3
and kN3, respectively. The unilateral spring is active only when the relative displacement q1 − q2 is positive, where q1
and q2 are the displacements of the mass and the massless rod, respectively. Let x =

(
x1 x2 y

)T ∈ R3 be the state
vector, where the components are defined as follows:

x1 = q1, x2 = q̇1, y = q1 − q2. (12)

In this set of coordinates, the equations of motion have the form of system (1), where A± are constant matrices given by

A± =




0 1 0

−k1

m − c1
m −k±

3

m

k2

c2
1 −k2+k±

3

c2


 with

{
k+3 = k3 + kN3 for y ≥ 0

k−3 = k3 for y < 0
, (13)

with all damping and stiffness coefficients assumed to be non-negative. The switching manifold is defined as
Σ = {x ∈ R3|y = 0} and the state space consists of two half-spaces U± = {x ∈ R3|y ≷ 0}. By statement (a) of Theo-
rem 2 and after performing simple calculations for fixed sets of parameters which fulfill the assumptions on the matrices
A±, we deduce that this system has only one invariant cone which is hyperbolic and asymptotically stable. As the exis-
tence of a stable invariant cone is now established, the next step is to apply singular perturbation theory to approximate
the cone. In order to bring the system to a singularly perturbed form, the damping constant c2 is assumed to be a small
parameter (c2 = ε). Next, we split the state vector x into slow variables xs =

(
x1 x2

)T ∈ R2 and a scalar fast
variable y.

Figure 1: Mechanical system of a slow-fast oscillator in R3.
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Figure 2: Illustration of the attracting invariant cone approximated by two half-planes M±
s with a switch at x1 = 0 for the parameter

set ε = c2 = 0.1, c1 = 0.4, m = 1, k1 = k2 = 1, k3 = 0, kN3 = 2. A general trajectory of the full system (solid line) is attracted
to the half-planes and synchronizes with a trajectory of reduced dynamics (dashed line). The critical manifold gives a conservative
periodic orbit (red line) and is therefore not suitable as an approximation of the full system.

The equations of motion in the slow-fast form read as:

ẋs = f±(xs, y) =

(
x2

−k1

m x1 − c1
mx2 −

k±

3

m y

)
(14)

εẏ = g±(xs, y, ε) = k2x1 + εx2 − (k2 + k±3 )y. (15)

The critical manifolds in the half-spaces U
± are obtained as isolated solutions h±0 (xs) of the equations

g±(xs, h
±
0 (xs), 0) = 0 and read as:

h±0 (xs) =
k2

k2 + k±3
x1 (16)

Herein, h+0 (xs) is only applicable for h+0 (xs) ≥ 0, which in view of k2, k
+
3 ≥ 0 comes down to x1 ≥ 0. Similarly

h−0 (xs) is only applicable for x1 < 0. Hence, we may define the critical manifold by

h0(xs) =

{
h+0 (xs) for x1 ≥ 0

h−0 (xs) for x1 < 0
(17)

The Jacobians ∂g±

∂y (xs)
∣∣∣
y=h±

0 ,ε=0
along the critical manifold are strictly negative and fulfill the stability condition, and

the dynamics on this manifold is given by ẋs = f±(xs, y = h0(xs); 0). For the special choice c1 = 0, this dynamics is
purely conservative and yields a periodic orbit, which does not reflect the dissipative nature of the original system (ε ̸= 0)
and therefore cannot be used to approximate the long time behavior of the full system, as shown in Figure 2. Thus, terms
of O(ε) must be included to obtain a dissipative reduced-order model. Using the equations (10) and (11), the locally
invariant slow half-manifolds of the two linear subsystems read as:

yslow = h±s (xs) =
k2

k2 + k±3
x1 +

εk±3
(k2 + k±3 )

2
x2 +O(ε2), with k±3 =

{
k3 + kN3 for yslow ≥ 0

k3 for yslow < 0
. (18)

The dynamics of the 2-dimensional system, reduced to the linear locally invariant slow manifolds in both regions, is
governed by ẋs = f±(xs, h

±(xs)). The switching condition in this case is not trivial anymore, since the stiffness k±3
depends on yslow itself. This problem is illustrated in Figure 3. The colored areas and their corresponding limits are
obtained from (18) by solving the inequalities yslow ≥ 0 (yellow region for h+s ) and yslow < 0 (orange region for h−s ),
which matches the physical switching condition. In the white area, none of the inequalities are satisfied, whereas the
dark area shows the region where both inequalities are fulfilled. To circumvent this problem of switching between h±s ,
one could take x1 = 0 as a switching plane, since the x2 terms in (18) are of order ε. At this modified switching plane,
the linear slow manifolds, obtained as two half-planes M±

s = {x ∈ R3|y = h±s (xs)}, are askew and meet only at the
equilibrium point. This leads to a reduced system containing a jump at x1 = 0. However, the trajectories of the reduced
system are still a good approximation and follow the trajectories of the full system, which converge asymptotically towards
M

±
s as shown in Figure 2. In order to obtain a continuous reduced system, M±

s can be continued up to their intersection
line. This leads to the avoidance of jumps in the reduced dynamics at Σ.
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Analysis of a Singularly Perturbed Continuous Piecewise Linear System

−1 −0.5 0 0.5 1
−1
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Figure 3: Illustration of the admissibility regions for h+
s (yellow area with the solid black line as limit) and h−

s (or-
ange area with the dash-dotted black line as limit). The white area is the region for which both h±

s are not admissi-
ble. The magenta dashed line shows the intersection of the two linear slow manifolds. Example for the parameter set
ε = c2 = 0.1, c1 = 0,m = 1, k1 = k2 = 1, k3 = 0, kN3 = 2.

Figure 4: Illustration of the invariant cone for ε = c2 = 0.1, c1 = 0.4, m = 1, k1 = k2 = 1, k3 = 0, kN3 = 2. The magenta line
shows the intersection line of the two locally invariant half-planes. The blue line is the intersection line of M+

s with the switching
manifold Σ, which lies exactly on the direction of the eigenvector from the numerical solution of equation (4).

Continued reduced slow dynamics
The main disadvantage of taking x1 = 0 as a switching plane in (18) is that the reconstruction of the fast variable y
contains a jump leading to a Filippov system [8] for the reduced dynamics. For the purpose of obtaining a continuous
matching of the two locally invariant half-planes, the switching plane can be modified and fixed at the intersection line
defined by M

+
s ∩M

−
s . Setting h+s = h−s yields:

(
− k2

k2 + k+3
+

k2

k2 + k−3

)
x1 +

(
k−3

(k2 + k−3 )
2
− k+3

(k2 + k+3 )
2

)
x2 = 0. (19)

This condition h+s = h−s is then used in (18) as switching condition instead of yslow. Even though this line does not lie on
the physical switching plane Σ, defined by y = 0, the reduced dynamics gives a better approximation of the dynamics of
the full system. This is illustrated in Figure 4, where the reduced dynamics on the slow manifolds (dashed line) contains
only a kink at the switching instead of a jump. The trajectory of the reduced system follows the solution of the full system
more closely than trajectories containing a jump at x1 = 0. Figure 5 compares the time histories of the displacements
q1 and q2 over some periods of decaying oscillations from the full system (black), the reduced system with a jump (blue)
and the reduced model from the continued invariant half-planes (red). The continued reduced dynamics shows a closer
agreement with the full system than the reduced model containing jumps.

Approximation of the invariant half-lines
Since the global stability of the continuous critical manifold Mc is ensured and the two slow manifolds M±

s are locally
invariant and attracting, a typical trajectory in U

+ would cross Σ from right to left at a point that can be assumed in
the O(ε) neighborhood of M+

s . For sufficiently small ε, the trajectory would then approach M
−
s and follow it closely
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Figure 5: Time histories for ε = c2 = 0.2, c1 = 0, m = 1, k1 = k2 = 1, k3 = 0, kN3 = 2. The black, blue and red lines show the
displacements from the full system, the reduced system with a jump and the continued reduced system, respectively.

until the next crossing with Σ. Hence, we can assume that every transition from right to left through Σ is in a O(ε)
neighborhood of M+

s . Consequently, the intersection line of M+
s and Σ presents a good approximation of an invariant

half-line of the invariant cone and can be obtained by setting y+slow = 0 in (18) as :

rinv = {x1 = −ε k+3
k2(k2 + k+3 )

x2, y = 0}. (20)

Using the definitions in (12), this half-line is visualized as the blue line in Figure 4 in the original coordinates of the system
(q1, q̇1, q2)T. For ε sufficiently small, this simple closed form approximation matches the invariant half-lines obtained
from the numerical solution of (4). Obviously, this argumentation is analogous if we assume trajectories starting near the
intersection of M−

s and Σ and leads to an approximation of the other invariant half-line, which corresponds to a Poincaré
map defined as P = P−(P+).

Conclusion

This study set out to explore the connection between singular perturbation theory applied to a slow-fast CPWL system
and its invariant cones. The results show that the invariant half-lines of the corresponding invariant cone can directly be
approximated in a closed form from a geometric perspective by computing the intersection of the locally invariant slow
manifolds and the switching plane. Moreover, this work has also highlighted that trajectories of the reduced dynamics
with a modified switching condition, which was obtained from the intersection line of the two slow manifolds, can closely
approximate trajectories of the full system. Further research might explore the applicability of these findings for higher
dimensional CPWL systems.
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Bursting and Excitability in Neuromorphic Resonant Tunneling Diodes
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Summary. We study in this paper the dynamics of quantum nanoelectronic resonant tunneling diodes (RTDs) as excitable neuromorphic
spike generators. We disclose the mechanisms by which the RTD creates excitable all-or-nothing spikes and we identify a regime of
bursting in which the RTD emits a random number of closely packed spikes. The control of the latter is paramount for applications in
event-activated neuromorphic sensing and computing. Finally, we discuss a regime of multi-stability in which the RTD behaves as a
memory.

Introduction

Spike information processing and transmission in the form of events that occur at continuous times has numerous advantages
over digital encoding and signaling [1]. It is a key mechanism in the dynamics of neurons and the brain, which suggests its
value in the development of biologically-inspired artificial intelligence. Neurons are excitable systems; they respond to an
external stimulus by realizing a large amplitude response, typically in the millisecond and millivolt range, before returning
to their rest state, provided that said stimulus is larger than a certain threshold. Several neuromorphic circuits have been
proposed which attempt to emulate the transmission of information in the brain and the nervous systems [2,3,4], including
the IBM TrueNorth chip and the Intel Quark SE chi. These approaches are still based on adapting the conventional
Complementary Metal Oxide Semiconductor architecture, and have some drawbacks, such as low frequency (kHz) and
much higher power consumption than the brain.

Results
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Figure 1: DBQW RTD connected to DC voltage.

In this work, we provide a detailed analysis on
the performance of quantum nanoelectronic resonant
tunneling diodes (RTDs) as neuromorphic spike generators.
Resonant tunneling diodes are promising candidates and
are the fastest electronic oscillators up to date, reaching
frequencies in the order of the hundreds of GHz, with a
world record of 1.98 THz. Double barrier quantum well
RTDs exhibit a nonlinear current-votage characteristic
with regions of negative differential conductance (NDC)
[1] (fig. 1). This property is key for the potential
configuration of RTDs as excitable spike generators [5].
Excitable systems respond to an above-threshold stimulus
by realizing a large amplitude response, typically in the
millisecond and milivolt range, before returning to their
rest state. For the duration of the response, known as
lethargic time, the system is unable to respond to any
other stimulus, irrespective of its amplitude [6]. Here, a
theoretical model is proposed following the first-principle
calculations of [5] accounting for an RTD with a single
NDC connected to a DC voltage source (see fig. 1 inset).
The system of two first-order differential equations for the current and voltage derived from Kirchoff laws reads

µV̇ = I − f(V ), (1)

µ−1İ = V0 − V −RI. (2)

Here, V (t) is the voltage across the RTD and I(t) is the total current. V0 is the bias DC voltage, R is the circuit

intrinsic resistance and the parameter µ is the stiffness coefficient defined as µ =
√

C
L , where L and C are the equivalent

inductance and capacitance, respectively, which sets the circuit’s natural frequency. The system’s response depends on
three parameters: the bias voltage, the circuit’s resistance and a parameter accounting for the stiffness of the dynamics.
Provided that this stiffness coefficient is sufficiently small, the system exhibits an adiabatic limit cycle with stages of
slow and fast dynamics when biased in the NDC region and a stable fixed point when biased elsewhere (fig. 2.b). If the
bias is set in the proximity to the NDC region and the system is perturbed with a perturbation above a certain threshold,
it responds with a spike reminescent of the slow-fast limit cycle. If the system is subjected to noise instead of a single
perturbation, it randomly generates spikes depending on the noise intensity. If the bias is set in the proximity to the I-V
curve valley, the spikes appear agglomerated in bursts (fig. 2.c), which has already been observed in experiments [5].
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Figure 2: a,b) RTD response as a function of the bias voltage. Limit cycles are smooth (a) or stiff (b) depending on the stiffness
coefficient. c) RTD response to external noise in the form of bursts of spikes.

An extensive study on the system’s responses in terms of the parameters mentioned above is performed. Depending on the
I-V characterisic, there may be narrow ranges of bias voltage at each side of the NDC region where the system is bistable.
A critical value for the resistance is also found, above which the system exhibits a rich variety of multistabilies, with
multiple fixed points and homoclinic curves. The bistability ranges and the lethargic time are measured as functions of
the stiffness coefficient and the resistance, and they are found to be mainly dependent on the former, with little influence
by the latter. In particular, the lethargic time is found to be inversely proportional to the circuit’s inductance.

Conclusions

A Liénard-type nonlinear oscillator was proposed to model the dynamics of a double barrier quantum well resonant
tunneling diode (DBQW RTD) connected to an electrical DC input.The configurations where the circuit behaves as an
excitable spike generator were disclosed in a perspective to design and fabricate optoelectronic, nanoscale devices able of
transmission, reception and storage of spike-coded information. The RTD oscillator may exhibit one or more equilibrium
solutions in the form of a fixed point or a limit cycle. In particular, the stiffness coefficients determines whether or not the
system behaves as a smooth oscillator or a spike generator.
References
[1] Eugene M. Izhikevich. Dynamical systems in neuroscience : the geometry of excitability and bursting. Computational
neuroscience. MIT Press, Cambridge, Mass., London (2007).
[2] P. A. Merolla, et al. “A million spiking-neuron integrated circuit with a scalable communication network and
interface”. Science, 345 (668) (2014).
[3] Y. Shen et al. “Deep learning with coherent nanophotonic circuits”. Nature Photonics, 11: 441-446 (2017).
[4] P. Stark et al. “Opportunities for integrated photonic neural networks”. Nanophotonics, 9 (13): 4221-4232 (2020).
[5] J. N. Schulman, H. J. De Los Santos, and D. H. Chow. “Physics-based rtd current-voltage equation”. IEEE Electron
Device Letters, 17 (5): 220-222 (1996).
[6] B. Romeira, J. Javaloyes, C. N. Ironside, J. M. L. Figueiredo, S. Balle, and O. Piro. “Excitability and optical pulse
generation in semiconductor lasers driven by resonant tunneling diode photo etectors”. Opt. Express, 12 (8): 20931-20940
(2013)

ENOC 2022, July 17-22, 2022, Lyon, France

102



ENOC 2020+2, July 17-22, 2022, Lyon, France

Delayed loss of stability in multiple time scale models of natural phenomena

Mattia Sensi∗
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Summary. Numerous real-world phenomena exhibit mechanisms evolving on greatly different time scales. In this talk, we focus on
delayed loss of stability in two classes of mathematical models, namely epidemics and neuroscience, specifically synaptic transmission,
and comment on the possible asymptotic, and in one case transient, behaviour of such systems.

Introduction

Numerous natural phenomena exhibit mechanisms evolving on greatly different time scales, e.g. days against months or
even years. The presence of multiple time scales gives rise to complex phenomenon, such as the focus of this talk, i.e.
the so-called delayed loss of stability [1, 7]. Geometric Singular Perturbation Theory (GSPT) [2, 6] is a powerful tool to
analyze such systems: by considering each time scale separately, GSPT allows to deduce information on the behaviour of
the original model.
In this talk, we present various multiple time scale systems, both in standard and non-standard form [9], and describe their
behaviour using different techniques from GSPT. In particular, we showcase the delayed loss of stability of orbits passing
nearby critical manifolds (the sets of equilibria of the fast limit) of such systems. We focus on the entry-exit relation (also
known as way-in/way-out, delayed loss of stability, or Pontryagin delay) which we use to analyze the passage of orbits
near the critical manifolds.
In its simplest form, the entry-exit function is applied to planar systems of the form

x′ =ϵf(x, z, ǫ),

z′ =zg(x, z, ǫ),

with 0 < ǫ≪ 1, x, z ∈ R, f(x, 0, 0) > 0 and sign(g(x, 0, 0)) = sign(x).
As shown in Figure 1, one can derive a Poincaré map x0 7→ pϵ(x0) from a horizontal line {z = z0} to itself. The
x-axis z = 0 changes stability, from attracting to repelling, at x = 0. Orbits which are attracted towards it at a point
(x, z) = (x0, z0), with x0 < 0, will eventually leave a neighbourhood of the x-axis and re-intersect the line {z = z0} at
a point with (x, z) = (pϵ(x0), z0), with pϵ(x0) > 0. As ǫ → 0, the exit point pϵ(x0) approaches the value p0(x0) given
implicitly by the following integral: ∫ p0(x0)

x0

g(x, 0, 0)

f(x, 0, 0)
dx = 0.

Such a formula can be generalized to higher-dimensional systems, at the cost of additional assumptions which, as we
explain, are not always trivially satisfied.

Figure 1: A visualization of the entry-exit map for a planar system.

The models

Compartmental epidemics models
The first models we present are the compartmental models, in non-standard GSPT form, studied in [3]. In all the models,
the fast processes are the ones related to infection and recovery, whereas the slow processes are the ones related to loss of
immunity or demography. The passage of an orbit close to the critical manifold, represented in all cases by the absence of
infectious individuals in the population, allows us to bring the system in standard form through a rescaling of the variables,
and to predict the beginning of another “wave” through the entry-exit function.
We analyzed three epidemics models given as slow-fast SIR (Susceptible-Infected-Recovered) and SIRS compartmental
models, and proved that when the basic reproduction number R0 is greater than 1, the system will converge to an endemic
equilibrium characterized by an O(ǫ) fraction of the population still in the infected compartment.
Then, we studied an SIRWS (where the “W” represents individuals in a Waning immunity phase), and we applied a
geometrical argument, sketched in Figure 2, to prove the asymptotic convergence towards a unique endemic equilibrium
or towards a limit cycle.
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Finally, we present the SIRS compartmental model on homogeneous networks studied in [4]; one fundamental difference
with the SIRS model studied in [3] is the existence of stable limit cycles. All the results obtained in the aforementioned
papers heavily rely on the entry-exit function, and one critical assumption needed in order to use this tool (namely,
separation of eigenvalues of the linearization of the systems along the critical manifold) is not always satisfied along
solutions of the SIRS model on networks. We comment on such a limitation, and provide a possible solution to overcome
such an issue.

S
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0

Figure 2: Concatenation of slow and fast orbits, giving rise to a limit cycle.

A short theoretical digression
As a follow-up to the criticality emerging from the model studied in [4], we shortly describe an ongoing project [5] which
aims at generalizing the possibilities of application of the entry-exit function.
Specifically, we consider a class of 1-fast/2-slow systems of ODEs, and provide entry-exit relations for systems whose
linearizations do not exhibit separation of eigenvalues on the critical manifold. We argue that such an approach could be
generalized to higher-dimensional systems.

Synaptic transmission via neurotransmitter release
Then, we showcase the application of the entry-exit function to a planar system in standard GSPT form studied in [8].
The entry-exit function can be used, in this context, to compute the delay between subsequent spikes in the neural activity
and capture possible response of a post-synaptic neuron to an input (formed by one or several spikes) received by a pre-
synaptic neuron. This response always incurs a minimal delay (diffusion time to cross the synaptic cleft, the space in
between the two neurons) but can increase substantially depending on the neural type and possible pathological behaviour
of the underlying neural population. The entry-exit function hence allows to fine-tune the model so as to capture all these
scenarios within a parsimonious framework, and fit to data of both excitatory and inhibitory synapses.
Lastly, we propose a generalization of the previous system, in which the quadratic component of the critical manifold is
replaced with a quartic curve. We study how the shape of the quartic, as well as other parameters of the system, may
affect both the transient and asymptotic behaviour of the system, since both are of interest in such applications.
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A new explicit CD-Lagrange scheme with redistributed mass for structural dynamics
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Summary. This work aims to apply mass redistribution method to explicit schemes in non-smooth contact dynamics, especially the
CD-Lagrange scheme. New properties are being investigated to better address the issues of impact for structural transient dynamics.
Mass redistribution method improves energy balance and stability for CD-Lagrange scheme. Results for a simple contact problem are
presented.

Non-smooth Contact Dynamics and mass redistribution method

In structural transient dynamics, problems with impact belong to the family of Non-Smooth Contact Dynamics (NSCD)
problems. An impact causes a discontinuity in velocity, and therefore a non-defined acceleration. Integrating in time
requires thus dedicated schemes. A first family, event-driven schemes, adjust the time-step to set impact times at discrete
times. They fail in case of numerous and close impacts leading to a high computation time. A second family, time-
stepping schemes, can deal with multiple impacts between two discrete times keeping time-step constant. Time-stepping
schemes are thus more robust for practical finite elements problems.
The first NSCD time-stepping scheme is Moreau-Jean’s scheme [1, 2]. It introduces a new contact formulation written in
terms of velocity and impulsion. It allows stability at impact and a better energy balance, and is equivalent to classical
Signorini’s condition. But writing contact in terms of velocity does not solve exactly position. A residual penetration
remains during contact. Chen, Acary et al. [5] extend Moreau’s velocity formulation to Newmark’s family. All these
schemes are implicit.
A first family of NSCD explicit schemes is Paoli-Schatzman’s one [3]. They use a contact formulation in terms of position,
and central difference method for time-integration. For velocity/impulse contact formulation, the only explicit scheme is
CD-Lagrange [4]. It uses the central difference method too for time-integration, but preserves properties of Moreau-Jean’s
family.
A active research field in NSCD is currently the mass redistribution method. Following the work of Khenous, Laborde
and Renard [6], new spatial discretizations appear with massless node for contact. This improves the energy balance, and
velocity stability for contact nodes after release. Dabaghi [7] applies this technique to Paoli-Schatzman’s schemes leading
to similar improvements.
In the present work redistribution mass method is applied to CD-Lagrange scheme. The purpose is to exhibit the interest
of mass redistribution method to velocity/impulse contact formulation and a explicit scheme. This new scheme would be
well suited to non-linear impact dynamics involved in tire simulations.

CD-Lagrange scheme with redistributed mass : a 1D example

Bulk

Sk n

Massic

nodes

M ss e s

c n a t

n d

Figure 1: Redistributed
mass on a discrete bar

Here a one-dimensional problem is presented to illustrate the main features of mass redistri-
bution on a CD-Lagrange scheme. The impacting bar problem is chosen. It is a common
benchmark case for NSCD integration schemes [4, 5, 7, 8]. This case is a discrete bar impact-
ing on a rigid barrier, with a linear elastic material law.
Here the skin is defined as being the last element of the bar. Modifying mass consists of
removing mass of contact node and distributing it uniformly on other nodes. It results in two
problems : one for the bulk, and one for the skin. The bulk problem is dynamic with kinetic
and internal stresses. The skin problem is similar to a static one. The contact node having no
mass, no kinetical term is involved in equation of dynamic.
This leads to a difficulty for schemes with velocity as main unknown (like CD-Lagrange): the
contact node velocity can not be determined by the equation of dynamic. The solution is to set
the normal velocity depending on state of contact. It is fixed to zero for an active contact, and
to the normal velocity of preceding mass node otherwise. This means that the skin deforms
only when the contact is active. After release, a deformed state can thus persist. In such a case
the skin force acting on bulk domain is set to zero. As a consequence the contact problem no
longer contains kinetic terms, but only forces based on stresses in skin.

Figures 2 and 3 show respectively the contact node position and velocity over time for analytical, classical CD-Lagrange
and redistributed mass CD-Lagrange solutions.
The analytical solution of the continuous problem is known. The bar gets closer to the barrier with constant speed and
impacts it (around t = 0, 5× 10−4s). The contact persists until the compression wave reaches the free end and returns.
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Figure 2: Contact node position
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Figure 3: Contact node velocity
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Figure 4: Energy : conservative terms

Then the bar releases contact (around t = 1.5 × 10−4s)
and moves away with the same constant speed as before
impact.
Time-integration schemes compute discrete solutions with
commons features : a residual penetration remains after
impact, because of the velocity contact condition. This
residual penetration is the same for both CD-Lagrange
schemes. Redistributing mass has no influence on dis-
crete position. For velocity, if the discrete solutions stay
close from analytic one before the contact release, spuri-
ous oscillations appear after. For redistributed mass CD-
Lagrange, they vanish slightly faster.
Discrete energy over time is depicted on figure 4. This
energy contains only conservative terms: kinetic, internal
and complementary energy. At impact time the loss of
energy for CD-Lagrange is the kinetic energy of contact
node, as its velocity is set to zero. For CD-Lagrange with
redistributed mass, no energy is lost as the node is mass-
less. But at contact release, some energy is injected.

Conclusion and future work

Embedding mass redistribution in CD-Lagrange scheme allows to improve three features: a new contact problem, simpler
without kinetic terms; a conservative impact; a weakening of spurious oscillations slightly improved.
The next step of this work is to extend it to three-dimensional problems. A major issue is dealing with incompatible
meshes, that leads to a higher complexity for the impact problem.
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Summary. This paper presents bifurcation study of piecewise smooth differential delay equations (PWS-DDEs) where the state
variable determines which differential delay equation is active. This paper aims to add to the existing research performed on bifurcation
studies of PWS-DDEs by developing an algorithm to perform bifurcation studies of a general form of PWS-DDEs, such that it can
be used for any bifurcation study of a PWS-DDEs system. Bifurcation studies are performed using a simplified model of a controlled
inverted pendulum to study the effect of parameters. During the bifurcation studies, new type of bifurcations that arise for PWS-DDEs
are defined.

Introduction

The ability to predict the stability of periodic behavior can be of importance in the research into for instance Parkinson [2]
or other balance disorders. Methods to determine periodic solutions for differential delay equations (DDEs) or piecewise
smooth (PWS) systems are well described. To find periodic solutions of DDEs the collocation method is often used
[3, 4, 5, 6]. In [1] the collocation method as used for DDEs is extended such that it is able to find periodic solutions of
PWS-DDEs.This paper presents bifurcation studies of a general form of PWS-DDEs. We study the influence of smooth
switching manifold on the parametric bifurcations for a controlled inverted pendulum. Bifurcation studies are presented
for systems with smooth switching manifolds using the algorithm developed.

Model

The state space model of the inverted pendulum is given by
[
ẋ1
ẋ2

]
=

[
x2(t)

sinx1(t)− x2(t)− u(x(t− τ))

]
(1)

where x1 := θ and x2 := θ̇, where θ is the angle and u is a torque determined by a controller. Delays in for instance the
sensors or computational delays are modeled by using the delayed values of the angle and angular velocity to determine
the torque u.The parameters (mass, length, and damping coefficient) in this model are scaled to unity.Some studies suggest
that central nervous system uses control switching strategies that deactivate the controller in certain (stable) subspaces of
the state space, to minimize control effort [7]. The switching strategies are a function of these delayed values, hence one
way to describe the control input on the system can be:

u(x(t− τ)) =
{
0 when x(t− τ) ∈ χunctrl

Kpx1(t− τ) +Kdx2(t− τ) when x(t− τ) ∈ χctrl

(2)

with χunctrl

⋃
χctrl = R2, with Kp and Kd the proportional and derivative gain, respectively. The switching strategy

studied here is to only control the system if magnitude of the angle is large. The subspaces χunctrl = {x ∈ R2| |x1| ≤ e}
and χctrl = {x ∈ R2| |x1| > e} define this switching strategy where e is the value of |θ(t − τ)| which defines the
switching plane.

Bifurcation studies

A bifurcation study along parameter Kp is performed to study the effect of switching manifold. The bifurcation behavior
is characterized by appearance of topologically nonequivalent phase portraits under variation of the parameter µ. The
bifurcation studies are performed using the switching plane with e = 0.1. The parameters of the model are Kp = 2,
Kd = 1 and τ = 0.5, if not mentioned differently. The bifurcation diagram along the bifurcation parameter Kp is
depicted in Figure 1. The whole branch consist of stable periodic solutions and the unstable equilibrium point at the
origin. The evolution of a branch at Kp = 1 is given in Figure 2. Due to the sudden periodic solutions that originate
similar to a Pitchfork bifurcation this phenomena will be referred to as the Pseudo-pitchfork bifurcation. There are two
differences between pseudo-pitchfork bifurcation and the pitchfork bifurcation:the periodic solutions do not originate
from the main branch and stability along the main branch does not change at the bifurcation point. For phase portrait C in
Figure 1 one side has a stable periodic solution, and the other side there are two stable periodic solutions and on each side
of the bifurcation point the solutions are stable. To study the behavior that causes the bifurcation, a section of the whole
branch around the bifurcation point is depicted in Figure 3. In this case, for µ < µ0, with µ0 the bifurcation point, there
is one unstable equilibrium one periodic solution, and for µ ≥ µ0 there is still one unstable equilibrium and two stable
periodic solutions. This is called an X-bifurcation. The most challenging part of these studies is an inherent inability to
capture all bifurcations at any critical point due to an inherent numerical approach and this remains part of future work
for authors.
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Figure 1: Bifurcation diagram along parameter Kp with the magnitude switching manifold

Figure 2: Evolution of periodic solutions close to Pseudo-pitchfork bifurcation

Figure 3: Evolution of periodic solutions close to X-bifurcation

Conclusions

Two new bifurcations are observed for the system using a smooth switching control strategy for a PWS-DDE system.
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Summary. The qualitative differences in the behaviors of Hamiltonian and dissipative systems are profound. In particular, in Hamil-
tonian systems the existence of asymptotically stable solutions is impossible due to the Liouville’s theorem. By contrast, dissipative
systems usually exhibit eventual attraction of all phase trajectories to ω-limit sets such as fixed points, (quasi-) periodic or strange at-
tractors. In this work we present a class of dissipative mechanical systems which demonstrate mixed global dynamics, i.e., coexistence
of both attracting and Hamiltonian-like behaviors. Our main model is a well-known system of harmonically forced vibro-impact oscil-
lator with Amonton-Coulomb friction. In a vast majority of previous studies, it also includes viscous friction, and the global dynamics
of its state space is governed by the aforementioned attractors. However, if we omit viscous friction, we observe that the state space
is divided into regions with “regular" attraction, as well as regions with profoundly Hamiltonian dynamics, e.g., KAM-like tori. We
show that such local Hamiltonian behavior occurs for the phase trajectories with non-vanishing velocities. The stability analysis of the
periodic solutions confirms the above statement. We also demonstrate that similar mixed global dynamics can be observed in a broader
class of models including systems with x-dependent potentials as well as multi-particle systems.

Introduction

Model formulation
We consider a single-degree-of-freedom unit mass particle which displacement is constrained by two rigid walls (l <
x(t) < r). The particle is subject to external sinusoidal forcing of period T = 2π/ω and the Amonton-Coulomb dry
friction [1, 2]. The equation for motions l < x(t) < r is

ẍ+ f sgn (ẋ) = F cos (ωt). (1)

We assume that F > f , since otherwise any motion comes to stop. When x(t) = r, l the following impact rule [3] is
applied:

ẋ(t−) = −ẋ(t+). (2)

Dynamics of system (1)–(2), and its dependence on parameters, will be illustrated by the global phase portrait of the
stroboscopic time T map Φ : (x(0), ẋ(0)) 7→ (x (T ) , ẋ (T )). In particular, a fixed point of Φ corresponds to a periodic
solution of system (1)–(2).

Numerical investigations
A typical phase portrait of Φ with f = 0 is shown on Figure 1a. It presents an invariant island containing a fixed
point and periodic orbits which are surrounded by invariant curves representing quasiperiodic motions. Another region
of quasiperiodic motions is observed for large velocities. Between these two regions there is a chaotic sea (gray dots).
Furthermore, a horizontal segment of fixed points represents periodic solutions without impacts x(t) = − F

ω2 cos (ωt)+C.

(a) f = 0 (b) f = 0.1 (c) f = 0.3 (d) f = 0.5

Figure 1: Evolution of the phase portrait with increasing friction. Other parameters are the following: F = 1, ω = 1, R := r−l = 20.

Introducing friction drastically changes the phase portrait (Figures 1b–d). In particular, the segment of fixed points
corresponding to periodic solutions without impacts becomes an attractor. However, the invariant island of Hamiltonian
dynamics persists, thus, we observe coexistence of dissipative and conservative behaviors. The trajectories from the
invariant island have a non-vanishing velocity, and, therefore, we call such solutions non-sticking.
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Analysis

Hamiltonian dynamics of system (1)–(2) can be explained by lifting it to the unconstrained Hamiltonian system

q̈ +
∂V

∂q
=
f

R
, V (t, q) =

F

R
cos (ωt)W (q), W (q) =

{
q, 0 ≤ q < 1,

2− q, 1 ≤ q < 2,
W (q + 2) =W (q). (3)

Any non-sticking solution of (3) is mapped to a non-sticking solution of (1)–(2) by the simple relationship

x = R ·W (q) + l. (4)

Therefore, if all solutions starting from a domain Ω of the state space of system (1)–(2) are non-sticking and Ω is invariant
for the time T map Φ of this system, then Ω is a region of Hamiltonian dynamics. In particular, at least a small invariant
region Ω of Hamiltonian dynamics exists around every fixed point of non-degenerate non-resonant center type.

Stability analysis
Stability and type of a fixed point and the corresponding periodic solution is determined using the Floquet theory as
follows. Any trajectory of (1)–(2) can be represented as a sequence of motions and events of the following types: free
flight (ẋ ̸= 0), sticking (ẋ = 0 over a nonzero interval of time), reflection from the wall (x = r, l) and a turning point
(change of sign of ẋ). Thus, the Jacobi matrix Φ′ can be obtained as a product of corresponding matrices (matrix related
to an instantaneous event is known as saltation matrix [4]). In particular, it is easy to show that matrices for free flights
and reflections of the walls have unit determinants. Thus, non-sticking trajectories, det(Φ′) = 1 which corresponds to the
phase area preservation.

Extensions

Mixed global dynamics can also be observed in systems with x-dependent potentials as well as systems with higher
degrees of freedom. For instance, one can consider system of n ≥ 2 elastically colliding particles with masses mi placed
between the same two walls. Again, in order to spot regions of Hamiltonian-like behavior we should check non-sticking
periodic trajectories of non-resonant center type. The linear stability analysis can be easily extended to the case of many
particles, however, in order to be volume-preserving the Jacobian Φ′ should be symplectic. It turns out that the saltation
matrix S related to the particle collision is not necessary symplectic. However, if the product of velocities of the two
colliding particles has the same sign before and after the collision, then the corresponding saltation matrix (for n = 2)

S =

[
AT 0
B A

]
with A =

1

m1 +m2

[
m1 −m2 2m1

2m2 m2 −m1

]
and B =

2F cos (ωt∗)(m1 −m2)m1m2

m1 +m2

(
m2ẋ1(t

−
∗ )−m1ẋ2(t

−
∗ )
)
[
−1 1
1 −1

]
,

(5)
is symplectic. When m1 = 1, m2 = 0.9, F = 1, ω = 2π, f = 0.005, R = 2, the two-particle system has a 3T -periodic
solution which linearization is symplectic. Figure 2 presents invariant tori in a neighborhood of this solution. The tori
coexist with an attractor consisting of periodic solutions without collisions or impacts.

(a) (b)

Figure 2: Panel (a): Time trace of a 3T -periodic solution of the two-particle system with m1 = 1 (blue), m2 = 0.9 (orange).
Panel (b): Projection of the phase portrait of the time T map Φ onto the (x1, x2)-plane exhibiting several invariant tori near a period 3
point (star).
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Summary. A very compact weighted residual formulation is proposed for the construction of periodic solutions of oscillators subject
to unilateral contact and frictional occurrences. The key idea is to express all governing equations as equalities, which can then be
satisfied in a weighted residual sense.

Toy system

In order to introduce the proposed formulation, a simple toy system, illustrated in Figure 1, is considered. It is a simple
geometrically nonlinear mass-spring system lying on a moving belt of constant linear velocity v. The mass is denoted by m

and the stiffness, by k. The length of the spring at rest (in a vertical position when the mass is lying on the belt) is L. The
vertical displacement of the mass is y.t/ and vertical separation from the belt is possible. The horizontal displacement is
x.t/. The position at rest is .x; y/ D .0; 0/. The frictional force acting on the mass is rT.t/ while the unilateral contact

A

B
x

y

v

Figure 1: One-dimensional mass-spring moving on a rotating belt. Point A is fixed. The position of point B is .x.t/; y.t//. The belt is
assumed to be infinitely long.

force is rN.t/. The relative tangential velocity between the mass and the belt is PuT.t/ D �v C Px.t/. In the remainder, time
is often dropped for readability purposes.

Signorini unilateral contact and Coulomb’s friction conditions expressed as equalities
Given the parametrization of the system of interest, the classical Signorini conditions are expressed as the complementarity
conditions

rN � 0; y � 0; rN � y D 0 (1)

which can be recast into various equivalent nonsmooth equalities, one of which being

8�N > 0; rN � max.rN � �Ny; 0/ D 0: (2)

Briefly said, the set of points solution to Equation (1) and Equation (2) is the same [1, 2]. Also, with the considered
parameterization, Coulomb’s friction classically says the following: given a closed contact in the normal direction,

(

PuT D 0 H) jrTj � �rN

PuT ¤ 0 H) jrTj D �jrNj and 9˛ � 0 j rT D �˛ PuT
(3)

where � is the coefficient of friction. Among others, the above condition can equivalently be recast into the nonsmooth
equality [2, 7]

min.j PuTj; �rN � jrTj/ D 0 (4)

or
8�T > 0; j PuTj � max.j PuTj � �T.�rN � jrTj/; 0/ D 0: (5)

Newton’s impact law
Depending on the context of the investigation, an impact law PyC D �e Py� relating the pre- and post-impact velocities,
Py� and PyC respectively, through a coefficient of restitution e 2 Œ0; 1� might be required for the well-posedness of the
formulation since Equation (1) alone might not guarantee the uniqueness of the solution [4]. The idea is to test whether a
penetration between the bodies in contact has occurred and then enforce the unilateral contact conditions at the velocity
level with the above impact law inserted. Altogether, this reads [2]:

(

y < 0 H) rN � 0; PyC C e Py� � 0; rN � . PyC C e Py�/ D 0

y � 0 H) rN D 0
(6)
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which can be recast into the single equality

8�N; .sign y � 1/.rN � max.rN � �N. PyC C e Py�/; 0/ C .sign y C 1/rN D 0 (7)

with the convention sign y D 1 if y � 0 and sign y D �1 otherwise.

Governing equations
Given the geometric nonlinearity induced by the action of the spring on the mass, we introduce the quantity

.x; y/ D

p

x2 C .L C y/2 � L
p

x2 C .L C y/2
: (8)

The two coupled nonlinear and nonsmooth Ordinary Differential Equations

m Rx C k.x; y/x � rT D 0 (9a)

m Ry C k.x; y/.y C L/ � rN C mg D 0 (9b)

together with either Equation (2) and Equation (4), or Equation (7) and Equation (4), govern the dynamics of the system
considered. In Equation (9b), g is the gravity constant. Depending on the level of regularity of the targeted solution,
Equation (9) might have to be read in the distributional sense.

Weighted residual formulation

It is suggested to search for periodic solutions by solving the above formulation in a weighted residual sense. All unknowns
of the problem are expanded on an appropriate truncated basis of T -periodic functions with N members, commonly the
Fourier basis in the Harmonic Balance Method but not necessarily, as follows:

x.t/ D
X

k

xk�k.t/; y.t/ D
X

k

yk�k.t/; rN.t/ D
X

k

Nk�k.t/; rT.t/ D
X

k

Tk�k.t/: (10)

Depending on the smoothness of the selected basis functions, time derivatives might either be obtained by pointwise
differentiation in time or expanded on a less smooth basis and related to the differentiated quantity in a weak sense.
Concerning Equation (7) which requires access to PyC and Py�, a Discontinuous Galerkin scheme could be used [6]. If we
decide to solve Equation (9), Equation (2) and Equation (4), the weighted residual formulation would take the following
form: once the expressions of Equation (10) are inserted in the selected governing equations, find the 4N unknowns xk ,
yk , Nk and Tk which satisfy

Z T

0

�k.t/.Eq. (9a)/ dt D

Z T

0

�k.t/.Eq. (9b)/ dt D

Z T

0

�k.t/.Eq. (2)/ dt D

Z T

0

�k.t/.Eq. (4)/ dt D 0; 8k: (11)

The above integrals can be numerically computed using an appropriate quadrature scheme such as a Riemann sum. The
resulting system of nonlinear equations can be also solved using a nonsmooth Newton solver, for instance. The proposed
strategy can be seen as a very compact form of the AFT methodology [5] without regularization and shares similarities with
the DLFT technique [3] which also relies on the AFT. The rate of convergence of the proposed procedure might depend on
the two parameters �N and �T, which have to be assigned a value in the solvers.

Conclusions

The proposed formulation is very compact and involves simple implementations such as basic integral quadrature schemes
and existing nonlinear solvers. Its engineering value lies in its capability to generate coarse approximations without
difficulty in contrast to much more advanced time-stepping or event-driven schemes [2]. It can be extended to more
elaborate mechanical systems in a straightforward fashion. However, the convergence rate in terms of the number of
unknowns is expected to be low and should be investigated with great care.
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Summary. We contrast the behavior of dynamic bifurcations for smooth and non-smooth fold bifurcations in the presence of
oscillatory and noisy forcing. Dynamic bifurcation refers to the state transition or “tipping” that takes place when a parameter slowly
varies through a value corresponding to a bifurcation in the static model. Note that the dynamic models correspond to non-autonomous
systems with multiple time scales. Through a canoncial model with an underlying static nonsmooth fold bifurcation, we see that the
transition is delayed as in the smooth case, depending on the rate of change of the parameter, but the functional form for the non-smooth
case is different. We also compare and contrast how oscillatory forcing can shift the tipping or dynamic bifurcation, in both smooth
and NS cases. We extend to a higher degree of freedom models with NS fold bifurcations, studying a Stommel model, a two-box ocean
model for temperature and salinity. Within this higher dimensional model, we find additional differences for the non-smooth case in
the presence of certain types of random forcing.

Contrasts of tipping points in smooth and non-smooth fold bifurcations

We consider a non-autonomous single degree of freedom (DOF) model ,

ẋ = −µ+ 2|x| − x|x|+A sin(Ωt), µ̇ =− ǫ, x(0) < 0, µ(0) > 0, ǫ≪ 1, (1)

with A and Ω = ǫ−λ the amplitude and frequency, respectively, of the oscillatory forcing and slowly varying bifurcation
parameter µ. For the static system ǫ = 0 there is an underlying non-smooth (NS) fold bifurcation at µ = x = 0 as shown
in Fig. 1. Using a series of multiple scale analyses, we obtain approximations for the dynamic bifurcations, often called
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Figure 1: (LEFT) The bifurcation diagram for (1) showing upper and lower equilibrium branches (solid lines) and the unstable middle
branch (dash-dotted line). The NS static fold bifurcation is at (0,0) (blue ∗);the smooth fold bifurcation is at (1,1) ( red o). The numerical
solution (blue dotted line) to (1) is for A = 0 and ǫ = .05. (RIGHT). Simulations of (1), superimposed on the static bifurcation curve
(black lines), Diamonds: analytical predictions µtip for the DB/TP for λ ≤ 1 (simulation in red and green for A = 2 and λ = .7, 1,
respectively, and in blue for A = 5 and λ = .7); circle o: analytical prediction of µsv , (simulation in magenta for A = 2, λ = 2 )

.

tipping points (DB/TP), with and without the oscillatory forcing. Here x follows the lower equilibrium branch x < 0
as µ decreases. Using the multiple scales expansion x(t, T ) = −ǫλA cosT + ǫq1y1(t, T ) + . . . ǫq2y2(t, T ) + . . . for
1≪ Ω = ǫ−λ and T = Ωt, we obtain the DB/TP

A ̸= 0, 0 < λ . 1 µtip =

(
ǫ2

Ω

)1/3(
π|A|
2

)1/3

ξr +
4|A|
πΩ

Ai(ξr) = 0 for ξr = −2.33811 . . . (2)

A = 0, 0 < λ µsv ∼ 1

2
ǫ log(ǫ). (Ai is the Airy function) (3)

Fig. 2 compares the analytical and numerical results for these DB/TP’s. For small frequencies the NS DB/TP is advanced
relative to the static µ = 0, while for larger frequencies (larger λ or smaller A/Ω), the DB/TP is positive, with its
asymptote at µsv corresponding to A = 0. Note that µtip depends on the ratio A/Ω. Figs. 1 and 2 illustrate advanced
DB/TP for larger A/Ω and lagged DB/TP for smaller A/Ω. We contrast these results with the DB/TP for the canoncial
smooth dynamic fold bifurcation studied in [1]-[2], x′(t) = a(ǫt) − x2, a = a0 − ǫt for ǫ ≪ 1. For A ̸= 0, in
both smooth and NS cases, the DB/TP’s are the sum of two contributions, one negative contribution which corresponds
to a lag due to slowly varying µ, and a second positive contribution corresponding to an advance in tipping due to the
oscillations. Thus we have a competition between influences generating advances and lags, with different parametric
dependencies. Analogous to the NS case, the DS/TP value of a in the smooth case depends on A/Ω and ǫ, but with a
different functional dependency. For example, the asymptote for small A/Ω in the smooth case is 0 > asv = O(ǫ2/3), in
contrast to µsv = O(ǫ log ǫ). Thus the lag in the DB/TP is larger in the smooth case, as shown Fig. 2 LEFT.
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Figure 2: LEFT: For A = 5, ǫ = .03. comparison of the critical value µtip (black solid line) valid for λ . 1 and the limiting µsv for
larger λ (blue dotted line). Red stars indicate tipping in the numerical solution to (1), corresponding to the value of µ at which x reaches
1. The red dash-dotted line is the analogous results for the smooth fold bifurcation analyzed in [2], for comparison. CENTER: The
tipping value for µsv approximated by (3) (solid red line) and compared with the numerical result from (1) (black dots) with A = 0,
taking xtip = 1. RIGHT: Same as LEFT, but for (4).

Applications in larger systems
We apply a similar approach in higher DOF models, illustrated via the non-dimensionalized Stommel box model for
thermohaline ocean circulation [3],

V̇ = η1 − η2 + η3(T − V )− T − V |V |+A sin(Ωt), η̇2 = −ǫ
Ṫ = η1 − T (1 + |V |) +B sin(Ωt), T (0) = Ti, V (0) < 0, η2(0) = η2i > η1η3 .

(4)

Here V is the difference between non-dimensional temperature T and salinity S, with underlying static bifurcation struc-
ture of V vs. η2 similar to that of (1) in Fig. 1. Then the equilibrium branches for V > 0 (V < 0) corresponds to a
temperature (salinity)-dominated state. There is slow variation in time for ǫ ≪ 1 of the bifurcation parameter η2 and
high frequency oscillations Ω ≫ ǫ−λ for λ > 0 with amplitudes A and B. Model parameters η1 and η3 are positive
constants. The varying parameter η2 is related to the freshwater flux, as also studied in Roberts [4]. Variations in (η1, η3)
are captured by nonzero A,B, analogous to observed behavior in Huybers [5]. Using the approaches developed for (1),
we obtain approximations for the DB/TP η2tip as shown in Fig. 2 RIGHT for the NS dynamic bifurcation, capturing the
transition from solutions near the salinity-dominated branch for V < 0. Note, as in Fig. 2 LEFT, an advanced DB/TP
relative to the static bifurcation point η2c ≈ 1.5 occurs for larger values of A/Ω. Lagged DB/TP occurs for smaller A/Ω,
with an asymptote to the lag corresponding to slow variation of η2 and A = 0.

Potential influence of coherence resonance in non-smooth dynamic bifurcations
For the model (4) forced by white noise rather than oscillatory forcing, there is the potential for a coherence-resonance
(CR)-driven advance of the tipping point. A linear analysis of the salinity-dominated branch for V < 0, with static NS
bifurcation at η2 = η2c, shows that the corresponding eigenvalues can be either real or complex. This behavior is in
contrast to a smooth fold bifurcation with real eigenvalues of its near-by linearized system, e.g. as is the case for the
temperature-dominated branch of (4) for V > 0. For the salinity-dominated branch of (4) for V < 0, the eigenvalues
are typically complex as η2 approaches η2c, allowing for CR in which noise excites the frequency corresponding to the
complex part of the eigenvalues, even if the real part is negative. Using a measure of CR based on the power spectral
density of the fluctuations about the attracting salinity-dominated branch, we identify parameter ranges for which this CR
produces a large probability of advanced tipping to the temperature-dominated state. (This is also joint work with Ziming
Yin, now a co-op at Scotiabank in Toronto, CA.)

Conclusions

Via multiple scale analyses we capture the different parametric dependencies of dynamic bifurcations, i.e. tipping points,
in forced systems with smooth and non-smooth (NS) dynamic fold bifurcations. For O(1) forcing amplitude with high
frequency oscillations, the advance in the tipping point is larger in the NS case, since the contributions from the lag due to
slow variation of parameters is reduced relative to the smooth case. Furthermore, we find that coherence resonance-driven
tipping can advance NS fold bifurcations since switching surfaces rather than loss of local attraction to the equilibrium
state generates the bifurcation. Then the eigenvalues describing the local behavior near the NS fold bifurcation may be
complex, so that the noise can excite frequencies corresponding to the imaginary part of these eigenvalues.
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Summary. This study proposes to investigate the effects of dry friction on the behaviour of a parametrically excited nonlinear oscillator
using a pendulum as example. A harmonic balance method and time integration simulations are used to respectively compute and
validate the solutions of the problem and their stability. The effects of dry friction on the behaviour of the system are discussed.

Context

The parametric resonance phenomenon comes from the excitation of a dynamical system through the modulation of one
of its parameter and can be simply described by the Mathieu’s equation [1]. This phenomenon has been widely used to
enhance the dynamical behaviour of systems for energy harvesting or parametric amplification [2, 3]. Usually it occurs
for a forcing frequency different from the resonance of the excited system and results in infinite amplitude of oscillation
if no non linearities are present. The latter are thus necessary to stabilize the system motion and obtain a finite amplitude
of oscillation. An example of such a system is given by the Mathieu-Duffing’s equation. When adding viscous damping,
a forcing amplitude threshold depending on the damping coefficient must be overcome to initiate parametric oscillations.
Although dry friction is also a common source of damping, few studies deal with this kind of problems [4]. The present
study proposes to investigate the effects of dry friction on the behaviour of a parametrically excited nonlinear oscillator.
The governing equation is given and the example of the pendulum is used as illustration. A harmonic balance method
is used to compute theoretical solutions of the problem. Time integration simulations are compared to these solutions
to validate the model and its stability. The effects of dry friction on the behaviour of the pendulum and on its forcing
amplitude threshold are discussed.

Theoretical motion of a parametric nonlinear oscillator with dry friction

Governing equation
The Mathieu-Duffing’s equation including viscous and dry friction damping terms reads

θ̈ + µ1θ̇ + f0(θ̇) + (ω2
0 − δ 4Ω2 cos(2Ωt)) θ − γ θ3 = 0. (1)

This equation is the governing equation of a pendulum parametrically excited with a vertical displacement. In this case, θ
is the angular displacement of the pendulum and •̇ denotes a derivative relative to time t. ω2

0 = g/l is the resonance angular
frequency of the system with g the gravitational acceleration and l the length of the pendulum. δ and 2Ω are respectively
the amplitude and the angular frequency of the forcing. A factor 2 is joined to Ω since the parametric resonance occurs
at half of the excitation frequency in the case of the pendulum. The factor 4Ω2 appears due to the double derivative
relative to time of the forcing displacement term. The nonlinear coefficient γ comes from the linearisation of the sin term
describing the motion of the pendulum. The viscous damping coefficient is µ1 and the dry friction term is described by
the non-smooth function f0(θ̇) = µ0sign(θ̇) if θ̇ ̸= 0 and f0(θ̇) ∈ [−µ0, µ0] if θ̇ = 0, with µ0 the dry friction coefficient.

Harmonic balance approach
The harmonic balance method (HBM) is used to find the solutions of Equation (1) using a Fourier series expansion of the
angular displacement with only one harmonic :

θ(t) = a(t) cos(Ωt+ β(t)) (2)

Substituting (2) in (1), considering the expansion of the dry friction function as a one term Fourier series and equating
each harmonics in Ω and 3Ω with zero results in a system of four equations named S . Equating all time derivatives of
S with zero and neglecting harmonics higher than the first order, one founds that the amplitude of fixed points can be
obtained solving the following equation :

9

16
γ2 a6 − 3

2
γ(ω2

0 − Ω2) a4 +
[
(ω2

0 − Ω2)2 +Ω2µ2
1 − 4Ω4δ2

]
a2 +

8

π
Ωµ0µ1 a+

16

π2
µ2
0 = 0 (3)

The amplitude a is numerically computed to find the non trivial solutions of the pendulum motion. Then, the phase β of
the angular displacement is computed such as

tan(2β) =

(
Ωµ1 a+

4
π µ0

)
(
3
4 γ a

3 − (ω2
0 − Ω2) a

) (4)

It is worth mentioning that the trivial solutions a = 0 cannot be found with Equation (3) even if these solutions obviously
exist according to experiments. The stability of solutions is computed using the method of varying amplitude [5]. The
Jacobian J of the system S is first calculated. Then, the stability of the solutions is evaluated using the sign of its trace
and determinant. Assuming µ1 > 0, the trace of J is found to be negative. Thus, the condition for stability is achieved
when the determinant of J is positive.
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Time integration approach
Time integration simulations of Equation (1) are used to (i) validate the solutions found using the HBM, (ii) study the
trivial solutions of the system when µ0 ̸= 0 and (iii) validate the solution stability computed with the method of varying
amplitude. Simulations are computed using the ode45 solver from Matlab (MathWorks, Natick, USA). To avoid numerical
issues due to the discontinuities brought by the dry friction term, the switch model proposed in [6] is used. Thus, the dry
friction function is not regularized but replaced by a function including a transition phase in addition to the usual stick
and slip phases. Backward and forward frequency sweeps are done to obtain the trivial and periodic solutions.

Results

Figure 1 presents solutions of Equation (1) computed with the HBM and time integration simulations. The black dot-

Figure 1: Solutions of Equation (1) computed with the harmonic balance method (lines) and time integration simulations (circle
markers) for ω0 = 1, γ = 1/6, δ = 0.07, µ1 = 0.1 and µ0 = 0 (red) or µ0 = 0.015 (blue). Plain and dashed lines correspond
respectively to stable and unstable solutions. The black dotted line is the conservative solution of the system (δ = 0, µ1 = 0, µ0 = 0).
The blue cross corresponds to the birth of the isola.

ted line is the backbone curve of the system computed using the HBM. Red lines are the well-known solutions of the
parametric pendulum without dry friction whose behaviour is softening. The trivial solution is unstable between the two
bifurcation points of the periodic orbits. In this region, the pendulum necessarily jumps on the stable non trivial solution
branch when the forcing amplitude is larger than the critical value given by the HBM δcr = µ1/2Ω. Blue lines are the
solutions of the parametric pendulum with dry friction. In this case, non trivial solutions are disconnected from the trivial
ones which are always stable according to time integration simulations. According to HBM, the birth of the resulting isola
does not occur from a zero amplitude but from a point represented by the blue cross in Figure 1. It is worth mentioning
that the HBM does not predict this birth point onto but nearby the backbone curve. The critical forcing amplitude needed
to give birth to the isola depends on both the viscous and dry friction coefficient. However, the HBM does not allow the
computation of an analytical value for this threshold.

Conclusion and perspectives

A Mathieu-Duffing’s equation including a dry friction term was investigated to describe the dynamical behaviour of a
parametrically excited oscillator. The example of the pendulum was used to illustrate this problem. Solutions and their
stability were respectively computed using a harmonic balance approach and the method of varying amplitude. Results
were validated using time integration simulations. The dry friction gave birth to isolated solutions. To further investigate
these solutions, the energy principle method detailed in [7] will be used to analytically derive the critical forcing amplitude
needed to give birth to the isola. The influence of other parameters like initial conditions on the existence of non trivial
solutions will be also discussed.
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Summary. Stability of equilibrium states in mechanical systems with multiple unilateral frictional contacts is an important practical 
requirement, with high relevance for robotic applications. In our previous work, we theoretically analyzed finite-time Lyapunov stability for 
a minimal model of planar rigid body with two frictional point contacts. Assuming inelastic impacts and Coulomb friction, conditions for 
stability and instability of an equilibrium configuration have been derived. In this work, we present for the first time an experimental 
demonstration of this stability theory, using a variable-structure rigid ''biped'' with frictional footpads on an inclined plane. By changing the 
biped's center-of-mass location, we attain different equilibrium states, which respond to small perturbations by divergence or convergence, 
showing remarkable agreement with the predictions of the stability theory. Using high-speed recording of video movies, good quantitative 
agreement between experiments and numerical simulations is obtained, and limitations of the rigid-body model and inelastic impact 
assumptions are also studied. The results prove the utility and practical value of our stability theory. 
 

Many robotic systems are based on establishing contacts between bodies, for performing tasks of object manipulation 
or locomotion. Several characteristic types of contact-based robotic motion exist. In robotic grasping, contacts are 
typically used to enforce kinematic constraints that immobilize an object with zero relative motion, so contacts are 
maintained persistent. On the other hand, dynamic tasks such as object juggling and rapid legged locomotion involve 
intermittent contacts where impacts induce non-smooth transitions in contact states. An intermediate regime uses 
quasistatic  manipulation and locomotion tasks with non-prehensile contacts. Such motion often relies on unilateral 
contacts that are maintained in persistent no-slip state imposed by equilibrating forces that satisfy frictional contact 
constraints. A common example is quasistatic legged locomotion on rough terrain where gravitational load is resisted by 
contact forces at the feet's supports. 

 
In the regime of quasistatic motion with unilateral contacts, it is of practical importance to consider stability of multi-

contact equilibrium states under disturbances caused by model uncertainties, joint coordination inaccuracies, irregular 
contact surfaces, and more. Common approaches consider robustness of the solution for equilibrium contact forces under 
disturbances such as localized elastic deformations at contacts or margins of potential energy. A main limitation of these 
approaches is assuming persistent contacts without accounting for dynamics under small initial perturbations about 
equilibrium, that do not necessarily maintain contact constraints. This is close in spirit to the well-known concept of 
Lyapunov stability in dynamical systems theory. Analysis of this type of dynamic stability in multi-contact systems is 
challenging, since any small initial perturbation of displacements and velocities immediately induce response governed 
by hybrid dynamics involving non-smooth transitions between contact states and impacts. Such systems often involve 
complicated phenomena such as solutions with Zeno behavior and more rarely, Painlevé paradox where friction-
dominated solution is either indeterminate or inconsistent. 

 
Our recent joint work [1] presented theoretical analysis of finite-time Lyapunov stability for a planar rigid body with 

two frictional contacts and frictional inelastic impacts. The analysis in [1]  reduced the hybrid dynamics of the system in 
close vicinity of an equilibrium state to a scalar  \Poincare map R and scalar magnitude-growth function G, which together 
encompass the entire response and contact state transitions. Under specific restrictions called persistent equilibrium, the 
work [1] derived theoretical conditions for stability and instability of frictional two-contact equilibria based on properties 
of the semi-analytic functions R and G, and showed how stability can depend on structural parameters such as friction 
coefficients and center-of-mass location relative to contact positions. 
 

The goal of this work is to present, for the first time, an experimental demonstration of our stability theory from [1]. 
Our experimental setup consists of a rigid “biped” with variable structure, which is perturbed from frictional two-contact 
equilibrium state on an inclined plane. We first present  extension of our theoretical analysis in [1] to account for a relaxed 
notion called weakly-persistent equilibria and also derive a simpler stability condition. Both modifications cover cases 
which are relevant to actual properties of our experimental biped and contact geometry. Upon shifting the biped's variable 
center-of-mass, our theoretical predictions indicate changes between the two instability mechanisms towards stability. 
These stability transitions are demonstrated experimentally, and high-speed camera recording enables tracking the biped's 
motion for quantitative comparison with theoretical simulations, as well as assessing the validity of our rigid-body model 
assumptions. We find excellent qualitative and good quantitative agreement between the theoretical predictions and 
experimental measurements, and conclude that our model slightly underestimates stability, where discrepancies are 
mainly due to added energy dissipation caused by damped elastic vibrations and footpads' compression during impacts. 
The results demonstrates the utility and practical value of our stability theory. Our present work is based on our recently 
submitted paper [2].  
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Figure 1: Our experimental setup of a biped on a 
slope, with variable center-of-mass (COM) and 
unequal friction on both footpads. The biped is 
given slight initial perturbation from equilibrium 
and its response is a sequence of impacts and 
contact states. Stability and instability can be 
changed by shifting the biped’s COM.  

x 

z 

Figure 2: Plot of the biped’s COM locations in (x,z) 
plane, where p1, p2 denote the footpads’ contacts. 
Colored areas denote COM regions where our 
theoretical analysis predicts stability, instability, 
ambiguous equilibrium and no equilibrium. The 
grid of markers denote experimental results:  
‘●’ – no equilibrium 
‘+’ – ambiguous equilibrium 
‘x’ – unstable equilibrium 
‘* ’ – stable equilibrium 
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A nonlinear gradient elasticity model for the prediction of seismic waves
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∗Institute of Mechanics and Ocean Engineering, Hamburg University of Technology, Hamburg,
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†Faculty of Civil Engineering & Geosciences, TU Delft, Delft, Netherlands

Summary. We present a novel equation of motion for a nonlinear gradient elasticity model. Thereby, higher-order gradient terms are
introduced to capture the effect of small-scale soil heterogeneity/micro-structure. Using a newly established finite difference scheme,
corresponding solutions including stationary waves are determined. In comparison with a commonly used model for nonlinear seismic
waves, which has leading derivatives of second order, the solutions of the novel equations are much smoother. This allows much more
accurate numerical computations as well as more realistic predictions of the seismic waves.

Introduction

In order to predict the response of the top soil layers of the earth - the so-called seismic site response- induced by seismic
waves, the so-called equivalent linear scheme is used very often. Thereby, soil stiffness and damping are modeled taking
a shear modulus and material damping ratio, which are constant in time [1]. However, for high maximum strain levels
in the soil layers, the equivalent linear scheme with constant shear modulus and material damping can not adequately
represent the behavior of a seismic event over its entire duration, since the strains in the soil layers vary significantly. In
order to account for the variation of shear modulus and damping ratio in this case, a nonlinear time domain solution is
usually used, e.g. [2].
Actual research in nonlinear modeling for seismic site response is mostly focused on the development of advanced con-
stitutive models, which capture important features of the soil behavior like anisotropy, pore water pressure generation
and dilation [3]. In this work, we determine specific solutions including stationary waves in the subsurface, whereby the
constitutive behavior is governed by the hyperbolic soil model. Here, the (secant) shear modulus is strain dependent with
a non-polynomial nonlinearity. In order to capture the effects of small-scale heterogeneity/ micro-structure, we extend
the classical wave equation to a nonlinear gradient elasticity model. This is sometimes also called a higher-order gradient
continuum or a micro-structured solid. Compared to the classical continuum, higher-order gradient terms are introduced
into the equation of motion, which lead to dispersive effects particularly for shorter waves [4]. These higher-order gradient
terms are usually obtained using asymptotic homogenization techniques for periodically inhomogeneous media [4]. Since
localized stationary waves exist only because of the balance between dispersive and nonlinear effects, their influence on
the behavior of stationary solutions is significant and allows them to propagate without distortion. Since the dispersion
prohibits the formation of jumps, physically realizable solutions are obtained.
In this work, the effects of the higher-order gradient terms and the corresponding dispersion are investigated. Thereby,
specific solutions of the corresponding equations of motion are presented and compared. It is observed that the classical
wave equation contains solutions which have non-physical discontinuities (in the strain) and which vanish in the presence
of the higher-order terms.
The structure of this work is as follows: First, we derive the equation of motion of the classical and nonlinear gradient
elasticity model, respectively. The derivation is based on Newton’s second law and Eringen’s general strain-stress relation
[5]. Then, an ordinary differential equation is derived, from which stationary solutions for the nonlinear gradient elasticity
model are obtained. Afterwards, a numerical scheme for the computation of the derived nonlinear equations of motion
in time and space is presented. Using this scheme, solutions of the classical and nonlinear gradient elasticity model are
compared. Finally, this work ends with a conclusion.

Model

In this section, a classical and an advanced constitutive model are described in order to capture important features of
the soil behavior, respectively. In both cases, the constitutive behavior is governed by the hyperbolic soil model, which
results in a strain-dependent shear modulus. As the classical model has non-physical discontinuous solutions, a nonlinear
gradient elasticity model is employed.

The classical continuum model
In order to derive the equation of motion, Newton’s second law is applied. Let x be the horizontal direction, z the vertical
direction and t the time. For transverse waves propagating in the direction of z and considering the one-dimensional
situation, it reads [6]

ρ
∂2u

∂t2
=
∂σzx
∂z

. (1)

Thereby, u(z, t) is the displacement in x, σzx is the shear stress and ρ is the material density. The corresponding strain
can be calculated from the displacement by [6]

εzx =
1

2

∂u

∂z
. (2)
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In this study, the constitutive behavior is governed by the hyperbolic soil model, which is typically employed for the
seismic site response analysis. Here, the strain-dependent shear modulus [7]

G(γ) =
G0

1 + (γ/γref)
β

with γ =
√
3|εzx| =

√
3

2

∣∣∣∣
∂u

∂z

∣∣∣∣ (3)

is used, whereby γref denotes the reference shear strain and 0 < β < 1 is a dimensionless constant. Applying the
stress-strain relationship

σzx = 2G(γ) εzx, (4)

Eq. (1) results in

ρ
∂2u

∂t2
=

∂

∂z

(
G(γ)

∂u

∂z

)
. (5)

This is the wave equation for the classical continuum model.

The nonlinear gradient elasticity model
In order to capture the effects of small-scale soil heterogeneity/micro-structure, the stress strain relationship of Eq. (4)
is extended by including higher-order gradient terms. In a nonlinear system, the stress-strain relation can generally be
written as [5]

σzx(z, t) =

∫ ∞

−∞

∫ ∞

−∞
g (z − ζ, t− τ, γ(ζ, τ)) εzx(ζ, τ) dζdτ, (6)

whereby the kernel function g(z, t, γ) contains the specific nonlocality and history dependence. In order to compute the
soil behavior using a partial differential equation instead of an integro-differential equation, the kernel function is taken
as a combination of Dirac delta functions δ(...). This results in [8]

g(z − ζ, t− τ, γ) = 2
(
G(γ)δ(z − ζ)δ(t− τ)−L2G(L)(γ)δ,ζζ(z − ζ)δ(t− τ) + T 2G(T )(γ)δ(z − ζ)δ,ττ (t− τ)

)
. (7)

Thereby, (...),ζζ and (...),ττ denote double partial differentiation with respect to ζ and τ , respectively. Apart from the
conventional strain-dependent shear modulus G(γ), the kernel function g contains additional strain-dependent elastic
moduli G(L)(γ) and G(T )(γ), respectively. Finally, L and T are time and length scales which specify the nonlocality and
history dependence of the medium, respectively.
Without loss of generality, the scales T and L are interrelated in this work by T 2 = L2/c20, whereby c0 =

√
G0/ρ is the

shear wave speed corresponding to the small-strain shear modulus G0 from linear elasticity.
For simplicity, the additional elastic moduli are related to the conventional strain-dependent shear modulus G(γ) by

G(L)(γ) = B1G(γ), G(T )(γ) = B2G(γ). (8)

Thereby, B1 and B2 are dimensionless constants. Inserting Eqs. (2), (6), (7) and (8) into (1) results into

ρ
∂2u

∂t2
=

∂

∂z

(
G(γ)

∂u

∂z
−B1L

2 ∂
2

∂z2

(
G(γ)

∂u

∂z

)
+B2

ρL2

G0

∂2

∂t2

(
G(γ)

∂u

∂z

))
. (9)

This is the equation of motion of the nonlinear gradient elasticity model used in this work. A comparison of Eq. (9)
with Eq. (5) shows that the effects of small-scale soil heterogeneity/micro-structure are accounted for by the higher-order
gradient terms multiplied with B1 and B2, respectively.
In this work, the hyperbolic soil model G(γ) given in Eq. (3) is also used for the nonlinear gradient elasticity model.

Stationary wave solution

In the following, the influence of the higher-order gradient terms on the behavior of numerical solutions is considered.
Thereby, stationary solutions of Eq. (9) are taken considered. These solutions can be determined by assuming that they
propagate with constant speed c ∈ R through the nonlinear medium while not changing their shape [8]. Applying the
transformation ξ = x− ct and assuming stationarity, this results in

u,tt = u,ξξc
2, u,ztt = u,ξξξc

2, u,zt = −u,ξξc,
∂

∂z
=

∂

∂ξ
. (10)
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Computing the derivatives of G(γ)u,ξ with respect to ξ, we get for y := u,ξ [8]

y,ξξ =
1

1− β
(√

3|y|
2γref

)β (
1 +

(√
3|y|

2γref

)β)−1

{ρc2
(
1 +

(√
3|y|

2γref

)β)
−G0

B2c2ρL2 −G0B1L2
y

−
√
3 sgn(y)

2γref

[
2β2

(√
3|y|

2γref

)2β−1

1 +

(√
3|y|

2γref

)β



−2

− (β + β2)

(√
3|y|

2γref

)β−1

1 +

(√
3|y|

2γref

)β



−1 ]
y2,ξ

}
.

(11)

Solving this nonlinear second-order ordinary differential equation, stationary wave solutions of Eq. (9) can be computed.

Numerical scheme for the nonlinear gradient elasticity model

In order to compute the corresponding numerical solutions u(z, t) of Eqn. (5) and (9), a numerical scheme based on finite-
difference approximations is used. This scheme has been developed by Dostal et al. [8] and solves partial differential
equations of the form

ρ
∂2u

∂t2
=

∂

∂z

(
G

(
∂u

∂z

)
∂u

∂z
−B1L

2 ∂
2

∂z2

(
G

(
∂u

∂z

)
∂u

∂z

)
+B2

ρL2

G0

∂2

∂t2

(
G

(
∂u

∂z

)
∂u

∂z

))
. (12)

Thereby, G
(
∂u
∂z

)
is an arbitrary function depending on ∂u

∂z . If G
(
∂u
∂z

)
is chosen as in Eq. (3), Eq. (12) reduces to Eq. (9).

If furthermore B1 and B2 are set to zero, Eq. (12) becomes Eq. (5). Since all numerical results presented in the next
section are based on the scheme developed in [8], we briefly outline it here.
It is assumed that the analytical solution u(z, t) of Eq. (12) exists in space z ∈ [Zℓ, Zh] and time t ∈ [0,T]. Therefore, a
grid in space

Zℓ = z0 < z1 < · · · < zM = Zh, zi = i∆z for i = 0, . . . ,M, ∆z =
Zℓ − Zh

M
, (13)

and time

0 = t0 < t1 < · · · < tN = T, tn = n∆t for n = 0, . . . , N, ∆t =
T

N
, (14)

is introduced, respectively. Defining
h(u,z) := G(u,z)u,z, (15)

Eq. (12) becomes

ρ u,tt = h,z −B1L
2h,zzz +B2

ρL2

G0
h,ttz. (16)

In this way, the structure of the considered partial differential equation is exploited. As will be seen later, this simplifies
the calculation of the spatial finite difference approximations.
In order to approximate the derivatives with respect to time, it is assumed that the solution is known at the timepoints
tn−1 and tn. Let uni be a grid function, which approximates the analytical solution u at space zi and time tn, i. e.
uni ≈ u(zi, tn). Furthermore, let uni,z be a grid function approximating u,z(zi, tn). Replacing the time derivative with a
finite difference approximation, Eq. (12) yields

f(un+1) = 0 with un+1 :=
[
un+1
0 , un+1

1 , . . . , un+1
M

]T
, (17)

whereby

fi(u
n+1) :=ρ

un+1
i − 2uni + un−1

i

∆t2
−
h,z(u

n+1
i,z ) + 2h,z(u

n
i,z) + h,z(u

n−1
i,z )

4

+B1L
2
h,zzz(u

n+1
i,z ) + 2h,zzz(u

n
i,z) + h,zzz(u

n−1
i,z )

4
−B2

ρL2

G0

h,z(u
n+1
i,z )− 2h,z(u

n
i,z) + h,z(u

n−1
i,z )

∆t2
.

(18)
A solution of Eq. (18) approximates the corresponding exact solution of Eq. (12) up to an accuracy of O(∆t2).
Next, the space derivatives h,z(ui,z) and h,zzz(ui,z) at location z = zi are approximated. Thereby, the following standard
finite differences are used, which have all an accuracy of O(∆z2):

ui,z =
ui+1 − ui−1

2∆z
+O(∆z2), h,z(ui,z) =

h(ui+1,z)− h(ui−1,z)

2∆z
+O(∆z2),

h,zzz(ui,z) =
h(ui+2,z)− 2h(ui+1,z) + 2h(ui−1,z)− h(ui−2,z)

2∆z3
+O(∆z2).

(19)
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In order to simplify the notation, the time index n is omitted. If the hyperbolic soil model G(u,z) from Eq. (3) is used,
we get for h,z:

h,z(ui,z) =
h(ui+1,z)− h(ui−1,z)

2∆z
+O(∆z2)

=
1

2∆z

{
G0

1 +
(√

3
2

|ui+2−ui|
2∆zγref

)β
ui+2 − ui

2∆z
− G0

1 +
(√

3
2

|ui−ui−2|
2∆zγref

)β
ui − ui−2

2∆z

}
+O(∆z2). (20)

The approximation of h,zzz follows analogously.
Now the advantage of the presented numerical scheme can be seen: In Eq. (12), the third-order space derivative of G(u,z)
has to be computed. However, since the hyperbolic soil model defined in Eq. (3) contains the absolute value function
k(x) = |x|, the function G(u,z) is only one time weakly differentiable. By introducing the function h, the problem of the
missing differentiability is circumvented.
With this, the solution un+1 of f(un+1) = 0 can be computed solving a nonlinear system of equations. This can be done
iteratively using Newton’s method, for example.

Numerical results

In this section, numerical results for the nonlinear Eqs. (5) and (9) are shown. Corresponding results are compared in
order to investigate the effects of the higher-order gradient terms. Thereby, the parameters from Table 1 are used. While
the values of G0, ρ, β and γref have been chosen to represent soil, the values of B1 and B2 are similar to the ones used
in [4].

Table 1: Medium parameter values.

G0 [Pa] ρ
[
kg m−3

]
β [-] γref [-] B1 [-] B2 [-] L [m]

111.86 · 106 2009.8 0.91 10−3 1 1.78 0.2

Solutions of a Gaussian pulse
First of all, the effects of the higher-order gradient terms are studied for a specific solution, where as initial condition a
Gaussian pulse is used:

u(z, t = 0) = u0 exp

(
− z2

2σ2

)
. (21)

Here, the amplitude of the pulse is set to u0 = 0.0016m and the standard deviation is set to σ = 1m. In accordance with
[2], these values are chosen to obtain a relatively high strain level. The temporal evolution of the numerical solution is
computed using the scheme described in the last section, whereby absorbing boundary conditions are applied. Thereby, an
additional initial condition u−1 at time t−1 has to be chosen. In this study, u−1 = u0 is used, which results in a solution
with no initial velocity.
The resulting solution of Eq. (5) can be seen in Fig. 1. It is observed that the initial pulse divides into two parts, which
travel in opposite directions. Furthermore, the numerical solution of the classical model is non-smooth due to the sharp
edges (one at the top of the wave and the other at the bottom behind it). This makes the strain discontinuous at those
locations, which is not physically admissible. In contrast to this, Fig. 2 shows the corresponding solution of Eq. (9),
where the effect of higher-order gradient terms are taken into account. Again, a solution is shown where the initial pulse
is divided into two parts. However, the shape of the solution is smoother and does not contain sharp edges. Instead of
sharp edges, small oscillations are observed behind the wave, which is consistent with the findings in [4]. This can also
be seen in Fig. 3, which shows the corresponding solutions at the end of the simulation time together with the used initial
condition. By introducing dispersion, the higher-order gradient terms lead to a solution where sharp edges do not occur
and therefore lead to a physically admissible behavior.
Moreover, Fig. 3 shows that after division, both solutions travel with the same speed. Furthermore, a negative displace-
ment is observed at z = 0m after the initial pulse has departed. This could be caused by the combination of the hyperbolic
soil model with the Gaussian pulse that has non-zero content at zero wavenumber. However, this shift in negative direction
decreases for increasing time. This is shown in Fig. 4, which shows the solution at z = 0m over time.

Stationary solution of the nonlinear gradient elasticity model
Next, the effects of the higher-order gradient terms on the stationary solution of Eq. (9) are investigated. For this, Eq.
(11) is computed for the velocity c = 100m/s. Since the numerical scheme of the last section needs an additional initial
condition u−1 at t−1, the corresponding value has to be calculated. As the stationary solution propagates with speed c,
the value of u−1 is computed by shifting u0 in space by c t−1. Since the solution of Eq. (11) is periodic in space, periodic
boundary conditions are used to calculate the temporal evolution of the solutions of Eqs. (9) and (5), respectively.
From Eq. (11), the corresponding phase portrait for uξ and uξξ can be obtained. In the following, we study solutions
where the trajectories approximate the homoclinic orbit. Using the solution of Eq. (11) as initial condition, the resulting
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Figure 1: Numerical solution of Eq. (5) for the classical model. Thereby, a Gaussian pulse is chosen as initial condition. The solution
is shown from two different perspectives.

Figure 2: Numerical solution of Eq. (9) for the higher-order elasticity model. Thereby, a Gaussian pulse is chosen as initial condition.
The solution is shown from two different perspectives.

Figure 3: Comparison of the numerical solutions of Eqn. (5) and (9) at the end of the simulation time. In both cases, the Gaussian pulse
is used as initial condition. The solution is shown for (a) z ∈ [−200m, 200m] and (b) z ∈ [120m, 200m], respectively.

solution of Eq. (9) is shown in Fig. 5. It is shown that the solution consists of two plateaus with different heights, which
are alternating in space. As the shape of the solution is not changing in time, this is truly a stationary solution.
In order to investigate the effects of the higher-order gradient terms on the stationary solution, Fig. 6 shows the solution of
Eq. (5). Thereby, the same initial condition as in Fig. 5 is used. It can be seen that high disturbances are introduced into
the temporal evolution of the solution. These disturbances have their spatial origin in the transition area between the two
plateaus of the initial condition, where high derivatives occur. They move in the opposite direction to the corresponding
stationary solution.
Moreover, Fig. 7 compares the corresponding solutions at the end of the simulation time. It is observed that the higher-
order-gradient terms and the disturbance shown in Fig. 6 change the shape of the solution. This shows that the dispersive
effects influence the behavior of localized stationary solutions significantly, as they only exist exactly due to the balance
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Figure 4: Comparison of the numerical solutions of Eqn. (5) and (9) at z = 0m. In both cases, the Gaussian pulse is used as initial
condition.

of nonlinear and dispersive effects. Once the dispersive terms are removed, the stationary solution can no longer exist.
It has to be noted that oscillations of very small wavelength occur in the solution of Eq. (5). These are arising due to
the large values of the derivatives, which lead to numerical inaccuracies. However, these inaccuracies have such a small
effect on the solution behavior that they do not destroy the structure of the solution.

Figure 5: Numerical solution of Eq. (9) for the higher-order elasticity model. Thereby, the stationary solution of Eq. (11) is chosen as
initial condition. The solution is shown from two different perspectives.

Figure 6: Numerical solution of Eq. (5) for the classical model. Thereby, the stationary solution of Eq. (11) is chosen as initial
condition. The solution is shown from two different perspectives.

Figure 7: Comparison of the numerical solutions resulting from Eqn. (5) and (9) at the end of the simulation time. In both cases, the
stationary solution of Eq. (11) is used as initial condition.
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Conclusions

The response of the top layers of the earth induced by seismic waves is investigated. In this study, the constitutive
behavior is governed by the hyperbolic soil model, whereby the shear modulus is strain dependent. The effects of small-
scale heterogeneity/micro-structure is captured by considering higher-order gradient terms, which introduce dispersive
effects. These effects are investigated in this work. For this, the corresponding equations of motion are solved using a
numerical scheme, which has been introduced in Dostal et al. [8]. This scheme exploits the structure of the equation of
motion and provides an accuracy of O(∆t2 +∆z2) in time and space.
Having applied this scheme using the Gaussian pulse as initial condition, it is shown that the higher-order gradient terms
prohibit the formation of jumps. In this way, they lead to physically realizable solutions.
Moreover, the effects of the higher-order gradient terms are studied for the stationary solution of the equation of motion.
Here, it is shown that the dispersive effects influence the behavior of localized stationary solutions significantly, as they
only exist exactly due to the balance of nonlinear and dispersive effects. Once the dispersive terms are removed, the
stationary solution can no longer exist.
In conclusion, this work shows that the proposed nonlinear gradient elasticity model provides physically realizable so-
lutions. The introduced higher-order gradient terms are necessary and have significant influence on the corresponding
solutions.
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Summary. We explore the breather propagation in a damped oscillatory chain with substantially nonlinear (non-linearizable) nearest-
neighbour coupling. It is demonstrated that the combination of the damping and substantially nonlinear coupling leads to rather unusual 
two-stage pattern of the breather propagation. The first stage occurs at a finite fragment of the chain and is characterized by power-law 
decay of the breather amplitude. The second stage is featured by extremely small breather amplitudes that decay hyper-exponentially. 
Thus, one can speak about finite penetration depth of the breather – breather arrest. Specific models considered are the chains of damped 
linear oscillators with Hertzian or purely cubic nonlinear contact between the nearest neighbours. The effect of the initial excitation and of 
the viscous damping on the breather penetration depth is explored and approximate scaling relationships between these two parameters are 
established. These results are then rationalized by considering a simplified model of two damped linear oscillators coupled by strongly 
nonlinear springs. By using an approximate analytic procedure, we demonstrate that the initial excitation of one of these oscillators results 
in a finite number of beating cycles in the system. Then, the beating cycle in this system of two coupled oscillators is associated with the 
passage of the discrete breather between the neighbouring sites in the chain. Somewhat surprisingly, this simplified model reliably predicts 
the main features of the breather arrest in the chain of oscillators. Generalization for arbitrary coupling function and effect of pre-
compression are also discussed.  

Phenomenon of the breather arrest 

We consider a chain of linear forced-damped osillators coupled by essentially nonlinear springs the model is 
demonstrated in Figure 1. 

 
Figure 1. Sketch of the system 

The presence of local damping with impulsive forcing inevitably leads to the energy dissipation and therefore decay of 
the amplitude of the breather propagating along the chain. In the case of linear viscous damping, one intuitively expects 
that this amplitude decay will be exponential, thus defining characteristic space scale of the decay. However, if the 
coupling between the neighbours is essentially nonlinear (i.e. non-linearizable), then, due to peculiar interaction 
between these two factors (essential nonlinearity and damping) one observes an interesting phenomenon of breather 
arrest (BA). The latter is defined as abrupt switch from power-law to hyper-exponential decay of the maximum 
breather amplitude, leading to a negligibly small amplitude after penetration to finite depth in the lattice. Typical 
dependence of the breather amplitude on the site number (for the case of Hertzian contacts) is presented in Figure 2. 

 
Figure 2. Typical dependence of the breater amplitude on the site. 
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Numerical simulations demonstrate that the breather penetration depth narrest scales with initial velocity A and damping 
coefficient λ according to the approximate relationship: 
              (1) 
In the case of Hertzian contact, one obtains k = 0.466 and l = − 0.931. 

Reduced-order model 

To assess the BA phenomenon from theoretical viewpoint, and to rationalize the numeric findings, we consider a 
simplified model that mimics the breather propagation in the chain with strongly nonlinear coupling. This simplification 
seems to be viable due to extreme localization of the breather in this specific chain. Therefore, it is possible to adopt, in 
the crudest approximation, that the breather propagation can be understood as a sequence of energy transfers between 
subsequent particles. Moreover, due to the strong localization, it is possible to assume that each such transfer involves 
only two neighbouring particles. Thus, the simplified model will consist of two identical oscillators, grounded through 
pairs of linear springs and viscous dampers, and with essentially nonlinear coupling, as presented in Figure 3. 

 
Figure 3. Sketch of the simplified model. 

When one of the particles is excited with sufficient amplitude, the beating motion occurs. Each beat is associated with 
the propagation of the breather by one particle. It is possible to demonstrate that the number of such beats will be finite, 
due to the strong nonlinearity of the coupling. Then, one can obtain the following estimations for the breather 
penetration depth, and for the dependence of the breather amplitude on the site number before the arrest:                                             

 (2) 

Here ε is the power of the substantially nonlinear power-law force. These estimations are in good correspondence with 
numeric findings. If initial pre-compression exists, the asymptotic evaluations (2) are no more valid, but the two-stage 
pattern of the breather propagation preserves itself, as demonstrated in Figure 4. 

 
Figure 4 Two-stage breather propagation in granular chain with pre-compression. 

These results point on generic character of the observed propagation patterns in damped systems with substantially 
nonlinear coupling 
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Summary. The free propagation of nonlinear harmonic waves in acoustic metamaterials with inertia amplification is investigated. A

Lagrangian model is formulated to describe the nonlinear dynamics of a periodic chain of elastically coupled point masses (atoms), re-

alizing a minimal 1D acoustic metamaterial with local inertia-amplifying oscillators. First, the nonlinear equations of motion governing

the free undamped oscillations of the tetra-atomic periodic cell are formulated, and the linear dispersion properties governing the small-

amplitude range of wave propagation are determined. Second, the harmonically-periodic solutions characterizing the high-amplitude

range of wave oscillations are investigated, by employing the method of nonlinear maps. Some non-standard methodological tools are

introduced to consistently apply the map approach to the implicit function characterizing the nonlinear difference equations.

Introduction

The band structure of microstructured periodic media has long been attracting the scientific interest of researchers in lin-

ear and nonlinear dynamics. In the last years, a renewed attention has been devoted to the parametric and computational

design of phononic microstructured materials, targeted at fine-tuning the periodic microstructure to achieve unconven-

tional, superior of functional dispersion properties [1]. In this respect, the pressing technological demand for light-weight

materials serving as mechanical low-frequency filters or isolators has favoured the rapid diffusion and success of acoustic

metamaterials [2]. Indeed, the free propagation of elastic waves in acoustic metamaterials can be inhibited – even in the

absence of dissipation – by the linear mechanism of local resonance, which allows the opening, shifting and widening of

spectral band gaps by properly tuning the natural frequency of auxiliary periodic oscillators (resonators), locally coupled

to the cellular microstructure. From the physical viewpoint, low-frequency resonators tend to combine high flexibility

with large inertial masses, conflicting with the requirement of material lightness. In order to circumvent this conundrum,

proper solutions of inertia amplification can be adopted by introducing panthographic mechanisms, exploiting levered

masses coupled in parallel with elastic stiffnesses [3]. In this framework of extreme mechanical solutions, the combina-

tion of high microstructural flexibility, pantographically-amplified oscillations and null or minimal dissipation can be the

natural scenario for the development of important nonlinear dynamic phenomena.

Lagrangian model of the acoustic metamaterial

A Lagrangian model is formulated to describe the nonlinear dynamics of a periodic chain of undamped oscillators (Figure

1), in which only linear forces of attraction/repulsion are exchanged between any pair of adjacent point masses (primary

atoms). The atomic chain represents a minimal physical realization of a 1D acoustic metamaterial with inertia-amplifying

auxiliary oscillators (secondary atoms), rigidly connected to the primary atoms by a panthographic mechanism.

Equations of motion

Collecting the nondimensional displacement variables u = U1/L, w = (U3 − U1)/L, uℓ = Uℓ/L and ur = Ur/L in

the vector u = (u, w, uℓ, ur), the exact nonlinear equation governing the motion of the generic cell can be formulated.

Expanding in Taylor series around the rest position u = 0 and retaining terms up to the third order, the equation reads

Mü+Ku+m2(u̇, u̇) + n2(ü,u) +m3(u, u̇, u̇) + n3(ü,u,u) = 0 (1)

The quasi-static equilibrium at the cell boundary nodes is instead governed by the linear equation Kpu = fp, where the

external forces fp = (fℓ, fr) can easily be related to the internal stresses σ = (σℓ, σr). Partitioning the displacement

vector u, the inner and outer displacement subvectors read ua = (u, w) and up = (uℓ, ur), respectively. Collecting all

the outer variables in the vector v = (uℓ, ur, σℓ, σr), the quasi-static equilibrium equations can be inverted to obtain the

static condensation rule ua = Sv. After condensation, the nonlinear equations of motion reads

Mv̈ +Kv + p2(v̇, v̇) + q2(v̈,v) + p3(v, v̇, v̇) + q3(v̈,v,v) = 0 (2)

Focusing the analysis on the only periodic solutions in the nondimensional τ -time domain, the real-valued unknown v(τ )
can conveniently be expressed in Fourier series (truncated to account for the first harmonic terms)

v(τ ) =
∞∑

−∞
ak e

ıkωτ ≃ a eıωτ + ā e−ıωτ , with k ∈ Z (3)

where the Fourier coefficient a = (Aℓ, Ar, Bℓ, Br) serves as (unknown) amplitude of the first harmonic component and

bar indicates complex conjugate. The nondimensional parameter ω plays the role of circular frequency for the harmonic

motion.
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Figure 1: Acoustic metamaterial: (a) tetra-atomic crystal structure, (b) periodic cell of the lagrangian model, (c) mechanical properties.

Nonlinear map approach

The nonlinear equations of motion (2) can be linearized in the small-amplitude oscillation range. Therefore, the linear

dispersion functions ω(β) relating the frequency ω to the nondimensional wavenumber β can be determined by applying

either the Floquet-Bloch theory [4] or the map approach [5]. The latter technique employs the formal analogy between

the wave periodicity (in the β-space) and the Lyapunov stability (in the τ -space) for discrete systems. The map approach

can be applied to nonlinear systems governed by explicit equations ẏ = f (y) to analyze the periodic solutions in the

high-amplitude range of wave oscillations [6].

aℓ, bℓ

β
ω

Figure 2: Linear spectrum (blue curves) and amplitude depen-

dent frequency functions (red curves)

However, the nonlinear equations (2) can be manipulated

to achieve only the implicit form g(ẏ,y) = 0, which may

require a different mathematical treatment [7]. Specifically,

according to the most general definition of discrete implicit

map, y0 is a p-periodic point of the implicit dynamic system

g(ẏ,y,α) = 0 if





g(y0,y1,α) = 0

g(y1,y2,α) = 0
...
g(yp−2,yp−1,α) = 0

g(yp−1,y0,α) = 0

(4)

Therefore, the y0 stability can be analysed by introducing

bifurcation conditions in order to assess the critical values

of the parameter set α. The periodic points can be searched

for the nonlinear system under investigation by setting ẏ =
(Ar , Br, Ār, B̄r) and y = (Aℓ, Bℓ, Āℓ, B̄ℓ) and assuming

ω as control parameter in the α-set.

Equations (4) can be stated and solved for particular p-cases (p = 1, 2), giving solutions ω(y0,y1) corresponding to

β =2π/p. Using polar representations Aℓ = aℓ e
ıφ and Bℓ = bℓ e

ıϕ, Figure 2 shows the amplitude-dependent frequency

solutionsω(aℓ) or ω(bℓ), as obtained by settingy1=y0 e
ı 2π/p. The amplitude-dependent frequency curves have dominant

softening behaviour for small amplitudes, as expected for inertial nonlinearities [8], and originate from the linear spectrum

for null amplitudes. The softening behaviour tends to enlarge the amplitude-dependent stop bandwidth (green region).

Conclusions

Nonlinear periodic solutions for the free wave propagation have been determined for a 1D acoustic metamaterial waveg-

uide with inertia amplification. The nonlinear mapping approach has been employed, as it applies to discrete implicit

maps. Amplitude-dependent frequency functions have been determined for particular oscillation periodicities.
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Summary. Due to the recent discovery of topological insulators in condensed matter physics, a new notion of topology has emerged
in association with the intrinsic wave dispersion of a structure. It has led to several mechanical designs with robust localization of
energy in space—potentially offering novel applications in energy harvesting, vibration isolation, and structure health monitoring.
The framework of topology fundamentally rests on the linear dynamics of the system. In this work, we present our recent efforts
to understand the interplay between nonlinearity and topology in mechanical systems. Our system obeys the dynamics that is gov-
erned by a second-order differential equation akin to electronic circuits. In particular, we study one-dimensional nonlinear lattices
of both Fermi–Pasta–Ulam–Tsingou and Klein-Gordon types and discuss linear stability of topological states, soliton formation, and
nonlinearity-induced topological transition. The findings highlight the effect of nonlinearity on the characteristics of topologically-
robust edge states and the role of topology in interpreting purely nonlinear states.

Introduction

It is well-known that a periodic arrangement of structural constituents or properties possesses band gaps, and thus, can
filter a range of frequencies from propagating in the medium. Recently, the topological characterization of such systems
has enabled researchers to see them in a new light. Two periodic systems showing similar band gaps can still be different
on topological grounds. This difference is quantified in terms of the topological invariant calculated from band dispersion.
At the physical level, the difference manifests as robust edge/surface states in topologically-nontrivial systems. Such
modes are “topologically protected” as small impurities in the system do not affect their presence [1].
The majority of studies on the topological mechanical lattices have so far relied on linear wave dynamics. Some open
questions in the area are: What is the effect of nonlinearity on the characteristics of topologically-robust edge states?
How can the topological framework be used as a novel tool to interpret purely nonlinear states? Along these lines, in this
work, using analytical and numerical tools, we examine three particular aspects of the interplay between topology and
nonlinearity in mechanical systems shown next.

Linear stability of topological states

As shown in Fig. 1(a), we take a 1D chain that consists of equal masses and two interconnecting linear springs of stiffness
coefficients 1 + γ and 1 − γ. Each mass is grounded with a nonlinear spring of cubic nonlinearity, such that the force
(F )-deformation(x) profile is F = γ0x + Γx3, where γ0 is the linearized ground stiffness and Γ is the parameter for
nonlinearity. In the linear limit (Γ = 0), this lattice possesses a band gap due to nonzero γ. Depending on the sign of γ,
the system makes a topological transition from a trivial to nontrivial state [2]. Consequently, the topologically-nontrivial
system supports a robust edge state with frequency inside the band gap. We examine how the onsite nonlinearity affects
the form and stability of such a state. In Figs. 1(b) and 1(c), we show the nonlinear edge states (obtained through the
continuation of the linear edge state) and their long-time dynamics for the chain with softening (Γ < 0) and stiffening
(Γ > 0) types of nonlinearity, respectively. We find that the topological edge states are generally unstable due to oscillatory
instabilities, leading to the delocalization of energy into the bulk of the chain. However, we find a frequency regime in the
case of the stiffening nonlinearity that can support linearly stable edge states. This could potentially be useful in confining
high-amplitude vibrations at the edges of structures for a long duration.

Moving Dirac soliton excites topological states

In Fig. 1(d), we take another chain similar to previous chain in the linearized limit; however, it has cubic nonlinearity in
interconnecting springs. The force (F )-deformation(dx) profile of two alternating springs is F = (1− γ)dx+ Γdx3 and
F = (1 + γ)dx + Γdx3. Depending on the sign of γ, the system again supports a topological edge state in the linear
limit. The frequency of the state lies inside the band gap. Due to nonlinearity, it is possible to find spatially localized
solutions that lie in the bulk of the periodic lattice with their frequency inside the band gap. Therefore, for a small band
gap (γ << 1) and nonlinearity (Γ << 1), we employ the continuum approximation and find Dirac solitons residing
inside the band gap. A stationary soliton is shown in Fig. 1(e). We also find a family of moving solitons in the lattice.
We demonstrate numerically in Fig. 1(f) that such moving solitons can be used to excite edge states in lattices from far
distances without actually placing the vibration source on the edge of the lattice.

Self-induced topological state by nonlinearity management

To achieve a topological transition in a mechanical lattice using nonlinearity, we take a 1D chain that consists of equal
masses and two types of nonlinear springs, a stiffening and a softening spring, periodically alternating along the chain
as shown in Fig. 1(g). We choose force (F )-deformation (dx) profiles for two springs as F = (1 − γ)dx + Γdx3

and F = (1 + γ)dx − Γdx3. In the linear limit (Γ = 0) the system supports a band gap; however, the system is in a
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Figure 1: (a) A 1D chain with two linear springs alternating along the length and onsite nonlinearity. (b) One of the nonlinear edge states
for softening nonlinearity. Below is its spatiotemporal diagram verifying instability. (c) One of the nonlinear edge states for stiffening
nonlinearity. Below is its spatiotemporal diagram verifying linear stability. (d) A 1D chain with two nonlinear springs alternating along
the length. (e) Dirac soliton residing inside the band gap. (f) Spatiotemporal diagram showing a moving Dirac soliton the excites
an edge state localized on the right boundary of the lattice. (g) A 1D chain with two types of nonlinear springs (one stiffening and
another softening) alternating along the length. (h) Analytically-obtained edge state in the lattice as a result of the amplitude-dependent
topological transition. (i) Spatiotemporal diagram verifying the existence of such a solution in the lattice.

topologically trivial state with no state localized on the edges of the chain. For a system with a small band gap (γ << 1)
and nonlinearity (Γ << 1), when the amplitude is increased, we witness an effective closure and reopening of the band
gap. This leads to an amplitude-dependent topological transition, and we observe the emergence of a self-induced edge
state in the system. We show an analytically obtained profile in Fig. 1(h). We note that this has a unique profile different
from the ones seen in linear systems. Instead of the amplitude decaying to zero farther away from the edge, we note that it
saturates to a nonzero amplitude [3]. We then verify the existence of this solution by performing full numerical simulations
for the lattice. We take the nonlinear solution shown in Fig. 1(h) as initial conditions and obtain the spatiotemporal strain
diagram in Figs. 1(i). We do not observe any significant scattering for a short time duration, which verifies the existence
of the edge state in the system. This study, therefore, highlights novel ways to tailor nonlinearity in mechanical lattices to
achieve a topological transition and localize spontaneously some energy at the edges of the system.

Conclusions

In this work, we discuss three different aspects of studying the nonlinear dynamics of topological lattices. First, we
find that nonlinearity can generally make a topological edge state linearly unstable. However, depending on the details of
nonlinearity, it is possible to find high-amplitude edge states that are linearly stable. Second, nonlinearity makes it possible
to achieve spatial localization of energy in defect-free lattices. These solutions, e.g., moving soliton in our case, can be
used to excite topological edge states in the lattices from farther distances. And third, an amplitude-dependent topological
transition can be achieved by nonlinearity management in mechanical lattices, such that exotic nonlinear states emerge
spontaneously on the edges.
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Optimal Controller Gain for the Control Based Continuation of a Duffing-Oscillator

Gleb Kleyman, Sebastian Tatzko, Jörg Wallaschek
Institute of Dynamics and Vibration Research, Leibniz University Hannover, Germany

Summary. In the context of control based continuation for the experimental identification of nonlinear dynamic systems a PD-
controller is usually exploited to stabilize the unstable branches of so called S-curves. The literature often refers to a simple trial-
and-error method in order to determine the controller gains. In this paper the optimal controller gains for a Duffing-oscillator are
determined analytically by applying the Harmonic Balance Method (HBM) to obtain a nonlinear algebraic approximation. However,
the generalized methodology can be easily extended to any kind of nonlinear dynamic system.

Introduction

Experimental or Control-Based Continuation (CBC) is a promising method for the bifurcation analysis in real life non-
linear experiments. Exploiting the CBC method, it is possible to track a branch of periodic solutions through a fold
bifurcation where they become unstable and continue them up to a second bifurcation point where they become stable
again. A typical example for such behavior is the frequency response of vibrating structures featuring nonlinear stiffness,
[1]. Typically, thin structures tend to behave like this, as they become geometrically nonlinear when excited to vibration
amplitudes in the order of their thickness. In particular, it can be shown that the nonlinear restoring force of thin shell
elements can be described by quadratic and cubic stiffness terms, [2, 3]. Considering a modal approach, in the more spe-
cific case of a transversely loaded hinged-hinged beam, a Duffing-type differential equation can be assumed, [4]. Here,
the stiffness term is cubic, but depends on the mode-shape and type of support.
Experimental characterization of nonlinear oscillating systems is a challenging task. There are only few methods that will
identify a nonparametric model of the structure, [5]. CBC is one of these methods. The goal of CBC is to estimate the
nonlinear frequency response curves (NLFR). Originally, CBC was proposed by [6] as a tool for the bifurcation analysis
of a dry-friction oscillator. However, since then the application of CBC has already been experimentally demonstrated on
various systems, such as a parameter excited pendulum [7], an electromagnetic and piezoelectric energy harvesting device
[8, 9, 10], a nonlinear tuned mass damper (NTMD) [11], a beam with a locally attached nonlinear spring [12], an impact
oscillator [13], a Duffing-oscillator, and frictionally coupled beams [14]. There are also several publications that deal with
different extensions and improvements compared to the original method. For instance, the adaption of CBC for tracking
of backbone-curves [15, 16], increased robustness against measurement noise [17] and the application of FIR-filters to
speed up the measurement time [18]. Even the stability of periodic orbits can be assessed during a CBC experiment, as
described in [11] and [19].
A main concern in CBC is the applied control strategy. A feedback control is essential to stabilize the unstable periodic
orbits of the system in order to trace them through the bifurcation points. Typically, a PD-controller, corresponding to
figure 2 is exploited. After finding suitable controller gains, the amplitude x̂ref of the reference signal is swept (or stepped)
and the corresponding force is measured. By means of Newtons method (full CBC), fixed point iteration or an adaptive
FIR-filter (simplified CBC), the controller is constrained to be stabilizing but non-invasive with respect to the system dy-
namics. For the determination of the controller gains, literature often refers to a trial-and-error procedure. However, this
can be very time-consuming if at least approximate values are unforeseen. Besides the trial-and-error procedure, in [20],
stability maps were created for an impact oscillator by varying the controller gains and evaluating the resulting control
error. In that way the optimal settings for this specific experiment were found. Unfortunately, these findings can not be
generalized for different types of systems. An application of adaptive control strategies to CBC was presented in [21].
Although the authors approach is formulated for linear systems, they have showed that the method can be successfully
applied to nonlinear examples as well. However, the mathematical derivation of the controller equation is very challeng-
ing and a generalized proof of concept for nonlinear systems is still pending. This is why we feel like the major control
problem is not yet fully solved.
This paper deals with an analytical approximate solution of critical controller gains for a Duffing-type oscillator in a
CBC experiment. The Harmonic Balance Method is applied on the closed-loop system in order to determine stabilizing
gains of the PD-controller. The results are validated on an experimental single-degree-of-freedom nonlinear oscillator.
The concept can be adapted to other systems including the initially mentioned geometrically nonlinear structures. With
the developed formula one is capable of predicting the critical controller gains, which can be considered as lower limits,
where stabilization is granted. It will be shown, that for polynomial nonlinearities only the polynomial degree and not the
coefficients are essential. This makes it very easy to estimate the necessary structural parameters.
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Figure 1: Manifold of a single degree of freedom Duffing-oscillator. White: Nonlinear frequency response curve (NLFR), Black:
S-curve, Red lines: Unstable branches, Red dots: Fold bifurcation

Figure 1 shows the displacement amplitude of a stiffening Duffing-oscillator as a three-dimensional manifold plotted
versus the excitation frequency and excitation force. The white curve is the nonlinear frequency response (NLFR) of the
system. The red dots mark bifurcation points and the red curves are unstable periodic solutions. The black curve can be
interpreted as the load-displacement characteristic of the system at a constant excitation frequency. Due to the particular
shape, it is referred to as a S-curve in literature. Both types of curves (NLFRs and S-curves) are projections of the same
manifold to different parameter spaces. Accordingly, an experimental characterization of such systems can be performed
in two different ways: A continuation of the NLFRs varying two parameters at a time (frequency and displacement) like
proposed by [20] (full CBC) or tracing the S-curves at constant frequency (simplified CBC). Due to the unique correlation
between displacement and forcing amplitude in many systems, the latter approach can be considered as the simpler
method. The continuation parameter reduces then to a single variable, which is the displacement amplitude. Either way
(full or simplified CBC) a feedback controller is essential to stabilize the unstable periodic orbits.
We will focus on the simplified CBC in this paper. Here, each frequency corresponds to a measurement run and so the
control parameters can be adjusted between the runs, if necessary. For a detailed description of the CBC method, please
refer to the previously mentioned literature. An application of CBC to the experimental Duffing-oscillator presented
within this paper is also found in [14].

Figure 2: Feedback control loop utilized for control-based continuation.

Condition for a Stabilizing Controller

The equation of motion (EOM) of the forced Duffing-oscillator reads:

mẍ+ dẋ+ kx+ αx3 = f. (1)

Here f is the excitation force and x is the displacement. Harmonically excited at certain frequencies, in open-loop
condition, the system features two stable and one unstable periodic solution, as shown in figure 1. The goal is to stabilize
the system by a feedback controller such that for a given reference displacement xref the unstable branch is accessible. A
simple PD-controller, corresponding to figure 2, is exploited for this purpose. In closed-loop the excitation force can be
expressed in terms of the controller gains (Kp, Kd) and displacements (x, xref ):

f = Kp(xref − x) +Kd(ẋref − ẋ). (2)

Inserting equation 2 into 1 the EOM of the feedback-controlled system becomes:

mẍ+ (d+Kd)ẋ+ (k +Kp)x+ αx3 = Kpxref +Kdẋref . (3)

The simplified CBC exploits the unique parametrization of S-curves, which many nonlinear systems hold to. Varying
x, the S-curves can be traced at constant excitation frequencies. In the closed-loop experiment the displacement is con-
trolled by the reference signal xref . The excitation force settles automatically according to equation 2. Therefore, in an
experiment the amplitude of the reference signal is increased while the resulting force is measured and the S-curves are
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Figure 3: Comparison of the x̂(x̂ref)−parametrization for a set of stabilizing and non-stabilizing controller gains (at a constant fre-
quency).

reconstructed from the amplitude values of x and f . In figure 3, the correlations of the amplitudes x̂,f̂ and x̂ref for two
sets of controller gains are given as 3-dimensional curves. These curves result from the solution of equation 3 under
the assumption of harmonic oscillations (Harmonic Balance Method). The gain settings are chosen for a non-stabilizing
effect in the left panel and a stabilizing effect in the right panel. The blue, red and yellow curves are projections into
different parameter spaces. The blue curves are the already discussed S-curves. S-curves are exploited to characterize the
system and therefore this curves must remain independent of the controller settings. Trying to measure the S-curve with
inappropriate controller settings can result in cutting of the extreme points (i.e. the bifurcation points), as shown in section
Experimental Validation. The red curves map the reference amplitudes x̂ref to corresponding values of x̂. These shapes
are parameterized differently for the two sets of controller gains. For stabilizing control, it is desired that the correlation
of x̂ref and x̂ becomes unique. This means that for any value of x̂ref there should be only one corresponding value of x̂.
This is, what the gray section plane, which runs along a constant value of x̂ref , indicates. If there is only a single solution
(operation point), oscillation on the unstable branch of the S-curve can be tuned specifying a certain reference amplitude
x̂ref . If there are multiple intersections, the system will automatically settle to a stable solution. From this theoretical
considerations, one can claim that the required constraint for a stabilizing control in CBC is the following: the control
gains are optimally set, when the parameterization of x̂ and x̂ref becomes unique.

Derivation of Optimal Control Gains

In order to find the desired control settings for the Duffing-oscillator, the corresponding x̂ref(x̂)-curve is studied analyt-
ically. However, the general workflow can be applied to any other nonlinear system, although it may be necessary to
extend the principle to a semi-analytical or numerical approach. First, the reference signal is defined to be harmonic and it
is assumed that the fundamental harmonic dominates the system response while higher harmonics can be neglected. This
approach is known as Harmonic Linearization or Harmonic Balance Method (HBM):

x ≈ x̃ = x̂ sin(Ωt), ˙̃x = Ωx̂ cos(Ωt), ¨̃x = −Ω2x̂ sin(Ωt)

xref = x̂ref,s sin(Ωt) + x̂ref,c cos(Ωt), ẋref = Ω(x̂ref,s cos(Ωt)− x̂ref,c sin(Ωt)) .
(4)

The varying phase relation between excitation and response is expressed by splitting the reference signal into sine and co-
sine components but can also be described by complex numbers, [22]. Next, the nonlinear restoring force is approximated
in terms of its Fourier series considering the fundamental harmonic Ω:

αx̃3 = αx̂3 sin3(Ωt) ≈ a0
2

+ a1 cos(Ωt) + b1 sin(Ωt), (5)

where a0, a1 and b1 are defined as:

a0 =
1

π

∫ π

−π
fnldφ, a1 =

1

π

∫ π

−π
fnl cos (φ)dφ, b1 =

1

π

∫ π

−π
fnl sin (φ)dφ (6)

With φ = Ωt. From eq.6 it follows that in the present example a0 = a1 = 0. Thus, equation 5 turns into:

αx̂3 sin3(Ωt) ≈ α3
4
x̂3 sin (Ωt) . (7)

Combing equations 3, 4 and 7 gives:

x̂

(
−mΩ2 + k +Kp + α

3

4
x̂2
)
sin(Ωt) + x̂ (d+Kd) Ω cos(Ωt)

= (Kpx̂ref,s − ΩKdx̂ref,c) sin(Ωt) + (Kpx̂ref,c +ΩKdx̂ref,s) cos(Ωt).

(8)
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Because sine and cosine are orthogonal to each other, equation 8 can be further split into terms which contain only sine
or cosine components:

x̂ref,c =
Ω

Kp
((d+Kd)x̂−Kdx̂ref,s) ,

x̂ref,s =
x̂
(
KdΩ

2 (d+Kd) +Kp

(
−mΩ2 + k +Kd + α 3

4 x̂
2
))

K2
dΩ

2 +K2
p

.

(9)

It can now be solved for the reference amplitude x̂ref and the x̂ref(x̂)−curve can be derived as a function of the controller
gains:

x̂ref(Kp,Kd, x̂) =
√
x̂2ref,c + x̂2ref,s =

x̂

√
Ω2 (d+Kd)

2
+
(
−mΩ2 + k +Kp + α 3

4 x̂
2
)2

√
K2

dΩ
2 +K2

p

. (10)

Equation 10 is visualized in the left panel of figure 4 for a set of non-stabilizing, critical and stabilizing controller gains.
In the right panel of figure 4 the gradient of equation 10 for the same gain settings is given. It is obvious that in order to
achieve the desired unique parametrization of x̂ref(x̂), the curve must be monotonous. That means the gradient x̂′ref must
remain positive for all values of x̂. For critical gains the two extreme points of x̂ref(x̂) (blue curve) merge into a single
saddle point (red curve). Here the x̂ref(x̂)−curve has a horizontal tangent, which means the gradient has only a single
zero point. This is why, for gains above this values the closed-loop system becomes stable.

Figure 4: Comparison of the x̂ref(x̂)−curve for a set of stabilizing and non-stabilizing and critical controller gains (at a constant
frequency).

First, the special case of a differential controller (Kp = 0) is studied. The D-component is sufficient to stabilize most
systems featuring nonlinear stiffness. With a differential controller the derivative of equation 10 can be analytically
expressed as:

x̂′ref =
dx̂ref
dx̂

=
1

KdΩ

(
γ +

γ′

2γ

)

where γ =

√
Ω2 (d+Kd)

2
+

(
mΩ2 − k − α3

4
x̂2
)2

and γ′ =

(
9

4
α2x̂4 + 3

(
k − Ω2m

)
αx̂2

)
(11)

In order to find the critical value Kd,crit, the gradient x̂′ref is set equal to zero, from which follows:

2γ2 + γ′ = 0. (12)

Equation 12 can be rewritten as monic polynomial:

x̂4 +
16

9α

(
k − Ω2m

)
︸ ︷︷ ︸

p

x̂2 +
16

27α2

(
(d+Kd)

2
Ω2 +

(
k − Ω2m

)2)

︸ ︷︷ ︸
q

= 0. (13)

Solutions of equation 13 for x̂ are extreme points of x̂ref(x̂). However, the condition for the critical gain is that the
extreme points merge into a saddle point, which means that equation 13 will have only one solution. Substituting z = x̂2
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the solution can be expressed as:

z = −p
2
±
√

1

4
p2 − q. (14)

There is only one condition under which equation 14 has zero points at z = −p2 :

1

4
p2 = q. (15)

Solving equation 15 leads to the critical gain Kd,crit, which is a function of the oscillation frequency Ω and the mass,
damping and stiffness coefficients of the system:

Kd,crit = ±(k − Ω2m)
1√
3Ω
− d (16)

Note, that although both solutions (negative and positive) are mathematically correct, only the negative is practically
relevant. Equation 16 also reveals that the critical gain is independent of the nonlinear coefficient α. That means, it is only
necessary to determine the structural parameter of the underlying linear system for optimal controller settings. In most
cases this can be easily done performing a linear experimental modal analysis at low level oscillations.
The critical proportional gainKp,crit can be derived in an analogous way, settingKd = 0 in equation 10. The proportional
gain Kp,crit becomes:

Kp,crit = ±
√
3dΩ+mΩ2 − k. (17)

Here, again the solution has mathematically a positive and a negative sign. However, the negative solution is the only
valid one. Note, that for Kp ̸= 0, Kp becomes part of the solution z in equation 14, which means increasing Kp also
increases the displacement amplitude x̂ where the saddle point occurs. That means, that the proportional gain alters the
general shape of the x̂ref(x̂)-parametrization. This fact can be exploited to increase the spatial resolution of the measured
curves at some intervals. Although the single proportional-controller has a stabilizing effect in theory, experience shows
that in practice this case is rather irrelevant. In real-life applications always a PD-controller should be chosen over a pure
P-controller. Without a D-component, the system very slowly approaches a steady state. A PD-controller significantly
reduces the settling time.

Figure 5: Critical controller gains for different excitation frequencies.

Figure 5 shows the curves corresponding to equations 16 and 17 for the experimental system from section Experimental
Validation in the relevant range of frequencies. The linear natural frequency (LNF) of the system is just below 30 Hz. For
frequencies higher than this, stabilization is necessary because the NLFR has a significant overhang, see figure 1. It can
be seen, that the critical gains increase almost linearly with the frequency starting at the LNF. At 31 Hz the displacement
became so high that the upper bifurcation point could not be reached with the used displacement sensor. However, from
the equations it is evident, that both values continue to grow for higher frequencies.
It can be seen that the critical P-gain is about two orders of magnitude above the critical D-gain. Accordingly, considering
a displacement and a velocity signal with the same signal to noise ratio, the measurement noise is amplified many times
more by a stabilizing P-controller than by a pure D-controller. Therefore, in a practical implementation it depends on the
measured variable and signal quality, whether the D-component or the P-component should be weighted more, as several
combinations will equally stabilize the system. If a PD-controller is employed, the critical gains are reduced because both
values contribute to stabilization. This can be mathematically derived performing the calculation from equations 11 to 15
for both, Kp ̸= 0 and Kd ̸= 0. The critical differential gain Kd,crit is then a function of the proportional gain Kp:

Kd,crit = −
1√
3Ω

(k +Kp) +
1√
3
mΩ− d. (18)
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m k d α

0.1964 kg 6926 N
m 0.1046 Ns

m 5.27 · 107 N
m3

Table 1: Parameter of the Duffing-oscillator.

From equation 18 it can be concluded, that Kd,crit decreases linearly with Kp but still increases with Ω. Following
equation 18 stability maps can be constructed, compare figure 6. Here, the critical gains from equation 16 and 17 are
intersections of the curves with the vertical and horizontal axes. The curves themselves are defined by equation 18. These
maps are intended to find proper controller gains for different frequencies. Both components can be weighted as preferred
by the user. As long as the values lie above the curves, the feedback-control has the desired stabilizing effect on the
system.

Figure 6: Stability map for the Duffing-oscillator with system parameters from section Experimental Validation. The lines indicate the
stability margin for different excitation frequencies.

Experimental Validation

The theoretical considerations are experimentally validated. Hereby, the focus lies on the hypothesis from equation 10, and
the resulting critical controller gains according to figures 5 and 6. The experimental setup is a single-degree-of-freedom
oscillator, which has already been investigated in [14] and [23]. Figure 7 shows a picture and a schematic representation
of the system. The main components are the fixed frame 1©, the voice-coil actuator (VCA) 2© and the mass 3©. The
mass is suspended by guitar strings in the middle of the frame. It is excited by the VCA and moves out of the frame
plane as illustrated by the schematic view. The VCA is actuated by a power amplifier for electrodynamic shakers made
by TIRA. The amplifier supports a current-mode which enables to control the output current directly. The velocity and
displacement of the mass is measured at position 4©.Due to the geometric nonlinearity between mass displacement and
strain of the guitar strings the oscillator exhibits a significant nonlinear stiffness. Following figure 7 the restoring force
can be formulated as:

Fk = 8ks


1 +

lv − lg√
l2g + x2


 . (19)

Here ks is the axial stiffness of the strings, lv is the elongation due to the preload force, lg is the free length from mass
to corner and x is the displacement. Approximating equation 19 by its truncated Taylor series the nonlinear EOM of the
forced system can be written in analogy to equation 1 as:

mẍ+ dẋ+ 8
kslv
lg︸ ︷︷ ︸
k

x+ 4
ks(lg − lv)

l3g︸ ︷︷ ︸
α

x3 = f. (20)

It can be seen, that this particular system can be well described by a Duffing-oscillator. In order to find the appropriate
model parameters, a two-step procedure was conducted. First, the parameters of the underlying linear system (m, d, k)
were determined by sweeping through the resonance frequency at a low level excitation (0.02 N from 29 − 31 Hz). The
frequency response was observed and the modal parameters were extracted, which already correspond to the physical pa-
rameters in the case of a single-degree-of-freedom system. The excitation force was reverse calculated from the measured
current flowing through the VCA, because both are proportional. In the second step, the system was excited with a signifi-
cantly larger force of about 0.1 N. Here during the sweep-up the system showed a jump phenomenon. Assuming the EOM
from equation 20 is accurate, the nonlinear coefficient α was determined by an optimization algorithm based on Newton’s
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1

2

3

4

schematic view

Figure 7: Photograph and schematic view of the Duffing-oscillator.

Ω/(2π) 30.3 Hz 30.5 Hz 30.7 Hz
Kd,crit 0.47 0.75 1.03

Table 2: Theoretical critical differential gains (Kp = 0).

method. For this purpose, the measured time-domain data was matched with a time step simulation until the residuum
(difference between the envelopes of both signals) became minimal. As an input signal for the time step integration the
actually measured force resp. current signal was used. Figure 8 shows a comparison between the measured velocity and
the envelope of the model output after optimization. The estimated system parameters are summarized in table 1. In the
following the linear part was used to calculate critical gains corresponding to figures 5 and 6. Three different excitation
frequencies were chosen to validate the formulas from equation 10, 16 and 18. The critical differential gains Kd,crit for
these frequencies are given in table 2.

Figure 8: Comparison between measurement and model of the Duffing-oscillator.

After parametric characterization, the CBC procedure was applied to the test-rig. For each CBC run the controller gains
were varied around the calculated critical values. The reference amplitude was increased in 0.2 mm steps. First, a pure
differential controller was investigated, therefore the P-component was set to zero. In figure 9 the estimated results are
shown in comparison with the theoretical curves (black), given by equation 10. On the top panels the x̂ref(x̂)-curves are
shown for different settings of controller gains and on the bottom panels the corresponding S-curves are plotted. The blue
markers indicate values close to the critical gains, see table 2. The red and green markers represent gains below and above
the critical values. All measured curves are in good agreement with the theoretical results. Here, especially the red curves
illustrate the negative effect of a poorly chosen controller gain. As those curves are not monotonous, at some point the
system suddenly transits from one stable solution branch to the other stable solution branch (from A© to B© on the upper
graph). Therefore, a whole interval of displacement amplitudes is missing on this measurements and the upper bifurcation
point is skipped. Similar results were achieved for all three frequencies. The gains with the blue markers are chosen to be
close to the critical values. Here, the bifurcation regions are sampled quite well. Best results are achieved for controller
gains 30− 50 % above the critical values (yellow markers).
The more common case of a PD-controller was also investigated. Therefore, Kd was set to a constant value and Kp was
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Figure 9: Comparison between measured x̂ref(x̂)-curves resp. S-curves and theoretical curves. For all curves applies Kp = 0.

varied. The aim of this experiment was to validate the stability map from figure 6. The results for three different settings
of Kd and totally seven pairs of gain settings are shown in figure 10. The graph on the upper left side shows the distri-
bution of the control gains and the remaining three graphs represent the corresponding S-curves. All curves are captured
at 33.3 Hz. The crosses correspond to values close to the theoretical stability margin, which is highlighted as the dotted
black line, while circles are values within the instability area. It can be seen, that for all unstable gain settings (circles) the
S-curves are not entirely captured. Parts of the unstable branches are skipped. However, for values just above the stability
margin the s-curves are sampled well, although x̂ref(x̂) has been incremented by the same step size in all experiments.
For Kd = 0.3 a third measurement was performed, which is represented by the red stars. Here, the proportional gain was
chosen significantly higher than in the other two cases. It appears that featuring a higher P-component, the unstable branch
is sampled at a finer spatial resolution. This has been predicted in section already. The reason is that the proportional gain
shifts the turning point of the x̂ref(x̂)−curve towards higher amplitudes. As a result the x̂ref(x̂)−curve is unfolded to a
more parabolic shape and so the spacing between two adjacent x̂−values becomes smaller, as figure 11 illustrates. The
marker style and color in figure 11 correspond to those from figure 10. Depending on the controller setting it is possible
to trade of between a finer resolution of the lower stable branch or the unstable and upper branch. For either setting the
controller is stabilizing. No significant drop of signal quality by the higher proportional gain (Kd = 0.3 and Kp = 61
compared to Kd = 0.3 and Kp = 142) was observed. However, measurement noise could be amplified by higher gains
and thus decrease signal quality or even lead to instability of the closed loop system. Therefore, controller gains should
not be set too high. Critical gains are good starting points for a manual optimization.
To confirm this, a proportional gain of Kp = 500 and a differential gain of Kd = 1.5 for the final analysis of the system
dynamics was chosen. According to figure 6 this gain settings are stabilizing up to 32 Hz. As at 30.9 Hz the displacement
amplitude corresponding to the upper bifurcation point became to large for the sensor, only S-curves from 29.6 Hz to
30.9 Hz in 0.1 Hz are studied in figure 12. As it can be seen, all S-curves have an excellent spatial resolution of the
unstable branch. Note, that these are raw results, no filtering or averaging has been applied to the fundamental Fourier
coefficients. The scattered measurement data points (black) have been interpolated by cubic splines. This is represented
by the gray manifold, similar to figure 1. The red curves in the upper graph of figure 12 are the contour plots of this
manifold at specific forcing amplitudes. These NLFR-curves are shown in the bottom graph in detail. Due to the chosen
interpolation type they appear noisy, here a higher frequency resolution would have been beneficial. Nevertheless, the
NLFR-curves give a better understanding of the system response near resonance, including two stable and one unstable
branch, than a sweep test like in figure 8. Conclusively it can be stated, that the theoretical considerations from section
Derivation of Optimal Control Gains, led to an analytical formula for the critical gains and enabled a significant speed up
of the CBC measurement compared to previous studies, [14]. The time consuming part of finding stabilizing controller
gains by trial and error could be omitted and was replaced by an efficient preliminary analysis of the examined system.
The Duffing-oscillator approximation for the investigated single-degree-of-freedom system is in good agreement with
measurements in terms of x̂ref(x̂)− and S-curves.
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Figure 10: Comparison between controller gains at different locations of the stability map.

Figure 11: Comparison of different stabilizing controller gains.

Conclusion

In this paper an analytical formula has been derived to find critical controller gains for the stabilizing control of a Duffing-
oscillator exploiting a PD-controller. Critical gains are described as the minimum necessary gains to stabilize the unstable
periodic orbits of the system. The main application is intended to be the control based continuation of systems that can be
approximated by a Duffing-oscillator model. For the formula the structural parameters of the underlying linear system are
needed, which can be extracted from experimental modal analysis at low level excitation. The prefactor of the nonlinear
cubic term is not required. Although in this paper the derivation has been conducted and validated for the single-degree-
of-freedom Duffing-oscillator only, the workflow can be generalized and applied to any nonlinear system. The process
incorporates the following steps:

• Find an approximate model for the nonlinear system

• Include controller rule in the equation of motion

• Apply Harmonic Balance to solve for x̂ref(x̂)

• Investigate x̂ref(x̂) (or its derivative)

• Critical gains are those values which unfold x̂ref(x̂) so that the curve becomes unique
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Figure 12: Experimentally determined manifold (left) and reconstructed NLFR-curves (right).
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Nonlinear localisation in a cyclic system with unilateral contact
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Summary. The following abstract presents a cyclic structure subjected to unilateral contact in order to investigate nonlinear locali-
sation of vibration. After a brief description of the system, a reduced-order model is derived for numerical analysis. Subsequently,
the experimental setup is introduced and the system response to harmonic excitation is depicted. In the nonlinear regime vibration
localisation is observed with a high amplitude ratio regarding the beam elements of the structure.

Introduction

Localisation of vibration corresponds to states where the vibration energy is spatially localised to a section of the system
so that only this section vibrates in high amplitude. It has been observed in a vast variety of systems either numerically,
e.g. for coupled Duffing oscillators [1] and coupled beams [2], or experimentally, e.g. for a microbeam array [3] and a
macro mass-spring system [4]. The localisation arises from nonlinear modal interaction, such as 1:1 internal resonances
[5]. In this work experimental measurements of localised vibration states are reported in a cyclic structure subjected to
unilateral contact.

Presentation of the system and reduced-order model

Presentation of the system
The structure investigated in this paper consists of three clamped-free beams with attached tip masses ordered in a cyclic
fashion and coupled through slender connections as depicted in Fig.1. When vibrating in the transverse direction the
beams are subjected to unilateral contact enforced at a level between the slender connection and the tip mass. Since the
mass of the beams is small compared to the attached tip masses it can be neglected and the system can be regarded as
three coupled nonlinear oscillators.

−
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−
−
−
−
−
−

−
−
−
−
−
−
−
−
−
−
−

Figure 1: First three linear mode shapes of the considered structure. Note that, due to the symmetry, the first two modes have the same
eigen-frequency

Reduced-order model
Based on the FEM mode shapes, a lumped mass model with three degrees of freedom can be derived for numerical
analysis. The contact nonlinearity for the i-th oscillator is modeled by a bi-linear force g(ui): in small amplitude, the
beam is not in contact so that the force is zero. When the tip displacement reaches a threshold ug the effective stiffness
increases and tends toward one of a beam with "pinned" boundary condition at the position of the contact. The force can
be expressed as a bi-linear function of the tip displacement:

g(ui) =

{
0 if ui ≤ ug
K(ui − ug) if ui ≥ ug,

(1)

where K is the contact stiffness and ug is the tip displacement at the moment of contact. In order to find periodic
solutions to the equations of motion, the harmonic balance method (HBM) is applied. The solution is searched for a
truncated Fourier series and the coefficients are obtained by solving a system of nonlinear algebraic equation. This system
will be solved by the asymptotic numeric method (ANM). Both methods (HBM and ANM) are implemented in a common
framework in the MANLAB package, along with the stability computation of the periodic solutions [6]. The equations
of motion are written in a quadratic form for MANLAB and the required regularisation function greg of the unilateral
contact force is obtained over a hyperbola branch which is defined by the following quadratic equation:

greg[greg −K(ui − ug)] = ǫ, (2)

where a smaller regularisation parameter ǫ indicates a hyperbola closer to the piecewise curve.
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Experimental setup and results

Description of the experiment
In the experimental setup the structure depicted in Fig 1 and a contact disk share a common base, which is mounted on
two slender plates. The base is excited by a shaker (TIRA TV 51140-M) and vibrates harmonically due to the mode of the
supporting plates. Therefor a harmonic excitation signal is fed in the shaker in open loop, processed by an ADwin-Gold
control box with a sampling frequency of 4kHz. To measure the response of the system accelerometers are glued to the
base, as well as to the three tip masses. When the system is excited close to the first eigenfrequency of the structure the
coupled beams start touching the contact disk.

Results
Fig. 2 depicts the measured response of the base and the three tip massesmi of the structure while excited with a frequency
of 11.35 Hz. At this excitation level the structure gets in unilateral contact with the disk which amounts in a disturbance
of the harmonic excitation depicted in Panel (a). The nonlinear localisation of the structure is depicted in Panel (b) where
the amplitude ratio A1/A3 is ∼ 9.56 (A1/A2 ∼ 7.32 respectively).
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Figure 2: Nonlinear localisation at 11.35Hz : a) Base excitation; b) Response at the tip mass mi of the structure. m2 and m3 vibrate in
low amplitude while m1 vibrates in high amplitude

Conclusions

The abstract considers nonlinear vibrations of a cyclic system subjected to contact nonlinearity. The investigated sys-
tem can be regarded as a simple qualitative model of more complex structures such as bladed disk in airplane engines.
Numerical results based on a reduced-order model indicate that homogeneous solutions can lose their stability to lead to
localised states of vibration. The nonlinear localisation is observed in the experimental investigation of the structure.
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Summary. Flexible, one-dimensional structures such as slender beams and cables are capable of undergoing highly nonlinear vi-
brations in extremely large amplitudes. A novel method for computing the behavior and, in particular, the nonlinear modes is here
presented based on a geometrically exact finite element beam model that is solved using the continuation software MANLAB. An
experimental setup is also described which utilizes a vibration table and Digital Image Correlation to physically observe the extreme
amplitude vibration of the flexible cantilever beam.

Figure 1 (Left): Four snapshots of preliminary experiments depicting the first nonlinear mode of a cantilever beam in
extreme amplitude, achievable due to the bending capabilities of the flexible structure. Figure 1 (Right): Numerical
computation of the first nonlinear mode of the cantilever beam, obtained using the path-following continuation solver,
MANLAB [2, 3, 4].

Introduction

Although the field of nonlinear dynamics is vast and dense, nonlinear models of highly flexible structures are a subject
of continuing research. Wires, cables, rods and hoses are examples of such flexible structures, as their slender, one-
dimensional geometry and corresponding mechanical stiffness allow for extreme bending capabilities, especially when
resonance conditions are considered. While several methods already exist for the computation of flexible systems, they
are often limited, due to either the amount of required computation time or the limited range of applicability. Current
strategies for simulation of nonlinear dynamics often utilize direct time integration schemes to solve the equations of
motion. While often adequate for many purposes, these strategies can potentially encounter certain limitations, such as
in detecting multiple solutions (if present) or bifurcation points. Additionally, further extensions to existing models are
needed to capture the behavior of highly nonlinear dynamical systems, such as the present case of extreme amplitude
vibration. For this reason, we here propose a custom continuation algorithm for the periodic solution of geometrically
exact finite element beam models undergoing extreme amplitude vibrations. Numerical results are then compared with
vibration experiments involving slender beam specimens as seen in Fig. 1 (Left).

Numerical model

A geometrically exact finite element discretization is performed for a cantilever beam geometry using Timoshenko-theory
beam elements and a total Lagrangian nonlinear formulation [1]. The model is derived from the weak form variational
formulation of the equation of motion of a cantilever beam rooted in the principle of virtual work and is traditionally
written, for all time t,

Mq̈+Dq̇+ fint(q) = fext (1)

where q is a vector of size 3N that gathers nodal displacements ui, wi and θi representing the axial displacement,
transverse displacement and cross section rotation of the ith finite element node, respectively, for N nodes: q =
[u1w1θ1. . . uNwNθN ]T . M and D are the mass and damping matrices, respectively, each of size 3N × 3N ; fext is
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the vector of applied external forces and fint(q) is the nonlinear internal force vector, both of length 3N , which is a
nonlinear function of q based on the geometrical nonlinearities. The details of the finite element model can be found in
Appendix 2 of [1].

Numerical solution

The geometrically exact finite element model described in (1) is then solved numerically using MANLAB, an interactive
path-following solver rooted in MATLAB. Given harmonic forcing imposed on the cantilever beam, the resulting motion
of the structure is sought periodic. The MANLAB solver employs a unique continuation scheme for periodic solutions,
combining the Harmonic Balance Method (HBM) with the Asymptotic Numerical Method (ANM) continuation technique
[2]. Traditionally, the principle of the HBM is to decompose a periodic function into a Fourier series truncated to a
certain number of harmonics. However, in the present case of a geometrically exact cantilever beam, sine and cosine
nonlinearities of the degrees of freedom are involved in the system. To reconcile these nonlinearities and others that may
be present in any original system, the solution technique implemented in MANLAB proposes a quadratic recast of the
original equation into a new system containing only polynomial nonlinearities of quadratic order or less. Following the
quadratic recast, the derivation of the corresponding algebraic system for the Fourier coefficients is rather straightforward
[2, 3]. The ANM continuation technique, which uses a pseudo-arc length parameterization, is then applied to yield the
path-following solution that is visualized in MANLAB [4].

The combination of HBM and ANM has been shown to be both highly efficient and yet applicable to a broad set of systems
containing non-polynomial nonlinearities [3, 4]. Recently, extensions to the method and, therefore, the MANLAB solver,
allow for the stability analysis of the various branches of the periodic solution [4]. Using this solver, the computation time
for the solution to (1) is greatly reduced and enables a numerical solution for the cantilever structure subject to extreme
amplitude vibration (see Fig. 1 (Right)). In the case under study, the nonlinear modes of (1) are computed with periodic
solutions of the unforced system, with fext = 0, as explained in [4].

Experiments

In order to compare with the aforementioned numerical simulations, an experimental strategy has been designed to
recreate the extreme amplitude vibrations of flexible specimens using a Long Stroke Shaker vibration table. The ex-
perimental strategy here described utilizes a Phase-Locked Loop (PLL) controller, which, for a harmonic excitation
F (t) = F sin (Ωt+ φ), changes the frequency Ω so that a given phase lag between the phase φ of the force signal
and that of the system response is induced [5]. Adjustment of the amplitude of excitation with the desired phase lag set to
π/2 provides a robust method for measuring the backbone curve of the system, equivalent to its nonlinear modes. A long
and thin stainless steel beam is prepared for the experiments and is fixed at the base to the vibration table to recreate the
cantilever condition under investigation. The table vibrates at the selected amplitude F and frequency Ω, thereby exciting
the cantilever beam specimen. Preliminary experiments are able to demonstrate the extreme amplitude vibrations using
reflective points along the beam (Fig. 1 (Left)). The displacement field along the beam is measured based on differences
in the illuminated points through a series of images captured with a rapid motion camera in a technique known as Digital
Image Correlation (DIC). The results of the DIC are then compared with numerical results obtained from MANLAB.

Conclusions

In this paper, numerical and experimental extensions to existing strategies for calculation of nonlinear modes of cantilever
beams in large amplitude vibrations are presented. A geometrically exact finite element numerical model of the equation
of motion is developed and implemented into the MANLAB continuation solver for periodic solutions. The solver is able
to describe the motion of highly flexible structures even at extreme amplitudes, which is then compared with experimental
results obtained from vibration tests integrating a Phase-Locked Loop for robust calculation of the nonlinear modes. In
conclusion, the procedure outlined in this paper presents a novel and efficient method for the calculation and simulation
of highly geometrically nonlinear beam structures, even at extreme amplitudes of vibration.
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Summary. This study reports some experimental results of a beam-slider vibration system which is often called the self-adaptive resonator. 

It is said to increase the efficient frequency bandwidth of a vibration-based energy harvester. In this study, excitation experiments were 
carried out focusing on the interaction between the vibrating beam and the slider. The experimental results show that a certain mode of the 
beam resonates as a result of the slider moving along the beam under excitation at a certain frequency. Some of the results also show the 
effect of nonlinear modal interactions through the slider movement. 

Introduction 

A self-adaptive resonator consisting of a beam and a slider was introduced to the field of vibration energy harvesting by 

Miller[1] as a solution to the problem of narrow resonance frequency range. The proposed system is said to achieve 
resonance at multiple frequencies, thanks to the slider which, under the condition of excitation, moves along the beam to 

such a position that the beam will resonate. To discuss the dynamics of the system, we must mention that behaviors of a 

vibrating beam-slider structure was studied well before it was incorporated to energy harvesting. Recent studies by Lyu[2] 

report that the adaptive behavior of the system is influenced by the geometrical nonlinearity of the vibrating beam. In this 

study we conducted some experiments to find out the important factors to explain the motion of the beam and the slider. 

Analytical Studies 

Governing equations 

Figure 1 shows the image of the analytical model. The horizontal position is denoted by x, and the vertical beam 

displacement at each position is denoted by W. s stands for the position of the slider, which would be a factor that changes 
the natural frequency and the beam shape. Hence W is a function of time t, x and s, and the equation of the beam and 

sliders motion can be described as follows[1]. 

 (1) 

 (2) 

M is the slider’s mass, WO is the excitation term, , A, E and I are the density, cross-sectional area, Young’s modulus 

and second moment of inertia of the beam, respectively. 

 

Theory 
In early studies, Thomsen[3] assumed that the slider’s mass was light compared to the beam, hence neglected the change 

of the beam shape. This assumption provides a tendency in the slider’s motion, that the slider would move toward the 

antinode of one of the modes which stands out the most. However, experimental studies report that the self-adaptive 

behaviors ideal to energy harvesting can be observed mostly when the slider’s mass is relatively large. This results in not 

only the change of the beam shape, but also some unnatural motions of the slider, possibly due to linear and nonlinear 
couplings between the modes or between the beam and the slider. 

Before we move on to the experimental study, we must introduce the dependencies of the natural frequency of the first 

and second mode for a fixed-fixed beam with a fixed additional mass. Figure 2 shows an example of those relationships 

with a shared horizontal axis indicating the mass position, with the additional mass being slightly heavier than the beam. 

According to this figure, depending on the position of the slider, the natural frequency ratio of these two modes may 

become an integer ratio such as 1 to 2, which may cause nonlinear coupling between the modes.. 
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Figure 1: Analytical Model of the beam-slider system. 

ENOC 2022, July 17-22, 2022, Lyon, France

149



 

 

ENOC 2020+2, July 17-22, 2022, Lyon, France 

 

 

 

Experimental Study 

Figure 3 shows the parts and the setup of the experimental system. A stainless-steel beam was fixed at both ends to a 

shaker. In order to make the slider motion as smooth as possible, a pair of plastic bearings were used as the main parts of 

the slider which interacts with the beam. The gap was small to prevent the slider to rattle or bounce on the beam, but large 

enough for the slider to move. The slider to beam mass ratio was 1.24, and the first natural frequency of the fixed-fixed 

beam without the slider was 44 Hz. 

Figure 4 shows two of the results obtained by the experiment. (a) is the example of when the system achieved resonance 

of the first mode. This is caused through the movement of the slider. In the example (b), the slider moved from the center 

of the beam toward the outer region, then started to move back to the center when it reached a certain position. This 
motion is difficult to explain when only the second mode with constant mode shape is considered. 

Though we have found much more about the beam-slider motion through this experiment, this extended abstract can only 

provide two examples of the results due to page limitations. Nevertheless, even the two examples alone show that 

interactions between the vibration modes of the beam are the key to understand the nature of this system. 

Conclusion 

Experiments were conducted to verify the key aspects to analyze the self-adaptive resonator. The results exhibited the effect 

of nonlinear modal interactions and therefore theoretical studies ranging to nonlinear analysis of multiple degrees of freedom 

are essential to truly understand the system. 

 

References 

 
[1] Miller L. M. (2012) Micro-scale Piezoelectric Vibration Energy Harvesting: From Fixed-frequency to Adaptable Frequency Devices. PhD Thesis, 

University of California, Berkeley. 

[2] Yu L., Tang L., Xiong L., Yang T., Mace B. R. (2019) A Passive Self-tuning Nonlinear Resonator with Beam-slider Structure. Proc. SPIE. 

10967:109670K. 

[3] Thomsen J.J. (1996) Vibration Supression by using Self-arranging Mass. Journal of Sound and Vibration. 197(4):403-425 

  
Figure 3: Picture of the experimental system of the beam-slider structure and its separated parts. 

 
Figure 4: Time histories of slider displacements and beam deflection. The left vertical axis is normalized with the excitation 

amplitude, while the right vertical axis is normalized with the beam length. The beam deflection was measured at 0.75 
according to the right vertical axis. The excitation frequencies were (a)20 Hz and (b)53 Hz while the excitation amplitudes 

were (a)0.148 mm and (b)0.524 mm. 

              
Figure 2: The left figure shows the natural frequencies of the two modes depending on the position of the mass. The right figure 

shows the corresponding mode shape for a decentered mass. 
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Measuring nonlinear localisation and isolated curve of solutions in a system of two
coupled beams

Aurélien GROLET∗, Zein A. SHAMI∗ and Olivier THOMAS ∗

∗ LISPEN, ENSAM Lille, Lille, France

Summary. This work presents experimental measurement of nonlinear localisation in a system of two coupled beams. In this system,
localisation correspond to vibrations states where the symmetry is broken, and where the energy is mainly localised to one of the two
beam only, see e.g. [1]. Using a two degrees of freedom reduced order model, one can show that the localised states arise from a
1:1 internal resonance between two particular linear modes [2]. In the case of forced response, for particular conditions, the localised
solution can be depicted under the form of an isolated closed curves (isola) in the amplitude-frequency diagram [3]. Experimental
measurements showing nonlinear localisation are presented and compared to the numerical solution, showing good agreement.

Presentation of the system

The system considered here consists of a circular plate that has been machined in order to create to parallel beams as
indicated on Fig. 1. The body of the circular plate provides a coupling between the beams, and it also restrains the axial
displacement of the beams ends, so that non-linearity occurs due to a coupling between axial and transverse motions.
We consider two particular eigen-modes of the structure depicted on Fig. 1. For those modes, the beams vibrate over
a first bending mode shape (in phase or out of phase). The structure has been designed such that both modes interact
non-linearly to give a localized mode. Indeed, looking at the mid-beam displacement, the modes can be described with
the shape φ1 = (1, 1) and φ2 = (1,−1). Localisation arise due to a modal interaction of the form q1(t)φ1 + q2(t)φ2,
where q1 and q2 are (in-phase) modal amplitudes, leading to a shape of the form (a1 + a2, a1 − a2), which eventually
tends to the localised shape (1, ǫ) as the amplitude of the first mode a1 tend to the amplitude of the second mode a2.

Figure 1: Linear mode shape of interest. Left: in phase mode (f1 = 364 Hz); Right: out-of-phase mode (f2 = 367.5 Hz)

Reduced order model and Numerical solutions

In order to simplify the analysis, a reduced order model is derived using the so called STEP method, particularised to the
case of planar structure (see e.g. [4]). Only the two modes of interest are kept in the reduced order model and the reduced
set of equation have the following form:

q̈1 + 2ξ1ω1q̇1 + ω2
1q1 +G1q

3
1 + Cq1q

2
2 = f1 sin(Ωt) (1)

q̈2 + 2ξ2ω2q̇2 + ω2
2q2 + Cq21q2 +G2q

3
2 = f2 sin(Ωt) (2)

where qi is the modal amplitude of the i-th transverse mode (i = 1: in phase mode, i = 2 out of phase mode, see Fig.1),
ξi’s are the modal damping ratio, ωi’s are the natural frequencies, fi’s are the the modal forces amplitude and Ω is the
excitation frequency. G1, G2 and C are the non-linear coefficients obtained through the reduced order model procedure.
Approximated solutions to the system in Eq.(1) are obtained using the Harmonic Balance Method (HBM), coupled with
a numerical continuation procedure based on the Asymptotic Numeric Method (ANM) [5].
When the system is forced on the first mode (f2 = 0), if the forcing amplitude is sufficient, it can be observed that the
localised solution can be depicted under the form of a closed curve solution in the Amplitude-Frequency diagram (isola),
see the left panel of fig.2. When the system is forced on the second mode (f1 = 0), if the amplitude is sufficient, it can be
observed that the localised solution stems from the principal resonance curve through a branching point bifurcation, see
the right panel of fig.2.

Experimental setup and results

The structure has been machined out of a stainless steel plate using wire cutting. For the experiments, the structure is
hanged, which allows to be close to free boundary conditions. The experimental setup is depicted on fig.3.
A magnet and a coil is used to provides excitation to the structure without having an actual physical contact between
the structure and the excitation device. To keep the symmetry of the system, another magnet (without coil) is posi-
tioned on the opposite side of the plate (see fig.3). The amplitude of the force is controlled by the intensity of the current
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Figure 2: Numerical forced response. Left: force on the first mode, localised states appear as closed curve solution. Right: force on the
second mode, localised states arise from the homogeneous (out-of-phase) solution through a branching point bifurcation

sent to the coil, which is monitored using a current clamp. Velocity measurements are carried out using a laser vibrometer.

Example of stepped sine measurements (for a force exciting mainly the second mode) are given on the right panel of fig.3.
For low amplitude of forcing, the behaviour of the structure is linear, and both beams vibrates with the same amplitude.
When the amplitude increases, the non-linearity starts to be activated and the hardening property of the structure can be
observed. Finally, for higher force amplitude, when the displacement amplitude reach a threshold, there is a break of
symmetry in the vibration shape of the structure, both beams clearly vibrates with different amplitude. For the highest
excitation current (black curve on Fig.3), one can see that the first beam vibrates with an amplitude 7 times greater than
the second beam.
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Figure 3: a) Picture of the experimental setup; b) Measurement of localised states when forcing over the second mode (mid-beam
amplitude versus frequency of excitation)

Conclusions

This study presents numerical and experimental results about nonlinear localisation in a system of two coupled beams.
Experimental measurements using swept sine excitation demonstrate that the localisation can be observed in practice.
The numerical and the experimental results agree very well, showing that the reduced order model procedure is able to
generate a good representation of the physical system with only a few degrees of freedom.
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Summary. We present some new results obtained in experimental nonlinear dynamics analysis of a beam supporting a rotating machine. Two 
phenomena were detected in our research work. First, the effect of large axial compressive forces on the geometric stiffness of the beam and, 
consequently, on its free undamped vibration frequencies. The larger these forces are, the smaller the measured frequencies up to a certain 
point, when strong nonlinearities reverse this trend. Second, the Sommerfeld effect of low power machines getting stuck at resonance and 
possible occurrence of jump phenomena. 

Introduction 

We present an experimental study of the effects of geometric nonlinearities on vibrations of rotating machines support 
structures. Dynamic characteristics of structures depend on their stiffness, damping and mass. The initial stiffness of a 
structure, computed in its unloaded state, is affected by the applied forces, the so-called geometric stiffness.  Compressive 
forces reduce the stiffness and the frequencies and may lead to buckling, for zero frequencies. In bases of machines 
excited by the supported equipment, vibrations may affect the structures but, in general, they may generate damage to the 
suspended equipment and the quality of the production. Although machine support structures are, as a rule, very bulky, 
little affected by geometric stiffness considerations, the tendency of modern structural engineering, especially in 
aerospace applications, is towards slender members, due to more efficient materials and powerful analysis tools. Here we 
study these effects via experimental methods designed to evaluate previous mathematical models. Our model is a metal 
beam under compression supporting a DC motor. We suppose the original design provided natural frequencies away from 
the excitation frequency. Nevertheless, the presence of large axial compressive force will reduce the beam stiffness and 
natural frequencies leading to unexpected, potentially dangerous resonance states. Experimental imperfections led to 
observation of interesting phenomena not predicted in our previous theoretical and numerical studies. We also observe, 
as expected, occurrence of the so called Sommerfeld Effect, when underpowered excitation sources get their rotation 
regime stuck at resonances. Earlier mathematical and numerical work is to be found in [1-3]. 

Experimental setup 

The model beam 
Figure 1 displays the experimental setup: a rectangular section steel bar mounted in a calibrated manual hydraulic press 
intended to apply large axial compressive forces in order to change its geometric stiffness. A small DC electric motor is 
fixed with PVC fixtures to the beam central section. Unbalanced forces are generated by wooden flywheels with attached 
small point masses. Several end conditions were studied: embedded ball point, simply cut etc. 

 
 

Figure 1: The experimental setup 
 

Instrumentation  
Data acquisition was carried out by an 8 channels automatic system coupled to a PC computer, with FFT capabilities. The 
sensor system comprises: piezoelectric accelerometers to pick up vibrations; strain gauges for strain and bending moments 
measurement; optical tachometer to access the motor rotation speed; an ad hoc designed power control and measurement 
digital electronic circuit, coupled to a DC supply.  
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Results and discussion 

The effect of large compressive axial forces applied to the beam on the geometric stiffness and 1st free undamped vibration 
frequency was detected, as displayed in Fig. 2. Frequencies get smaller as the compressive axial force grows, up to a 
point, where large nonlinearities reverse the trend. Effect of end conditions were also studied and presented in Fig. 2. 
 
 

Figure 2: First vibration frequency as function of axial compressive force and end conditions 
 

By controlling the amount of power available to the DC motor, the Sommerfeld effect was also observed, of getting stuck 
in resonance and occurrence of the jump phenomenon. Figure 3 displays measured forced vibrations accelerations as 
power is varied linearly from zero through resonance, for a certain value of axial compressive force. Motor angular 
velocity, measured by the tachometer, is also shown. 

Figure 3: Accelerations and motor rotation speed as power is increased through resonance 

Conclusions 

An experimental research was carried out on the nonlinear dynamics of a beam supporting a unbalanced rotating machine. 
The effect of large compressive axial forces upon the geometric stiffness and free undamped vibration frequencies was 
detected. Further, for underpowered machines, the Sommerfeld effect was also observed, of getting stuck in resonance 
and occurrence of jump phenomena. Effect of several end conditions was also studied.  
We acknowledge support by FAPESP and CNPq, both Brazilian research funding agencies. 
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Dynamical analysis of TET in a non-smooth vibro-impact system

Ruofeng Liu 1, Dimitri Costa 2, Daniil Yurchenko3, and Rachel Kuske2
1 Computational and Applied Math, Rice University, Houston, USA.

2 School of Math, Georgia Tech, Atlanta, USA.
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Summary. Applying a novel analysis we study targeted energy transfer (TET) in a non-smooth vibro-impact system (VI), comprising
a ball freely moving within a frictionless slot made within a harmonically excited large mass. Both the ball and the mass can move
independently between inelastic collisions. The proposed semi-analytical approach allows analyzing TET in the discontinuous piece-
wise linear systems exactly, in contrast with previous studies via approximations related to a specific state. We obtain parameter ranges
for the impact pair to effectively transfer energy to it from the base excited system via a series of impacts.

Problem statement

Targeted energy transfer may be viewed as an extension of a classical linear tuned mass damper (TMD) theory, where a
second mass-spring system is added to an original single-degree-of-freedom (SDOF) oscillator to avoid a high-amplitude
response near its resonance frequency [1, 2]. The parameters of the resulting two DOF (TDOF) system are selected so
achieve a low energy state in the original system, while the added mass-spring subsystem stores the energy of the entire
TDOF system. While TMD is a standard approach for vibrational mitigation and energy transfer, used by engineers for
over 100 years, it has no direct analogy for nonlinear systems. Without an exact analytical solution for the classical non-
linear TDOF system there is no “obvious” way to choose the systems’ parameters for transferring energy from a forced
oscillator to a nonlinear energy sink via nonlinear coupling, see [3, 4] and references therein. Analyses are generally
based on weakly nonlinear approximations or model reductions. Parametric studies are then limited requiring simulations
for explorations of the full nonlinear behavior.

Alternatively, we note that energy transfer in continuous nonlinear systems is a special case of more general nonlinear
systems, which can be non-smooth and discontinuous. Considering TET via persistent vibro-impact motion (e.g. as in
[5, 6]) we focus on the non-smooth impact pair as in [5, 7], with a small mass ball traveling freely within a slot of length
2b made in the large excited mass. The dynamics of the displacements q1, q2 of the large and small masses with mass M
and m respectively, complemented by the impact conditions at |q1 − q2| = b, is described by the following equations:

Mq̈1 + cq̇1 + kq1 = kE sin(ωt+ φ) + cωE cos(ωt+ φ) q̈2 = 0 (1)

(q̇+1 − q̇+2 ) = −r(q̇−1 − q̇−2 ) Mq̇+1 +mq̇+2 =Mq̇−1 +mq̇−2 ,
−(+) before (after) impact (2)

where k is the elastic spring coefficient, E, ω, φ are the excitation amplitude, frequency, and initial phase, r is the
restitution coefficient, t is the time, the dot indicates derivatives with respect to time. The instantaneous impact conditions
(2) capture the two-way energy exchange between the masses, in contrast to the extensive literature on bouncing ball
dynamics, where the mass of the ball is typically assumed as negligible [8].

Analytical approach

Within a non-dimensionalized framework, with parameters µ =
m

M
, A =

E

b
, ω0 =

√
k

M
, Ω =

ω

ω0
, λ =

c

Mω0
,

state variables x1 =
q1
b
, x2 =

q2
b

and rescaled time t̂ = ω0t, and dropping ’̂s for the remainder, we integrate the

equations of motion (1), and apply the impact conditions (2) when the ball impacts either end of the cavity. This yields
the map of the state from the previous impact time tk−1 to the next impact time tk in terms of all system parameters

x1,k = a1e
−λtk

2 sin(γtk) + a2e
−λtk

2 cos(γtk) + b1 sin(Ωtk + φ) + b2 cos(Ωtk + φ)

ẋ1,k = a1e
−λtk

2

(
−λ
2
sin(γtk) + γ cos(γtk)

)
+ a2e

−λtk
2

(
−λ
2
cos(γtk)− γ sin(γtk)

)
+ b1Ωcos(Ωtk + φ)

−b2Ωsin(Ωtk + φ),

x2,k = x2,k−1 +

(
1 + r

1 + µ
ẋ1,k−1 +

µ− r
1 + µ

ẋ2,k−1

)
· (tk − tk−1)

ẋ2,k =
1 + r

1 + µ
ẋ1,k−1 +

µ− r
1 + µ

ẋ2,k−1 (3)

Here the conditions are in terms of xj,k, ẋj,k the displacements and velocities at the impact time tk, corresponding to
the end of each sub-interval of continuous motion, so that the superscript − as in (2) can be dropped without loss of
generality. The coefficients al,bl are functions (not given here) of the previous time tk−1 and states ẋj,k−1xj,k−1. Taking
|x1,k−1−x2,k−1| = 1 and |x1,k−x2,k| = −1 yields the map P1 for the motion from left to right in the capsule. Similarly
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Figure 1: Upper: Bifurcation diagram of relative impact velocity ẇ for (red (blue) is left (right) impact obtained numerically) vs.
forcing amplitude A; Green solid (dotted) lines are stable (unstable) 1:1 solutions obtained analytically. Lower: Phase planes with ẇ
vs w at A = .015, .021, .023 and .05 showing 1:1, 1:1/2T , 2:1, and 2:2 periodic solutions, respectively.

we determine maps for the other motions, e.g. P2 right to left, and P3 (P4) for successive impacts on left (right). Thus it
is possible to construct a sequence of maps describing the different periodic motions, whether successive impacts occur
on the same or different ends of the slot. We use the notation n:m/pT corresponding to pT -periodic solutions with n (m)
impacts on the left (right) of the capsule, given an external forcing with period T on the large mass. Then 1:1 solutions, the
simpler case where the ball has alternating impacts on either end of the capsule, are determined from the system (3) given
by the composition P1◦P2 together with the periodicity condition. Similarly 2:1 solutions are obtained from the combined
equations from the composition P3 ◦P1 ◦P2 plus periodicity, and so on for other n:m behaviors. From these compositions
plus periodic conditions we obtain the period solution in terms of state vectors H∗

k = (φk, ẋ1,k, ẋ2,k, x1,k), where the
phase shift φk of the impact is relative to the forcing. Based on these analytical results for the periodic solution, we can
also study their linear stability [9], and thus identify analytically both traditional bifurcations such as period doubling
and discontinuity-induced bifurcations. The procedure described in this section is also applied to obtain semi-analytical
solutions of a soft impact model and are used to analyse the compliant system dynamics.

Comparison of Numerical and Analytical results

Figure 1 shows the numerically obtained bifurcation structure of the relative impact velocity ẇ = ẋ1k − ẋ2k vs. forcing
amplitude A, illustrating 1:1, 1:1/2T , 2:1, and 2:2 solutions, as well as chaotic behavior occurring for different A. Stable
and unstable 1:1 solutions obtained analytically are shown, indicating good agreement between analytical and numerical
results for the stable 1:1 periodic solutions, as well as the regions for instability. From the results we can calculate
performance based on energy transfer efficiency, for example, kinetic energy transferred relative to work done by the
excitation. This measure (not shown) indicates improved performance via 1:1 type periodic solutions, with some reduced
performance at non-smooth bifurcations such as 1:1 to 2:1 transitions.

Conclusions

We study targeted energy transfer in a VI system by expressing the inter-interval dynamics as a sequence of maps. We
capture physically-relevant motions via the derived semi-analytical approach that reveal critical parameter dependencies
of the dynamics and energy transfer. Developing this approach within the instantaneous (hard) impact condition allows
us to generalize to compliant impact conditions.
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Energy harvesting from vortex induced vibration in MEMS devices using magnetic
interaction
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Summary. Energy harvesting from the environment is an emerging field and a better alternative to battery-operated systems such as
wireless sensors, IoT and lower power electronic devices. Linear energy harvester has maximum power output near its natural fre-
quency, which restricts its operation in narrow bandwidth. To improve the bandwidth and the power output, a pair of magnets with
same polarity is used to induce non-linearity in a cantilever beam subjected to vortex induced vibration. This increases the complex-
ity of the problem in FEA softwares as it will be coupled electrical-fluid-mechanical-magnetic problem. Thus, the magnetic force is
replaced with nonlinear spring in ABAQUS and the Fluid Structure Interaction is carried out by reducing the complexity to electrical-
fluid-mechanical problem. The magnets are placed at a certain distance so that the beam operates as a bistable system. The analysis
was carried out for beam with different natural frequencies by changing the tip mass. Using the pair of repulsive magnets, we have
found that the energy harvested in non-linear system is higher than the linear energy harvester.
Keywords: Energy harvesting; Fluid Structure Interaction; MEMS; Nonlinear Dynamics; Vortex Induced Vibration

Introduction

With the rapid development of technology in the field of sensors, IoT more emphasis is made on low power based devices.
Wireless Sensor Networks(WSNs), IoT applications demand for low-energy wireless nodes typically powered by non-
renewable energy storage units(batteries). But the battery have limited lifetime and it is difficult and expensive to replace
them. An energy harvester(EH) operated along with a battery could potentially increase the lifetime of the node and
eliminate the need to replace the battery. MEMS devices could be easily integrated with the circuit but the process
to develop MEMS devices is complex, time consuming and expensive. Thus, FEA simulation allows to analyze or
redesign the harvester according to the need. But FEA packages cannot handle complicated coupled problems which
are common in non-linear EH. The major problem to analyze a vortex induced vibration based nonlinear EH involving
magnets includes the complexity to solve the electrical-fluid-mechanical-magnetic problem. The magnetic force between
two cylindrical magnets used in the MEMS cantilever beam is modeled as a nonlinear spring which has the same behavior
as the repulsive magnets. The FE model of cantilever nonlinear EH with nonlinear springs is validated with the theoretical
model. Application of phase space, bifurcation diagram, Poincaré maps were used to study the nonlinearity effects to
enhance the energy harvested.

Analysis
The axial force and lateral forces between two cylindrical magnets [2] is given in Figure 5 (2a). This nonlinear magnetic
force is approximated using piecewise linear segments and given as an input in ABAQUS. The beam with nonlinear spring
is simulated in ABAQUS with an acceleration of 2 m/s2(20 Hz) and validated with the theoretical model using equations
shown in Figure 5 (1c and 2c)

Figure 1: Voltage time history of FEA and theoretical results Figure 2: FFT of voltage from theoretical and FE results

Set up
The setup consists of a 2mm cylindrical bluff body and a beam (5mm × 0.3mm × 9µm) which is placed at a distance
of 6mm from the center of the bluff body. The magnets(NdFeB N35 grade) have dimension φ0.1 × 0.1mm placed at
a distance of 0.4mm from each other. Beam is subjected to a uniform input velocity of 2m/s having vortex shedding
frequency of 217Hz. The beam operates in a bistable system, for distance less than 0.4mm as shown in Figure 4.
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Figure 5: (a) Magnet Design (b) FSI Setup (c) Coupled electromechanical Equation (d) (1) Time history (2) Bifurcation Diagram (3)
Phase space (4) Maximum Lyapunov exponents for time series at 131 Hz

The coupled non-dimensionalized equation can be represented as Figure 5 (3c). For beam with natural frequency 131
Hz(Ω = 1.65) operates in chaotic range for ζ = 0.0275 as shown in Figure 5 (d)

Discussion
The magnetic force equation was derived with the assumption that the cylindrical magnets are placed axially and there
exists uniform magnetization in each magnet. Also, the rotation of the magnet is neglected while simulating magnetic
force with nonlinear spring as the rotation of the magnet will be typically below 10◦ for low base excitation used in energy
harvesting applications. Piezoelectric materials are anisotropic by nature. But for our analysis, we have considered both
substrate and Piezoelectric material as a linear elastic material model as the strain in the substrate is well below the elastic
limit. In HVAC systems airflow is usually unidirectional with operating speeds from 1.8 m/s to 5 m/s. Care must be taken
while designing for a bistable system, as adequate forcing is required for the beam to cross the potential barrier.

Conclusion

In this work, we analyzed the nonlinear EH operating as a bistable system using pair of permanent magnets. The bistability
causes the beam to cross from one potential to another, thereby increasing velocity and in turn power output. The beam
acts as a linear EH when the distance between the magnets is very large. Nonlinear energy harvesters generate more power
compared to linear counterparts except at resonance. Beam operating in the chaotic range have higher power output but
there is an additional need to design efficient energy harvesting circuit. The system is chaotic for particular values of
amplitude, forcing frequency and damping value.
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 Frequency-Energy Plot of Unsymmetrical Nonlinear Energy Sink  
 
 Mohammad A. AL-Shudeifat  
Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi, 

United Arab Emirates   
  
Summary. Studying the nonlinear energy sink (NES) attachment with a linear dynamical oscillator (LO) on the frequency-energy plot (FEP) 
reveals the underlying nonlinear dynamical behavior of the LO-NES system. In addition, the FEP reveals different kinds of periodic motions 
on NNMs backbone branches. The unsymmetrical force nonlinear energy sink (UNES) incorporates a cubic stiffness element at one side of 
its equilibrium position where a weak linear restoring coupling stiffness acts in both directions. The obtained FEP has revealed several 
unsymmetrical backbones of 1:1 resonance between the UNES and the LO periodic oscillations at different nonlinear frequency levels. 

Introduction 

The frequency energy plots (FEPs) analysis has a significant impact on revealing the underlying nonlinear dynamics of 
the structure-NES nonlinear motion. The periodic motion of stiffness-based structure-NES systems have been extensively 
studied on harmonic NNM backbone curves and their associated branches/tongues of subharmonic and super harmonic 
periodic motions in the FEPs. The FEPs accompanied with the superimposed wavelet frequency spectrum content have 
confirmed the existence of different kinds of resonance captures between the primary system and the NES oscillations at 
the backbones and their associated subharmonic branches and tongues. The resonance captures on the FEPs have 
explained the rapid and passive targeted energy transfer (TET) from the primary system into the NES attachment [1–5]. 

UNES Description 

The UNES attachment with the LO in [6] is shown in Figure 1 where the UNES mass is coupled with the LO by a cubic 
stiffness element that acts only to the left-side of the equilibrium position. In addition, the UNES incorporates a weak 
linear restoring spring that acts in both directions as shown. The physical parameters in [6] are used here for generating 
the frequency energy plot of the Hamiltonian version of the LO-UNES system (i.e, 1 2 0    ).  The other parameters 

are; LO mass of 1 kg M  , LO coefficients of stiffness of 1 1N / m k  , NES mass of = 0.05 kgm , NES coefficients of 

cubic nonlinear stiffness of 3= 1 N / mnlk , and the UNES coefficient of weak linear restoring stiffness 0.03 N/mresk  . 

 

 
Figure 1: Unsymmetrical NES attachment with a linear oscillator 

Frequency Energy Plot of the LO-UNES System 

The FEP backbones are generated here by applying the numerical continuation method in [4, 5] with the considered LO-
UNES system in Figure 1. The free-response of the Hamiltonian equations of motion of the system is obtained at the 
given physical parameters in the previous section for zero velocities and nonzero displacements. Therefore, the underlying 
nonlinear dynamical behaviour due to the influence of the unsymmetrical coupling stiffness force is investigated on the 
obtained FEP. Accordingly, seven backbone curves (A1, A2, B1, B2, C, D and E) are obtained in the FEP as shown in 
Figure 2. The backbones are named according to the ratio of the frequency content in the oscillation response between 
the LO and UNES masses. Therefore, 11U   denotes to an unsymmetrical NNM periodic motion at which the NNM does 
not pass through the origin in the NNM configuration space where the   and   indices indicate to the in and out of 
phase periodic motions, respectively. 11U branch of the backbone indicates to 1:1 resonance frequency ratio of the in 
phase periodic motion between the LO and UNES masses. As shown from the FEP, the backbones, A2, B1, B2, and C, 
approach 1, 1/2, 1/3 and 1/4 of the natural frequency of the LO at high energy levels. Unlike other kinds of NESs, all 
backbones are at 1:1 resonance for different values of the nonlinear frequency. 
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The NNM, the related periodic time response of the UNES mass and the associated mass of the LO, and the corresponding 
nonlinear UNES coupling force are plotted for selected data points a and b, respectively, as shown in Figure 3. For the 
data point a, the NNM does not pass through the origin where this NNM is located at the 11U backbone A1. Therefore 
a 1:1 out of phase resonance takes place between the UNES and LO periodic motions. The data point b is located 11U 
backbone B1. For this data point, also 1:1 out of phase resonance takes place between the UNES and LO periodic motions. 
In Figures 3c and 3f, the strong nonlinear effect to the right-side of the equilibrium position of the UNES and the weak 
linear coupling effect in the left-side are shown.   
 

 
 

Figure 1: The obtained unsymmetrical backbone curves of the FEP of the LO-UNES system. 
 

 

 
Figure 3: The NNMs in (a) and (d), their corresponding oscillation displacements in (b) and (e), and the corresponding nonlinear 
coupling forces in (c) and (f) for the data points a and b in the FEP. 

Conclusions 

In this study, the frequency energy-dependence of LO-UNES system is studied on the frequency energy plot. The 
underlying nonlinear dynamical behavior of the LO-UNES is revealed on the FEP. Unlike other existing NESs, the UNES 
is found to be associated with several backbones of unsymmetrical NNMs of 1:1 in phase and out of phase resonance 
between the UNES and LO oscillations for wide range of nonlinear frequency levels. The UNES shows a unique capability 
of functioning at 1:1 resonance at a broadband frequency-energy fashion. 
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 Escape of two-DOF dynamical system from the potential well  
 
 A.Engel*, T. Ezra*, O.V.Gendelman*, A.Fidlin** 

* Technion—Israel Institute of Technology, Israel 
**Karsruhe Institute of Technology 

  
Summary. The escape of initially excited dynamical system with two degrees of freedom from three different one-dimensional benchmark 
potential wells is considered. Main challenge is revealing the basic mechanisms that govern the escape in different regions of the parametric 
space, and constructing appropriate asymptotic approximations for analytic treatment of these mechanisms. In this study numerical and 
analytical tools are used in order to classify and map the different escape mechanisms for a variety of initial conditions, and to offer the 
analytic criteria predicting the system’s behavior for those cases. 
 

Introduction 
Escape from a potential well is a classic problem, relevant in many branches of physics, chemistry and engineering. 
Among many examples of possible applications, one encounters dynamics of molecules and absorbed particles, celestial 
mechanics and gravitational collapse [1,2], energy harvesting [3] responses of Josephson junctions [4], various aspects of 
capture into and escape from the resonance [5], as well as the capsizing of ships [6]. Even more profound, and widely 
explored manifestation of the escape phenomenon is a dynamic pull-in in microelectromechanical systems (MEMS) [7,8]. 
In this current study, we will expand the discussion and analyze two DOF systems. For a better understanding of the 
problem and a more reliable model in our work, three one-dimensional examples of potentials are considered: inverse 
hyperbolic potential, cubic potential and biquadratic potential. General setting explored in the present work can be 
presented as two equal particles attached to each other by a spring, and imbedded into the potential well (Fig 1). 

 

 
Figure 1: sketch of the general setting 

Main challenge is revealing the basic mechanisms that govern the escape in different regions of the parametric space, and 
constructing appropriate asymptotic approximations for analytic treatment of these mechanisms. 
 

Results 
In this study numerical and analytical tools, such as Poincare maps and grid classification, are used in order to classify 
and map the different escape mechanisms for various initial conditions. Further investigation was performed on two 
different sets of initial conditions. For the first set of conditions, only one of the particles was excited by a nonzero initial 
velocity. For the second set of conditions, both particles were excited. For convenience, in this case other coordinates 
were used: center of mass R and interparticle displacement W. When only W coordinate is excited, one can reveal an 
additional escape mechanism - dissociation, in which the distance between the particles eventually diverges. In order to 
investigate the classic escape mechanisms in which both particles escape in the same direction, we add minor disturbance 
to the center of mass velocity R .  

       
         

1 2 2 1 0

0

0 0 0 0 ; 0

0 0 0 ; 0 ; 0 0 / 0

set q q q q v

set R W W v R R 

    

     
 

Variety of analytical and dynamical methods were used to derive the dependence between the minimum energy required 
for different escape mechanisms of the system and the spring stiffness . The resulting relations were validated by the 
numerical results, as presented in (Fig 2). 
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Figure 2: the analytical prediction and numerical results for the different cases (1) set  , minimum energy required to escape as a 

function of the spring stiffness (a) inverse hyperbolic potential (b) cubic potential (c) biquadratic potential. (2) set  , minimal 

separation velocity W required for each escape mechanism as a function of the spring stiffness (a) biquadratic potential (b) cubic 
potential 

 

Discussion 
For the case of the single particle excitation, a clear distinction between the cases of weak and strong coupling has been 
revealed. For the small coupling, the escape is achieved when the excited particle has enough energy to pull the remaining 
particle from the well. For the case of the strong coupling, one can separate the timescale of fast interparticle oscillations; 
appropriate averaging delivers the modified effective potential for relatively slow evolution of the center of masses. 
Interestingly, two aforementioned limiting cases faithfully cover almost all space of parameters. To explore the chaotic 
responses, Lyapunov exponents were calculated, as presented in (Fig 3). 

  
Figure 3: Lyapunov exponents as a function of the spring stiffness (a) Cubic potential (b) Biquadratic potential (c) Hyperbolic 

potential  
Only the inverse hyperbolic potential has shown characteristics of chaotic behavior, mainly for low values of the spring 
stiffness, while the cubic and biquadratic potentials have not exhibited the chaos-governed escape dynamics. For the other 
set of initial conditions, a new escape mechanism – dissociation, derived from the symmetry of the initial conditions and 
the biquadratic potential, was recognized. Along with an additional escape mechanism, related to a parametrically driven 
acceleration of the center of masses. Those two mechanisms introduced in (Fig 2.2.a)), the dissociation mechanism occurs 
for higher energy levels while the other is described by lower levels. For those cases no separation of the parameters plane 
was needed and the same regime described the system for all ranges of the stiffness.  
  
References 
[1] Koon, W.S. Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. 

Chaos An Interdiscip. J. Nonlinear Sci. 10 427–69 (2000) 
[2] Arnold,  V.I.,  Kozlov,  V.V.,  Neishtadt,  A.I.:  Mathematical  Aspects  of  Classical  and Celestial Mechanics. Springer, Berlin (2006) 
[3] Junyi Cao, Shengxi Zhou, Wei Wang, and Jing Lin. Influence of potential well depth on nonlinear tristable energy harvesting. APPLIED PHYSICS 

LETTERS 106, 173903 (2015) 
[4] Barone, A., Paterno, G.: Physics and Applications of the Josephson Effect. Wiley, New York (1982) 
[5] Quinn, D.D.: Transition to escape in a system of coupled oscillators. Int. J. Non-Linear Mech. 32, 1193–1206 (1997) 
[6] Virgin, L.N.: Approximate criterion for capsize based on deterministic dynamics. Dyn. Stab. Syst. 4, 56–70 (1988) 
[7] Zhang,  W.-M.,  Yan,  H.,  Peng,  Z.-K.,  Meng,  G.:  Electrostatic  pull-in  instability  in MEMS/NEMS: a review. Sens. Actuators A Phys. 214, 187–

218 (2014) 
[8] Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.: A reducedorder model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 

12, 672–680 (2003) 

ENOC 2022, July 17-22, 2022, Lyon, France

163



ENOC 2022, July 17-22, 2022, Lyon, France

	        
 

2022
ENOC

Monday, July 18, 2022
16:00 - 18:20

MS-14 Nonlinear Dynamics for Engineering Design
Rhone 2

Chair: Bogdan Epureanu - Daniele Zulli

16:00 - 16:20
Multiple scale expansion and frequency-response curves of a nonlinear beam model
BABILIO Enrico∗, LENCI Stefano, SACCO Elio
∗Department of Structures for Engineering and Architecture (DiSt), University of Naples “Federico II” (via Forno Vec-
chio 36 - 80134, Naples Italy)

16:20 - 16:40
Non-linear dynamics of straight beamswith (orwithout)shape imperfections and very shallow arcs: similarities and dif-
ferences controlled by boundary conditions
PAULS Vitaly∗, LENCI Stefano, SOROKIN Sergey
∗Polytechnic University of Marche (60131 Ancona Italy)

16:40 - 17:00
Low Voltage Operation of Vilnius Chaotic Oscillator
PIKUL, INS Dmitrijs∗, SERGEJS Tjukovs, IHEANACHO Chukwuma Victor, ALEKSANDRS Ipatovs, GRIZANS Juris
∗Institute of Radioelectronics, Riga Technical University (Azenes st. 12, Riga Latvia)

17:00 - 17:20
Nonlinearity in estimating bolt tension from vibrations
BRØNS Marie∗, THOMSEN Jon
∗Technical University of Denmark [Lyngby] (Anker Engelunds Vej 1, Building 101A, 2800 Kgs. Lyngby Denmark)

17:20 - 17:40
On the reliability of contact models in Vibro-Impact Nonlinear Energy Sinks
LO Feudo Stefania∗, JOB Stéphane, CAVALLO Miriam, FRADDOSIO Aguinaldo, PICCIONI Mario Daniele, TAFUNI
Alessandro
∗Laboratoire QUARTZ (ISAE Supméca - 3 rue Fernand Hainaut - 93400 Saint-Ouen cedex France)

164



ENOC 2020+2, July 17-22, 2022, Lyon, France

Multiple scale expansion and frequency-response curves of a nonlinear beam model
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Summary. Slender and highly flexible structures quite often take place in systems designed to meet high to extreme performances.
Hence cables, ropes, yarns, hoses and pipelines, which are essential parts of such structures, play a relevant role in practically every
engineering field. In mechanical and automotive engineering, large amplitude motions of thin rods can be exploited to design non-
linear vibration absorbers for the reduction of torsional vibrations of drivelines; in assembly and disassembly phases and in system
operation, reliable models are needed to predict and analyze the behavior of cables and wiring harnesses, taking also into account
effective material properties; accurate structural models of wire ropes are required to study the behavior of rope-ways and cranes
on the system level. In aerospace engineering, compact, flexible and slender aerials and booms to be deployed in space are typi-
cally used to minimize the room needed to store satellites in launching phases. In textile engineering, complicate interactions among
hundreds of yarns have to be controlled to obtain the desired final layout. In biomedical engineering, medical endoscopes charac-
terized by a multilayer structure must be accurately modeled, since they exhibit highly deformed configurations while moving inside
narrow curved tubes within the human body. In offshore engineering, floaters, mooring lines, and others structural components of
floating wind farms, are subject to structural fatigue and various sources of damping and power cables show complex cross-sectional
properties. In civil engineering, estimates of the structural properties from response data coming from non-destructive procedures
is critically empowered by a deeper understanding of beam-like structures. However, despite of their ubiquity, slender structures
in real operating conditions exhibit responses often too complicated for current modeling tools. In this respect there is a continu-
ous need for reliable models. In this area, this contribution considers a beam model equipped with non-standard constitutive laws
and in particular it is aimed at deriving approximate solutions of the equations of motion via asymptotic multiple scale expansion.

Introduction

We consider a geometrically exact beam model deduced by stipulating a relation between one- and three-dimensional
formulations for initially straight beams undergoing planar and twist-less deformed states. Using comma notation for
derivatives, the equations of motion derived in [1], to which we refer for any further detail, are written as

m0 u,tt −m1(θ
2
,t sin θ − θ,tt cos θ) + c0 u,t + c1θ,t cos θ =

(
N(1 + u,x)

√
2ε+ 1− Tv,x√

2ε+ 1

)

,x

+ q1 , (1)

m0 v,tt −m1(θ
2
,t cos θ + θ,tt sin θ) + c0 v,t − c1θ,t sin θ =

(
Nv,x

√
2ε+ 1 +

T (1 + u,x)√
2ε+ 1

)

,x

+ q2 , (2)

m1(u,tt cos θ − v,tt sin θ) +m2 θ,tt + c1(u,t cos θ − v,t sin θ) + c2 θ,t =M,x − T
√
2ε+ 1 + q3 , (3)

where u(x, t) and v(x, t) stand for the axial and transverse displacements of the beam axis, θ(x, t) is the cross-sectional
rotation, N(x, t), T (x, t) and M(x, t) are axial, transverse and bending generalized stresses. These are related to the
axial strain ε, the shear angle γ and the Lagrangian bending curvature κ, all nonlinear functions of u, v, and θ, by the
nonstandard constitutive assumptions

N =
sin2 γ√
2ε+ 1

KS +
ε√

2ε+ 1
K0 + cos γ

(
3ε+ 1

2ε+ 1

)
κK1 +

1 + 2 cos2 γ

2
√
2ε+ 1

κ2K2 +
cos γ

2(2ε+ 1)
κ3K3 , (4)

T =
√
2ε+ 1

sin 2γ

2
KS − ε sin γ κK1 −

√
2ε+ 1

sin 2γ

2
κ2K2 −

sin γ

2
κ3K3 , (5)

M = ε
√
2ε+ 1 cos γ K1 +

(
ε+ (2ε+ 1) cos2 γ

)
κK2 +

3

2

√
2ε+ 1 cos γ κ2K3 +

1

2
κ3K4 . (6)

In Eqs. (1-6), the mass, damping and stiffness coefficients are given by

mi =

∫

S0

ρyidA , ci =

∫

S0

cyidA , Ki =

∫

S0

E yi dA , KS =

∫

S0

GdA , (7)

where ρ, c, E and G are mechanical parameters and S0 is the rigid cross section.
Since their introduction, Eqs. (1-3) have been analyzed in some depth [2, 3, 4], mainly through numerical investigations.
On the contrary, the present paper, following [5, 6], is focused on analytical developments, based on the method of
multiple scales [7]. In particular, to draw the frequency-response curves, the exact partial differential Eqs. (1-3) are
analyzed around frequencies corresponding to certain natural bending modes.
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Some preliminaries on multiple time scale equations of motion
We introduce three time scales and develop the time and time derivative operator respectively as t = τ0 + ϵτ1 + ϵ2τ2 and
(·),t = (·),τ0 + ϵ(·),τ1 + ϵ2(·),τ2 , being ǫ≪ 1 a book-keeping parameter, and assume that the unknowns u, v, and θ in
Eqs. (1-3) are small of order ǫ at most and can be expanded, up to the 3rd order, as

wi(x, t) = ǫWi1(x; τ0, τ1, τ2) + ǫ2Wi2(x; τ0, τ1, τ2) + ǫ3Wi3(x; τ0, τ1, τ2) , i = 1, 2, 3 (8)

where wi are dummy functions such that u = w1, v = w2, θ = w3, and Wij are unknown functions to be determined.
Based on appropriate choices of the geometric or mechanical properties of the beam, the loads, or even the reference
frame, we can accept that some mechanical parameters are zero or negligible for some power of ǫ. In what follows, we
assume that c0 and K3 are at most of order ǫ2;m1, c1, c2, K1 and q2 are at most ǫ3; q1 and q3 are at most ǫ4.
We also assume that the loads are periodic functions as

qi(t) = Pi cos (Ωit) = Pi cos (ωiτ0 + σiτ2) , i = 1, 2, 3 (9)

i.e., the excitation frequencies are chosen to be close to the corresponding natural frequencies ωi by means of detuning
parameters σi, which are assumed to be of order ǫ2.
Substituting Eq. (8) and corresponding derivatives and Eq. (9) in Eqs. (1-3), taking into account the chosen orders of
magnitude of all the coefficients, and collecting terms of like powers of ǫ, we obtain, after some algebra, a perturbation
hierarchy as a set of linear differential equations

m0W1j,τ0τ0 −K0W1j,xx = P1j , (10)

m0Wij,τ0τ0 +K−1
S (m0m2Wij,τ0τ0 − (m0K2 +m2KS)Wij,xx),τ0τ0 +K2Wij,xxxx = Pij , i = 2, 3 (11)

with the index j, that is the power of ǫ, spanning from 1 to 3.
Notice that terms Pi1 vanish, Pi2 depend onWi1, and Pi3 depend onWi1 andWi2.Moreover, because of our assumptions
on the orders of magnitude of qi(t), P23 is the first term in which an external load, namely q2(t), appears.
Although we consider only three time scales and neglect terms beyond the third order of ǫ in the expansions of unknowns,
in multiple-scale approaches any number of scales and any order of ǫ can be considered. Indeed, the corresponding
perturbation hierarchy is, at least in principle, simple to manage: starting by solving the first order problem, the right-
hand side of second order problem can be computed; then, once second order problem is solved, the third order right-hand
side is got, and so on. At any step proper solvability conditions must be met in order to avoid that resonant secular terms
appear in the solution. However, typically, algebraic complexity allows to calculate a few terms of the expansion and
convergence properties of the expansion remain unknown [8]. We should also point out that the asymptotic expansion
introduced in Eqs. (8) for the unknown functions wi(x, t) gives an accurate representation of them for ǫ approaching zero.
After this brief introduction to the approach, the next step of this study will be to detail about frequency-response curves
and time histories, with the aim to compare the behavior of the model we are dealing with to those of other nonlinear
beam models available in the scientific literature [9, 10, 11].

Conclusions

The present contribution, which is part of an ongoing research focused on the analysis of a geometrically exact beam model
with nonlinear constitutive relationships, reports on preliminaries of a multiple time scale expansion of the equations of
motion. The next step, which is still in progress, will focus on approximate time histories, frequency-response curves,
and comparison with other nonlinear beam models available in the scientific literature and with results obtained through
numerical approaches as finite element or finite difference methods.
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Alternative formulations of boundary conditions at s=1 (e.g., sliding support in an absence of the force or full constrain 
of displacements) are obvious. Likewise, the limit cases of a linear curved beam [4-5] and a nonlinear ideally straight 
beam [1-3] are readily available from the proposed formulation.     
  

The solution methods and the eigenfrequency analysis 

The exact solution of the linear problem of free/forced vibrations of a curved beam is easily obtained regardless the type 
of boundary conditions. To solve a non-linear problem of vibrations of a curved beam, the canonical method of multiple 
scales adjusted for the system of partial differential equations is used. The reference solutions of a nonlinear problem of 
vibrations of an axially restrained beam by the same method are presented in the references [1-3].  

 
Figure 2: The first and the second eigenfrequency of a curved beam versus curvature parameter  

 
The results of eigenfrequency analysis of an axially restrained hinged beam are presented in Figure 2. The appreciable 
(exceeding 5%) differences correspond to the amplitude of shape imperfection around 0.06L. 

Conclusions 

The results obtained so far suggest that the simple linear theory of curved axially restrained beams agrees with the 
nonlinear theory of straight beams with shape imperfections in a broad range of curvature parameter. Nonlinear vibrations 
of a curved beam still require careful asymptotic analysis, especially in the case of a vanishingly small curvature. 
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Summary. The paper is dedicated to the numerical study of nonlinear oscillations exhibited by the Vilnius chaotic generator. The need for 
practical applicability of the mentioned generator in chaotic communications defined the necessity to study the low-power operation of the 
circuit, designed initially to be powered from high voltage sources. The bifurcation map and corresponding one-parameter diagrams reveal 
complex nonlinear dynamics and regions of robust chaotic oscillations. 

1. Introduction 

The use of chaotic signals generated by various electronic systems has been growing for the last several decades, and it 
is considered a major candidate for future technologies. Chaotic oscillators have found applications in communications 
[1]-[3], random number generators [4], chaotic computing [5] and other fields. The main requirements for the practical 
application of a chaotic oscillator are the circuit's simplicity, the variety of different chaotic modes, and robustness. 

The rapid expansion of the Internet of Things (IoT) creates new challenges to electronic circuit design. Numerous 
applications like environmental sensing and healthcare monitoring impose the need for long-term autonomous operation 
of electronic modules. In [6], the authors conclude that batteries are the most promising energy source for IoT 
applications, particularly wireless sensor networks. Energy harvesting techniques suffer from insufficient power levels 
and often are unpredictable and thus insecure. This, in turn, implies DC voltage levels available to power electronic 
circuits being in the range of several volts. 

Furthermore, industry trends and the natural need for miniaturization of sensor nodes create new challenges in power 
circuit design. The battery life may determine the useful lifespan of the device in cases where the batteries are not 
replaceable for any number of reasons. The requirement of long autonomous operation of IoT devices dictates 
additional restrictions on chaotic generators, including energy efficiency and low power operation. 

The current study is dedicated to a comprehensive analysis of the low-voltage operation of the Vilnius chaos 
oscillator. First presented in 2004 [7], this circuit has been intended to operate from a 20 V source. However, several 
attempts have been made to adapt this oscillator to IoT applications [3], [8]. Thus, there is a need to study the nonlinear 
dynamics of the system operated at much lower voltages than it originally was supposed to. 

This paper is organized as follows. The second section is devoted to the description of the schematic and analytical 
model of the Vilnius oscillator. The third section presents the nonlinear analysis of the system dynamics under study at 
low voltage operation. The last section is devoted to the overall conclusions and suggestions on the applicability of this 
type of chaotic oscillator. 
 
 

2. Vilnius Oscillator Schematic and Model 
 
The schematic of the Vilnius chaotic oscillator is depicted in Fig.1. The circuit is easy to implement and modify, as it 
includes no unique components, just the off-the-shelf operation amplifier, diode, capacitors, inductors and resistors.  

 

Figure 1: The schematic diagram of the Vilnius oscillator 

This oscillator exhibits complex behaviour under specific component parameters despite being relatively simple. The 
frequency of the waveforms observed in the circuit is determined by reactive components C1, L1, and C2. Thus, it is 
possible to adapt the scheme for the frequency range of interest. Diode D1 is the mandatory nonlinear element needed 
for the chaotic oscillator. It can be a general purpose silicon diode like 1N4148 or Schottky diode. Also, no special 
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requirements apply for the operational amplifier. A reader can use, for example, an LTspice computer simulation 
program to get quick insight into the operation of the circuit and to observe typical waveforms. However, even such a 
brief study reveals that the number of parameters that affect the system's dynamics is too large to adopt a trial and error 
approach when the robust chaos is of interest. That is why the comprehensive study of nonlinear dynamics using 
bifurcation diagrams must be performed to identify the regions of chaotic behaviour for further practical 
implementation of the Vilnius oscillator. 
In this study, a system of equations initially developed in [1] is used to describe the dynamics of the system:         (1)               (2)                  ,  (3) 

where                                               ;                                                            ;         ;          ; kB is Boltzmann's constant; T is the temperature in Kelvins. 

The system's parameters of interest are a, b and ε, which could be adjusted by input voltage, variable capacitor C2 and 
variable resistors R1, R2, R3, and R4. 

The study of the nonlinear dynamics of the Vilnius oscillator will be provided based on one and two-parameter 
bifurcation diagrams that allow estimation of the system's mode of operation for various combinations of component 
values. However, this approach requires obtaining the discrete-time model of the original oscillator. The models could 
be constructed by application of the Poincare map. In the case of the Vilnius oscillator, y=0 is selected as the Poincare 
plane. Thus, the trajectories crossing this plane from one side will define the sampled model and provide the required 
information on the periodicity of the regimes under study (see Fig.2.).  
 

Trajectory

Poincare plane

Sampled points

z

y

x

 
 

Figure 2. The introduced Poincare plane for obtaining a sampled model of the Vilnius oscillator 
 

All the calculations are made utilizing specially prepared MATLAB scripts, including the solution of the equations 
with the Runge-Kutta (4,5)  method, implemented in the ode45 function. As the construction of bifurcation diagrams in 
the wide range of system parameters could be a time-consuming task, the Parallel Computing Toolbox functionality has 
been intensively utilized to efficiently distribute the computation tasks between all available physical cores of the 
computer. The results of calculations and the analysis of the obtained diagrams are provided in the next section. 
 

2. Nonlinear Dynamics at Low Voltage Operation 
 

The main goal of the current research is to study the dynamics of the Vilnius oscillator, operating in the voltage 
range viable for practical applications in wireless sensor networks. Thus, one of the parameters under study is b, which 
is directly connected to the current IR4 and voltage Vb. The task is to identify the lowest border of supply voltage at 
which the system could exhibit robust chaotic oscillations and study the qualitative changes in the dynamics as b is 
varied. 
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Figure 3: Two parameter bifurcation diagram for a=0.3; b=5-89; ε=0.05-0.4. 

 
The subsequent study of the nonlinear dynamics of the oscillator is based on the construction of a two-parameter 

bifurcation diagram of the system (bifurcation map) and analysis of the corresponding one-parameter bifurcation 
diagrams as the cross-sections of the map. 

The second parameter, chosen to be varied for the bifurcation map, is ε, physically dependent on the capacitor C1 
and C2 values. The obtained map for ε=0.05-0.4 and b=5-80 is shown in Fig. 3. Periodic operation modes are depicted 
up to period-7, and other high-periodic regimes and chaos are shown as white regions.  

The bifurcation map demonstrates that for low values of b (defined by input voltage), the system's dynamics are 
mainly periodic- exhibiting period-1 to period-4 oscillations for all values of ε. From a practical point of view, the 
system could not be used as the generator of chaotic oscillations for extremely low voltages (defined by b<12). This is 
also illustrated in Fig.4. The brute-force bifurcation diagram shows the clear transition from P1 to P4  and back to P1 
through subsequent period doublings without any signs of chaotic oscillations in the main branches. No coexisting 
chaotic attractors could be detected either. 

 
Figure 4: Brute-force bifurcation diagram for b=10; a=0.3; ε=0.05-0.4. 

 
However, there is a definite border (b>12), where the system becomes chaotic for a relatively wide range of ε 

values. There could be intermittent chaotic dynamics (with various periodic windows) or robust chaos without 
interrupting periodic modes. Fig. 4 shows classical period-doubling routes to chaos enclosing several intervals of robust 
chaotic oscillations (RCh1-RCh4). It can be inferred that setting system parameters within the ranges indicated - ε=0.1-
0.23 - should guarantee stable chaotic oscillations without the issue of transitioning to some periodic mode due to 
external noise or fluctuations in the component's values. 
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Figure 5: Brute-force bifurcation diagram for b=15; a=0.3; ε=0.05-0.4. 
 

The system's behaviour remains similar for higher values of b, as shown in Fig. 6. However, the amplitude of VC1 
(variable x) increases. Compared to the previous diagram, the system exhibits a non-smooth transition to chaos from the 
left side. This phenomenon could be explained by the presence of a diode in the circuit, defining the non-smooth 
switchings as the voltage rises and a certain threshold is reached. It has been noticed that the systems with non-smooth 
bifurcations could exhibit robust chaotic oscillations. However, in this case, we still observe some periodic windows in 
the chaotic regions and the transition to stable periodic regimes as ε reaches 0.24. 
 

 
Figure 6: Brute-force bifurcation diagram for b=50; a=0.3; ε=0.05-0.4. 

 
The second part of the investigation is dedicated to constructing the diagrams for fixed values of ε and varying the 

parameter b. For ε < 0.12, a wide diversity of dynamical patterns could be observed, as b is varied. Fig. 7. shows period 
doublings,  intermittent chaos and wide periodic windows. These regimes could not be relevant for practical 
applications, as any slight supply voltage variations could cause unpredicted transitions between different modes, 
compromising the whole system's security. Chaotic attractors observed in the corresponding regions (see Fig.7- Ch) are 
not dense enough, indicating the insufficient level of diversity required by practical communication systems.  

However, the further increase in parameter ε leads to the formation of several robust chaotic regions (see Rch1 and 
RCh2 in Fig.8.) with acceptable characteristics and durability to parameter changes. But some periodic windows are 
still present in the defined parameter range (see, e.g. P3 window in Fig.8.). As we are interested in the low-voltage 
operation of the system, the region of b=12-28 is the most appropriate for the proposed applications.  

Setting the ε=0.15 in the middle of the predicted chaotic region in the bifurcation map (see Fig.3), it is possible to 
obtain the diagram where all periodic windows shrink, and the continuous robust chaotic area is formed. This is 
demonstrated in Fig.9.  

As it could be deduced from Fig.3, the further increase of ε leads to the deterioration of chaotic dynamics and 
diagrams, similar to those shown in Fig.7 and Fig.8 could be obtained.  
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Figure 7: Brute-force bifurcation diagram for a=0.3; ε=0.1; b=5-80 

 

 
Figure 8: Brute-force bifurcation diagram for a=0.3; ε=0.12; b=5-80 

 

Figure 9: Brute-force bifurcation diagram for a=0.3; ε=0.15; b=5-80 
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3. Conclusions 

One of the key parameters defining the applicability of the chaotic oscillators to secure communication systems is 
energy efficiency (possibility to operate in low-power modes) and robustness (insusceptibility to slight parameter 
variations and noise). Thus, investigating the dependence of nonlinear dynamics of these kinds of generators on the 
operation voltage is crucial for practical solutions.  

The paper demonstrated the numerical study of possible chaotization scenarios and various nonlinear phenomena 
observed in the Vilnius chaotic oscillator as system parameters vary. It has been shown that the construction of the 
bifurcation map allows for the convenient identification of the most appropriate parameter ranges to be used for 
obtaining robust chaotic modes of operation. The main conclusion is that the Vilnius oscillator could robustly generate 
chaotic signals required in secure communications, even in low-voltage modes of operation. However, the other 
systems parameters (e.g. ε) should be fine-tuned to exclude transitions to any periodic regime. 

Further study could contain the laboratory experiments allowing the verification of numerical simulations and 
practical estimation of energy efficiency of the proposed robust chaotic regimes.  
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Summary. Many technical installations are held together by critical bolted joints. A critical bolted joint can have many appearances, from 
bolted flanges with many bolts to smaller lap-joints with only a few bolts. Critical imply that failure is not accepted, as it would lead to 
dangerous situations and most likely very costly repairs. Such joints are found in wind turbines, pressurized pipelines, large machinery etc. 
To ensure safe operation, regular checking and documentation of bolt tension is required, which is both costly and time consuming, and 
traditional tightening techniques are not very accurate. Recent work has shown potential in estimating bolt tension by using vibrations 
actively. e.g. by analyzing the vibrational response in a bolt after a hammer impact. Tests of this have been carried out with good results for 
setups with a single bolt. However, most often a bolted joint consists of multiple bolts holding at least two parts together. The more parts 
and bolts, the more sources to nonlinear effects from frictional contacts and potential vibrational coupling. In this work, we present the 
current status of the method with new results from a multi-bolt setup, and raise the question of which potential nonlinear effects need to be 
considered to apply the method more generally for multi-bolt joints.  

Introduction 

Traditional tightening methods include torque wrenches and hydraulic tensioners [1]. These cannot estimate the tension, 
so checking is done by retightening. This can lead to overtightening, which can in turn introduce failure. Furthermore, it 
is time consuming to retighten all bolts, especially if the retightening revealed that only a few bolts were in fact loose. 
Newer technologies include bolts with incorporated strain gauge sensors, which is more expensive than traditional bolts 
and potentially fragile, and ultrasonic transducers [2], which measure bolt elongation. These new advances show that it 
is definitely of interest to improve both speed, cost and accuracy in estimation of bolt tension. Vibrations could be 
advantageous to use, as control can then be done without employing heavy equipment and there are direct correlations 
between tension and bending vibrations. The challenge is to ensure that other mechanism that influence the vibrational 
response have been investigated, so that a vibrational response of any bolt, in any structure, can be analyzed correctly, 
thus permitting a robust estimation of tension. To get to that point possible nonlinear effects must be understood. 

Bolt tightness indicators based on bending vibrations 

A bolt can be considered a beam with rotational and translational linear boundary stiffness springs [3], whose stiffness 
may increase nonlinearly with tension [3]. As a bolt is tightened the boundary stiffness increases, as well as the tension. 
In [4] demonstrated that a large number of nonlinear boundary micro springs can effectively behave as a linear spring.  
Firstly, a bolt can indeed bend as a beam. This is experimentally investigated in [5] by analyzing measurements from a 
scanning laser Doppler vibrometer and obtaining actual mode shapes. Furthermore, experimental results for a single 
bolt show that it is possible to get reproducible results of the first and second transverse natural frequency, increasing 
first strongly with tension and then linearly, as shows in Figure 1(a) from the small color markers [3,6]. A nonlinear 
stiffness model adapted from [3] can be fitted to the measurements (dashed lines in Figure 1(a)). The corresponding 
damping ratio decreases with tension, strongly for low tension, and weakly for high tension [3,6]. Combining the 
information coming from the bolt tightness indicators can provide an estimate of bolt tension [6,7].  

 

 

Figure 1: (a): 
Transverse natural frequency as function of bolt tension: small markers: single bolt experimental data; everything has been taken 
apart between each color. Large markers: data from a two-bolt setup. Dashed line: theoretical tension-stiffness model adapted from 
[2]. (b) Time-dependent damping ratio as function of normalized acceleration amplitude. 
 

(a) (b) 
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Nonlinear effects and modal coupling between bolts 

Investigations of vibration amplitude dependencies (thus nonlinearity) of the above mentioned bolt tightness indicators, 
damping ratios and frequency, have revealed to be of significance only under certain circumstances [6]. For practically 
relevant ranges of excitation level, the transverse natural frequency of a single bolt in a solid cylinder is effectively 
independent of vibration amplitude [6]. However, the linear damping ratio is not. Figure 1(b) shows the amplitude 
dependency of the damping ratio (of the first natural frequency) for three levels of tension. It drops for lower tension 
and smaller amplitude.  
 
Another issue is coupling of vibrations between different planes. A bolt has a symmetric cross section, so there is a 
possible coupling between the two transverse directions, which appears to be driven by linearly acting imperfection [8]. 
Another coupling is the nonlinear coupling between transverse and longitudinal vibrations, which can occur in 
tensioned beams [9]. This nonlinear effect, in combination with imperfections, can allow for exciting transverse 
vibrations from a longitudinal impact [10]. 
 
New experimental results reveal that coupling between two bolts with almost identical tension and boundary stiffness 
appear to behave as a single coupled system, with co-and anti-phase modes [11]. However, this is only seen for cases 
where the tension is almost identical, for two bolts with different tension, it appears that interpreting the two bolts as 
separate entities with separate vibrational response is adequate. This may be the case due to an unknown nonlinear 
effect: A 1D-beam model of two beams coupled with springs will predict that the anti-phase mode has a higher 
frequency than the co-phase mode, as pulling in opposite directions will activate the coupling spring and increase 
boundary stiffness. Experiments show very similar behaviour. Figure 1(a) show also large color markers in pairs; these 
are measurements from a setup with two bolts and the frequencies are extracted from accelerometer measurements of 
one of the bolts. For cases with equal tension, there is a jump in frequency, both for first and second mode. However, 
for two bolts with even slightly different tension, the results are as for two single uncoupled bolts. To be able to fit a 
1D-beam model to the measurements of all the cases, it is necessary to change the value of the coupling spring, leading 
to the question if this can be better explained as a nonlinear vibrational coupling between tension and bending. To 
investigate this we will introduce a nonlinear coupling spring and compare the results to the linear model. 
 

Conclusions 

The first steps in estimation of tension by vibrations have been taken. It is possible to measure natural frequencies and 
damping ratios in a single bolt and use these as bolt tension indicators. Nonlinearity has been investigated, and shows to 
be influential only under certain conditions. Tests with multiple bolts show many similarities with results of a single 
bolt, though under certain conditions coupling can occur, and that coupling can potentially best be modeled as 
nonlinear. This will be investigated further and updated results will be presented at the conference. 
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On the reliability of contact models in Vibro-Impact Nonlinear Energy Sinks
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Summary. The Vibro-Impact Nonlinear Energy Sinks (VI NES) is a highly nonlinear device employed for dissipating energy of a
primary vibrating system. The simplest setup consists of a rigid container enclosing a spherical particle, which slips along the container
and impacts against its walls under vibrations. This study assesses the sensibility of the VI NES dynamics to the impact velocity and
the contact force estimation.

Introduction

Over the past few years, the use of vibro-impact dampers as vibration absorbers aroused the interest of the research
community. Potentially, vibrational energy may be dissipated by the impacts that occur between a particle and one or
more rigid barriers linked to a primary structure. Several configurations of vibro-impact systems were proposed, including
single-sided VI NES [1, 2], symmetric single-sided VI NES [3] and double-sided VI NES [4, 5].
Refs. [6, 7] verified the efficiency of the VI NES for a primary system subjected to a seismic excitation. The greater part of
the vibrational energy is dissipated at the beginning of the ground motion, when the primary structure is highly stressed.
Notably, analytical and experimental studies revealed the existence of various dynamical regimes of the VI NES and their
effect on the energy dissipation capability [8, 9].
This study focuses on the dynamics of a double-side Vibro-Impact Nonlinear Energy Sink (VI NES) shown in Fig. 1.
Since the VI NES performs well in the vicinity of the 1:1 resonance, numerical simulations should be able to calculate
as accurately as possible the rebound velocity and instant. We will show the effect of slight delays in the kinetic energy
estimation and we will suggest some solutions to improve accuracy of the contact computation.

Instantaneous contact
In the framework of contact mechanics, instantaneous collisions between two rigid bodies lead to a change of direction
and velocity depending on the value of the coefficient of restitution (COR) ϵ, which is defined as:

ϵ =
v1(tc)− v2(tc)
v2(0)− v1(0)

, (1)

with 0 ≤ ǫ ≤ 1. ǫ = 0 for perfectly inelastic collisions and ǫ = 1 for perfectly elastic collisions. The COR can
be estimated by measuring experimentally the contact duration and the flight time of a bouncing ball [10]. v1,2(0) and
v1,2(tc) are the velocities of the particles before and after the collision, respectively, and tc the contact duration. When
the VI NES is coupled to a primary system for the passive vibration control, the contact duration tc is generally very small
with respect to the dominant time scale and the contact may be approximated as an instantaneous phenomenon. To solve
numerically this problem, an event driven scheme may be used. At first, the simulation solves separately the free flight
of the particle and the dynamics of the primary system. Then, when the particle collides with a barrier, the particle and
primary system initial conditions (IC) are updated with new positions and velocities obtained from the law of conservation
of momentum. The numerical integration scheme goes on until the end of the simulation.
Previous studies shown the close link between the VI NES damping capability and its dynamical regime, which ranges
from periodic collisions to chaos. Hence, numerical resolution of this non-smooth numerical problem requires very high
accuracy in the estimation of the impact velocities. Indeed, a small variation may lead to a huge change in the system

Figure 1: Schematic representation of a VI NES.
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Figure 2: Simulated motion of the VI NES shown in Fig. 1. VI NES is shaken kinematically at f = 1/T = ω/2π = 100 Hz with an
amplitude A = 10 cm (see the red curves). The initial velocity of the particle is v0 = −62.8 m/s. For the sake of clarity, the particle
is considered as a point mass interacting with the inner walls of the container. (a) Position and (b) kinetic energy of the particle for
ǫ = 0.7 and by varying its initial velocity.

dynamics. As an example, we show in Fig. 2(a-b) the trajectory and the kinetic energy, respectively, of a steel spherical
particle impacting against two rigid walls kinematically shaken at γG(t) = −Aω2sin(ωt). Here, we implement the
instantaneous contact model defined in Eq. 1, such that the contact duration tc = 0 is infinitely small compared to the
period of oscillation T and the VI NES dynamics is solved for one period for different initial velocities. As it can be seen,
a variation of the order of the 1% of initial velocity leads to a difference of the about the 4% in the kinetic energy after
only one period. This bias leads to different energy transfers and thus of energy dissipation. Moreover, this delay can
cause an error in the simulation of the system dynamics by falling into one dynamical regime in preference to another.

Conclusions

The capability of a VI NES to damp vibrations of a primary system depends on its dynamical regime. For this reason,
much attention must be paid on the numerical computation of the impacts in terms of relative velocity and time. One
solution that prevents to increase computational costs, is to enrich the contact model by computing the contact force and
using a finite duration continuous interaction potential. Notably, it is possible to demonstrate that the contact duration
has a considerable effect on the estimation of the dissipated energy, even for very fast collisions. Another benefit of finite
contact modeling is that it allows to evaluate the accelerations and the repulsive forces, which are not provided by the
instantaneous contact model.
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Summary. A new algorithm for estimating the robustness of a dynamical system’s equilibrium is presented. Unlike standard ap-
proaches, the algorithm does not aim to identify the entire basin of attraction of the solution. Instead, it iteratively estimates the
so-called local integrity measure, i.e., the radius of the largest hypersphere entirely included in the basin of attraction of a solution and
centred in the solution. The procedure completely overlooks intermingled and fractal regions of the basin of attraction, enabling it to
provide a meaningful engineering quantity quickly. The algorithm is tested on various mechanical systems. Despite some limitations,
it proved to be a viable alternative to more complex and computationally demanding methods, making it a potentially appealing tool
for industrial applications.

Introduction

Local stability is one of the most critical properties of a dynamical state. Engineers heavily exploit this concept. Neverthe-
less, scientists dealing with dynamical systems are aware that, despite its local stability, a system might diverge from its
state if subject to a perturbation sufficiently large to make it cross the boundary of its basin of attraction (BOA). However,
the definition of a system’s BOAs is computationally very demanding. A few methods for the identification of BOAs of
dynamical systems exist [1]. Analytical methods are generally based on Lyapunov functions. However, they are not a
feasible option for the majority of real applications. The cell mapping method is probably the most efficient numerical
technique for BOA estimation [2]. Experimental methods are almost inexistent, except for a few exceptions [3, 4].
The objective of this study is to develop an algorithm for the robustness assessment of equilibrium points. The procedure
reduces the computational cost for global stability analysis by identifying the local integrity measure (LIM) [5] only,
overlooking fractal and intermingled portions of the BOA, which are hard to identify and practically less relevant.

Methodology

The algorithm is based on a simple framework. Considering a predefined region of the phase space, initially, the maximal
value of the LIM is calculated, being equal to the minimal distance between the equilibrium point of interest and the
boundary of the region of the phase space considered. Then, a trajectory of the system in the phase space is computed.
If the trajectory does not converge to the desired solution, the LIM is estimated as the minimal distance between the
equilibrium point of interest and any point of the non-convergent trajectory. The new estimated value of the LIM (an
overestimate of the real LIM value) defines a hypersphere in the phase space denominated hypersphere of convergence,
limiting the region of interest. If a simulation converges to the desired solution, then the LIM is not reduced in that
iteration. Initial conditions of each simulation are chosen as the farthest point from any other already tracked point within
the hypersphere of convergence.
In order to automatically classify the computed trajectories, the phase space is divided into cells. A trajectory is classified
as converging or non-converging to the desired solution by analyzing the cells in which points of the trajectory lie. To
the reduce computational time, if a trajectory reaches a cell already tracked by a previous trajectory, the simulation is
interrupted; all cells containing points of the trajectory are classified according to the reached and already tracked cell. A
graphical explanation of the classification procedure adopted is illustrated in Fig. 1.

(1)

(2)

(3)

(4)

(5)ሶ𝑥

𝑥
Figure 1: Illustrative examples of trajectory classification. (1) Converging to a known equilibrium; (2) leaving the considered phase
space region; (3) converging to an unknown equilibrium; (4) converging to an unknown periodic solution; (5) converging to an already
tracked cell.
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Results

We implemented the algorithm on systems of various dimensions (up to dimension 8); the analysis illustrated that the
algorithm could rapidly and efficiently estimate the LIM value in all cases studied. In particular, the first few iterations
already provided a relatively accurate estimate of the real LIM value. The majority of the subsequent simulations con-
verged to the equilibrium of interest, except few ones, which further improved the initial estimate of the LIM. Figure
2a represents the trend of the LIM estimate for the case of a Duffing-van der Pol oscillator with an attached tuned mass
damper (4-dimensional system) [6]. The black line in Fig. 2a follows the described path. Light blue lines represent the
LIM trend for other repetitions of the algorithm. All curves have a similar tendency. The system under study presents
a stable equilibrium point (red cross in Fig. 2b) coexisting with a stable periodic solution (black line in Fig. 2b) for the
considered parameter values. We remark that, in Fig. 2b, tracked points are projected on a section of the phase space,
which makes it appear that red dots are within the hypersphere of convergence (green dashed line) while they are not.
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Figure 2: (a) LIM estimated value; (b) projection of the points tracked during the computation; blue and red points: converging and
non-converging points, respectively, dashed green line: section of the hypersphere of convergence.

Conclusions

In this study, a new algorithm for estimating the robustness – dynamical integrity – of a stable equilibrium was developed.
The algorithm utilizes an approach different from existing numerical methods for global analysis. It does not aim at
studying the whole basin of attraction of a solution; instead, it directly tries to estimate the local integrity measure (LIM).
From an engineering perspective, this quantity has obvious relevance for the safety of a dynamical system. The obtained
results suggest that the proposed algorithm is a viable option for the robustness assessment of an equilibrium point. In
particular, thanks to its quickness, it has the potentiality to be utilized in industrial environments, where rapid solutions are
generally pursued. Future research developments should aim to make the algorithm utilizable for the robustness estimation
of other kinds of solutions, such as periodic motions.
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Summary. We provide a general framework for optimization along periodic orbits or quasiperiodic invariant tori in dynamical systems
with delay. Our recent study [1] developed a methodology for such problems based on the calculus of variations. The formulation
presented in [1] did not exploit the typical structure of Jacobians in problems with delay, resulting in high computational costs and
difficult-to-generalize algorithms. Here, we reformulate general boundary-value problems for delay equations by decomposing them
into ordinary differential equation and algebraic interval coupling conditions. We consider such coupling conditions for various multi-
segment boundary-value problems and describe how the necessary optimality conditions along with the corresponding Jacobians may
be implemented in the continuation package COCO [2]. Several examples demonstrate the implications to computational efficiency, as
well as the ease of problem construction.

Motivating example

Consider the retarded delay-differential equation with periodic forcing

ẋ = f (t, x, g(x, p)(t), p) :=

(
−ωx2 + x1 (t− α) (1 + r (cos (2πt/T − 1)))
−ωx1 + x2 (t− α) (1 + r (cos (2πt/T − 1)))

)
, (1)

where r =
√
x21 + x22 and p = (α, ω, T ). Figure 1 shows a family of two-dimensional quasiperiodic invariant tori for this

system obtained for fixed delay α and rotation number ρ (ratio of fundamental frequencies). In Fig. 1, the fold point at ω ≈
0.44 separates stable (solid) from unstable (dashed) tori. We may locate the fold and further seek to locate extrema in ω un-
der additional variations in α by considering the set of necessary conditions for stationary values of ω given corresponding
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Figure 1: One-dimensional family of quasiperiodic tori [1]
obtained with rotation number ρ ≈ 0.6618 and α = 1.

dynamic constraints. Specifically, by suitable transforma-
tions [1, 2], an equivalent representation for a quasiperi-
odic invariant torus of (1) on the cylindrical domain
(φ, τ) ∈ S × [0, 1] (here, S denotes the unit circle) is in
terms of a solution to the differential constraint

V,τ (φ, τ) = Tf
(
Tτ, V (φ, τ),

[
W α

T
V
]
(φ, τ), p

)
(2)

along with the boundary condition

V (φ, 1)− V (φ+ 2πρ, 0) = 0. (3)

Here, the wrapping operator Wa is given by

[Waχ] (φ, τ) := χ (φ− 2πjρ, τ − a+ j) , (4)

where j ∈ Z is defined depending on a, φ, τ such that
τ−a+j ∈ [0, 1). This operator captures the dependence of
the vector field on a shifted V , consistent with the presence
of delay. Let f,2(φ, τ) and f,ω(φ, τ) denote the partial
derivatives of f with respect to its second argument and ω, respectively, evaluated at

(
Tτ, V (φ, τ),

[
W α

T
V
]
(φ, τ), p

)
,

let df/dT denote the total derivative of f
(
Tτ, V (φ, τ),

[
W α

T
V
]
(φ, τ), p

)
with respect to T , and let hj(φ, τ) denote the

partial derivative of f with respect to its third argument evaluated at
(
Tτ, V, V

(
φ− 2πjρ, τ − α

T + j
)
, p
)

for j = 0, 1.
A set of suitably constructed necessary adjoint conditions for stationary values of ω are then given by

−λT
f,τ − TλT

ff,2 − T
(
W− α

T
λf
)T
W− α

T
h0 = 0, (φ, τ) ∈ S× (0, 1− α/T ) , (5)

−λT
f,τ − TλT

ff,2 − T
(
W− α

T
λf
)T
W− α

T
h1 = 0 (φ, τ) ∈ S× (1− α/T, 1) , (6)

and

λT
f (φ, 0) + λT

rot (φ− 2πρ) + λphV
⋆T
,ϕ (φ) = 0, λT

f (φ, 1) + λT
rot (φ) = 0, (7)

−
∫ 2π

0

∫ 1

0

λT
fTf,ω dτ dφ+ ηω = 0, −

∫ 2π

0

∫ 1

0

λT
f (f + Tdf/dT ) dτ dφ+ ηT = 0 (8)

in terms of the original variables V , ω, and T , a reference function V ⋆, and a set of Lagrange multipliers λf , λrot, λph,
ηω , and ηT , where ηω = 1 and ηT = 0 at a stationary point. The analysis in [1] demonstrates the successful location of
such stationary points (and of the fold in Fig. 1) using a method of successive continuation, first pioneered by Kernévez
and Doedel [3].
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Software implementation

In the present work, we describe an effort to improve the computational efficiency of the implementation of the continu-
ation problem in the previous section. Specifically, in contrast to the implementation in [1], which involved numerically
computed Jacobians and no vectorization of the corresponding discretized problem, we describe an ongoing effort to
encode explicit Jacobians in a vectorized form that supports an entire class of continuation problems with delay. These
include initial-value problems, multisegment periodic orbits, and quasiperiodic invariant tori, even in the presence of
multiple delays. The development platform is COCO, a MATLAB-based software package with an object-oriented con-
struction paradigm that supports building composite problems by coupling instances of simpler problems. As an example,
continuation of quasiperiodic invariant tori for a problem without delay was considered in [2] in terms of a multiseg-
ment boundary-value problem with all-to-all coupling of segment end points in terms of a suitably formulated Fourier
interpolant. This past works motivates the implementation sought in the presence of delay.

Problem decomposition

To illustrate our approach, consider replacing the equation

x′ = f(τ, x, g(x, p)(τ), p) (9)

with the decomposition
x′ = f (τ, x, y, p) , y (τ) = g (x, p) (τ) (10)

for τ ∈ (0, 1) in terms of a differential equation and an interval condition. A special case is obtained for g(x, p)(τ) :=
x(τ − p1|mod [0,1)) corresponding to a periodic-orbit problem (omitting the discrete condition of periodicity at τ = 0)
with a single discrete delay p1. In this case, vanishing variations of the Lagrangian

L =

∫ p1

0

λ⊤int(τ) (y(τ)− x(1 + τ − p1)) dτ +
∫ 1

p1

λ⊤int(τ) (y(τ)− x(τ − p1)) dτ (11)

with respect to λint yield the original interval condition, while variations with respect to x yield the contributions
−λ⊤int(τ + p1 − 1) and −λ⊤int(τ + p1) on τ ∈ (1 − p1, 1) and τ ∈ (0, 1 − p1), respectively, to the adjoint differen-
tial equations. In general, the proposed decomposition allows us to develop a fully vectorized encoding with explicit
Jacobians of a discretization of the differential equation constraint in (10) in terms of a corresponding discretization of x
and y, without simultaneously imposing (a discretization of) the interval coupling constraint in (10). It is clear that we
may similarly derive a general form of the discretized contributions to the adjoint conditions associated with the differen-
tial equation constraint, as well as their Jacobians, without also considering the contributions from the interval coupling
constraint. Once these have been encoded in all generality, they may be invoked any number of times in the construction
of a multisegment trajectory problem, such as that associated with continuation of quasiperiodic invariant tori. Of course,
in a multisegment trajectory problem, the interval coupling conditions typically take a more general form in which y’s
associated with different segments are expressed in terms of x’s associated with multiple other segments. A challenge is
the derivation of a general form of the corresponding adjoint conditions, their discretization, and corresponding Jacobians.

Conclusions

A decomposition of the implementation of the necessary conditions for stationary values of an objective function along a
constraint manifold defined by a boundary-value problem with delay is proposed in order to support optimization along
families of periodic orbits or quasiperiodic invariant tori. The decomposition separates differential constraints from a set
of interval conditions by the introduction of additional auxiliary unknowns. The advantage of the proposed decomposition
is in the convenience of the implementation, including the vectorization of the discretized constraints and their Jacobians,
and its generalization to a number of other problem types, including differential-algebraic problems. We argue that the
expense of increasing the number of unknowns is outweighed by the shortened development time for different classes of
user-specific optimization problems, per the underlying philosophy of the COCO software development.
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Summary. In this contribution, a method for the numerical computation of nonlinear modes for damped systems is presented. The
main idea is to introduce a conservative force term to compensate the non-conservative effects, in such a way that the condition of
energy resonance is verified. We describe a systematic approach for the construction of the associated backbone curves and discuss
related subjects such as their stability and practical applications.

Introduction

Nonlinear Normal Modes (NNM), which extend the familiar modal analysis to the case of nonlinear mechanical systems,
have been a central research topic in dynamics over the past decades. Besides being an interesting theoretical concept,
they have been shown to lead to numerous practical applications thanks to their relation to forced resonances, localization,
energy transfers and model reduction (see [1] for a review, as well as references therein). Simply stated, the idea behind
all methods for the computation of NNMs is to construct an invariant manifold of the conservative equations of motion,
either directly or through the continuation of periodic solutions on the manifold [2]. However, modes computed in this
fashion do not take into account the presence of non-conservative effects. As a consequence, deviations from the actual
backbone curves of the system are to be expected: while they remain small in the case of small proportional damping, they
can be considerable when damping is large or when the nonlinear forces involved are fundamentally non-conservative.
Hence, just as for the conservative case, efforts have been made to extend the concept of non-conservative modes to non-
linear systems, yielding Non-Conservative Nonlinear Modes (NCNM). Different methodologies for the computation of
NCNMs exist, relying on generalizations of the manifold-construction, complex-mode and periodic-motion-continuation
techniques. The latter of these, introduced by Krack [3], consists in adding an artificial damping term to compensate for all
non-conservative effects and thus achieve periodic motions. This method was applied by Jahn and co-workers [4] to study
self-excited vibrations, and in particular to detect limit cycle oscillations. Nevertheless, one of the assumptions of this
method is that the non-conservative terms are frequency-independent, which is not the case of, e.g., systems with memory
terms. The present contribution introduces a novel, general method for the computation of NCNMs, based on extending
the concept of energy resonance from linear modal analysis to the nonlinear case. Upon application of the Harmonic
Balance Method (HBM), this leads to the formulation of a conservative equation where the effect of non-conservative
terms of any form can be accurately taken into account, and whose solutions correspond to NCNMs.

Energy Resonance

Consider the equations of motion for a system of damped, unforced, nonlinear oscillators. By applying the HBM, they
are expressed in the frequency domain with the Fourier coefficients of displacements X and the fundamental frequency ω
as unknowns, giving:

R(X, ω) = Z(ω)X+ FNL(X, ω) = 0 (1)

where Z(ω) = ω2∇2 ⊗M + ω∇ ⊗ C + I ⊗ K is the dynamical stiffness matrix containing inertial, damping and
stiffness terms, and FNL(X, ω) represents the Fourier coefficients of all nonlinear forces. Excluding the case of limit
cycle oscillations, this equation has no non-trivial solution since it contains non-conservative terms and thus no periodic
solutions. If these terms are ignored, a conservative system is obtained, whose solution yields the traditional, undamped
nonlinear modes as per Rosenberg’s definition:

RP(X, ω) =
[
ω2∇2 ⊗M+ I⊗K

]
X+ FNL,c(X, ω) = 0 (2)

Drawing a parallel with linear modal analysis, these solutions describe phase resonance. Another possibility, as proposed
by Grenat et al. [5], is to compensate the non-conservative terms through the addition of a fictitious conservative force in
such a way that the underlying invariant manifold is kept unchanged. This is achieved by considering the condition for
energy -rather than phase- resonance, which can be expressed by the scalar equation:

∂
(
XTX

)

∂ω
= 0 (3)

In this work, we show that Eq. (3) leads to the following conservative system:

RE(X, ω) =
(
ω2∇2 ⊗M+ I⊗K

)
X+ FNL,c(X, ω)−GD(X, ω) = 0 (4)

where the non-linear terms have been split into a conservative (FNL,c) and a non-conservative part (FNL,nc). The term GD,
for which we have derived an explicit analytical expression, is a function of all non-conservative terms, both linear and
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nonlinear. Eq. (4) can be used to compute normal mode solutions regardless of the specific form of the non-conservative
terms, under the condition that they are continuous functions of X and that, as for any autonomous system, a phase
equation be appended for closure. Illustrative examples are presented below:

1. Viscous damping
Assuming linear damping of the form: fnc(t) = Cẋ(t) :

GD =
1

2
I⊗

(
M−1CC

)
X (5)

Fig. 1 a) superimposes the frequency response of a Duffing oscillator with high damping to its corresponding NNM and
NCNM backbones, for varying excitation levels.

2. Flow-induced added damping
Following [7], forces induced by transverse flow on a flexible cylinder within a rigid array can be modelled by a memory
function of the form: ffe(x, t) =

∑N
k=0 Ak

∫ t
0
e−bkτx(t − τ)dτ . This leads to added damping terms which are linear in

X but frequency-dependent through the matrices Dk(ω, bk):

GD =
1

2

{
N∑

k=0

[I⊗M+ bkDk ⊗Ak]
−1 [

I⊗C− (Dk + ω∇2D2
k)⊗Ak

]
[I⊗C−Dk ⊗Ak]

}
X (6)

3. Doubly-clamped viscoelastic beam
Considering a Kelvin-Voigt model [6] to describe the stress-strain relation within the beam, the equations of motion for
modal coordinates qj include non-conservative terms of the form: ηqiqj q̇k as a result of mid-plane stretching. Fig.1 b)
shows the NCNM curves near a 1:5 internal resonance between the first and third bending modes, where considerable
deviation from the undamped case is observed for high values of η.

1

1.5

10
-1

10
0

10
1

1

1.2

1.4

100

b)

Figure 1: Examples of backbone curves with NCNM formalism. (a) Internal resonance of viscoelastic beam: first (solid) and third
(dashed) nonlinear modes for different values of η. (b) Duffing equation with high viscous damping, contrasting NNM and NCNM
backbone curves.

Conclusions

In this contribution, we introduced a systematic method for NCNM construction based on the concept of energy resonance.
Likewise, its application to diverse mechanical vibration problems was showcased. Further work on this subject includes:
bifurcation analysis, a detailed comparison with alternative methods and the experimental targeting of particular nonlinear
modes by exploiting the function GD.
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Summary. Shape equations, such as the constant mean curvature (CMC) equation or the Helfrich equation, are geometric partial dif-
ferential equations that arise for example in modeling liquid bridges or red blood cells. Analytical solution of these equations are known
only in few situations, and we use numerical continuation to compute solutions and study their parameter dependence. The problems
require adaptations of typical PDE numerics because of the quasilinear nature of the equations and the geometrical background. We dis-
cuss how some of these issues are treated in the numerical continuation and bifurcation package pde2path. To illustrate the implemen-
tation, we present some examples of CMC and Helfrich surfaces.

Introduction

Shape equations are differential geometric partial differential equations that typically describe critical points of some
energy functional under some constraints. For example, let M be a two dimensional surface (possibly with boundary)
immersed in R3 and parametrized by ϕ : Ω→M . Then the area functional is

area(M) =

∫

M

dS. (1)

Now adding a volume constraint one finds that constant mean curvature (CMC) surfaces are critical points, leading to the
following boundary value problem: given V0 ∈ R+, find φ : Ω→ R3 and H0 ∈ R such that

H(φ)−H0 = 0, Vol(φ)− V0 = 0, φ|∂Ω = ∂M, (2)

where H is the mean curvature, V (φ) the enclosed volume, and the constant H0 can for instance be interpretated as a
pressure difference when the CMC surfaces model interfaces between fluids.
In general, only a few solutions of (2) and of related (often more complicated) problems are known explicitly, and we have
to resort to numerical approximation of solutions. There are various methods for this, see, e.g., [BGN20] for a review of
sophisticated methods. Here we follow an approach from [Bru18] and aim to numerically continue solutions of (2) and
related problems in parameters, within the framework of the Matlab continuation and bifurcation package pde2path
[Uec21a, Uec21b]. The basic idea is as follows: LetM0 be a known surface with parametrization φ0 : Ω→ R3 satisfying
(2) for some V0 and with mean curvature H0, and define a new surface via the parametrization φ = φ0 + u ν, u : Ω→ R
with suitable boundary conditions, where ν :M0 → S2 is the unit normal vector of M0. Then (2) reads

F (u,H, V ) =

(
H(φ)−H
V (φ)− V

)
= 0, with boundary conditions for u, (3)

which is a quasilinear elliptic equation for u, and after solving (3) we can update M0 = M0 + uν and repeat. This
point of view is also useful analytically, see, e.g., [ES98], and numerically it allows to apply standard predictor–corrector
continuation and bifurcation methods to the quasilinear elliptic system (3). In pde2path, the (default) discretization of
(3) works by the finite element method (FEM), and the associated mesh adaption capatibilities turn out to be very useful
to deal with possibly strong deformations of the manifolds M under the continuation.
The method can also be applied to other types of geometric PDEs, also of higher order, for instance fourth order models
from mathematical biology, e.g., Willmore and Helfrich functionals for vesicle shapes. In this case, (3) can be rewritten
as a system of (2nd order) PDEs for a vector valued (u1, u2), and the same ideas apply.

Examples

Simple examples of CMC surfaces with boundaries are spherical caps, for instance the one–parameter CMC family of
spherical caps S immersed in R3 with the boundary ∂M = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1, z = 0}. These are useful
testing problems since a spherical cap with prescribed boundary is uniquely characterized by its volume, and we have an
analytical relation between volume and mean curvature, which yields an explicit error analysis. Figure 1 shows a simple
continuation of the caps in volume, starting from H = 0 (flat disk), and applying some mesh adaptation when under
continuation the stretching of the triangles becomes large.
For the spherical caps it is known and intuitively clear that no bifurcations occur along the branch in Fig. 1, cf. [KPP15].
This is different for another classical example, namely liquid bridges [SAR97]. In Fig. 2 we consider CMC surfaces
between two unit circles located at z = ±1/2. For V = π we have a straight cylinder with H0 = 1/2, and continuing
to larger V we find bifurcations to non–axisymmetric surfaces with 1, 2, . . . bulges, with the first bifurcation occuring at
V ≈ 5.81 where the surface meets the planes z = ±1/2 at the circles tangentially. Here, for efficiency we compute only
half the bridges with Neumann boundary conditions in angle, and the algorithm works fast and robustly (including mesh
adaptation).
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Figure 1: 2H over V for the spherical cap example, and sample solutions. At V = 4.01 and V = 8.01, the colors indicate u in the last
step; at V = 4.01 we adaptively refine the mesh, see V = 8.01.

Figure 2: Bifurcation diagram of liquid bridges, and sample solutions. Top row: axisymmetric (black branch), with pt27 near the 1st
BP. Bottom: pt10 on blue (left) and red (right) branches. The colors again indicate the last u.

After the above standard examples (also considered in [Bru18]), we consider more complicated problems, including:
liquid bridges in different geometries, under gravity and with further terms, bifurcating nodoids [MP02, KPP15] and
triply periodic surfaces [KPS18], and time permitting give an outlook on bifurcation results for 4th order equations such
as Canham–Helfrich equations for vesicles modeling for instance red blood cells [Sei97].
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Summary. We describe a computational method for constructing a coarse combinatorial model of a dynamical system in which the
macroscopic states are given by elementary cycling motions of the system. Our method is based on tools from topological data analysis
and can be applied to time series data. We illustrate the construction by a perturbed double well Hamiltonian as well as the Lorenz
system.

Introduction

Conley’s fundamental theorem [4] characterizes the global structure of the dynamics of a continuous map on a compact
metric space. It states that the space can be decomposed into a (chain) recurrent set and its complement, on which the map
behaves gradient-like, i.e. trajectories transit from one recurrent component to another. Around the turn of the century, a
computational approach to this theory has been developed [12, 7, 9, 10, 1, 11].
Relatedly, ideas have been put forward in order to characterize the dynamics within a transitive component of the chain
recurrent set. For example, in [6], certain eigenfunctions of the transfer (or push forward) operator have been used in
order to decompose a transitive component into, e.g., almost invariant (or metastable) subsets.
The purpose of this note is to outline a computational procedure by which certain cycling behaviour of the system can be
detected and agglomerated into a coarse model. More precisely, we describe how to detect whether the system exhibits
motions along a topological circle in some geometric complex that represents a transitive recurrent component of the
system. A key ingredient in this procedure is a construction of circle-valued coordinates on simplicial complexes [5]; its
usefulness for analyzing recurrent dynamics was already suggested in [14].
In particular, our technique is applicable if no model is available, but the dynamics is only given in form of a time series
of data points xk = x(tk) ∈ Rd, k = 0, . . . ,m, that are, e.g., sampled from solution curves x : [0, 1] → Rd of some
differential equation or constructed by a time-delay embedding of scalar measurement data.

The construction

Given a time series x0, . . . , xm in Rd, we construct a combinatorial model which captures different types of cycling mo-
tion. Our pipeline consists of three main steps: constructing a topological space, finding dynamically relevant coordinates
and constructing a combinatorial model.

Discretization of phase space
A first attempt at obtaining a topological space from a time series x0, . . . , xm is to construct a Vietoris–Rips complex
with base set X = {x0, . . . , xm}. In our setting, this is impractical since the resulting complexes are usually too large
to be computationally tractable. In order to circumvent this problem we first quantize our data. For this, choose a radius
r ∈ R>0 and consider the cubical grid

B = B(r) =
{

d∏

ℓ=1

r
[
zℓ − 1

2 , zℓ +
1
2

)
| z ∈ Zd

}
.

Since the elements of B (which we call cubes or boxes) form a partition of Rd, we can define Q : Rd → B by mapping
each point to the unique cube containing the point. Then

X := {Q(x) | x ∈ X}

is a cubical or box covering of the point cloud X . For a cube ξ =
∏d
ℓ=1 r

[
zℓ − 1

2 , zℓ +
1
2

)
let z(ξ) = (rz1, . . . , rzd) be

its center. We can identify X with the subset

Z := {z(ξ) | ξ ∈ X}

of the integer lattice rZd. The set Z of box centers is called the quantization of the point cloud X . Fig. 1a shows a time
series with its cubical cover and the corresponding set of box centers Z.
We then resample the time series such that consecutive points lie in different cubes. For this, set τ(0) = 0 and recursively
define

τ(i) = min{j > τ(i− 1) | Q(xj) ̸= Q(xτ(i−1))}
The time series x̂i = z ◦Q(xτ(i)), i ∈ [0, T ] is called the quantization of the time series x0, . . . , xm at radius r. Here we
let T denote the largest finite value of τ and [k, ℓ] := {k, . . . , ℓ} ⊂ N0.
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(a) Time series and cubical quantization. (b) Vietoris–Rips complex

Figure 1: Time series, its quantization and the resulting Vietoris–Rips complex.

Given a set of box centers Z, we construct the Vietoris–Rips complex K = VR(Z, d, δ), where d(x, y) = ‖x− y‖∞ and
δ = r (see the appendix for a definition of the Vietoris–Rips complex). Note that the choice of d and δ allows a point in
Z to be connected to all its diagonal neighbors. An example is shown in Fig. 1b.

Coordinates for dynamics
Circular coordinates are the key tool which we use to detect cycling. In the following paragraphs, we review their
construction from cohomology, explain how they can be lifted with respect to a time series, and outline how to find
elements of H1(K;Z) that induce dynamically relevant coordinates. In particuar, we will also define what it means to be
cycling with respect to a coordinate.

1. Cohomology and circular coordinates. A circular coordinate, as introduced in [5], is a functionK → S1 with minimal
variation along edges in its homotopy class (in particular, there is no relation to coordinates in the sense of differential
geometry). Abstractly, the construction of circular coordinates is motivated by the bijection H1(K;Z) ∼= [K, S1] where
[K, S1] denotes the homotopy classes of maps K → S1. Explicitly, given a cocycle α ∈ Z1(K;Z), the coordinate
θα : K → S1 can be constructed by first computing the harmonic representative which is given by

argmin{‖ᾱ‖2 | ᾱ = α+ d0θ, θ ∈ C0(K;R)}, where ‖α‖2 =
∑

e∈K1

α(e)2,

and then using the construction from [5] to obtain a function K → S1 which "varies by ᾱ(e) on each edge e". In this
work, the precise construction is not important since we only use the values of this function on the vertices of K which is
given by composing the minimizing θ with the canonical projection πS1 : R → S1 = R/Z. We denote this function by
θα : Z → S1. We remark that θα only depends on the cohomology class of α and is unique up to an additive constant on
each connected component of K. Examples can be found in Figs. 2 and 3.

(a) Coordinate θα varies around the right hole. (b) Coordinate θβ varies around the left hole.

Figure 2: Circular coordinates which capture holes in the complex.

2. Lifted coordinates. Given a quantized time series x̂ : [0, T ] → Z and a circular coordinate θ : Z → S1 we can form
the composite θ ◦ x̂ : [0, T ] → S1 which captures the change of the coordinate θ over time. Analogous to continuous
maps, we lift this function to a function θ̂ : [0, T ]→ R such that πS1 ◦ θ̂ = θ ◦ x̂: We define the lifted coordinate of θ and
x̂ via θ̂(0) = 0 and

θ̂(t) = θ̂(t− 1) + dS1(θ(x̂t), θ(x̂t−1)), t = 1, . . . , T,

where dS1(x, y) denotes the signed geodesic distance from y to x on S1.
For an example, let x̂ denote the quantized time setries from Fig. 1a. Fig. 4a shows the first 80 time steps of θα ◦ x̂, Fig.4b
shows the lift θ̂ over the same period of time. One can see from Fig. 4a that the time series does approximately 3.5 turns
with respect to the coordinate. The lifted coordinate Fig. 4b captures this directly, as it increases by 3.5.
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(a) Coordinate θγ varies around both holes. (b) Coordinate θδ varies around both holes.

Figure 3: A pair of bad coordinates.

(a) Circular coordinate evaluated along time series. (b) Lifted coordinate.

Figure 4: Circular coordinate and its lift along a time series.

3. Dynamically relevant generators. As described before, every cohomology class in H1(K;Z) induces a circular
coordinate. Some of these coordinates can be used to detected cycling dynamics. For example, the coordinate in Fig. 2a
is almost constant on the left side of the complex while it maps the right half of the complex surjectively onto the circle.
Therefore, a lift of this coordinate changes significantly if and only if the time series "cycles" around the right hole in
the complex. In particular, the coordinate can be used to detect cycling around the right hole. Similarly, the coordinate
in Fig. 2b can be used to detect cycling around the left hole. However, not all cohomology classes induce coordinates
suitable for detecting cycling dynamics. For example, the coordinates in Figs. 3a and 3b are not suited for detecting
cycling dynamics since they vary around both holes.
We now explain how dynamically relevant coordinates can be obtained. Intuitively, we want different coordinates to
describe different features of the dynamics. Therefore, large changes in different lifted coordinates should occur at
disjoint periods of time. To capture this, we define the correlation of two lifted coordinates θ̂ and η̂ as

c(θ̂, η̂) = 〈|∆θ̂|, |∆η̂|〉 (1)

where the i-th entry of the vector ∆θ̂ is the forward finite difference θ̂i+1 − θ̂i and 〈·, ·〉 denotes the standard Euclidean
inner product. Since we are interested in describing all possible cycling dynamics in the system, we want to find a
correlation minimizing basis. For a basis B of H1(K;Z) we define its correlation as

I (B) =
∑

α,α′∈B
α 6=α′

c(θ̂α, θ̂α′). (2)

As an example, we again consider the time series 1a. From Fig. 4b we know that for the first 80 time steps, the series
does 3.5 turns around the right hole. Now consider Fig. 5 where the lifted coordinates for the bases {α, β} and {γ, δ}
are plotted for the first 80 time steps. The plots indicate that the lifted coordinates in Fig. 5a have a lower correlation
than the ones in Fig. 5b. An explicit computation (for all 1000 time steps) yields the values 0.158 and 12.8, respectively,
confirming that the preferred basis has lower correlation.
We now search for a basis with minimal correlation. Assuming α1, . . . , αn is any basis for the free groupH1(K;Z), every
basis can be written as Aα1, . . . , Aαn where A ∈ GLn(Z). In order to find a correlation minimizing basis, we search
GLn(Z), starting with the identity A := I and recursively applying basis change operations (sums of rows/columns,
multiplication of rows/columns with a unit) to A up to a given depth. Of all these bases we return the one with minimal
correlation.
This approach works sufficiently well for simple examples. However, since we are only searching a finite subset of
GLn(Z) we have no guarantee of actually finding a minimizer. A better algorithm for finding a correlation minimal basis
is a topic for future work.
Given a quantized time series and a circular coordinate, cycling dynamics can be inferred from changes in a lift of the
coordinate. More precisely, we define a quantized time series x̂ to be cycling along α if there is an interval [k, ℓ] where θ̂α
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(a) Lift of the coordinates in Fig. 2. (b) Lift of the coordinates in Fig. 3.

Figure 5: Lifted coordinates for two different bases.

satisfies a monotonicity criterion and |θ̂α(ℓ) − θ̂α(k)| > 1. The second condition ensures that the time series completes
at least one full turn during the segment [k, ℓ]. The monotonicity criterion we use is the following: Given ε > 0, t̄ ∈ N>0,
the lifted coordinate θ̂ : [0, T ]→ R is called (ε, t̄)-increasing along [k, ℓ] if

• |θα(t+ t̄)− θα(t)| > ε for all t = k, . . . , ℓ− t̄, and

• the sign of θα(t+ t̄)− θα(t) is the same for all t = k, . . . , ℓ− t̄.

For t̄ = 1, this definition requires θ̂α to be monotonic. In practice, it is usually necessary to use t̄ > 1 due to small
back-and-forth movement which decreases the lifted coordinate, or movement orthogonal to the cycling direction which
keeps the lifted coordinate constant. Note that the parameters ε and t̄ have to be specified by the user; we typically do this
by inspecting the lifted coordinates.
We define the subset E ⊂ B of all dynamically relevant generators of a basis B as all α ∈ B for which the time series is
cycling along θα. The elements in B \ E will be called spurious generators.

Macro model for cycling dynamics
We transfer the information on cycling motion back to the cubical covering: A cube ξ in the covering X is α-cycling if
the time series is cycling along α on some interval [k, ℓ] and there is j ∈ [k, ℓ] such that x̂j ∈ ξ. For ξ ∈ X , let E(ξ) ⊂ E
be the set of all dynamically relevant generators α for which ξ is α-cycling.
The cubical covering X can now be decomposed into equivalence classes: Two cubes are equivalent if they are cycling
with respect to the same set of non-spurious generators of H1(K;Z):

ξ ∼1 ξ
′ ⇐⇒ E(ξ) = E(ξ′).

We can furthermore distinguish cubes in which the trajectory ceases to be cycling. For this, assume the time series
is α-cycling along an interval [k, ℓ] which is maximal in the sense that the time series is not α-cycling on any inter-
val which contains [k, ℓ]. Now let t ∈ [k, ℓ] be the first time step such that |θ̂α(ℓ) − θ̂α(t)| < 1. Then the cubes
Q−1(x̂t), . . . , Q

−1(x̂ℓ) are precisely those cubes which are hit during the "last full turn" with respect to α in [k, ℓ]. We
call such cubes α-transient. For a given cube ξ, we let Et(ξ) denote the set of all generators which ξ is transient for. As a
finer classification of cubes we define

ξ ∼2 ξ
′ ⇐⇒ E(ξ) = E(ξ′) and Et(ξ) = Et(ξ

′).

We now classify the cubes in X according to either of these two equivalence relations and count transitions between the
classes. That is, we build the quotient

[X ] := X/ ∼ = {[ξ1]∼, . . . , [ξT ]∼}

as well as the transition matrix

P (∼) = (pij), pij = #{t ∈ [1, T ] | x̂t−1 ∈ [ξj ]∼, x̂t ∈ [ξi]∼}.

We now call (X/ ∼1, P (∼1)) a macro model, and (X/ ∼2, P (∼2)) an extended macro model for the given time series.
Figs. 6 and 7 show both macro models for the time series in Fig. 1a.

Experiments

The following results are obtained using our implementation of the pipeline in Section in the programming language Julia
[2]. In particular, we use the algorithm in [8] for computing H1 with integer coefficients.
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(a) Decomposition.

1157 86 142 α-cyc
1367 69 6 β-cyc

113 68 134 α-cyc β-cyc
115 6 27 no cycling

(b) Transition matrix.

Figure 6: Macro model for the double well system.

(a) Decomposition.

10 α-cyc
10 1137 86 142 α-trn

13 β-cyc
13 1341 69 6 β-trn

113 68 134 α-trn β-trn
115 6 27 no cycling

(b) Transition matrix.

Figure 7: Extended macro model for the double well system.

Perturbed double well
The time series in Fig. 1, which was used to illustrate the constructions in the previous section, was obtained by integrating
a stochastically perturbed version of the double well Hamiltonian system

dx = f(x)dt+ σdB, (3)

with x = (q, p), f(x) = (p, q − q3), σ = (0, 0.025) and B denoting Brownian motion. We integrate (3) from the initial
value x = (1, 0.7) by the SRIW1 scheme [13] with step size 0.01.
The macro models in Fig. 6 and Fig. 7 were generated using the coordinates in Fig. 2 and the monotonicity criterion ”θ
is (0.02, 2)-increasing”. These models are as we would expect for such simple dynamics. The yellow boxes capture the
location in phase space where direct transition between loops is possible and the green and blue boxes capture the location
where the trajectory cycles around the natural holes.

The Lorenz system
For this example we generated a time series by integrating the Lorenz system with the classical parameters σ = 10, β = 8

3
and ρ = 28 with time step size 0.1 for 1 million time steps using the classical fourth order Runge Kutta method. As starting
value, we choose (0, 10, 0), but we discard the first 6000 time steps since they ’close up’ the left holes of the complex.
This highlights one shortcoming of our current technique which will be addressed in future work.

(a) Sampled trajectory. (b) Quantization. (c) Coordinate θα. (d) Coordinate θβ .

Figure 8: Illustration of the pipeline for a trajectory on the Lorenz attractor.

We choose the quantization radius r = 2.5 and obtain a Vietoris-Rips complex with two-dimensional first cohomology.
We use the monotonicity criterion ”θ is (0.02, 6)-increasing” for both coordinates. Plots of the time series, the quantized
point cloud as well as the coordiantes of the correlation minimizing basis are shown in Fig. 8.
The macro model shown in Fig. 9 nicely captures many important aspects of the dynamics on the Lorenz attractor. We
learn that there are (at least) two different types of cycling motion, that each of these occurs in a distinct region in phase
space (the blue and green regions), and that these regions intersect (yellow region). We furthermore see that cycling
dynamics are present everywhere in the box decomposition since there are no non-cycling boxes.
In the extended macro model (Fig. 10), we see that the cycling regions are subdivided into a cycling set near the center
of the wings and a transient set near the outside of the wings. This indicates that all cycling dynamics in the inside of
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(a) Decomposition.

12060 1042 α-cyc
12677 901 β-cyc

1043 901 14219 α-cyc β-cyc

(b) Transition matrix.

Figure 9: Macro model for the Lorenz system.

(a) Decomposition.

3046 724 53 305 301 α-cyc
755 7535 37 346 α-trn

3359 656 128 234 100 β-cyc
766 7896 30 74 335 β-trn

80 368 9 384 5179 275 904 α-trn β-trn
212 17 229 165 642 3663 5 α-trn β-cyc
336 30 114 1129 36 2386 α-cyc β-trn

(b) Transition matrix.

Figure 10: Extended macro model for the Lorenz system.

the wings eventually moves to the outer regions. The extended model furthermore identifies the regions where direct
transitions between cycling dynamics can occur. The purple and yellow regions in Fig. 10a are the only regions where a
direct transition from α- to β-cycling dynamics is possible and the orange and yellow regions are the only places that can
contain the reverse transition.

Discussion

The techniques described in this paper appear to be a promising novel approach to identifying from time series data regions
of phase space in which oscillations occur and locations at which transitions between these oscillations occur. However, a
number of distinct questions need to be answered to obtain confidence in applying this technique to complicated higher-
dimensional systems, where the results cannot be inspected and modified by visualization. We briefly address those in the
following paragraphs.

Construction of the complex. The computation of circle-valued coordinates from data requires the construction of a
geometric complex. The approach chosen in this article accomplishes this by constructing a Vietoris–Rips complex from
a suitably quantized version of the given time series. In particular, we rely on finding a quantization radius r which is
small enough to contain those holes which give rise to dynamically relevant coordinates and large enough to connect
the data in a meaningful way. In general, such a radius need not exist. This even happens in the Lorenz system with a
trajectory that starts very close to the center of one of the wings.

Finding optimal coordinates. When searching for dynamically relevant coordinates, we encounter the problem of finding
a correlation minimizing basis. This poses the natural question of existence and uniqueness of such a basis. In addition, an
algorithm is needed to compute this basis or a suitable approximation. Furthermore, even the computation of an arbitrary
basis for H1( · ;Z) is currently not as efficient as we would like. We hope to address this using techniques inspired by
those for the computation of (persistent) cohomology with coefficients in a finite field [3].

Identifying cycling motion. In this contribution, cycling motion is identified by analyzing the monotonicity behavior
of circular coordinates. While this leads to satisfactory results in the presented examples, we have no general reliable
procedure of identifying recurrence. For example, a cycling time series with a bit of back-and-forth movement in every
full turn would be difficult to identify using the presented methods.
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Appendix: Background

Simplicial complexes. Let V be a finite set. An (abstract) simplicial complex with base set V is a subset K of the power
set of V which is closed under the subset relation, i.e. σ ∈ K implies τ ∈ K for every subset τ of σ. A σ ∈ K is called a
simplex, or more precisely a k-simplex, where k = |σ| − 1; the set of k-simplices is denoted by K(k). In the special cases
k = 0, 1 or 2 we call σ a vertex, an edge or a triangle, respectively.
Given a finite set V ⊂ Rn, a metric d on Rn and a simplex σ ⊂ V , the diameter of a simplex is defined as diamσ =
maxv,w∈σ d(v, w). The simplicial complex VR(V, d, r) = {σ ⊂ V | diamσ ≤ r} is called the Vietoris–Rips complex of
V at scale r.

Cochain groups. A basis for an abelian group G is a set (gi)i∈I of elements such that every g ∈ G can be written
uniquely as a finite sum g =

∑
njgj with nj ∈ Z. An abelian group with a basis is called free.

The cochain groups of a simplicial complex are the free abelian groups

Ck(K;Z) = {functions K(k) → Z}

where a basis for each group is given by the functions which are 1 on one simplex and 0 on all others.

First Cohomology. Fix a total order on V . We write [v0, v1, . . . , vk] for a subset {v0, v1, . . . , vk} of V if v0 < v1 <
· · · < vk. Clearly, for every σ ∈ K there are unique v0, . . . , vk ∈ V such that σ = [v0, v1, . . . , vk].
We define coboundary maps d0 : C0(K;Z)→ C1(K;Z) and d1 : C1(K;Z)→ C2(K;Z)

(d0f)([v0, v1]) = f(v1)− f(v0)
(d1α)([v0, v1, v2]) = α([v1, v2])− α([v0, v2]) + α([v0, v1])

Elements in ker d1 are called cocycles, elements in im d0 coboundaries. A calculation shows that d1d0 = 0 and therefore
im d0 ⊂ ker d1. We can therefore define the first cohomology group as the quotient

H1(K;Z) = ker d1/ im d0.

It follows from the universal coefficient theorem for cohomology (see section 3.1 of [15]) that H1(K;Z) is again a free
abelian group.

Acknowledgement

The authors thank the DFG for their support via the SFB/TR109 Discretization in Geometry and Dynamics.

References

[1] H. Ban and W. D. Kalies. A computational approach to Conley’s decomposition theorem. J. Comp. Nonl. Dyn., 1(4):312–319, 2006.

[2] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A Fresh Approach to Numerical Computing. SIAM Review, 59: 65–98, 2017.

[3] U. Bauer. Ripser: efficient computation of Vietoris–Rips persistence barcodes. J Appl. and Comput. Topology 5, 391–423 (2021).

[4] C. Conley. Isolated invariant sets and the Morse index, volume 38 of CBMS Regional Conference Series in Mathematics. American Mathematical
Society, Providence, R.I., 1978.

[5] V. de Silva, D. Morozov, and M. Vejdemo-Johansson. Persistent Cohomology and Circular Coordinates. Discr. Comp. Geom., 45(4):737–759,
2009.

[6] M. Dellnitz and O. Junge. On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal., 36(2):491–515, 1999.

[7] M. Dellnitz, O. Junge. Set oriented numerical methods for dynamical systems, B. Fiedler, G. Iooss and N. Kopell (eds.), in: Handbook of Dynamical
Systems III: Towards Applications. World Scientific, 2002.

[8] S. Harker, K. Mischaikow, M. Mrozek, and V. Nanda. Discrete Morse theoretic algorithms for computing homology of complexes and maps. Found.
Comput. Math., 14(1):151–184, 2014.

[9] K. Mischaikow. Topological techniques for efficient rigorous computation in dynamics. Acta Numer., 11:435–477, 2002.

[10] W. D. Kalies, K. Mischaikow, and Vandervorst, R. C. A. M. An algorithmic approach to chain recurrence. Found. Comput. Math., 5(4):409–449,
2005.

[11] K. Mischaikow, M. Mrozek, and F. Weilandt. Discretization strategies for computing Conley indices and Morse decompositions of flows. J. Comput.
Dyn., 3(1):1–16, 2016.

[12] G. Osipenko. Construction of attractors and filtrations. In Conley index theory (Warsaw, 1997), volume 47 of Banach Center Publ., pages 173–192.
Polish Acad. Sci. Inst. Math., Warsaw, 1999.

[13] A. Rößler. Runge-Kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM J. Numer. Anal., 48(3):922–
952, 2010.

[14] P. Skraba, V. de Silva, and M. Vejdemo-Johansson. Topological Analysis of Recurrent Systems. Presented at the NIPS 2012 Workshop on Algebraic
Topology and Machine Learning, December 8th, Lake Tahoe, Nevada.

[15] A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2002

ENOC 2022, July 17-22, 2022, Lyon, France

194



ENOC 2022, July 17-22, 2022, Lyon, France

	        
 

2022
ENOC

Monday, July 18, 2022
16:00 - 18:20

MS-05 Slow-Fast Systems and Phenomena
Saint Clair 1

Chair: Bernd Krauskopf

16:00 - 16:20
Stability of a driver-vehicle system with steering and throttle control
EDELMANN Johannes∗, PLÖCHL Manfred, STEINDL Alois
∗TU Wien (Getreidemarkt 9 1060 Wien Austria)

16:20 - 16:40
Nonlinear Oscillations of Acoustic Shock Waves in a Cylindrical Tube
SØRENSEN Mads∗, RASMUSSEN Anders, CHRISTIANSEN Peter
∗Department of Applied Mathematics and Computer Science, Technical University of Denmark (Richard Petersens Plads,
Bldg. 324, DK-2800 Kongens Lyngby Denmark)

16:40 - 17:00
Controlling canard cycles
JARDON Hildeberto∗, KUEHN Christian
∗Technical University of Munich (Boltzmannstr. 3 85748 Garching bei München, Germany Germany)

17:00 - 17:20
Non-smooth Two Variable Expansions for Separation of Motions In Impact and Impulsively Loaded Oscillators
PILIPCHUK Valery∗
∗Wayne State University (5050 Anthony Wayne Dr., 2118 Detroit, Michigan 48202 United States)

195



ENOC 2020+2, July 17-22, 2022, Lyon, France

Stability of a driver-vehicle system with steering and throttle control

Johannes Edelmann∗, Manfred Plöchl∗ and Alois Steindl ∗

∗Institute for Mechanics and Mechatronic, TU Wien, Vienna, Austria

Summary. The stability of a vehicle’s driving state depends on the mechanical properties of the vehicle and the road conditions, but to
a large amount also on the characteristics of the human driver. The aim of this talk is to study the influence of the driver’s reaction on the
stability of the steady cornering motion, which for constant control input is asymptotically stable.

Introduction

The stability of a vehicle’s driving state depends on the mechanical properties of the vehicle and the road conditions, but
to a large amount also on the characteristics of the human driver. The human driver might be replaced by a robot in the
case of an automated vehicle. The aim of this talk is to study the influence of the driver’s reaction on the stability of the
steady motion, which for constant control input is asymptotically stable.
We investigate the loss of stability of a controlled understeering vehicle along a steady-state cornering motion, according
to the model described in [1]. To control the trajectory of the vehicle, the human driver is assumed to either adjust the front
steering angle δF or the driving torque MR of the rear wheels, according to the deviation of a point P from a reference
circle (Fig. 1). If we denote the deviation of the point P from the reference circle by ∆rP and the deviation of the control
input u ∈ {δF ,MR} from the stationary value by ∆u, the “simplified precision model” [2] takes the form

TM
d∆u(t)

dt
+∆u(t) = cP∆rP (t− τ) + cD

d∆rP
dt

(t− τ), (1)

with human reaction time τ . Delay time TM , the control gains cP and cD depend on the driver’s skills and on the handling
behaviour of the vehicle. A similar control loop with delay for a vehicle dynamics was investigated in [3].
While frequently used driver models, based on the above modelling approach, are applied for a linear driving regime, a
nonlinear design is focussed here. In particular, the brush tyre model, [4] is used for the nonlinear tyre forces at higher
lateral accelerations. The driver model is able not only to control the given trajectory with the steering angle, but also
with the longitudinal tyre force resulting from the rear wheel drive. This is a skill of a human (expert) driver, but rarely
addressed in human driver modelling, but will become in particular important also at automated driving, when individual
drive torques may be used to stabilise critical driving manoeuvres in the nonlinear driving regime.
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Figure 1: Geometric relations for the driver’s preview model: To
follow a circle with radius r0, the driver spots a point P at a
distance LP straight ahead, which should move along a circle
with radius rP0.

Figure 2: Handling diagram for for the considered vehicle for a
steady cornering motion along a circle with radius 80 m. For the
considered steady velocity v = 20m/s the equilibrium point is
asymptotically stable.

Preliminary results

In order to investigate the linear stability of the cornering motion, we choose parameters and control inputs, for which
the steady state cornering motion is asymptotically stable. As an example for such a stable motion we select the point
indicated in Fig. 2, corresponding to a constant speed v = 20m/s. Neglecting the reaction time τ we select control gains,
for which the vehicle-driver model is still asymptotically stable. Fixing these parameters, we vary the reaction time τ and
determine the critical parameter values, for which a loss of stability due to a Hopf bifurcation occurs.
As can be seen from Figs. 3 and 4, the steering control depends very sensitively on the reaction time for the considered
parameter values, whereas the critical reaction time τc for pure throttle control is far beyond the usual values.
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Figure 3: Critical reaction time τc for the occurence of a Hopf
bifurcation for varying preview length LP and control gain cP ,
varying from 0.1rad/m (blue) to 0.5rad/m (magenta) with fixed
value cD = 0.02rad s/m for pure steering control.

Figure 4: Critical reaction time τc for the occurence of a Hopf
bifurcation for varying preview length LP and control gain cP
varying from varying from 2N (blue) to 10N (magenta) with
fixed value cD = −30Ns for pure Throttle control.

Further research

We plan to outline realistic estimates for the drivers’ control behaviour and explore the resulting driving conditions.
Further we will investigate the nonlinear system after loss of stability. In the uncontrolled system considered in [1]
we already observed Canard explosions and relaxation oscillations; the feedback control (1) for the drivers’ behaviour
introduces further time scales into the system dynamics, so we are expecting interesting slow-fast dynamic behaviour of
the model.
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Nonlinear Oscillations of Acoustic Shock Waves in a Cylindrical Tube

Anders Rønne Rasmussen∗, Peter Leth Christiansen†,‡ and Mads Peter Sørensen ‡

∗GreenHydrogen, Kolding, Denmark
†Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark

‡Department of Applied Mathematics and Computer Science, Technical University of Denmark,
Kongens Lyngby, Denmark

Summary. We investigate nonlinear and dissipative acoustic waves in a tube driven by a sinusoidal driver at one end and impossing
a fixed wall boundary condition at the opposite end. For driving amplitudes close to resonances in the tube, we have found multiple
oscillating shock waves in a weakly nonlinear thermoviscous acoustic model. For slow off resonance driving, we observed a nearly
linear oscillating ground state superimposed by bursts of oscillating schock waves. The small amplitude nearly harmonic oscillations
are slow, whereas the oscillating shock waves exhibit fast propagation back and forth in the tube.

Higher order nonlinear acoustic wave equation

In nonlinear acoustics the wave fields for the flow velocity or pressure will not be simple harmonic waves. Localized shock
waves may be generated or acoustic streaming may appear. The resulting flow patterns results from balancing dissipation
and nonlinear effects. In the literature oscillating solitons or solitary waves have been studied in a wide range of systems
as long Josephson junctions and optical fiber systems. Motivated by these investigations we shall here study oscillating
solitary shock waves in a tube driven by a harmonic driver at one end while imposing a fixed wall at the opposite end. We
shall asume plane waves in a cylindreical tube of length ℓ.

Mathematical model
A number of model equations for weakly nonlinear acoustic wave propagation have been derived in the literature [1].
Here we use a model for acoustic waves in a Newtonian, viscous and heat conducting gas. Our model is based on the
dynamical equations for the fluid motion, continuity, the heat transfer and entropy together with an equation of state.
Introducing the velocity potential ψ = ψ(x, t) as function of position x along the tube center axis and at time t, our one
dimensional plane wave model in dimensionless variables and coordinates reads [2]

ψtt − ψxx = ψtψxx + (γ − 2)ψttψt + 2ψxtψx + bψxxt , (1)

where subscripts x and t denote partial derivatives with respect to the space and time variables. The fluid flow velocity
u(x, t) is given by the potential through u = −ψx and the fluid pressure p is given by p = ψt. The term bψxxt models
dissipation and γ equalsCp/Cv withCp beeing the specific heat at constant pressure andCv is the specific heat at constant
volume.

Boundary conditions
At the left end (x = 0) of the tube a sound generator is mounted and at the right end (x = ℓ) we have a fixed wall. The
boundary conditions become

u(0, t) = −ψx(0, t) = D sin(ωt) and u(ℓ, t) = −ψx(ℓ, t) = 0 . (2)

The parameter D is the driver amplitude and the driving frequency is denoted by ω. Initially we take a fluid at rest
corresponding to ψ(x, 0) = 0 and ψt(x, 0) = 0. We solve Eq. (1), together with the initial conditions (2), by a semi
difference method discretizing to second order in space and integrating in time using a 4-5 order Runge Kutta method.
Integration is conducted until steady state has emerged. The following parameters are kept fixed ℓ = 1, b = 5 · 10−4 and
γ = 1.4.

Numerical results

For the driver parametersD = 0.01 and ω = 2π the left panel of Fig. 1 shows a three dimensional plot of the fluid velocity
field u(x, t) as function of x and t. The driver frequency corresponds to the eigenfrequency of the second harmonic of the
linearized model (1). This means we drive the nonlinear equation at a resonance frequency. However, due to damping and
the nonlinear terms the emerging steady state solution consists of two oscillating shock waves, travelling forth and back
in opposite directions.

The right panel of Fig. 1 shows a plot of the fluid velocity u(x, t) driven at the nonresonant frequency ω = 0.1 and with
driver amplitudeD = −0.125. The simulations reveal the surprizing result that the slowly varying ground state oscillation
is superimposed a fast back and forth oscillating shock wave. We observe that during one driver cycle the shock wave
oscillations appear for decreasing u(0, t) corresponding to compression of the fluid and disappears for increasing u(0, t)
corresponding to decompression.
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Figure 1: Left: Resonant oscillations of two counter propagating shock waves. Right: Non resonant oscillations superimposed fast
travelling shock waves.

Conclusion

Driving nonlinear acoustic plane waves at resonance in a cylindrical tube leads to oscillating shock waves. A driving
frequency corresponding to the n’th linear excitation mode in the linearized model of Eq. (1) leads to n oscillating fully
nonlinear shocks. However, an upper limit for the number of oscillating shocks is expected given by the width of the
shocks and the space available in the tube. For the nonresonant driving case full numerical simulations revealed excitation
of a nearly linear ground state superimposed oscillating shock waves in bursts.The shock waves oscillates fast back and
forth in comparison to the slow ground state wave oscillation.
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Controlling canard cycles

Hildeberto Jardon-Kojakhmetov∗, and Christian Kuehn ∗

∗Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, 85748 Garching bei
München, Germany

Summary. Canard cycles are periodic orbits that appear as special solutions of fast-slow systems (or singularly perturbed Ordi-
nary Differential Equations). It is well known that canard cycles are difficult to detect, hard to reproduce numerically, and that
they are sensible to exponentially small changes in parameters. By combining Geometric Singular Perturbation Theory and state
feedback control techniques, we design controllers that stabilize canard cycles of planar fast-slow systems with a folded critical
manifold. As an application, we propose a controller that produces stable mixed-mode oscillations in the van der Pol oscillator.

Introduction

Fast-slow systems (also known as singularly perturbed ordinary differential equations are often used to model phenomena
occurring in two or more time scales. Examples of these are vast and range from oscillatory patters in biochemistry and
neuroscience all the way to stability analysis and control of power networks, among many others. The overall idea behind
the analysis of fast-slow systems is to separate the behavior that occurs at each time scale, understand such behavior,
and then try to elucidate the corresponding dynamics of the full system. Many approaches have been developed, such as
asymptotic methods, numeric and computational tools and geometric techniques, see e.g. [4, 10].
Although the time scale separation approach has been very fruitful, there are some cases in which it does not suffice
to completely describe the dynamics of a fast-slow system. The reason is that, for some systems, the fast and the slow
dynamics are interrelated in such a way that some complex behavior is only discovered when they are not fully separated.
An example of the aforementioned situation are the so-called canards [1]. Canards are orbits that, counter-intuitively,
stay close for a considerable amount of time to a repelling set of equilibrium points of the fast dynamics. Canards are
extremely important in the theory of fast-slow systems, and through them one can explain, for example, the very fast
onset of large amplitude oscillations due to small changes of a parameter in neuronal models[3, 9], and the delayed loss
of stability due to a slow passage through a singularity [11, 12]. However, due to their very nature, canard orbits are not
robust, meaning that small perturbations may drastically change the shape of the orbit.
On the other hand the application of singular perturbation techniques in control theory is far-reaching. Perhaps, as already
introduced above, one of the biggest appeals of the theory of fast-slow systems is the time scale separation, which allows
the reduction of large systems into lower dimensional ones for which the control design is simpler. Applications range
from the control of robots, all the way to industrial biochemical processes, and large power networks [7]. However, as
already mentioned, not all fast-slow systems can be analyzed by the convenient time scale separation strategy, and although
some efforts from very diverse perspectives have been made, a general theory that includes not only the regulation problem
but also the path following and trajectory planning problems is, to date, lacking.
Here we merge techniques of fast-slow dynamical systems with control theory methods to develop controllers that stabilize
canard orbits. The idea of controlling canards has already been explored in [2], where an integral feedback controller is
designed for the FitzHugh-Nagumo model to steer it towards the so-called “canard regime”. In contrast, here we take a
more general and geometric approach by considering the canard normal form.

Main results

The formal statements of these results and the corresponding proofs are available in [5].

Consider the fast-slow control problem

x′ = −y + x2 + u(x, y, ε, α)

y′ = ε(x− α), (1)

where (x, y) ∈ R2 are the fast and slow variables respectively, α ∈ R is a parameter, 0 < ε ≪ 1 is the perturbation
aprameter responsible for the time scale separation, and u ∈ R denotes a state-feedback controller.
Our main result is a controller u that renders canard cycles of (1) asymptitically stable as shown in Figure 1.
As an application we consider controlled the van der Pol equation

x′ = −y + x2 − 1

3
x3 + u

y′ = εx.
(2)

and design a controller that is able to produce in a robust way any type of Mixed-Mode Oscillation (MMO) allowed by
the geometry of the critical manifold. An example of such MMO is shown in Figure 2.
Our main techniques of analysis are the blow-up method [6], canard theory [1, 8] and state feedback control design
based on Lyapunov stability [13].
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(a) (b)

Figure 1: In both columns we show, in the first row the (x, y) phase portrait of the closed-loop system (1) and in the second row the
time-series of the corresponding controller. In all these simulations ε = 0.01. (a) The case of bounded canard cycles, where the desired
canard cycle to be followed is shown in dashed-grey. (b) The maximal canard case, which is unbounded, and yet can be followed with
a bounded controller.
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Figure 2: A sample of a Mixed-Mode Oscillation (MMO) with 3 Large Amplitude Oscillations (LAOs) and 4 Small Amplitude Os-
cillations (SAOs) produced by our controller. Such a controller has as parameters the number of LAOs, the number of SAOs, and the
height of the canards.
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 Non-smooth Two Variable Expansions for Separation of Motions 
In Impact and Impulsively Loaded Oscillators 

 
 Valery Pilipchuk 

Wayne State University, Detroit, USA 

  
Summary. Non-smooth two variable expansions for impact and impulsively loaded oscillators are introduced. In particular, the role of fast 
temporal scale is assigned to the triangle sine wave, whereas amplitude and/or frequency modulations are described in a smooth slow 
temporal scale. The developed tool allows for derivations of closed form solutions describing non-stationary oscillatory dynamics of systems 
with cyclical impacts or external impulses.  Different illustrating examples of oscillators with amplitude limiters are considered assuming 
the coefficient of restitution is closed to unity.  

Introduction 

Nonstationary dynamics of oscillating systems under non-holonomic constraint conditions became of significant interest 
due to different ideas of using impact oscillators as elements of energy absorbers or harvesters. In contrast to the harmonic 
oscillator, the basic impact oscillator has no specific natural frequency and therefore can interact with different subsystems 
in a wide range of spectrum, which is important property for the design of such devices.  It is shown in this work that the 
‘hyperbolic complexification’ of the state variables provides the adequate way to describing the effect of energy loss 
through specific boundary conditions generated by the triangle wave temporal argument. Then analytical algorithms for 
solving the corresponding boundary value problems are applied. In addition to the possibility of calculations without 
conditioning the variables at collision times, the suggested type of solutions can be effectively used in different analytical 
manipulations dictated by the purpose of study due to the closed form of solutions. 
 
Technical details  
The present analytical procedure essentially involves a couple of piecewise linear functions admitting also representation 
in a closed form through elementary functions (Fig.1a)  
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Figure 1: a) Non-smooth basis, and b) harmonic oscillator with amplitude limiters. 

 

Functions (1) are used in different variations and contents in the literature, see for instance references [1, 2] as relevant to 
the area. However, normalizations for the amplitudes and periods shown in Fig.1 are essential for the present 
methodology, in which the rectangular wave e(t) plays the role of a unipotent of the so-called hyperbolic number due to 
the property 2 1e  . Namely any periodic process x(t) of the period T = 4 admits representation in the form [3] 

( ) ( ) ( )x t X Y e   . In case of modulated oscillatory motions a slow time   is added as 
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Then the triangle wave τ is considered as a fast temporal scale of the following two variable expansions 
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Substituting (2-3) into differential equation of motion and using the corresponding condition on velocity at impact times 
leads to the sequence of boundary value problems for X and Y on the interval of the oscillating time argument 1 1    
[4]. Some of the boundary conditions occur as a result of elimination of singularities produced by differentiation of the 
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basic functions (1), whereas specific boundary condition is imposed by the dissipative interaction with amplitude limiters. 
Note that the conventional two variable procedure, which is typically applied to quasi linear vibrating systems, produces 
the differential equations for slow motions as a result of elimination of secular terms from the expansions [5]. Instead the 
present analytical algorithm derives the slow time equations from the boundary conditions at 1   . Due to technical 
complexity of analytical manipulations with series (3) in general form, different adaptations for particular cases at the 
preliminary stage of derivations can be applied. For instance, free impact vibrations of the model shown in Fig.1b do not 
have amplitude modulations as long as the energy remains sufficient for reaching the amplitude limiters. In this case, the 
explicit dependence on η in X and Y terms of expansions (3) can be ignored as it is done in the example below. The effect 
of energy loss is completely captured by the slow varying frequency terms.            
 

Example  
Free vibrations of the illustrating model, which is shown in Fig. 1b, is described with equations 
 
 2 0, | | , ( 0) ( 0), 1 , 0 1i ix x x x t kx t k              (4) 

 

This oscillator experiences impulsive reaction forces from the amplitude limiters at collision times. Therefore, assuming 
that the condition| |x   holds, equation (4) is replaced with  

  2 2 3
0 1 2( ), ( ) ( ) ( ) ( )x x pe p p p p p O                (5) 

where the slowly varying intensity of impulses ( )p  is sequentially determined from the boundary conditions obtained 

by substituting (2) in (5) as 
 2, ,1: 0Y X X p        (6) 

The condition on velocity in (4) gives   
  (1 )1: Y X Y X           (7) 

As mentioned, conditions (6) eliminate singularities produced by substitution of (2) in (5), whereas conditions (7) require 
somewhat detailed consideration [4].  Then conducting two steps of the asymptotic procedure gives finally the closed 
form solution (Fig. 2) 
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Figure 2: Time history of the state variables of impact oscillator with energy loss at its boundaries: 
a) coordinate, and b) velocity showing transition to the so-called ‘grazing’ regime with near zero impact pulses. 

Conclusion 

A class of vibrating systems with perfectly stiff amplitude limiters is considered by means of non-smooth time 
substitutions. The motion is represented as a combination of the oscillating component, which is due to cyclic collisions 
with the limiters, and a slow decay caused by the energy loss at collision times. A specific modification of the two variable 
expansions is used, where the non-smooth (triangle wave) temporal argument is viewed as a fast time while the energy 
decay is described in a slow time scale. As a result, closed-form analytical solutions are obtained that automatically satisfy 
collision conditions with the energy loss. Three qualitatively different basic types of vibrations are considered to cover 
periodic, frequency modulated, and amplitude-frequency modulated motions. 
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Coupled Vehicle-Guideway Dynamics Simulations of the Transrapid
with Discretized Levitation Magnet Forces

Georg Schneider1, Patrick Schmid1, Florian Dignath2, and Peter Eberhard1

1Institute of Engineering and Computational Mechanics, University of Stuttgart, Stuttgart, Germany
2thyssenkrupp Transrapid GmbH, Munich, Germany

Summary. Magnetic levitation (maglev) is a promising technology for high-speed transportation systems, as shown by the Transrapid
line in Shanghai operating successfully for nearly 20 years. Currently, a new high-speed train based on this technology is being
developed, driven by China’s Ministry of Science and Technology. Magnets are one of the key components of a maglev vehicle’s
suspension system. Attractive magnet forces ensure the contactless coupling of the vehicle to the guideway. Electromagnets are usually
described using finite element (FE) models, electromagnetic circuit models, or simple analytical models for simulation purposes.
However, FE magnet models are computationally often overwhelming, especially for transient studies, and thus too slow to use them
in large vehicle models for vehicle dynamics simulations. Moreover, the parameterization of FE models often is non-trivial. Therefore,
less detailed but fast-computable models are used in such simulations, often providing only a coarse discrete distribution of magnet
forces along the vehicle. In this contribution, the coupled vehicle-guideway dynamics is investigated regarding different discretizations
of levitation magnet forces. A two-dimensional model of the maglev vehicle Transrapid moving along an infinite elastic guideway is
used, considering the heave-pitch motion of the vehicle and the vertical guideway bending. Simulations are performed using either a
coarse distribution with two magnet forces per magnet or a fine distribution with twelve magnet forces per magnet, i.e., one magnet
force at each magnet pole. It is shown that the simplification of two magnet forces per levitation magnet is valid for vehicle dynamics
simulations. The model is parameterized with data from the Transrapid TR08 and uses a self-developed model predictive control (MPC)
scheme to control the magnets.

Introduction

In Shanghai, the only commercial high-speed magnetic levitation (maglev) train based on electromagnetic suspension
(EMS) technology is in operation at the Shanghai Maglev Transportation (SMT) line between Pudong International Air-
port and Longyang Road Station. It is operating with a maximum speed of 430 km/h. A new high-speed maglev train
with a designed top speed of more than 600 km/h is developed at the Chinese rolling stock manufacturer CRRC Qingdao
Sifang Co., Ltd. A prototype of the vehicle has already been presented to the public [1]. In Japan, at the same time the
SCMaglev, a high-speed maglev train based on the electrodynamic suspension (EDS) technology using superconducting
magnets, is developed [2]. High-speed maglev trains can close the gap between current high-speed railway technology
with top speeds of 300 to 350 km/h and aircraft traveling at around 900 km/h. To investigate the dynamic behavior of the
coupled system of guideway, vehicle, magnet, and controller, simulations and analyses with suitable models are essential
tools in the development process regarding, e.g., the general design or safety and ride comfort aspects.
Magnets are key components of a maglev vehicle’s suspension system. Hence, mathematical magnet models sufficiently
describing the magnet statics and dynamics are essential for reliably predicting the behavior of a single magnet and
eventually of the complete coupled system of vehicle and guideway by means of computer simulations. Depending on the
issue to be investigated, the complex electromagnetic field needs to be modeled in different levels of detail. On the one
hand, simple magnet models usually neglect effects like magnetic saturation and eddy currents, which become relevant for
high loads, failure scenarios, and high velocities. Detailed magnet models taking these effects into account, on the other
hand, are often computationally intensive and therefore unsuitable for application in large vehicle models for dynamics
simulations. Basically, three ways to simplify physically detailed but computationally intensive magnet models exist.
Firstly, simplification by neglecting highly nonlinear physical effects like saturation, see [3], secondly, model reduction
procedures still considering these physical effects and at the same time reducing the computational effort, as elaborated
in [4], and, thirdly, simplifications concerning the distribution of magnet forces along the vehicle. In literature, various
maglev vehicle models are described with different levels of detail regarding the distribution of levitation magnet forces
along the vehicle. In [5], a very coarse distribution is applied with four levitation magnet forces per vehicle section in
the most complex model variant. The models from [6, 7] use one or two magnet forces per magnet, respectively. In [8],
a model of the controlled magnets is presented, providing two magnet forces per magnet, combining both the magnet
model and the control law in a PID-T1 system. Another approach is used in [9], where two torques are applied in addition
to two forces per magnet. Both are multiplied with position-dependent factors mapping the discrete force application
points (FAPs) to the continuous magnet force distribution of the real magnet. A fine distribution with one force per pole
is implemented in [3], but the corresponding magnet model is simple with limited valid operational range. In [10], a
magnet model with two forces per magnet from [4] is used to analyze the coupled dynamics of a vehicle consisting of
three sections with 48 levitation magnet forces in total, moving along an infinite series of elastic guideway elements.
While the influence of nonlinear physical effects like saturation and eddy currents has been investigated in detail in [4],
the influence of magnet force distribution has not yet been investigated systematically. Therefore, the question arises
whether it is a valid simplification in simulations of coupled vehicle-guideway dynamics to summarize the magnet force,
which is actually distributed continuously along the magnet, in a single concentrated substitute magnet force per magnet
or half magnet, respectively, or if a finer distribution is required with forces acting, e.g., at each pole.
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Figure 1: Coupled system of a rigid multibody maglev vehicle and an elastic guideway modeled and visualized with Neweul-M2.

Simulation Model

In this contribution, the influence of levitation magnet force distribution on the dynamic behavior of the coupled vehicle-
guideway system is investigated. A two-dimensional model of a maglev vehicle moving along an infinite elastic guideway
based on [10] is used, mapping the heave-pitch motion of the vehicle and the vertical guideway bending. The infinite track
is represented by a small number of identical single-span Euler-Bernoulli beams, which are used repeatedly, following
the concept of moving system boundaries. The vehicle is modeled as a rigid multibody system with three sections, each
one consisting of a car body, levitation chassis, and levitation magnets coupled by air springs and elastomer elements.
The mechanical model has 76 degrees of freedom. Figure 1 shows the coupled system modeled and visualized with the
in-house multibody simulation toolbox Neweul-M2 [11]. The vehicle mechanics is parameterized with values from the
Transrapid model called TR08, the predecessor of the SMT vehicle running in Shanghai. Parameters representing the first
generation of concrete girders at the test facility in northern Germany (TVE) are taken for the guideway elements. The
simulation model is basically the one described in [10], therefore, the interested reader is referred to this publication for a
complete model description. Nevertheless, to provide a good understanding of the model, its most important aspects are
summarized below, as well as the extensions and changes made for the work at hand.

Mechanical Vehicle Model
The vehicle model represents a detailed two-dimensional rigid multibody model of the maglev vehicle Transrapid mapping
the heave-pitch motion in the x-z-plane. It represents a longitudinal section of the system. The left and right side of the
system, that is the y-direction, are summed up. An overview of the mechanical vehicle components is given in Fig. 2.
The model comprises a rear end section, a mid section, and a front end section. Each section consists of rigid bodies
for a car body, four levitation chassis, and seven or eight levitation magnets, respectively. Each section has the length
of eight standard levitation magnets, but the magnets are arranged in such a way that a magnet connects the neighboring
levitation chassis of two sections. At the front and rear end of the vehicle, bow levitation magnets are installed that are
longer and have 14 poles, while standard levitation magnets have twelve poles. Thus, bow levitation magnets have a
shifted center of gravity and higher mass and inertia compared to a standard levitation magnet. Each rigid body has two
degrees of freedom (DOF): a translational one in z-direction and a rotational one about the y-axis, making up 76 DOF for
the complete vehicle.
Stiff elastomer elements connect the car bodies. The support of the car bodies on the levitation chassis is realized by rather
soft air springs, also called secondary suspension. The primary suspension, i.e., the connection of levitation magnets and
levitation chassis, is realized by stiff elastomer elements again. All elastomer elements and air springs are implemented
as linear spring-damper combinations in the model.
Furthermore, the magnets are attracted to the guideway by magnet forces computed by the magnet models described
below. For the coupling with the magnet computation, the distances to the guideway reference plane are outputs of the
mechanical system for calculating the air gaps, and the magnet forces are inputs to the mechanical system. As shown in
Fig. 3, there are two or twelve such inputs and outputs for each standard magnet. For the longer bow magnets, there are

v

rear end section mid section front end section

guideway levitation chassiscar body standard levitation magnet

bow levitation magnetsecondary suspension
(air spring)

primary suspension
(elastomer element)

x

z

car body coupling
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Figure 2: Components of the complete vehicle model on the guideway.
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(a) Coarse distribution of magnet forces with one force per half magnet.

(b) Fine distribution of magnet forces with one force per pole.

Figure 3: Variants of magnet force distributions along a levitation magnet.

either three or fourteen inputs and outputs. Furthermore, the velocities of the poles or FAPs of concentrated substitute
forces, respectively, are defined as outputs of the mechanical model. They are necessary to compute the time derivatives
of the air gaps at each of the poles or FAPs of concentrated substitute forces, respectively, required by the magnet model
to compute the magnet forces.

Mechanical Guideway Model
The track is implemented as a regularly pillared elastic guideway of infinite length. Applying the concept of moving
system boundaries as proposed in [12], a small number of identical Euler-Bernoulli beams is used repeatedly, as shown
in Fig. 4. In [10], the implementation of this concept to obtain an infinitely long track is described. In short, a guideway
element is taken from behind the vehicle as soon as it is no longer required there, its states are reset, and it is placed in
front of the vehicle again.
A detailed description of a single guideway element, a simply supported single-span elastic Euler-Bernoulli beam dis-
cretized by 24 finite beam elements and reduced to its first three eigenmodes, can be found in [13]. The application of
moving magnet forces to the beam by means of equivalent nodal forces and torques at its nodes and the interpolation of
nodal coordinates to get the deflections at arbitrary positions between the nodes using Hermite interpolation polynomials
is explained there as well.
Compared to the guideway described in [10], additional static guideway disturbances are added to the model for the work
at hand. According to the design principles for high-speed maglev systems from the German Federal Railway Authority,

t1:

t2:

t3:

t4:

v

system boundary

v

v

v

Figure 4: Concept of moving system boundaries: A small number of guideway elements is used repeatedly to realize an infinitely long
elastic guideway in an efficient manner.
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see [14], different types of guideway irregularities are to be considered. First, there is the bending of the girders when
loaded with the vehicle. This effect is taken into account by modeling the guideway elements as elastic Euler-Bernoulli
beams. Second, the pillars supporting the girders may have different heights resulting in not perfectly flat positions of the
supported girders. And third, for the vertical position of the stator packs mounted to the girders, there are tolerances as
well. The last two disturbances are applied to the guideway model in a statistical manner as presented in [15].

Magnet Model
Vehicle and guideway are coupled by the magnet forces of the levitation magnets. With the work at hand, the influence
of magnet force distribution on vehicle and guideway dynamics is investigated. Actually, the magnetic field between the
poles and the stator is distributed continuously along the magnet. To represent such a continuous distribution with a high
degree of detail, a finite element model would be desirable, but this is unsuitable for vehicle dynamics simulations because
of the tremendous computation time, enormous parameterization effort, or meshing difficulties. Therefore, the continuous
force field must be discretized for computer simulations, and the question arises of how detailed this discretization must
be. Therefore, two different discretization approaches are analyzed and compared here: a fine one with one magnet force
per pole, and a coarse one with one magnet force per half magnet, i.e., two forces per standard levitation magnet. Both
approaches are depicted in Fig. 3.
In [4], a detailed magnet model is presented, considering the physical effects of magnetic reluctances, fringing and leak-
age flux, magnetic saturation, and eddy currents. It is validated for a standard levitation magnet of the maglev vehicle
Transrapid and computes the magnet forces at each of the twelve poles. Additionally, a simplified magnet model is de-
rived from the detailed one based on a reduction technique, providing just one concentrated substitute magnet force per
half magnet. Concerning the magnetic and electric properties, it was shown in [4] that the difference with respect to the
detailed model is negligible if the air gap is identical at all poles of one magnet. Its computation time is two orders of
magnitude faster, making it usable for dynamics simulations of large vehicle models. In the contribution at hand, the in-
fluence of magnet force distribution is investigated by applying both magnet models from [4], the detailed magnet model
providing one magnet force per pole and the simplified one providing one force per half magnet, to the model of the
coupled vehicle-guideway system described above and comparing the results.

Controller
The reciprocal relation of the air gap and the attractive magnet forces – that pull the vehicle to the stator of the guideway
from below – leads to an unstable system, which must be actively controlled to allow stable levitation. The air gap must be
kept in a safe range to avoid physical contact between the vehicle and the guideway and simultaneously the acceleration
has to be reduced to improve ride comfort. Each half magnet has its own gap measurement unit (GMU) and is controlled
individually by its own magnet control unit, which provides the voltage for the magnet based on the gap, acceleration, and
current measurements. As shown in [10], a self-developed offset-free model predictive control (MPC) scheme from [16]
shows a promising performance even for higher speeds than the TR08 was designed for. Therefore, for both levels of detail
of magnet force discretization, the magnets are controlled by this MPC controller instead of the actual control algorithm
implemented for the TR08.

Coupled System
All subsystems, i.e., vehicle mechanics, guideway mechanics, magnets, and controllers are combined in a Simulink model
representing the complete coupled system. The schematic setup of the Simulink model is shown in Fig. 5. For more details
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& arrangement
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polation

&
elementary
arithmetic (6)
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workspace

(11)
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(9)

vehicle
mechanics

(4)

(2)

(3)
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Figure 5: Schematic setup of the coupled model in Simulink. (1) nodal coordinates and velocities of beams, (2) x-positions of magnet
forces, (3) magnet z-positions and velocities at magnet FAPs, x-positions of GMUs, magnet z-positions at GMUs, (4) magnet z-
accelerations at GMUs, (5) air gaps and air gap velocities at magnet FAPs, (6) air gaps at GMUs, (7) magnet voltages, (8) magnet
currents, (9) magnet forces, (10) nodal forces and torques, (11) x-position of front end car body. For more details see [10].
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regarding the Simulink model and its signal flow, please refer to [10]. Due to the modular structure of the Simulink model,
the individual components can be replaced with little effort. Thus, the simplified magnet model can be replaced easily
with the detailed magnet model for the simulations described in the following.

Simulation Results

In the simulated scenario, the vehicle consisting of three sections is traveling on the infinite elastic guideway with a
constant speed of 300 km/h. By comparing the two configurations with different force discretization, the necessary
degree of detail is determined for vehicle and guideway dynamics analyses.
The simulation results plotted in Figs. 6-10 compare different dynamical quantities for both the detailed and the simplified
magnet model. Figure 6 shows various quantities related to the magnet and the controller in the time domain, that is, the
air gap sGMU measured at the GMU normalized with the desired air gap sdes, the vertical magnet acceleration aGMU

measured at the GMU normalized with its maximum amax, the voltage Umag applied to the magnet normalized with the
nominal voltage Unom, the current Imag flowing through the magnet normalized with the nominal current Inom, and the
magnet force Fmag provided by the respective half magnet normalized with the nominal force Fnom. Each of them is
shown for three positions along the vehicle: at the very rear end, at the center of the mid section, and at the transition
from the mid to the front section. An exemplary time range of one second is shown. For the plot of Fmag, the forces in
the detailed model belonging to the six poles of the respective half magnet are summed up to be compared to the force
calculated by the simplified model. In Fig. 7, for the same quantities as in Fig. 6 the relative frequency of occurrence is
plotted as bar plot on the left vertical axis together with the corresponding cumulative frequency of occurrence as line plot
on the right vertical axis. Figures 8 and 9 show the motion of the levitation chassis and the car body, respectively. That
is the vertical translations zLC and zCB and the rotations βLC and βCB about the y-axis. Again, the results obtained with
the detailed model are compared to those obtained with the simplified magnet model. For the car body motion, exemplary
time ranges of four seconds are plotted. In Fig. 10, the deflection wmid of a single guideway element at mid span is plotted
versus the position xMF,front of the foremost magnet force of the simplified model for both the detailed and the simplified
magnet model.
In general, all results are in very good accordance for the simulations with the detailed and the simplified model. For
the internal magnet dynamics small differences occur between the detailed model and the simplified model, as revealed
by the plots for voltage, current, and magnet force in Figs. 6 and 7. These small differences can be explained by the
differences and simplifications made in the simplified model with respect to the detailed model. While it was shown
in [4] that the difference is negligible if the air gaps are identical at all poles of one half magnet, the air gaps and their
change with time are individually computed here for each magnet pole. By summarizing the magnet forces of a half
magnet in a single concentrated substitute magnet force, spatial balancing effects caused by different pole gaps occurring
while traveling along an uneven guideway are neglected. However, as can be seen from Figs. 6-10, quantities describing
the mechanical vehicle and guideway dynamics like air gap, magnet acceleration, levitation chassis motion, car body
motion, and guideway motion are nearly identical for both magnet model variants. For the translation of the levitation
chassis zLC, the maximum difference between both model variants is less than 0.43 mm at all three considered positions,
corresponding to less than 2.1 % of the maximum absolute amplitude. The mean deviation is below 0.1 mm at each of the
three positions. The deviation of the car body translation zCB remains smaller than 0.24 mm for all three sections. This is
less than 1.5 % of the maximum absolute amplitude. On average it is even smaller than 0.06 mm for each section. For the
guideway deflection at midspan wmid, the difference is less than 0.07 mm between the detailed and the simplified model.
That is only 1.2 % of the static guideway deflection when loaded with the vehicle. This means that for the analysis and
prediction of vehicle and guideway dynamics, the simplified magnet model is here a sufficiently accurate approximation
of the detailed magnet model.
This is a satisfying result, because the simulation time is about a factor of 100 faster with the simplified model than with
the detailed model. It takes about 100 hours of real time for 62 seconds of simulation time with the detailed model,
while for the same simulation time it takes just about one hour of real time with the simplified model. Additionally, the
preprocessing time for creating the mechanical vehicle model takes some extra time if the detailed magnet model is to be
used compared to when the simplified model shall be used.
With the results at hand, it can be concluded that a coarse spatial discretization of magnet forces along the maglev
vehicle with one magnet force per half magnet is sufficient for vehicle dynamics simulations. Thus, neither finer magnet
force discretizations nor FE models for detailed mapping of the magnetic field are necessary for determining the vehicle
dynamics. Due to enormous simulation times, such models are unsuitable for application in vehicle dynamics simulations
with large vehicle models and multiple magnets. Even with a view to the next few years, simulations with such high
computational effort will not be reasonable. Therefore, it is all the more gratifying to see that the simplified model
represents the detailed model so well regarding the resulting vehicle and guideway dynamics in a large vehicle model.
However, for other simulations such as the elastic deformation of a magnet more complicated and spatially distributed
magnet forces are required. As frequently in simulations, the simulation purpose determines the required level of detail in
the modeling.
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Figure 6: Comparison in the time domain of simulated quantities related to the magnet and the controller obtained with the detailed
magnet model and the simplified magnet model at three positions along the vehicle: at the very rear end, at the center of the mid section,
and at the transition from the mid to the front section.
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Figure 7: Relative (left vertical axis) and cumulative (right vertical axis) frequency of occurrence of the same quantities and at the same
positions along the vehicle as in Fig. 6 obtained with the detailed magnet model and the simplified magnet model.
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Figure 8: Comparison of simulated translations and rotations of the levitation chassis obtained with the detailed magnet model and the
simplified magnet model at three positions along the vehicle: at the very rear end, at the center of the mid section, and at the transition
from the mid to the front section.
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Figure 9: Comparison of simulated translations and rotations of the car bodies of rear, mid, and front section obtained with the detailed
magnet model and the simplified magnet model.
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Figure 10: Deflection of a single guideway element at mid span versus position of the foremost simplified magnet force obtained with
the detailed magnet model and the simplified magnet model.

Conclusions

This publication investigates the degree of detail of spatial magnet force discretization required for reliable analyses of
maglev vehicle and guideway dynamics. Maglev vehicle dynamics simulation models often use fast-computable magnet
models providing concentrated substitute magnet forces to approximate the actually continuously distributed magnetic
field. However, to the best of the authors’ knowledge, no analysis has been published yet showing that this simplification
is a valid assumption. Therefore, the novelty of this contribution is the simulative investigation of the high-speed maglev
train Transrapid TR08 regarding the influence of different magnet force distributions along the levitation magnets on the
behavior of the coupled vehicle-guideway dynamics while the vehicle is traveling along the guideway.
For this purpose, two different magnet force discretizations are compared: a coarse one with one magnet force per half
magnet, and a fine one with one magnet force per pole. It is shown that a coarse discretization with a single concentrated
substitute magnet force per half magnet is a sufficient approximation when mechanical vehicle and guideway dynamics
are in focus and if the magnet model computing this single force provides a sufficiently accurate representation of the
magnet dynamics. The used magnet model from [4] proves to fulfill this requirement. There are minor differences in the
internal magnet dynamics like voltage or current due to the simplifications of the simplified magnet model providing one
force per half magnet with respect to the detailed model providing one force per pole. However, the mechanical vehicle
and guideway dynamics turn out to be nearly identical for the simplified and the detailed model.
This is an important and relieving result, because the simplified magnet model providing forces with a coarse discretization
has significantly shorter simulation times, about a factor of 100, than the detailed model with a fine discretization. Such
detailed magnet models with fine magnet force distributions thus are unsuitable for application in large vehicle models for
vehicle dynamics simulations. Instead, the fast-computable simplified magnet model with one force per pole can be used
for this purpose, allowing much faster simulations with hardly any loss of quality in the relevant quantities. However, the
simplified magnet model has to map the magnet physics sufficiently accurately, of course.
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Joint Reactions Distribution and Uniqueness in Overactuated Multibody Systems

Marek Wojtyra∗ and Marcin Pękal∗
∗Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Warsaw, Poland

Summary. Overactuation is introduced in various mechanisms, especially in parallel kinematic machines. The evident result of over-
actuation is the non-uniqueness of driving forces required to execute the planned motion. However, in some cases, redundant driving
constraints may also affect the uniqueness of joint reactions. In this contribution, the influence of overactuation on the uniqueness
of calculated joint reactions is investigated. A procedure for testing the solvability of calculated reactions in the presence of redun-
dant driving constraints is devised. The known numerical methods for constraint reactions uniqueness analysis are adapted to the
overactuated case. An example illustrates the investigated problems and demonstrates the proposed analysis methods.

Introduction

Overactuation in multibody systems (MBS) is understood as employing more actuators than required by the number of
controlled degrees of freedom of the system. It is introduced due to several reasons, e.g., to eliminate gear backlash or
clearances [1], to improve the performance of the system [2], or to reduce torques in joints of the MBS [3]. In the case
of parallel kinematics machines, frequently exploited in robotic applications, overactuation may contribute to singularity
avoidance [4] or be utilized for obtaining desired torque distribution [5]. Overactuated multibody systems can be treated
as a particular case of redundantly constrained systems, where redundancy applies to driving constraints.
Rigid body assumption is commonly utilized in multibody simulations. With this assumption, multibody modeling is
less complicated, requires less data, and allows for faster computations. However, in the case of redundantly constrained
MBS, this assumption leads to various problems, mainly related to the rank deficiency of the constraint matrix. One of the
unwelcome effects is the non-uniqueness of calculated joint reaction forces (or at least some of them). Various methods
to handle and analyze overconstrained MBS have been proposed—see, e.g., [6, 7, 8, 9]. Most often, these methods are
focused on constraint redundancy introduced by the kinematic structure of the system, whereas overactuation is seldom
considered.
In this work, rigid body models of redundantly actuated MBS are analyzed. The research concentrates on the uniqueness
of calculated driving forces and joint reaction forces. Methods of uniqueness analysis are developed, and the influence of
redundant actuation on joint reaction solvability is pointed out and investigated. An example is provided to exemplify the
investigated issues and illustrate the proposed analysis methods.

Outline of the methods and results

Equations of motion of a MBS subjected to geometric and linear nonholonomic constraints can be written as (we assume
that absolute coordinates q are employed to describe the system [10]):

Mq̈− JTλ = Q, (1)

where M is the matrix of inertia, λ is the vector of Lagrange multipliers, Q is the vector of the other generalized forces
and velocity-dependent inertial terms.
If no driving constraints are imposed, the constraint matrix is J defined as:

JT = JTK =
[
(ΦK

q )T (ΨK)T
]
, (2)

where ΦK
q is the geometric constraints Jacobian and ΨK is the linear nonholonomic constraint matrix.

When driving constraints are appended, the constraint matrix becomes:

JT = JTKD =
[
(ΦK

q )T (ΨK)T (ΦD
q )T (ΨD)T

]
, (3)

where superscript D stands for driving constraints.
The presence of redundant constraints makes the constraint matrix J rank deficient. The number of redundant constraints
is indicated by the magnitude of the matrix J rank deficiency. As a result of redundant constraints existence, at least some
of the joint reaction forces are non-unique. There are some methods that make it possible to determine whether or not
the reactions in a specified joint are solvable (e.g., [6, 8]). In the present work, these methods were adapted to analyze
systems with driving constraints.
To check if the driving constraints influence the uniqueness of calculated joint reactions, one must first analyze the con-
straint matrix from Eq. (2) that represents the MBS structure independently from its actuation, and then the complete
constraint matrix as of Eq. (3). In this paper, we have proven that if the driving constraints are non-redundant
(i.e., when the magnitude of matrix J rank deficiency does not change after introducing driving constraints), then the
solvability of joint reactions remains unchanged; moreover, the driving forces are unique.
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On the other hand, if the system becomes overactuated (i.e., the magnitude of rank deficiency increases after the intro-
duction of driving constraints), then: (1) previously non-unique joint reactions remain non-unique, (2) some of otherwise
unique joint reactions may become non-unique, (3) some (or all) driving forces are non-unique. Note that the methods
developed in the present work enable us to determine the solvability of any individual joint reaction before and after
the introduction of driving constraints. The crucial point is that the results of the uniqueness analysis obtained for joint
reactions alone may differ from those obtained for joint reactions together with redundant driving forces.

Example

The developed analysis methods were used to investigate the uniqueness of joint reactions and driving forces in a re-
dundantly constrained and overactuated mechanism with nonholonomic constraints presented in Fig. 1. Three different
actuation variants were analyzed: without driving constraints, with non-redundant driving constraints, and with redundant
driving constraints. The results of performed analyses corroborated the findings presented in this contribution.
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Figure 1: Redundantly constrained and overactuated mechanism with nonholonomic constraints

Conclusions

Overactuation may, in some cases, affect the uniqueness of joint reactions. For the overactuated systems, it is useful
to perform a two-stage uniqueness analysis—with and without considering the driving constraints. Such a proceeding
enables us to determine the origin of the reaction non-uniqueness of the considered MBS—whether it comes from the
system’s structure or the redundancy of the driving constraints imposed on the MBS.
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Flight Behaviour of a Two-Line, Four-Point Disk Kite

Luke Roeven, Stefanie Gutschmidt and Keith Alexander
Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand

Summary. Existing work on kite behaviour mainly considers single-line kites and associated dynamics are limited to quasi-static anal-
yses. Mathematical descriptions rely on generalised aerodynamic models which have not been validated experimentally and thus lack
being suitable for design optimization purposes. Kites are utilized in both professional sporting activities and potential new energy gen-
eration applications. Understanding the dynamics of these kites allows for innovative improvements for such applications. Furthermore,
derivations of existing models are typically based on energy methods which are not immediately helpful to inform design optimisation
guidelines. In this work we derive the fully non-linear governing dynamic equations of motion for a two-line four-attachment point kite
using a four degree of freedom Newton-Euler formulation. We implement an aerodynamic model which has been previously tested and
validated (CFD/wind-tunnel) by our group. The analysis considers and focuses on stability regions of selected flight scenario and the
maneuverability of the kite for relevant kite design parameters.

Background

A kite is an atypical aerodynamic object and knowledge about its flight dynamics is rare in literature. Over the last decade
few articles have been published about two-line kites, even fewer include dynamic analysis [1, 2]. Quasi-static analysis
was performed by Dawson [3] to investigate the turning maneuver of a kite. Other existing work has been done on the
dynamics of two-line kites by Sánchez et al. [1]. Their work used the Lagrangian formalism to investigate the stability of
the kite for different wind speeds and one control parameter, but did not investigate the reason for turning and restorative
mechanisms of the kite flight. Research on the topic has recently increased with new applications of kites for energy
generation and ship propulsion [4], but the underlying, inherently nonlinear, dynamics is still under-studied. The kite
considered in this work consists of two lines, one for each hand (as depicted in new applications) which connect to each
side of the kite. These lines, each split to connect to four attachment points on the kite surface, introduce the necessary
moments to control the kite. The kite is modelled with circular disks to represent the aerodynamic surfaces as suggested
by Stevenson [5] to be able to validate theoretical models with experimental investigation and observation. This is a first
approach implementing a validated model; additional, more complex geometries can be introduced in future investiga-
tions. The kite system suggests two modes of behaviour: the first representing the stalling behaviour of the kite, the other
representing the expected (typical) kite flight. The dynamics of the considered kite shows restorative behaviour along the
elevation and pitch variables, but requires attention to control significant changes of the azimuthal angle. In this work we
focus on the roll control of a user and its stability regions for a selected set of parameters and ranges.

Model

This kite system is described by five coordinate systems: global, line, kite, and two disks (Figure 1). Euler angles are
used to define the kinematics of the kite with a 3-2-1 body-fixed rotation [6] resulting in four degrees of freedom, with
θ1 being the elevation of the kite, θ2 the azimuthal deviation of the kite, θ3 the pitching of the kite, and θ4 the yaw of the
kite. The nonlinear set of governing state-space equations is of the form

A8×8 q̇8×1 = f8×1

(
ML,MK , q, t

)
(1)

A8×8 represents the inertia matrix, f8×1 is the forcing vector containing the lift and drag moments as well as the kinematic
constraint relations, and q8×1 is defined in Eq. (2a). The moment equations are derived using the line and kite systems
where i denotes the disk number.

q8×1 =
[
θ1, ... , θ4, θ̇1, ... , θ̇4

]T
(a) MLift & Drag = (rCPi

+ rOC)× Fi (b) (2)

MK =




2∑

i=1

rCPi × Fi

︸ ︷︷ ︸
Lift and Drag




K

(3) ML =




2∑

i=1

rOC × Fi

︸ ︷︷ ︸
Lift and Drag

+ rOC ×mkg︸ ︷︷ ︸
Weight Force




L

(4)

Parameter values for the centre of pressure and aerodynamic forces are taken from Dawson’s work [3]. The kinematic
constraint originates from the lines being straight resulting in a limitation of the moment along the roll axis and the
magnitude of the pitching angle with respect to the lines.
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Analysis & Results

The analysis considers the full set of non-linear equations. The governing equation (1) is solved using a standard numeri-
cal integration scheme, Runge-Kutta O(4). For the stability analysis, the Jacobian of the forcing term was approximated
with a central difference formula; its eigenvalues were computed for a selected parameter range of interest.

Figure 2 depicts stability regions of pitch θ3 and yaw θ4 angles for a selected azimuthal angle θ2 of 0◦ and increasing
elevation values θ1 from 0◦ – 90◦. In the order from left to right, the top left figure being θ1 = 0◦ and the bottom
right being θ1 = 90◦. Blue zones represent stable solutions, while orange crosses represent unstable solutions, and grey
zones represent spurious solutions (e.g. referring to negative line tension or collision with the ground). At θ1 = 0◦ there
are two columns of stable solutions, the spurious solution referring to the collision with the ground. As the elevation
angle increases the spurious solution disappears and the stable blue region becomes a circle-like zone which migrates
from negative to positive θ3 values. This variation in θ3 creates a restoring moment which brings the system back to
it’s elevation equilibrium. However, when the azimuthal angle is varied, the resultant twisting behavior acts to further
exacerbate the azimuthal deviation — an unstable equilibrium.

Figure 1: Coordinate systems for the two line kite

Figure 2: Stability regions of the system as the elevation changes
(from left to right — 0,15,30,40,60,90). Blue (filled) → stable, grey
(filled) → spurious but stable, orange (cross) → unstable

Conclusion

Kites are being utilised within new applications for energy generation, professional sporting activities, and ship propulsion
[4]. Further development of accurate models for these fields will allow for vast and effective design improvements
to enhance applications. In this work, a two-line four-attachment point disk kite is modelled using a Newton-Euler
formulation. This model utilises validated wind-tunnel data for the aerodynamic forces. The stability of the system is
analysed for a specific range of elevation angle values. Results demonstrate how the kite pitches to reach its equilibrium
elevation. This technique can be used to optimise multiple design parameters for numerous applications. By observing
the stability zones of the kite, the design parameters can be adjusted for specific flight behaviour and characteristics.
Additionally, the user control mechanism for operating such kites can be further investigated for better performance.
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Identification of Friction Models for MPC-based Control of a PowerCube Serial Robot

Jörg Fehr∗, Arnim Kargl∗ and Hannes Eschmann∗

∗Institute of Engineering and Computational Mechanics, University of Stuttgart, Germany

Summary. For model-based control, an accurate and in its complexity suitable representation of the real system is a decisive prerequi-
site for high and robust control quality. In a structured step-by-step procedure, a model predictive control (MPC) scheme for a Schunk
PowerCube robot is derived. Neweul-M2 provides the necessary nonlinear model in symbolical and numerical form. To handle the
heavy online computational burden involved with the derived nonlinear model, a linear time-varying MPC scheme is developed based
on linearizing the nonlinear system concerning the desired trajectory and the a priori known corresponding feed-forward controller. To
improve the identification of the nonlinear friction models of the joints, a nonlinear regression method and the Sparse Identification of
Nonlinear Dynamics (SINDy) are compared with each other concerning robustness, online adaptivity, and necessary preprocessing of
the input data. Everything is implemented on a slim, low-cost control system with a standard laptop PC.

Introduction

The use of robots to increase work performance or human-machine interaction for rehabilitation are topics of high topi-
cality. For the performance of robotic manipulators, modeling, control, and sensing play an essential role. Modeling plays
an important role in the development process as well as for controlling the robot, e. g., for model-based control concepts
like model predictive control (MPC). Model-based control schemes offer many advantages in comparison to individual
joint control. The benefits are: (i) operation as a centralized control scheme – the highly nonlinear behavior of such a
system is considered; (ii) intuitive parameter tuning – an elaborate and time-consuming parameter tuning necessary for
PI or PID-based individual joint control is unnecessary; (iii) constraint considerations - actuator and state limitations are
already considered in the control design.
In [1] a model predictive controller (MPC) was derived and implemented for a modular 6-axis Schunk PowerCube robot,
see Fig. 4. The general MPC algorithm, see, e. g., [2, 3] is the following: (i) obtain a measurement/estimate of the state;
(ii) obtain an optimal input sequence by solving online an open-loop optimal control problem (OCP) over a finite horizon
subject to system dynamics and constraints; (iii) apply the first input of the optimal input sequence to the plant/robot; (iv)
continue with the first step. Challenges for the application are the highly nonlinear system dynamics as well as the limited
computation capacity. Everything should run on a slim low-cost setup, i. e., a standard laptop PC.
These challenges are met by a linear time-variant two-step approach, see Fig. 1. In a first step the nonlinear system
dynamics are approximated with a linear time-varying model [4] around the desired trajectory –using an inverse dynamic
approach / computed torque approach [5]. In the second step sophisticated techniques for linear MPC are exploited, i. e.,
the open-source quadratic programming solver qpOASES [6] is used.
The proposed LTV MPC control of the robotic system is able to perform complex trajectories, i. e., motion reversal and
zero crossing [1] 1. Nevertheless, the noticeable difference between calculated feed forward and MPC output, see Fig. 2
along the trajectory implies model inaccuracies. These findings imply that the friction model of the robot’s joints still has
some weaknesses which limits the performance of the overall control system. Therefore, more effort is needed to identify
the friction properties of the joints. Prior to this work, a classical system identification method, i. e., data pre-processing
in combination with nonlinear regression, was used to identify the friction properties of a single disassembled module.
Therefore, aim of this work is to evaluate how the large amount of data from different sources, i. e., Artifical Intelligence
will facilitate the complex and challenging modeling and system identification of an assembled system – e. g., can the
large amount of data be used to identify the effects in the assembled state and/or difference between individual products
due to production tolerances.
More specifically, we want to answer the question of whether the Sparse Identification of Nonlinear Dynamics (SINDy)
method [7, 8] improve the friction identification. In contrast to black-box AI methods, like Neural Networks or Gaussian
Processes – which try to approximate the data by adjusting some weights of a topological system, the SINDy method tries
to identify the governing equations from data. It approximates an unknown function f with a library Θ(X) of r potential
(nonlinear) terms. The SINDy approach is a parametric approach that, compared to NNs, works without massive amounts
of data. The approach allows for on-the-fly model adaptation due to its low computational complexity.
Let us recap the overall goal: "Improve the model-based control performance of a robotic manipulator by improving
friction identification using the SINDy approach to identify the governing equation from data." The main features are: (i)
the robustness of the approach and (ii) only the friction characteristic is identified – other well-identified or known terms
of the system are incorporated as prior knowledge.
In the next section, we describe the model and the methodology in more detail: (i) the robot which serves as an example;
(ii) the process control framework; (iii) the derivation of the equation of motion of the rigid multibody system with
Neweul-M2 [9] (iv) the existing friction model, (v) the SINDy concept and (vi) the recording of measurement data. In
Section Friction Identification the results of the approach are presented. Finally, in the Conclusion the overall control
performance of the system with the improved friction model is discussed.

1The complete motion of the manipulator can be seen in the deposited video https://www.itm.uni-stuttgart.de/en/research/

vision-based-control-of-a-powercube-robot/.
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Figure 1: Topologic structure of the two-step control loop with
the feed-forward part uff and the LTV-MPC part.
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Figure 2: Feed forward torque of the old robot model compared
to the MPC output torque applied at joint β during a trajectory
with motion reversal.

Model and Methodology

The performance of the SINDy approach is evaluated on a modular 6-axis Schunk PowerCube Robot, see Fig. 4. For the
considered modular robot a Process Control Framework in Matlab Simulink and a Simulation Model in Neweul-M2 is
available. We focus on the friction identification of the first three joints of the robot, which are each a rotary unit PR 90
with a Harmonic Drive gear to see the influence of assembly and production differences of the same product. Therefore
measurement data is gathered during experiments followed by offline identification of the friction characteristics with
nonlinear regression and the proposed SINDy Framework, relying on Sparse Linear Regression. In the following, we
explain the single building blocks for model, Experimental Measurements and mathematical methodology.

Schunk PowerCube Robot

The properties of the various links are described in Tab. 1. For the design of the robot a "divide et impera" approach
is used. For the first three links the same rotary module (PR 90) is used. The fourth link, is the smaller version(PR 70)
within the model series. The fifth and six links of the robot consist of a pan-tilt unit in combination with an anthropomor-
phic gripper with a spherical wrist, is constructed from the single modules. The robotic manipulator is designed in such a
way that the arm has an analytically calculable inverse kinematics.
Each rotary module, consists of a brushless DC-motor which drives a Harmonic Drive gear, which provides torque at each
degree of freedom (DOF) based on the defined motor current. The control and power electronics are integrated, and an
incremental encoder is used for position and speed evaluation. Furthermore, a brake is incorporated in case of shutdown
or power failure.

Process Control Framework

The process control framework is depicted in Fig. 3 , consists of a Microsoft Windows laptop PC with Matlab R2014b and
Simulink, including the additional toolboxes Real-Time Windows Target and Simulink Coder. The laptop PC is equipped
with an Intel Core i5-3210M CPU (2x2.5 GHz, 8 GB DDR3). The communication between the Simulink model and the
hardware is based on an USB-CAN bus interface, which is embedded into Simulink via S-Functions and a communication
library from Schunk. A sampling rate of 50 Hz, corresponding to a sampling interval of 20 ms, is used. An external power
supply with constant voltage of 24 V in combination with the integrated control and power electronics of modules ensures
the necessary torques at the links.
Real-Time Windows Target [10] realizes a real-time engine for Simulink models on a Microsoft Windows PC and offers
the capability to run hardware-in-the-loop simulations in real-time. It is a lean solution for rapid prototyping and provides
an environment in which a single computer can be used as a host and target computer. Consequently, real-time simulations
are executed in Simulink without an external target machine.

Simulation

The robotic manipulator is modeled as rigid multibody system with joint friction. In a first step Neweul-M2 [9] aids
calculating a rigid body model without friction with the advantage of generating equations of motion in symbolic and
numerical form. A natural choice for generalized coordinates y are the joint coordinates y = [β, γ]T. Therefore the
resulting equation of motion (without friction) in minimal form can be denoted as

M(y)ÿ + k(y, ẏ) = q̃(y, ẏ) +Bu (1)

with the positive definite mass matrix M , the vector of generalized Coriolis, centrifugal and gyroscopic forces k and the
vector of generalized forces without friction q̃. The system input is the vector u = [T2, T3]

T which consists of the applied
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Figure 3: Slim process control framework of the robotic manipulator

motor torque at each joint. Those motor torques are scaled accordingly with gear ratios included in B. A linear model
u = KMi describing the relation between motor torque and motor current is assumed. The motor constant KM has been
identified manually at the hardware. System parameters, such as masses, inertias, link lengths and gear ratios are taken
from CAD data and datasheets, supplied by the manufacturers.
In a second step friction torques τ (ẏ) are included into the model without friction, resulting in the vector of generalized
forces

q(y, ẏ) = q̃(y, ẏ)− τ (ẏ). (2)

For a more intuitive understanding τ is subtracted from q̃, since positive friction works against the current movement.
The equation of motion with friction can be gained by substitution of q̃ with q in eq. (1). Joint friction models of the form

τi(ẏi) = a1ẏi + a2 tanh(a3ẏi) + a4 exp(−a5|ẏi|) tanh(3a3ẏi), (3)

derived in [11] are used in a first application which results in the stated mismatch between feed forward and MPC output.
This form of friction model with parameter vector a includes the share of viscous friction corresponding to a1ẏi, the share
of Coulomb friction corresponding to a2 tanh(a3ẏi) as well as the superelevation of the Stribeck curve which is char-
acterized by a4 exp(−a5|ẏi|) tanh(3a3ẏi). The smooth tanh-function replaces the sgn-function to avoid discontinuities
within the model.
Focus lies on identifying more accurate friction models for both joints with either the SINDy method or general nonlinear
regression. Therefore data of y, ẏ, ÿ and u has to be collected during experiments or derived after running experiments
respectively, such that

τ (ẏ) = q̃(y, ẏ) +Bu−M(y)ÿ − k(y, ẏ) (4)

can be calculated. Stated methods can then be applied. The resulting values for τ obviously are dependent on all stated
variables y, ẏ, ÿ and u. The notation τ (ẏ) is chosen due to the assumption that friction effects only depend on joint
velocities.

SINDy Concept

The concept of Sparse Identification of Nonlinear Dynamics (SINDy) founds in the field of applied mathematics. It
represents a modern method to gain nonlinear models based on experiment data, a long known challenge in system theory.
The main concept behind SINDy can be described as reducing the nonlinear fit to a collection of function candidates to
a (sparse) linear regression, which can then be effectively solved with state of the art algorithms, providing robust and
efficient solutions.
The SINDy setup consists of a standard representation of a nonlinear system

ẋ = f(x,u) (5)

with state vector x ∈ Rn, possible input u ∈ Rq and the unknown vector field f . Starting out simple, assume the state x,
and its time derivative ẋ and the system input u to be known form unique time instances. The data can then be rearranged
into three matrices X , Ẋ and U as follows

X =




xT(t1)
xT(t2)

...
xT(tm)


 ∈ Rm×n, Ẋ =




ẋT(t1)
ẋT(t2)

...
ẋT(tm)


 ∈ Rm×n, U =




uT(t1)
uT(t2)

...
uT(tm)


 ∈ Rm×q. (6)
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Goal is to approximate the vector field f by a library of r candidate functions Θ(X,U) ∈ Rm×r which are weighed by
coefficients Ξ = [ξ1, ξ2, · · · , ξr] ∈ Rn×r as

ẋ = f(x,u) ≈ Θ(X,U)Ξ, (7)

where the columns of the library of candidate functions can contain all kinds of imaginable nonlinear terms. Those can
be polynomials in x, u or combinations of both or other nonlinear terms like trigonometric functions. Filling this library
with appropriate terms requires intuition on how the solution could look and is considered one critical point concerning
the success of the SINDy method.
The solution to the linear regression problem introduced in eq. (7) may be calculated with aid of various solvers, e. g., a
standard least squares solver

ξk = argmin
w

∥∥Ẋk −Θ(X,U)w
∥∥2
2
. (8)

Here ξk denotes the k-th column of Ξ while Ẋk denotes the k-th column of Ẋ .
Doing so does result in a reasonable model but at the same time leads to very complex and detailed models with many ac-
tive function terms. Key feature of the SINDy concept is solving the linear regression problem eq. (7) promoting sparsity
within the solution vectors ξk, which corresponds to the fact that most systems of interest can be described by only a few
active terms in f . Therefore solution techniques for sparse linear regression are applied to eq. (7). A schematic overview
and example for a system with two states is given with Fig. 5.
The overall concept appears to be very flexible regarding to all kinds of dynamical systems. There exists a wide range of
extensions which , e. g., allow SINDy to perform in discrete time or even to identify PDEs [7, 12].

The SINDy concept, in general, brings some advantages and some disadvantages compared to other machine learning
concepts, e. g., an artificial neural network (NN). Such a NN may be used to describe the unknown vector field f , which
also gives good results. One general disadvantage of a NN is the training process, which requires large amounts of
measureed data to obtain an suitable approximation for f . SINDy on the other hand can work with one single short
experimental trajectory as in Fig. 2. The SINDy method results in a set of nonlinear differential equations which may
even be physically interpretable where a NN just results in some non-interpretable matrix layers. In addition to that, the
SINDy results, being differential equations, can be evaluated in their whole domain and possibly even be extrapolated.
This is a major advantage over neural networks, which often provide unsatisfying approximation results outside of the
domain of the training data. Training data of course, has to cover all important system characteristics for both approaches.
Otherwise, some system aspects and properties will be left out in the identified system model.
A crucial drawback of the SINDy concept lies in the function library Θ and in the fact that only linear combinations of
these functions describe the resulting dynamics f of the system. One critical disadvantage of the SINDy concept lies in
its function library Θ and that only linear combinations of those functions can be described in the resulting f . Looking
at eq. (3), one cannot directly identify a nested term like a2 tanh(a3ẏi) with SINDy. Having a look back at eq. (3) one
cannot directly identify a term like a2 tanh(a3ẏi) with SINDy. The problem is that the parameter a3 is embedded inside
a nonlinear term. We will later avoid this by including multiple terms tanh(a3ẏi) with different fix parameters a3 into the
library Θ.
The main advantages and problems of the SINDy concept have been briefly touched upon here. In [8], however, a much
more detailed comparison of SINDy with artificial neural networks when used in model predictive control can be found.

Sparse Linear Regression

Two algorithms out of the wide variety of sparse linear regression methods were tested and could be applied to the setup.
One of them is the so called Least Absolute Shrinkage and Selection Operator (LASSO), which is well known from the

Figure 4: Experimental setup and configuration of the
six degrees of freedom Schunk modular manipulator.
The control is based on Real-Time Windows Target
and Simulink Coder.

Table 1: Technical properties of the Schunk modules.

module name nom. torque/force max. velocity

PR 90 (rotary)
joint α & β & γ

44.8Nm ωmax = 25 rpm

PR 70 (rotary)
joint δ

10.0Nm ωmax = 25 rpm

PW 70 (pan-tilt)
joint ε & ζ

12.0Nm & 2.0Nm ωmax = 25 rpm

PG 70 (gripper) 200N vmax = 82mm/s
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field of statistics and often used in machine learning applications. The LASSO can be described as ℓ1 regularized version
of the standard least squares linear regression setup and can be written as

ξk = argmin
w

∥∥Ẋk −Θ(X,U)w
∥∥2
2
+ λ

∥∥w
∥∥
1
. (9)

The parameter λ ≥ 0 adjusts the influence of the penalty term ‖w‖1 and therefore determines how sparse the solution
vector ξk turns out. With λ = 0 the solution is equal to the standard least squares problem’s solution stated in eq. (8).
Another sparsity promoting linear regression approach is given by the Sequential Thresholded Least Squares algorithm
(STLS) introduced in [7]. The STLS algorithm is an iterative procedure based on standard least squares solutions and can
be described as follows.

• An initial solution ξ
(0)
k is calculated as least squares solution with the complete library matrix Θ(0) = Θ(X,U);

• In each iteration the regression setup reduces by

– setting entries in ξ
(r)
k with absolute value less than a threshold parameter λ to zero;

– deleting the corresponding columns in Θ(r), which would then be multiplied by zero, which leads to Θ(r+1);

Solving the reduced least squares problem with Θ(r+1) leads to a new solution vector ξ(r+1)
k which includes the

remaining entries of ξ(r)k .

• Iteration ends if no more entries in ξ
(r)
k fulfill the threshold condition.

Again, the parameter λ > 0 determines the sparsity of the solution. One iteration step of the STLS algorithm is illustrated
in Fig. 6.
The critical point with both algorithms is choosing an appropriate value for the hyper parameter λ. In practice models for
a broad range of parameters λ are calculated which allows finding a good compromise between sparsity of the resulting
model and model error along a pareto front. The LASSO combined with k-fold cross validation is able to find this com-
promise by its own. With the STLS approach as it is described above one has to choose a model by hand. More sparse
solutions on the one hand allow for some form of physical interpretation of the result but on the other hand may show a
greater model error compared to other more flexible nonlinear regression techniques.

The whole SINDy setup was implemented in Matlab [13]. The STLS algorithm was implemented manually while a
LASSO implementation already exists within the Statistics and Machine Learning Toolbox.

=

ẋ1 ẋ2 ξ1 ξ2Θ(X,U)

Figure 5: Application of the SINDy concept with sparse linear
regression to a system with two states. Grey entries in ξk mark
entries which are zero.

Θ(r) ξ
(r)
k Θ(r+1)

ξ
(r+1)
k

Figure 6: Illustration of the STLS algorithm. Grey entries in
ξ
(r)
k are set to zero. Corresponding columns in Θ(r) are re-

moved. ξ
(r+1)
k is the new least squares solutions with slightly

different entries.

Experimental Measurements

Before taking measurements, a suitable class of trajectories has to be defined used for friction identification. We chose
sine-shaped trajectories with variable frequency within this study since they can be constructed relatively easily. Being
at least two times continuous differentiable sine trajectories brings smooth acceleration and deceleration, which is crucial
for not exceeding joint limitations. Furthermore, differentiation and integration can be done analytically. The sine part of
the trajectory can be described as

y(t) = â sin(ω(t)t) (10)

with a constant amplitude â. Polynomial acceleration and deceleration phases around the sine trajectory part are needed
since the robot starts and ends in a static pose where velocities and accelerations must be zero. Part of such a trajectory
can be seen in Fig. 7.
The figure also points out a difficulty with measurement data. The robot’s joint positions are measured by absolute angle
encoders within each joint, which results in a non-smooth velocity measurement with coarse resolution. Therefore a
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suitable differentiation method is needed to calculate joint velocities and accelerations from joint position data. In [8]
the use of Total Variation Regularization Differentiation (TVDiff) is recommended. The TVDiff algorithm is introduced
in [14]. The paper and Matlab implementations of the algorithm for one- and two-dimensional data, can be found on
the author’s web page. The idea of TVDiff originates in the Tikhonov regularization where the energy of a signal is
minimized according to an energy functional without influencing the signal in a way a low pass filter would do. Variational
methods are quite popular in the field of imaging science for efficiently denoising images. TVDiff results for trajectory
measurement data are presented in Fig. 7. Figure. 8 demonstrates the advantages of TVDiff over finite differences with
a therefore synthesized signal with added white noise. With higher frequencies a slight low pass effect is visible but the
results are sufficient for the application with SINDy.
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Figure 7: Measured encoder velocity compared with the filtered
velocity from position measurements via TVDiff and the desired
velocity.
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Figure 8: Synthesized example to demonstrate TVDiff advan-
tages over finite differences with comparison to the analytically
calculated reference signal.

Friction Identification

With previously described methods almost all infrastructure needed to identify friction models is present. Friction char-
acteristics for robot joints B and C which correspond to the joint coordinates β and γ are displayed in Fig. 9 and Fig. 10.
The resulting friction characteristics of both joints, if moved individually, will be dependent on the joint angle. These
effects arise from model inaccuracies within the rigid multibody dynamics, e. g., incorrect inertia values or not modeling
cables etc. The influence of gravity at non-zero joint angles makes the resulting friction characteristics dependent on
the joint angle. This is against the assumption of friction only depending on joint velocity. Therefore for joint B the
gained data is preprocessed by selecting data points with |β| < 0.1 where the influence of gravity is negligible. The
filtered data is plotted in Fig. 12. Since many data points remain unused, a different strategy is chosen for joint C. Since
it is the upper body of two joints, the influence of gravity can be easily compensated by moving both joints in opposite
directions, keeping the upper part of the robot pointing straight upwards. Figure 11 illustrates half of a period of the
particular periodic trajectory. Identification with the gravity compensated trajectory leads to the friction characteristics for
joint C shown in Fig.10. As stated earlier the SINDy results are compared to a model calculated by nonlinear regression.
Eq. 3 therefore functions as template for the nonlinear regression with its parameters a1 to a5. The nonlinear regression
algorithm used is the nlinfit Matlab function which is included in the Statistics and Machine Learning Toolbox as
well.
The application of the SINDy concept still requires us to specify a library of function terms. Over time and within many
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Figure 9: Friction characteristic for joint B measured with a sine
trajectory. Only joint B was moved for these measurements.
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Figure 10: Friction characteristic for joint C measured with a
sine trajectory. Joint B and joint C were moved equally in oppo-
site directions to compensate gravity.

ENOC 2022, July 17-22, 2022, Lyon, France

224



ENOC 2020+2, July 17-22, 2022, Lyon, France

(a) (b) (c) (d) (e)

β = 0
γ = 0

β = â
γ = −â

β = −â
γ = â

Figure 11: Periodic trajectory for friction identification in joint C. Shown is half a period starting at the left turning point (a), going
through the robot’s zero position (c) and ending at the right turning point (e). Frames (b) and (d) display intermediate points.
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Figure 12: Fitted friction models for joint B after preprocessing
measurement data.
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Figure 13: Fitted friction models for joint C. No preprocessing
is needed.

experiments the library

Θ(ẏ) =
[
1 ẏ sgn(ẏ) tanh(5ẏ) tanh(10ẏ) tanh(20ẏ) tanh(100ẏ)

]
(11)

lead to promising results. The library contains functional terms for describing friction characteristics and at the same time,
leaves enough options for the sparse linear regression to cancel out function terms. Promoting sparsity without leaving
enough options for the algorithm would not lead to the expected results. A finer sampling of the terms tanh(aẏ) was tested
but results in high correlations between these functions, ultimately leading to difficulties in sparse linear regression. The
library does not contain terms describing the superelevation of the Stribeck curve. This will only be a minor disadvantage
since such a superelevation is not noticeable within the measurement data.

Applying SINDy and nonlinear regression to the measurement data together with the earlier discussed preprocessing
leads to the the friction models shown in Fig. 12 and Fig. 13. Both regression concepts deliver quite similar results.
SINDy outperforms nonlinear regression in the case of joint C, having the ability to choose freely from its function library
while the nonlinear regression always has to fit to its function template. While nonlinear regression for the data of joint B
would not work properly without preprocessing, the SINDy method would still lead to reasonable results. Although the
preprocessed data gives a better friction model and shows that SINDy can even work with a percentage of the available
data, making it robust to the amount of available measurement data.
An additional friction identification was performed for link A (corresponding to α) for better comparison of the joint
friction characteristics and models. Therefore a linear quadratic regulator was implemented, since there doesn’t exist an
MPC scheme for the rigid body model with y = α. The resulting friction models for link A are displayed in Fig. 14.
Again, nonlinear regression as well as the SINDy method perform well, although the measurement data is spread quite
heavily. Preprocessing the data is not necessary for either method.
Comparing the newly identified joint friction models to the previously used model from [11] points out two major aspects.
At first, friction models differ from joint to joint, although being the same kind of link module (PR90). Secondly, whether
the joint friction is identified for an isolated joint or at an assembled robot makes a big difference. Therefore the two
newly identified joint friction models differ heavily from the model identified in [11]. While in [11] single isolated joint
modules were researched, the additional weight of our robot above joints B and C amplifies friction at the joints’ axles.
Fig. 15 shows the comparison of the different models. Compared are the SINDy results identified above.

ENOC 2022, July 17-22, 2022, Lyon, France

225



ENOC 2020+2, July 17-22, 2022, Lyon, France

-1 -0.5 0 0.5 1
-100

-50

0

50

100

Joint 

joint velocity in rad/s

fr
ic

ti
o

n
 t

o
rq

u
e 

in
 N

m measurement

nonlinear reg.

SINDy
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Conclusion

With the methods and results developed throughout this paper, we can finally find the following conclusion. Both, System
Identification for Nonlinear Dynamics (SINDy) and nonlinear regression were applied to identify friction models for the
relevant joints B and C of the PowerCube robot. Additionally, a friction model for joint A was identified for use with a
linear quadratic regulator. The vast improvement of the feed-forward calculations together with the newly identified joint
friction models imply a general improvement of the robot model. Although the feed-forward torque almost matches the
controller output, slight differences still remain that result from model errors within the rigid body model without friction.
However, better trajectory tracking performance, critical for practical usage of the robotic manipulator, could not be im-
proved with the current setup. A first reason lies in using a linearizing MPC approach that does not adequately represent
nonlinear system dynamics. Second, the setup underlies limitations in hardware and software. On the hardware side, com-
munication between the robot and the centralized controller in Simulink is limited in speed since the Schunk PowerCube
Robot is designed for decentralized joint control schemes such as PID. On the software side, the MPC online optimization
cannot be evaluated arbitrarily fast. Both limitations contrast the need for trajectories and linearized dynamics with high
resolution in time whenever using LTV MPC.
Further research out of the scope of this publication has shown improvements in trajectory tracking performance with the
newly identified friction models when using a truly nonlinear MPC scheme.
When determining the friction, the research has been shown that the friction determination for isolated joint connection
modules is not sufficient. Within the robot assembly, the axes of the joints have to bear an additional load, which leads to
higher friction.
The SINDy method and its sparse regression algorithms make for a robust and fast method for identifying nonlinear
system dynamics. Nonlinear regression in comparison leads to very similar results but needs more computation time due
to its nonlinear optimization, making it less capable for real-time applications.
All in all, SINDy’s potential to identify parts of unknown system dynamics was successfully presented.
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Equilibrium of a non-compressible cable subjected to unilateral constraints
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∗ Univ Lyon, ENTPE, CNRS UMR5513, LTDS, France

† Univ Grenoble Alpes, CNRS, Inria, Grenoble INP, France

Summary. More realistic simulation of complex cable structures shall need the introduction of unilateral constraints to predict the
global behavior of a whole structure without neglecting the influence of a realistic boundary condition. Indeed systems like ropeways (or
belt drives) may exhibit behaviors that are strongly affected by friction at contacting zones between the cable (or belt material) and sup-
port (or pulley). This consideration also opens the gate to the study of the interaction between successive spans. Moreover the numerical
simulation of these systems remains delicate due to their geometrical non linearity.

Introduction

Cables are the main features of many light engineering devices among which electric transmission lines, ropeways
installation, cable car or lifts. The equilibria of cable system found their root in the sixteenth century. One the first author
about the subject might be Leibniz with the two following works on the catenary curve [1, 2]. Far from this historical
anecdote, today’s engineering design still relies on those works or the parabolic approximation of weighting rope, first
introduced by Galileo and made popular by Irvine [3]. From this monograph to current day, the richness of cable behaviours
never ceased to be explored. Major studies in modelling and dynamics have been gathered by Rega in his review and
work [4]. However, sophisticated boundary condition or constraints never had been deeply investigated for the cable which
almost always perfectly hanged between two points and freely hanging. This is the aim of this work.
Impacts, collisions and friction play a key role in the transient regime of vibrating media by producing a high frequency
content responses. Beyond the scope of the current application is the case of string music instrument which vibration
against an obstacle explain the signal richness [5]. Similar phenomena are expected in a larger problem such as a ropeway
and could explain the apparition of large oscillations when a cabin passes along the top of an intermediary pylon. Although
cable dynamics have been studied intensively for the three last decades [3, 4, 6] and numerical challenges never ceased
to be attacked [7, 8, 9, 10], there are still unanswered questions about different techniques of the Finite Element Method
(FEM) [11, 12] applied to a cable which is subjected to nonsmooth constraints despite the existing bibliography about
nonsmooth dynamics [13, 14].
Current focus is drawn on the equations for a cable which is subjected to the presence of a circular-shape obstacle and on a
FEM associated with this problem. One may refer to the research work done in succession by Bruno et al. [15], Such et al.
[16], Impollonia et al. [17] and Crussels-Girona et al. [10] about the equilibrium of a cable subjected to an intermediary
pulley as mean of comparison.

System of interest

We are interested in the mechanics of a cable belonging to the Cartesian space IR3 equipped with an orthogonal basis
(ex, ey, ez). A cable can be described as a curvilinear domain [6] which cannot resist any torque and compression due to
its slenderness and its micro-structure. Each particle of this domain is associated to a unique curvilinear abscissa S ∈ [0, L]
where L stands for the reference length of the cable and a triplet of the Cartesian space:

q(S, t) =



x(S, t)
y(S, t)
z(S, t)


 . (1)

The cable is subjected to external loads collected by f(S, t) ∈ IR2 → IR3. The cable equilibrium is satisfied when tensile
forces balance external solicitations and inertial force, which reads:

ρv̇(S, t) =

(
EA(‖q′(S, t)‖ − 1)

q′(S, t)
‖q′(S, t)‖

)′
+ f(S, t) (2)

Where •̇ and •′ stand for derivatives of the variable • with respect to the time and space, respectively. The parameters ρ
and EA are respectively the linear density of the cable and the cable rigidity. The velocity of the particle located at S is
denoted by v(S, t).
The equations of motion are supplemented by equality and inequality constraints to account for more detailed physics, such
as the boundary conditions, the presence of obstacles, impacts or friction. The following constraints are introduced:

(Equalities) a(q(S, t), S, t) = 0 (3)

(Inequalities) g(q(S, t), S, t) > 0 (4)

The research of a solution for (2) is then performed in the admissible set Adm given by:

Adm =

{(
v(S, t)
q(S, t)

)
, a (q(S, t), S, t) = 0, g (q(S, t), S, t) > 0, v ∈ RCBV , q ∈ AC

}
(5)
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where the set of right continuous functions of bounded variations and the set of absolutely continuous functions are denoted
byRCBV and AC.

Finite element procedure

A finite element procedure is derived for the system given by (2)-(5). Following previous work [18], the unconstrained
system is written:

Mv̇(t) +Cv(t) +K(q(t))q(t)− f(t) = 0, (6)

where v and q are finite-dimensional vectors collecting the unknowns at nodes. The equality and inequality constraints and
their Jacobians are written at each nodes such that :

a(q, t) = 0 ; ∇⊺a(t) = A(t) (7)

g(q, t) > 0 ; ∇⊺g(t) = G(t) (8)

The mechanical system at stake can be formulated as a nonlinear complementarity system as follows:





Mv̇(t) +Cv(t) +K(q(t))q(t)− f(t) = A(t)
⊺
λ+G(t)

⊺
µ

q̇ = v

a(q(t), t) = 0

0 6 g(q(t), t) ⊥ µ > 0

(9)

where λ and µ are Lagrange multipliers which can be physically interpreted as reaction forces provided that the Jacobians
are normalized.
Let us introduce the following index sets:

E = {β, aβ(q, t) = 0}, (index set of equality constraints) (10)

I = {α, gα(q, t) > 0}, (index set of inequality constraints) (11)

(12)

and the following sets:

C(t) = {q, a(q, t) = 0, g(q, t) > 0} (13)

NC(q) =



s ∈ IRn, s = −

∑

β∈E
λβAβ −

∑

α∈I
µαGα, µα > 0, µαgα(q) = 0, α ∈ I



 (14)

Time dependencies will be omitted in the following for conciseness. The dynamics given by (9) can be written as an
inclusion into the normal cone NC : 




r = Mv̇ +Cv +K(q)q− f

− r ∈ NC(q)

q = q0 +

∫ t

0

v dt

(15)

for the smooth phase of the motion. If the motion is nonsmooth, a differential measure equality must be written as:




M dv + [Cv +K(q)q− f ] dt = dr

dq = v dt

− dr ∈ NC(q)

(16)

where dt is the Lebesgue measure and dr is a reaction force measure. See [14] for details about the decomposition of
this measure. This equality means that the reaction force r tends to pull the system back into the admissible set C(t).
An illustration for this situation is provided in Figure 1. Finally, to favor the use of the Moreau–Jean time–stepping
scheme[19, 14], a second order Moreau sweeping process is formulated:





M dv + [Cv +K(q)q− f ] dt = dr

dq = v dt

− dr ∈ NTC(q)(v + ev−),

(17)

where e is the coefficient of restitution and TC the tangent cone to C.
Numerical treatment of this system of equations will be at the heart of the following considerations.
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Figure 1: Normal cone and possible reaction forces in q1 and q2

Numerical treatment

In the Moreau–Jean time–stepping scheme [19], a θ-method is endowed to approximate integral quantities over a time-step
h. For an arbitrary function ζ, it reads:

∫ t1

t0

ζ(t) dt ≈ h [θζ1 + (1− θ)ζ0] (18)

where the subscript •0 (resp. •1) denotes the evaluation of • in t0 (resp t1 = t0 + h). In case of the stiffness matrix K, a
linearized approximation is endowed as:

K1(q1) ≈ K0(q0) + hθ∇K0v1 + h(1− θ)∇K0v0 (19)

At last, the constraints are taken fully implicitly in the formulation such that:
∫ t1

t0

dr ≈ p1 +A1
⊺λ1 (20)

where p1 and λ1 are homogeneous to impulses.
The equality and inequality constraints are considered at the velocity level and are linearized such that it reduces to:

Aβ
0v

β
1 = 0, β ∈ E (21)

ḡα1 = gα0 +
h

2
Gα

0v0, α ∈ I (22)
{

If ḡα1 6 0, 0 6 µα1 ⊥ Gα
0 (v1 + ev0) > 0

If ḡα1 > 0, µα1 = 0

The satisfaction at previous time step is used to get the simplification in (21). Then the equality constraints are reduced to
their first-order expand. The whole numerical scheme can be wrapped into the following system:





M̂ (v1 − v0)− f̂ = p1 +A0
⊺λ1

Aβ
0v

β
1 = 0, β ∈ E

ḡα1 ≈ gα0 +
h

2
Gα

0v0, α ∈ I
{

If ḡα1 6 0, 0 6 µα1 ⊥ Gα
0 (v1 + ev0) > 0

If ḡα1 > 0, µα1 = 0

q1 = q0 + hθv1 + h(1− θ)v0

where

M̂ = M+ hθC+ h2θ2∇K0

f̂ = hθf1 + h(1− θ)f0 − hCv0

− hK0q0 − h2θ∇K0v0

p1 =
∑

α

µα1G
α
0
⊺

. (23)
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In order to obtain a mixed linear complementarity problem (MLCP) in a canonical form, the "free" velocity, vf is computed
for a given v0 solving the unconstrained system:

vf = v0 + M̂−1f̂ (24)

The following iteration is referred as a one step nonsmooth problem (OSNSP) in the literature [14] which aims to obtain
the correct impact estimation and the corrected velocity as the solution of:

(OSNSP)





M̂ (v1 − vf ) = p1 +A0
⊺λ1

A0v1 = 0

Uα
1 = Gα

0v1

pα1 = µα1G
α
0
⊺

Ûα
1 = Uα

1 + eUα
0

0 6 µα1 ⊥ Ûα
1 > 0

}
for α ∈ Act

(25)

where the active set, Act, is, in practice, a prediction of the index set of active constraints which will correspond to a
violation of the unilateral constraints :

Act = {α ∈ I, ḡα1 6 0} , (index set of active inequality constraints) (26)

The problem (OSNSP) can be written in a canonical mixed linear complementarity problem (MLCP) as:




[
A0M̂

−1A0
⊺ A0M̂

−1G0
⊺

G0M̂
−1A0

⊺ G0M̂
−1G0

⊺

] [
λ1
µ1

]
+

[
A0vf

G0vf + eG0v0

]
=

[
0

Û1

]

0 6 µ1 ⊥ Û1 > 0

(27)

Constrained modes

Although the concept of modes has been thoroughly studied, the idea of a constrained mode is not clear yet. Looking at
the mode as a preferential response for the system when solicited, we can extend the research for a periodic response to a
system subjected to unilateral and bilateral constraints. Assuming the response will be small around a static equilibrium,
the dynamics can be investigated in (9) via introducing a perturbation of the static equilibrium given by:

(Static)





K(q)q− f = A⊺λ+
∑

α∈Act

µαGα⊺

a(q) = 0

0 6 g(q) ⊥ µ > 0

(28)

Considering q̃(t) = q+ d(t), λ̃ = λ+ λd and µ̃ = µ+ µd in (9) and expansion around q combined with (28) yields:




0 = Md̈+∇[K(q)q−G⊺µ]d−A⊺λd −G⊺µd

0 = Ad

0 = Gαdα, α ∈ Act

(29)

From the last two equations, suitable projections into the kernels of A and G should be done to obtain an eigenvalue
problem. Let us consider B1 a basis of the kernel of A (then B1

⊺A⊺ = 0) and B2 a basis of the kernel of G⊺B1 (then
B2

⊺G⊺B1
⊺ = 0). Let us refer to the product B1B2 as B. One can manipulate (29) to obtain a classical evolution problem:

0 = B⊺MBd̈+B⊺∇[K(q)q−G⊺µ]Bd (30)

which becomes a classic eigenvalue problem when the assumption of harmonic behavior is made for d = exp(iωt)dω:

0 =
(
K̃(q, µ)− ω2M̃

)
dω (31)

with i2 = −1. This methodology allows to trace linear vibrations around a steady-state. Main assumptions is that
oscillations are "small" so that the active set of constraint remains unchanged as proposed by de Veubeke and Géradin [20].
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Applications

Constrained mode veering
It is well known that the cable exhibits mode veering for some value of parameter [3, 21]. Here we are interested in the
variation of modes for a suspended cable subjected to the presence of an intermediary obstacle of circular shape. That is to
say we consider:

g(qα)α = ‖qα − qR‖ −R (32)

where qR and R stand for the circle center and its radius. The obstacle is translated along the x−axis as and the frequencies
are computed for each equilibrium obtained as illustrated in Figure 4. We see that as one could expect in-plane (IP) modes
or out-of-plane (OP) modes are obtained. Veering phenomenon occurs for some obstacle position, creating some possible
scenarios of high resonances. We also see that the obtained modes are not single span modes and that an oscillation on the
left of the obstacle can be accompanied with oscillation on its right, see Figure 2-3 which is opening the debate for a better
physical description of multi-span cable systems.

Constrained dynamics
To account for the time stepping scheme (27) possible applications, we look at the dynamics of cable which only hanged at
one end. The cable falls and may hit a vertical wall located at a given position, that is to say:

g(q) = B(q− q0) (33)

where B is a diagonal matrix with 1 for arrays (3j+1, 3j+1). Solving the MLCP (27) at each time step allows to compute
the dynamics given by (9). Siconos is used to obtain the time response of the system depicted in Figure 5. A cable is falling
from an initial catenary position and impacts a wall located on the edge of its initial support.

Conclusion

The global procedure to compute the dynamics of a nonlinear cable subjected to unilateral and bilateral constraints have
been presented with several applications. Modes taking into account various types of constraints can be considered and
provides interesting features of resonance and dynamical scenarios. The dynamics of an arbitrary system may be computed
according to the nonsmooth contact dynamics and open the discussion about the influence of impact on the cable profile
and tension.

Mode 1: ω = 60.75 rad/s (IP) Mode 2: ω = 61.35 rad/s (OP)
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Figure 2: Mode-shapes obtained via FEM for a cable lying on a centred obstacle
Rest position (solid line ) and perturbed position (solid line )

L =301 m ; ρ = 5.56 kg/m ; EA = 1.5 GPa
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Figure 3: Mode-shapes obtained via FEM for a cable lying on a non-centred obstacle
Rest position (solid line ) and perturbed position (solid line )
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Summary. This work concerns the trajectory tracking control for Linear Complementarity Systems (LCS) with continuous solutions.
Such systems are strongly nonsmooth and nonlinear. The tracking issue is solved using passivity tools that yield conditions which can
be solved with Linear Matrix Inequalities (LMI). Circuits with ideal diodes illustrate the theoretical developments.

1 Introduction

Trajectory tracking is a major problem in Automatic Control. It is well understood for linear time-invariant systems (see
[1] and references therein) and some classes of nonsmooth systems [2, 3]. In this study, we study the LCS given by





ẋ(t) = Ax(t) +Bλ(t) + Eu(t),
0 ≤ λ(t) ⊥ Cx(t) +Dλ(t) + Fu(t) ≥ 0,
x(0) = x0,

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, λ(t) ∈ Rp with D = 0, D � 0, and D ≻ 0. In case D � 0, we restrict to positive

semidefinite matrices D of the form
(
D1 0
0 0

)
, where D1 ≻ 0 is square of dimension q < p. Our goal is to design the

controller u such that ‖x(t)− xd(t)‖ → 0 as t→∞, where xd is a desired state trajectory. Generally, to find a controller
satisfying a given reference is a hard problem. Thus our ambition is only to deal with some sub-classes of problems which
we can handle.

1.1 Main Results
Let us first make the following assumptions.

Assumption 1 There exists a multiplier λd such that desired trajectory xd satisfies
{
ẋd(t) = Axd(t) +Bλd(t) + Eud(t)

0 ≤ λd(t) ⊥ Cxd(t) +Dλd(t) + Fud(t) ≥ 0,

for a given input ud ∈ L1
loc(R+;Rm).

Assumption 2 There exists a matrix K such that the quadruple (A+ EK,B,C + FK,D) is strictly passive.

Then the following result holds.

Proposition 1 Suppose that Assumptions 1 and 2 hold. Then the closed-loop system (1) with the state feedback controller

u(t) = K[x(t)− xd(t)] + ud(t)

has a unique global solution x(·), and ‖x(t)− xd(t)‖ → 0 as t→ +∞.

The proof is led with the Lyapunov function V (z) = z⊤Pz, z = x− xd, and P = P⊤ ≻ 0 is a solution of the passivity
LMI [4, Lemma 3.16, Theorem 4.73]. The controller gain K is calculated by solving the LMI:

(
QA⊤ +AQ+ L⊤E⊤ + EL+ εQ B −QC⊤ − L⊤F⊤

B⊤ − CQ− FL −(D +D⊤)

)
4 0. (2)

This gives an LMI feasibility problem in the new variables Q = QT ≻ 0 and L. After solving this LMI, the feedback
gain K can be recovered from K = LQ−1. It may happen that the above LMI has no solutions (see [5, section 2.5.1] for
an example). This can be solved by changing the controller structure. Namely, we allow for not only a state feedback, but
also that the multiplier λ(t) be measurable and part of the controller. In practice the multiplier may be voltages or currents
(for circuits) or contact forces (for mechanical systems) and could be measured.

Assumption 3 There exist matrices K,G such that the quadruple (A + EK,B + EG,C + FK,D + FG) is strictly

passive and D+FG is either a zero matrix, or a positive definite matrix, or a matrix in the form

(
D1 0
0 0

)
with D1 ≻ 0.

Proposition 2 Suppose that Assumptions 1 and 3 hold. Then the closed-loop system (1) with the controller

u(t) = K[x(t)− xd(t)] +G[λ(t)− λd(t)] + ud(t)

has a unique global solution x(·) and ‖x(t)− x (t)‖ → 0 as t→ +∞.
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2 Example and Simulations

Let us consider the circuit in Figure 1 with an ideal diode, having the dynamics:





ẋ1(t) = x2(t)

ẋ2(t) = − 1
LC

x1(t) +
λ(t)
L

+ u2(t)
L

0 ≤ λ(t) ⊥ λ(t)
R

+ x2(t)− u1(t)
R
≥ 0.

.

From Proposition 1, we get the controller u1 = K(x−xd)+ud withK =

(
−1.554224 −0.261066
−3.228662 −3.663074

)
, and from Propo-

sition 2, the controller u2 = K(x−xd)+G(λ−λd)+ud with K =

(
−2.833123 −1.041382
−4.568759 −3.291980

)
, G =

(
−0.500000
5.121218

)
.

λ

L
x2

C

u2

u1

R

Figure 1: RLCD circuit with two voltage sources.

The matrices are obtained by using YALMIP (https://yalmip.github.io/) with 6-digit accuracy, and using the INRIA code
SICONOS (https://nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos/index.html) to get the numerical results of this
problem. The results are depicted in Figure 2, where xji is the ith component of the closed-loop system’s state with
controller uj , and initial conditions (0.5, 0.5).

3 Conclusions

A detailed presentation of this work is made in the report [5] where well-posedness issues are presented, as well as several
circuits examples with simulations, and all the codes needed to compute the controller gains (MATLAB, YALMIP and
SICONOS).
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Summary. Predicting the outcome of an impact event is of high importance for proper execution of many robotic tasks. Rigid-body
contact models are extensively used in planning and control due to their simplicity and computational efficiency. However, there exists
little literature that shows a comparison and verification of these models with real-life experiments, and it is therefore unclear how
well these models approximate frictional impact events. In this study, we formulate an identification approach to find the parameters
of commonly used contact, friction, and impact models using an experimentally obtained data-set of impact events using a single
rigid-body, where the focus lies specifically on spatial frictional impact events. In future work, we will measure, using the identified
parameters, the performance of the used models in terms of long-horizon prediction performance by comparing simulated and measured
rest poses of a rigid-body tossed on a surface.

Introduction

Many robotic tasks rely on accurate dynamical models of the robot as well as models of the interactions the robot has
with its environment or the object it is handling. Detailed understanding of the frictional impact events that occur when
dynamic manipulation tasks are executed are important for proper task execution. Quantitative modeling these nons-
mooth dynamics related to such stick/slip transitions and impacts events is highly challenging. Various models have been
presented in literature and in this study the focus lies on rigid contact models, where the Newton-Euler equations of mo-
tion are coupled with ideal unilateral contact constraints (Signorini’s contact law), Newton’s impact law, and Coulomb’s
friction law [1, 2]. Newton’s and Coulomb’s law rely on parameters known as the coefficient of restitution (COR) and
coefficient of friction (COF), denoted by eN and µ, respectively. Identifying these parameters from an experimental
data-set requires expertise in both mechanics and optimization, and ultimately gives an approximation of the real physical
behavior of the object, as also addressed in [3]. In this study, the goal is to determine to what extent rigid-body dynamics
can be used to describe real world physical behavior. More specifically, we focus on a single body impacting a surface
and compare measurements with rigid-body simulations to quantify the predictive capacity of these models. The main
contribution is that our focus lies on spatial frictional impact events, instead of the planar impact events considered in, for
example, [4, 5].

Obtaining impact events from experiments

An experimentally obtained data-set is used to estimate the COR and COF for an uniformly filled carton box impacting a
surface, which in our case is the box shown in Figure 1b. Experiments are executed on a robotic setup using a OptiTrack
motion capture system to record at 360fps the poses of rigid-objects with sub-millimeter accuracy, see Figure 1a for a
picture of the setup. This setup is representing a typical scenario in a logistic application, which sets the context of the
project in which the experiments were executed 1. From the tracking data it is possible to extract the exact configuration
of the box and the surface with which the object is impacting and we compute the velocity of the box using a central
differencing scheme. Figure 2 shows the twist of the box around a single impact event (happening at the time instance
t = 0, where the time is normalized around the impact time), where Figure 2a shows the linear velocity component and
Figure 2b shows the angular velocity component of the twist. Due to noise in the measurement system, fitted velocities
are used to determine the pre-impact velocity (at t = −1) and post-impact velocity (at t = 1), which will serve as the
basis for the identification of the impact map.

Parameter Identification based on post-impact velocity comparison

A total of 129 impact events where collected experimentally, from which we determine the pre- and post-impact velocity
of the rigid body, where the pre-impact velocity serves as the input to a model-based simulation. We then let the simulator
compute the post-impact velocity of the rigid-body given a certain value for eN and µ and we compare the simulated
post-impact velocity ṽ+ to the post-impact velocity computed from the measurement data v+. By performing a grid-
based search over the parameter space, we are then able to find the optimum parameters. Mathematically, we define the
optimization problem as

(µ∗, e∗N ) = argmin
µ,eN ,eT

1

N

N∑

k=1

(∥∥∥∥diag(w)
(
v+ − ṽ+

) ∥∥∥∥
)

k

, (1)

s.t. 0 ≤ µ ≤ µs, 0 ≤ eN ≤ 1, (2)

1This work was partially supported by the Research Project I.AM. through the European Union H2020 program under GA 871899.
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(a) (b)

Figure 1: Experimental setup. Picture of the lab (a) and picture of the carton box (b).

(a) (b)

Figure 2: Linear and angular hybrid velocities obtained from measurements. Fitted hybrid velocities shown as black
dotted lines.

(a) (b)

Figure 3: Sum of computed costs from all 129 combined impact events as obtained for simulations with different param-
eters (a) and evolution of parameter values for increasing number of impact events (b).

where the simulated post-impact velocity ṽ+ is a function of the pre-impact pose and velocity and the chosen values for
the parameters µ and eN . Furthermore, in (1), N denotes the total number of impact events and w is a weighting vector.
As a result, the sum of all computed costs can be seen in Figure 3a, while Figure 3b shows the convergence behavior of the
values eN and µ as function of the number of impact events, with the optimum values found as µ = 0.48 and eN = 0.38.

Conclusions

In this study, an experimentally obtained data-set is used for parameter identification of a nonsmooth impact model by
comparing post-impact velocities from measurements to those obtained from simulations in a cost function. In future
work, the identified parameters will be used for the long-horizon prediction of the objects state and the performance of
the nonsmooth models with be measured by comparing simulation results to experimental data.
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Summary. We study multiple impacts in a chain of beads using the Kuwabara-Kono (KK) contact model [1], a nonsmooth (not
Lipschitz continuous) extension of Hertz contact that accounts for viscoelastic damping. For this purpose, we introduce new numerical
schemes which approximate dissipative impacts with good accuracy without including the nonsmooth KK viscoelastic component in the
contact force. These schemes are derived using the technique of modified equations, which allows us to construct time-discretizations of
the nondissipative Hertz law matching numerical dissipation with KK dissipation at different consistency orders. In addition, analytical
approximations of wave profiles are derived using asymptotic expansions, in the limit when the exponent of the contact force becomes
close to unity. Numerical tests are performed for the simulation of impacts in Newton’s cradle and on alignments of free beads.

1 Introduction

In this work, we introduce a new method for the numerical simulation of granular chains which allows to approximate the
KK contact model without explicitly including the nonsmooth viscoelastic term in the contact force, i.e., γ = 0 in (1):

f(δ) = k

(
δα+ + γ

d

dt
δα+

)
, (1)

where f(δ) is the spring/dashpot contact force, δ is the indentation, and α = 3/2 corresponds to the usual KK model
[1]. Our approach is based on the technique of modified (or equivalent) equations, in which effects induced by time-
discretization (such as numerical dissipation) are analyzed by considering suitable perturbations of the initial differential
equation. In addition, analytical approximations of propagating fronts (generated for example by an impacting piston) are
obtained using asymptotic expansions, by considering α− 1 as a small parameter.

2 KK numerical dissipation

We consider a Newton’s cradle, including local attachments consisting of strings or plates. The dynamical equations
including local restoring forces, where the attachment of the nth bead is represented by a spring with linear stiffness Kn,
are :

mnẍn = −Knxn + knδ
3/2
(n−1)+ − kn+1δ

3/2
n+ , 1 ≤ n ≤ N, (2)

with δn = xn−xn+1 and k1 = kN+1 = 0. In model (2), collisions are assumed nondissipative. Setting x = (x1, . . . , xN ),
v = (ẋ1, . . . , ẋN ) and y = (x, v), system (2) can be reformulated as

ẏ = f (y) =

(
v

g(x)

)
, (3)

where the components of g(x) ∈ RN are given by gn (x) = 1
mn

(
−Knxn + knδ

3/2
(n−1)+ − kn+1δ

3/2
n+

)
. In order to

approximate solutions of (10), we introduce the implicit one-step method

Xk+1
n −Xk

n

h
=θV k+1

n + (1− θ)V k
n ,

V k+1
n − V k

n

h
=

1

mn

[
− (1− µ)KnX

k+1
n + θ

(
kn
(
∆k+1

n−1

)3/2
+
− kn+1

(
∆k+1

n

)3/2
+

)]

+
1

mn

[
−µKnX

k
n + (1− θ)

(
kn
(
∆k

n−1

)3/2
+
− kn+1

(
∆k

n

)3/2
+

)]
,

(4)

where ∆k
n = Xk

n − Xk
n+1, h denotes the time step and Yk =

(
Xk

1 , . . . , X
k
N , V

k
1 , . . . , V

k
N

)
approximates y(k h). We

consider a modified (or equivalent) equation (see e.g., [3, 4] and references therein) corresponding to the scheme (4) :

Ẏ = f (Y ) + hF1(Y ) +O(h2), (5)

where the coefficient F1 needs to be determined. After some manipulations the modified equation (5) can be rewritten

Ẋn = Vn + h (θ − 1

2
) gn(X) +O(h2), (6)
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mnẌn +Kn

(
h (θ − µ) Ẋn +Xn

)
=kn

(
∆

3/2
(n−1)+ + 3

(
θ − 1

2

)
h∆

1/2
(n−1)+∆̇n−1

)

− kn+1

(
∆

3/2
n+ + 3

(
θ − 1

2

)
h∆

1/2
n+ ∆̇n

)
+O

(
h2
)
,

(7)

with ∆n = Xn −Xn+1, where a KK dissipation term clearly appears. Setting

θ =
1

2
+

γ

2h
= µ (8)

in (7) and neglecting O(h2) terms, one recovers the KK model

mnẌn +KnXn = kn∆
3/2
(n−1)+ +

3

2
γkn∆

1/2
(n−1)+∆̇n−1 − kn+1∆

3/2
n+ −

3

2
γkn+1∆

1/2
n+ ∆̇n. (9)

This observation leads us to the concept of tailored numerical dissipation. In this framework, one discretizes the nondis-
sipative model (2) with the dissipative scheme (4)-(8) in order to approximate the dissipative model (9).

3 Analytical approximations of wave profiles

We consider system (9) with a generalized elastic exponent α > 1, without local springs (i.e., Kn = 0) and for identical
beads, so that mn and kn are constant and rescaled to unity :

Ẍn = ∆α
(n−1)+ + αγ∆α−1

(n−1)+∆̇n−1 −∆α
n+ − αγ∆α−1

n+ ∆̇n. (10)

We consider the limit case of an infinite chain, assume ∆n ≥ 0 (absence of gaps between beads) and set

∆n(t) = δ y(ξ, τ)1/α, (11)

with ξ = ε (n − c t), c = δ(α−1)/2, τ = γ
2 ε

2 c2 t, and ε = α−1
αγ c . The new variable y can be interpreted as a rescaled

force variable. Substituting the Ansatz (11) in the dynamical equations (10), and performing an asymptotic expansion
with respect to the small parameter ε, one arrives to a logarithmic Burgers equation

∂τy + ∂ξ (y ln y) = ∂2ξy. (12)

The expansion is valid for α close enough to unity, and the logarithmic nonlinearity originates from the approximation
(y − y1/α)/(1− 1

α ) ≈ y ln y.
Alternatively, modifying the Ansatz as follows :

∆n(t) = δ y(s, τ)1/α, (13)

with s = 2
√
3 ε (n− c t), τ =

√
3 ε3 c t, ε = (1− 1

α )
1/2 and c defined as above, one obtains the logarithmic KdV-Burgers

equation
∂τy + ∂s (y ln y) + ∂3sy = µ∂2sy, (14)

where µ = c 2
√
3 γ(1− 1

α )
−1/2. This expansion is valid when α→ 1+ and assuming µ = O(1), hence γ has to be small.

The amplitude equations (12) and (14) both possess stationary front solutions, which can approximate the asymptotic
response of a chain impacted by a piston. They are valid in different regimes regarding the amount of contact damping,
and the logarithmic KdV-Burgers equation allows to approximate more general underdamped (oscillatory) fronts.
These approximations are tested by performing direct numerical simulations of the KK model. One observes a conver-
gence of the numerical solutions towards analytical profiles when α is close to unity. In addition, the analytical approx-
imations remain meaningful for α = 3/2, i.e. rather far from the asymptotic limit where the amplitude equations have
been derived.

4 Conclusions

New approaches for the numerical simulation of granular matter via the approximation of the Kuwabara-Kono model by
suitable numerical dissipation or the derivation of adapted amplitude equations are presented. More details can be found
in [2] and [5].
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Non-smooth dynamics modeling of drill-string systems in heterogeneous formations

Arviandy G. Aribowo∗, Roeland Wildemans∗, Emmanuel Detournay† and Nathan van de Wouw ∗,†

∗Department of Mechanical Engineering, Eindhoven University of Technology, The Netherlands
†Department of Civil, Environmental and Geo-Engineering, University of Minnesota, U.S.A.

Summary. An extension of the drill-string dynamics model for drilling in heterogeneous rock formations is presented to study the
heterogeneity effect on both the axial and torsional dynamics.

Introduction

According to [1], the total loads acting on the Polycrystalline-Diamond-Compact (PDC) bit in rotary drilling systems (see
Figure 1-left) are changed abruptly when the bit blades drill into interchangeably harder and softer layers of heterogeneous
rock formations. This fast load-change condition due to the formation heterogeneity can affect the dynamic response of
the system and therewith the vibrational signature at the bit, which in turn may influence the durability of the PDC bit
and drilling efficiency. To this end in this study, the drill-string system model as presented in [2, 3] is extended for
vertical drilling scenario in interbedded formations, particularly for the transitional part of the motion of the bit in two
heterogeneous layers (see Figure 1-middle). The latter requires a novel bit-rock interaction model of the forces and torques
acting on the bit in such transitional phase.

Bit
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lower layer
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Figure 1: Drilling system schematic for heterogeneous formations (left); the bit transition (middle); model of drill-string system (right).

Dynamic model of drill-string systems in heterogeneous formations

Following the modeling framework in [3] (as depicted in Figure 1-right), the dynamics model of drill-string system
incorporating the heterogeneity effect of distinct rock layers is modelled in (scaled) dimensionless form as follows:

Mz′′ −H (τ, z , z′ , zτn) =WL. (1)

Herein, z is the dimensionless generalized coordinates of the systems and composed by ub for the axial position of the bit
and φb for the angular position, and all are functions of dimensionless time τ . The matrices in (1) are given by,

M =

[
1 0
0 1

]
, z =

[
ub (τ) φb (τ)

]⊤
, W =

[
ψ̄ 0
0 1

]
, L =

[ Ltotk,ba (ρb) Ltotk,bt(ρb,Ltotk,ba)
]⊤
, (2)

H =

[
−γu′b

(−γφ φ′b − (φb − ω0 τ))

]
+

[
−ψ̄ n δn ḡ

ε
k

(
gεk

(
1− ηlζ (ρb)

)
+ ηlζ (ρb)

)

−n δn ḡεk
(
gεk
(
1− ρb2

)
+ ρb

2
)

]
+

[
ψ̄Wa

0

]
. (3)

The number of layers, with each specific thickness, is K (thus the index of each layer is denoted by k ∈ {2, 3, . . . ,K}).
The single and double prime symbols denote for the time derivatives of z. zτn stores the delayed coordinates of z
(i.e., ub (τ − τn), φb (τ − τn)). τn is the (state-dependent) time-delay appearing in the rock cutting process. M is the
mass matrix, and n is the number of bit-blades. Furthermore, one of the pivotal elements in the model is the bit-rock
interaction that couples the axial and torsional dynamics of the drill-string and has two main components related to
cutting and contact. Matrix H consists of the generalized forces and torques (except from the components related to
the wear-flat contact force and frictional torque), i.e., from the stiffness and damping processes, cutting, gravity and the
hook-load imposed by the hoisting/top-drive system at the surface. Thus, we have the torsional damping (γφ), the axial
damping (γ), the angular velocity imposed at the surface rotary table (ω0), and the resultant of the submerged weight of
the drill-string and hook-load (Wa). Moreover, the cutting and contact components are extended for encapsulating the
rock heterogeneity effect of two distinct horizontal layers in which the bit may be simultaneously drilling. The lithology
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parameters influencing these bit force and torque components are the ratio of the intrinsic specific energies between upper
and lower layers (gεk), the ratio of the frictional coefficients for the contact between upper and lower layers (gµk ), the ratio
of the contact pressures at the bit-rock interface between upper and lower layers (gσk ), and the ratio between the intrinsic
specific energy at the associated layer and its mean values (ḡεk). In addition, these bit force and torque components are also
affected by the bit parameters related to cutting (ηlζ) and contact (ηlξ), and drill-string design (ψ̄). These bit parameters
are adapted to the formation layer(s) in which the bit is currently engaged. We use the radius ratio of the bit at the layer
boundary (ρb as defined in Figure 1-middle) to segregate the portion of the bit engaged in the upper ((k− 1)th) and lower
(kth) layers during the transition. We note that the bit is designed with a particular blade profile (z(r)) as a function of its
radius r (with maximum radius a). In (3), the depth-of-cut δn and the time-delay τn are given by,

δn = ub (τ)− ub (τ − τn) , φb (τ)− φb (τ − τn) =
2π

n
. (4)

Vector L stores the dimensionless wear-flat contact force (Ltotk,ba ) and the associated frictional torque (Ltotk,bt ) acting on the
bit wear-flats and is affected by the heterogeneity of the layer(s) in which the bit engages (this dependence is indicated by
index k). The generalized directions of these forces and torques are contained in matrixW . These forces and torques obey
set-valued force laws (reflecting a unilateral contact law in (5) and a Coulomb friction law in (6)) using a proximal-point
formulation on velocity level:

Ltotk,ba (ρb) = proxC̄a

(
Ltotk,ba − r1 u′b

)
, C̄a =

{
Ltotk,ba (ρb) | − n gσk,ρbL̄k,ba 6 Ltotk,ba (ρb) 6 0

}
, (5)

Ltotk,bt(ρb,Ltotk,ba) = proxC̄t

(
Ltotk,bt − r2 φ′b

)
, C̄t =

{
Ltotk,bt (ρb) | − βk,ρbLtotk,ba (ρb) 6 Ltotk,bt (ρb) 6 βk,ρbLtotk,ba (ρb)

}
.

(6)

L̄k,ba is the nominal contact force for the associated rock layer, while gσk,ρb is the value of gσk affected by the bit-geometry
at the layer boundary (associated to ρb). βk,ρb is the bit-design parameter that is also affected by the formation hetero-
geneity and mainly influences the frictional torque. r1 and r2 are some positive arbitrary constants.

Preliminary Simulation Results

The simulation results of the dimensionless model of drill-string system for vertical drilling in heterogeneous formations
are shown in Figure 2. Under the influence of the heterogeneity, the torque and weight on bit are fluctuating and not
reaching the steady-state limit cycles (associated to the responses in homogeneous rock formulations) while the bit moves
in heterogeneous and thin layers, i.e., each layer thickness equal to the bit height. The green area is the soft layer, while the
red area is for the hard one. These responses show that in the case of heterogeneous formations, the drill-string dynamics
can no longer be described through homogeneous models and the developed heterogeneous model is indeed required.

Figure 2: Bit axial velocity/rate-of-penetration in drilling heterogeneous formations (left); weight-on-bit (right).

Conclusion

This abstract presents a drill-string dynamics model with a PDC bit for drilling vertically in the heterogeneous formations
with an emphasis on the characterization of the bit-rock interaction during the transition of the bit between two distinct
horizontal layers. Next we aim to analyze the drilling efficiency in terms of ROP and to examine the total torsional power
losses that can lead to the onset of (torsional) stick slip vibrations in heterogeneous formations.
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Nonlinear granular damping of structures with cavities from additive manufacturing
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Summary. Additively manufactured parts are often created with cavities for weight reduction or other mechanical purposes. These
cavities offer the optimal base for granular damping. Unfused raw material particles can be left inside the structure or another granular
material can be filled in to increase structural damping. In this paper, a simple mechanical model is developed based on measurements
of a basic experiment for granular damping with only a small amount of particles.

Additive manufacturing for lightweight structures

Today, the term additive manufacturing characterizes a multitude of different processes with which almost all materials
from metals to plastics to ceramics, glass and concrete can be processed. The potential of additive manufacturing offers
new possibilities to realize optimized solutions in the development process. This includes in particular the manufacture
of components with a high degree of complexity and shape variance.
The possibility of integrating cavities into components is particularly attractive for lightweight construction. The overall
weight is reduced while lattice structures can be added easily to provide the necessary stability. A major drawback of these
lightweight integral structures is their susceptibility to vibrations and noise emissions. A common additive manufacturing
process for metals is laser powder bed fusion (LPBF). Smallest particles of the raw material are melted with a laser and
formed into a structure in layers. A CT-scan of a LPBF-printed beam with unfused material in the cavity is shown in
Fig.1a). The raw granular material is removed from the cavities at the end of the manufacturing process. The obvious
idea is to leave the unfused granules inside the structure to make use of the granular damping effect [1], [2]. In order to
keep the weight low, the raw material can be replaced by another granule with a lower density [3]. The simpler way is to
leave only a small part of the granules in the cavity.

Figure 1: a) Additively manufactured beam with unfused granules in cavity; b) Experimental set up of steel pipe hanging on strings

Fundamental investigations on granular damping

For first investigations on increased damping through a small amount of particles a standard steel pipe is tested with sand
as granular medium. Sand can have a strong damping effect on mechanical structures [4]. The pipe hangs freely on strings
as shown in Fig.1b). Free decay from impact excitation is recorded with a microphone and then analyzed by applying a
short-time Fourier transform (STFT). Fig.2a) shows the results for the unfilled pipe in the frequency range around the first
bending mode. Due to a slight asymmetry two close frequencies are recognized. Repeating the measurement with a small
amount of sand inside the pipe, see Fig.1b), a strongly increased damping is noticable. After a certain time, the damping
effect disappears with a distinct frequency shift., cp. Fig.2b). The structure then vibrates at significantly lower amplitudes
with low damping.
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Figure 2: STFT results after impact excitation: a) unfilled pipe ; b) pipe filled with a small amount of sand

Minimal model showing observed phenomena

Motivated by the measurement results, a minimal model is developed to reproduce the observed vibration phenomena.
A strongly increased damping with a shift to a lower vibration frequency are approached by the dual mass model shown
in Fig.3a). An unbound mass m2 is connected via Coulomb friction to a single degree of freedom (SDOF) oscillator
with mass m1. The frictional force depends on the relative velocity of the two masses and the factor µFn. In the case
of an impact excitation of the lower mass, it will initially move independently. The upper mass stays at rest due to its
inertia and resulting friction forces provide increased vibration damping. After a certain amount of time, the upper mass
will move synchronously with the lower mass and practically increase the mass of the SDOF-system. This leads to a
sudden reduction of the vibration frequency clearly visible in the spectral analysis result in Fig.3b). Numerical results
are obtained by time step integration for which a Matlab/Simulink model of the system is set up. The natural frequency
of the system is tuned to match the first bending mode of the pipe. All remaining parameters are manually set in order
to obtain a qualitative characteristic close to the measurements. The acoustic measurement results for a single vibration
mode could be very well reproduced with the presented minimal model. If it is possible to find a physical interpretation of
the model parameters and to identify these parameters from measurements, the minimal model could be used for a simple
first approach in granular damping design.

Figure 3: a) Dual mass model and equations of motion; b) STFT result after impact excitation from numerical time integration

Conclusion

Granular damping of structures is a promising and cost-effective method for vibration reduction. Additively manufactured
components with cavities of various types open up new possibilities for placing granules. For weight reasons, partially
filled cavities are of particular interest. In this work experimental studies are carried out and observed phenomena are
modelled using a mechanical oscillator. The model shows the same characteristic as found in measurments and maybe
helpful for granular damping design with only a small amount of particles.
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A Nonsmooth Approach for Generating Convex Relaxations of Dynamic Systems
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Summary. We propose a new approach for generating convex and concave relaxations for the solutions of parametric ordinary dif-
ferential equations (ODEs), for use in global dynamic optimization and reachability analysis. These relaxations are described as the
solutions of an auxiliary nonsmooth ODE system with embedded convex optimization problems. The resulting relaxations are indeed
valid relaxations, are convex, and converge rapidly to the original system as the parametric subdomain shrinks. The new approach
is compatible with any relaxations for the original right-hand side, and tighter such relaxations will necessarily translate into tighter
relaxations for state variables. Especially, if generalized McCormick relaxations are used, the new approach is guaranteed to yield
tighter relaxations than a state-of-the-art ODE relaxation approach [1], and thus may reduce the number of iterations for overarching
global dynamic optimization. Further implications and examples are discussed.

Background and Motivation

Global dynamic optimization is useful in a wide variety of engineering applications such as parameter estimation, global
optimal control, and optimization-based worst-case uncertainty analysis. Compared with stochastic methods for global
optimization, deterministic global optimization methods have the advantage that a globally optimal solution is guaranteed
to be found within a predefined tolerance in finite computation time. However, current deterministic global dynamic
optimization methods based on branch-and-bound [2] can only solve problems of modest size. Thus, improved techniques
are sought to extend these methods to problems of practical interest.
One computational bottleneck for global dynamic optimization is generating convex and concave relaxations for state
variables with respect to decision variables, termed state relaxations [1]. These relaxations are useful for computing
lower bounds for the global optimal objective value, which are required in deterministic global optimization algorithms.
Moreover, state relaxations could also help construct convex enclosures for the reachable set which is useful in applications
involving reachability analysis such as fault detection and robust optimal control. Hence, there is a need in global dynamic
optimization to develop efficient and accurate computational tools for generating state relaxations automatically.
State relaxations should have desirable convergence and tightness properties. The relaxations supplied to a branch-and-
bound global optimization method must converge rapidly to the underlying model as the decision space is subdivided or
else the overall global optimization method will be impeded by cluster effects, in which the method will branch many
times on intervals that either contain or are near a global minimum [3]. This notion of rapid convergence has been
formalized as second-order pointwise convergence [4]. Tighter state relaxations could construct tighter lower bounds
for the global optimal objective value, and thus may reduce the overall computational time by reducing the number of
required iterations. In reachability analysis, tighter enclosures of the reachable set could reduce the sets’ conservatism,
which could lead to earlier detection of faults or less conservative control inputs.

New Relaxation Approach

Consider a parametric ODE system of the form

ẋ(t,p) = f(t,p,x), ∀t ∈ (t0, tf ],

x(t0,p) = x0(p),

where x denotes dependent state variables and p denotes system parameters.
We propose a new approach for constructing state relaxations xcv(t,p) and xcc(t,p) for states x(t,p) with respect to
p. These relaxations are described as the solutions of an auxiliary ODE system whose right-hand side comprises convex
optimization problems with embedded relaxations for f . The auxiliary system is nonsmooth because of the nonsmooth
nature of optimal-valued functions. The advantages of this approach are presented as follows. First, if the relaxations
for f have second-order pointwise convergence, then the resulting state relaxations inherit this desirable convergence
property which could help avoid cluster effects. Secondly, the new approach is compatible with various relaxations for
f , such as αBB relaxations [5] and generalized McCormick relaxations [6], while previously established approaches
are typically limited by one particular type of relaxations. Thirdly, tighter relaxations for f necessarily translate into
tighter state relaxations. Thus, it is worthwhile from a dynamic optimization or reachability analysis standpoint to seek
tighter relaxation methods for closed-form functions since doing so necessarily translates into superior descriptions of
reachable sets for dynamic systems. Especially, if the generalized McCormick relaxations are employed, the new approach
necessarily yields tighter state relaxations than a state-of-the-art ODE relaxation approach by Scott and Barton [1], and
thus may reduce the number of required iterations for overarching global dynamic optimization.

Proof-of-concept Implementation

Two numerical examples are presented to illustrate the convergence and tightness properties of the new state relaxations.
The examples are implemented in MATLAB, using the ODE solver ode15s and the local optimization solver fmincon.
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Example 1
Consider the following parametric ODE system:

ẋ(t, p) = p(x2 − 1), x(0, p) = −2,
with tf = 0.15 and −1 ≤ p ≤ 1. State relaxations are constructed by the new approach using αBB relaxations of the
right-hand side function. Figure 1 shows that the resulting relaxations have second-order pointwise convergence, where
XC denotes the enclosure formed by state relaxations, and P denotes the parametric subdomain.

Figure 1: A log-log plot of width of the enclosure formed by state relaxations at t := tf versus width of the parameter’s domain
(circles) and a reference line with a slope of 2 (dashed).

Example 2
The following example is modified from a bioreaction model in [7] by adding more nonlinearities:

ẋ1(t, p) =
( 1.2x2
px22 + x2 + 7.1

− 0.18
)
x1, x1(0, p) = 0.82,

ẋ2(t, p) = 0.36(5.7− x2)−
12.636x2x1

px22 + x2 + 7.1
+

1

x1
− x22 + x21x2, x2(0, p) = 0.8,

with tf = 15 and 0.4 ≤ p ≤ 0.6. State relaxations are constructed by the new approach using generalized McCormick
relaxations and by the approach of Scott and Barton [1]. Figure 2 shows that the new state relaxations are tighter than
Scott–Barton relaxations for this example.

Figure 2: The final state x2(tf , p) vs. p (black-solid), along with corresponding Scott–Barton relaxations (blue-circled) and new
relaxations (red-dashed), plotted as functions of p at t := tf .
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Nonsmooth Modal Analysis of Varying Cross-section Bar
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Summary. The nonsmooth modal analysis of a simple one-dimensional bar of constant cross-section has already been successfully
performed using a Finite Volume formulation and the Frequency-Domain Boundary Element Method (FD-BEM). Both strategies
took advantage of the existence of d’Alembert solution for such problem. The present contribution extends the previous works to
a bar of non-constant cross-section for which the d’Alembert solution no longer exists. The proposed scheme combines the finite
element method in space to the harmonic balance technique in time. The solution satisfies the unilateral contact condition along with an
energy-preserving implicit impact law in a weighted-residual sense. The partial backbone curve of the first mode shows the existence of
internal resonances.

Introduction

Within the framework of structural dynamics, modal analysis is a practical tool to predict the occurrence of vibrational
resonances, most commonly to prevent them. Various formulations have been proposed in the nonlinear framework where
the governing equation contains smooth nonlinear function of the state of system. Nonsmooth modal analysis is one
incarnation of nonlinear modal analysis in which the smoothness assumption does not hold, as for instance exhibited in
unilaterally-constrained structural dynamics [1, 2]. In this context, a method combining the finite element method (FEM)
and harmonic balance method (HBM) is proposed.

System of Interest

g.t/

x u.x; t/

L

E; �; A.x/

Figure 1: One-dimensional bar system of interest

The system of interest, in Figure 1, is a one-dimensional bar of finite
length L. The displacement field of straight cross-sections is denoted
u.x; t/ where x is the space coordinate and t is time. The bar is
clamped at x D 0 (Dirichlet condition) and subject to a unilateral
contact condition at x D L (Signorini condition). The cross-section
area A.x/ is varying along the bar while the mass density � and
Young’s modulus E are constant. Given the initial gap g0 between the
bar at rest and the rigid foundation, the gap function reads g.t/ D g0 � u.L; t/. The dynamics of the bar is governed by
the Partial Differential Equation

EAxux C EAuxx C �Aut t D 0 (1)

where �� denotes a partial differentiation with respect to �. Clamping at x D 0 reads u.0; t/ D 0 while unilateral contact
at x D L is expressed as

��.t/ C maxŒ�.t/ � ˛g.t/; 0� D 0 (2)

where �.t/ is the contact force and ˛ is a strictly positive real number.

Solution method: Fourier Transform+Finite Elements+Harmonic Balance

The sought families of periodic solutions defining the modal motions are computed through a numerical scheme which
assumes that no impact law is explicitly required, in contrast to common practises. First, a Fourier Transform is applied on
the unknowns of the problem:

Ffu.x; t/g D Ou.x; !/ D
1

2�

Z
1

�1

u.x; t/ exp.�i!t/dt and Ff�.t/g D O�.!/ D
1

2�

Z
1

�1

�.t/ exp.�i!t/dt: (3)

This leads to the two governing equations in the frequency domain

EA Ouxx C EAx Oux � !2�A Ou D 0 and � O�.!/ C FfmaxŒ�.t/ � ˛g.t/; 0�g D 0 (4)

where the last term Ff: : :g can unfortunately not be explicitly expressed in terms of Ou and O�. Spatial semi-discretization
is applied via the standard FEM with N two-node linear elements and the corresponding N C 1 nodes. The Dirichlet
boundary condition is directly enforced in the discretized weak form of (4) which reads

H.!/ Ou.!/ D Of.!/ (5)

with H.!/ D K�!2M where K and M are the classical stiffness and mass matrices. Also, vector Of.!/ D Œ0; : : : ; 0; O�.!/�>

stores the contact force while vector Ou.!/ D Œ Ou0.!/; : : : ; OuN �1.!/; OuN .!/�> stores the response nodal displacements,
both in the frequency domain. Inverting H.!/ yields the relation

OuN .!/ D .!/ O�.!/ (6)
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where .!/ is the last entry of the inverse of H.!/. Since periodic solutions are targeted, the time-domain nodal
displacements and companion contact force are approximated as

�.t/ D a0C

MX
kD1

a2k�1 sin k�tCa2k cos k�t; ui .t/ D bi0C

MX
kD1

bi2k�1 sin k�tCbi2k cos k�t; i D 1; : : : ; N: (7)

Given the form of Of, the only unknowns of the problem actually are the Fourier coefficients of uN .t/ and �.t/, that is the
coefficients .ak ; bN k/ for k D 0; : : : ; 2M . Accordingly, it is required to establish the corresponding equations to solve for.
First, inserting (7) into (6) leads to

bN k D .k�/ak ; k D 0; : : : ; 2M: (8)

Second, noting ˇ.t/
def
D max.�.t/ � ˛g.t/; 0/ and T D 2�=�, the HBM version of condition (2) implies

a0 �
1

T

Z T

0

ˇ.t/dt D 0 (9)

along with

a2k �
2

T

Z T

0

ˇ.t/ cos k�tdt D 0 and a2k�1 �
2

T

Z T

0

ˇ.t/ sin k�tdt D 0; k D 1; : : : ; M (10)

where Expressions (7) are first inserted into the above integrals which can then be numerically evaluated using basic
quadrature schemes. Continuous families of periodic solutions are built via a classical sequential continuation technique [3,
4] on the frequency parameter �, which is thus not treated as an unknown. The resulting system of 4M C 2 equations (8)
to (10) in 4M C 2 unknowns can be solved using a nonlinear solver. Since autonomous periodic solutions are targeted, it
seems justified to say that the classically required energy-preserving impact law is here embedded implicitly in the above
integrals. However, we do not have a formal proof of this statement.

Results

The selected cross-section area is A.x/ D 1:5 � x with L D 1 and the initial gap is g0 D 0:001. The discretization is
chosen to be M D 40 and N D 4000. Results on the first nonsmooth mode are depicted in Figure 2. The backbone
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Figure 2: First nonsmooth mode: backbone curve (left) and displacement field at � D 1:907 (right).

curve shows the frequency-energy dependency of the modal response and internal resonance mechanisms with higher
modes. Unlike the displacement field of the constant cross-section bar which consists of piecewise affine segments, the
displacement field found here seems to have smoother functional properties, even with a fine approximation.

Conclusion

A numerical scheme combining FEM and the HBM is proved capable of capturing nonsmooth modes for a one-dimensional
varying cross-section bar. The main feature of the proposed scheme is that neither explicit energy-preserving impact laws
nor regularization techniques are required at the contact interface even-though classical finite-elements are employed.
Instead, the Signorini condition and companion impact law are satisfied in a weighted-residual sense.
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 Theory of harmonic generation in nonlinear elastic waves  
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Summary. We present a theory for the dispersion of generated harmonics in a traveling nonlinear wave. The harmonics dispersion 
relation−derived by the theory−provides direct and exact prediction of the collective harmonics spectrum in the frequency-wavenumber 
domain, and does so without prior knowledge of the spatial-temporal solution. The new relation is applicable to a family of initial wave 
functions characterized by an initial amplitude and wavenumber. We demonstrate the theory on nonlinear elastic waves in a homogeneous 
rod and demonstrate an extension to periodic rods.  
 
Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and 
applications involving light, sound, heat or fluid flow are all likely to involve wave dynamics at some level. In this 
work, we consider strongly nonlinear wave propagation [1,2] in elastic solids, although the theory presented is in 
principle applicable to other types of waves such as waves in fluids, gases, and plasma.  
 
We investigate a thick elastic rod admitting longitudinal motion. In the linear limit, this rod is dispersive due to the 
effect of lateral inertia. The nonlinearity is introduced through either the stress-strain relation and/or the strain-
displacement gradient relation. Using a formulation we have developed earlier and demonstrated on thin rods and 
beams [3], we derive an exact nonlinear dispersion relation for the thick rod. Equation (1) provides the governing 
nonlinear differential equation considering a linear stress-strain relation and a Green-Lagrange nonlinear relationship 
between strain and displacement gradient:  
 

           ߲𝑡𝑡�̅� − �߲�𝑥ሺߙ�̅� + 𝒩ሺ�̅�ሻߚ +  𝑡𝑡�̅�ሻ,     (1)߲ߛ
 
where ߛ = 𝑟ଶ𝜈ଶ, r is the polar radius of gyration, and 𝜈 is the Poisson’s ratio. The Green-Lagrange strain measure is 
introduced by setting  ߙ = ߚ = 𝑐ଶ and 𝒩ሺ�̅�ሻ = ͵�̅�ଶ/2+�̅�ଷ/2 where 𝑐 is the longitudinal speed of sound in the rod. 
Equation (2) is a statement of the derived nonlinear dispersion relation, and Figure 1 presents it in graphical form with 
and without accounting for lateral inertia.  
 

          ߱ = 𝑐𝜅√ሺʹ + ͵𝐵𝜅 + 𝐵ଶ𝜅ଶሻ/ሺʹ +  𝜅ଶሻ,    (2)ߛʹ
 
where ߱  and 𝜅 denote the frequency and wavenumber, respectively, and B represents the wave amplitude.  
 
. 

 
Figure 1. Nonlinear dispersion relation for elastic waves propagating in a thick rod with a radius of gyration 
r. A non-zero value of r represents the presence of lateral inertial which gives rise to dispersion even when 
there is no nonlinearity in the system. The wave amplitude is denoted by B. Solid red curves represent 
dispersion curves for B = 0.05 and dashed black curve represent the linear nondispersive case, i.e., very 
small value of B.  

 
The derived relation is validated by direct time-domain simulations, examining both instantaneous dispersion (by direct 
observation) and short-term, pre-breaking dispersion (by Fourier transformations). Figure 2 shows a multi-window 
overlay of the frequency-wavenumber response obtained by performing a space-time Fourier transform of the 
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simulation field for a collection of hyperbolic secant signals all with an initial amplitude of B = 0.025. Specifically, the 
contour plot shown is obtained by superimposing the energy spectra of thirty separate simulations for distinct initial 
wave packets, each following a hyperbolic secant spatial profile and sharing the same amplitude but covering the range 
of excitation wavenumbers 𝜅𝑒 = 1 to 30, with increments of 1. What emerges from this exercise is a profile of the 
fundamental harmonic spanning the various simulations. On the same plot, nonlinear dispersion relation of Eq. (2) is 
overlaid demonstrating perfect prediction of the simulated nonlinear response [4]. 
 

 
 

Figure 2. Superposition of harmonics spectra from thirty distinct simulations covering a range of excitation 
wavenumbers is shown to match perfectly with the general nonlinear dispersion relation of Eq. (2) for the 
selected value of wave amplitude. Results are for B = 0.025 and r = 0.15. 

 
 
The study is then extended to a continuous thin rod with a periodic arrangement of material properties [5]. For this 
problem we introduce a new method that is based on a standard transfer matrix augmented with a nonlinear enrichment 
at the constitutive material level. This method yields an approximate band structure that accounts for the finite wave 
amplitude. Finally, we present an analysis on the condition required for the existence of spatial invariance in the wave 
profile. 
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Shocks and solitary waves in series connected discrete Josephson transmission lines

Eugene Kogan
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

Summary. We analytically study the running waves propagation in the discrete Josephson transmission lines (JTL), constructed
from Josephson junctions (JJ) and capacitors. Due to the competition between the intrinsic dispersion and the nonlinearity, in the
dissipationless JTL there exist running waves in the form of supersonic kinks and solitons. The velocities and the profiles of the kinks
and the solitons are found. We also study the effect of dissipation in the system and find that in the presence of the resistors, shunting
the JJ and/or in series with the ground capacitors, the only possible stationary running waves are the shock waves, whose velocities and
the profiles are also found.

Introduction

The concept that in a nonlinear wave propagation system the various parts of the wave travel with different velocities,
and that wave fronts (or tails) can sharpen into shock waves, is deeply imbedded in the classical theory of fluid dynamics
[1]. The methods developed in that field can be profitably used to study signal propagation in nonlinear transmission lines
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In the early studies of shock waves in transmission lines, the origin of the nonlinearity was
due to nonlinear capacitance in the circuit [12, 13, 14].
Interesting and potentially important examples of nonlinear transmission lines are circuits containing Josephson junctions
(JJ) [15] - Josephson transmission lines (JTL) [16, 17, 18, 19]. The unique nonlinear properties of JTL allow to construct
soliton propagators, microwave oscillators, mixers, detectors, parametric amplifiers, and analog amplifiers [17, 19, 18].
Transmission lines formed by JJ connected in series were studied beginning from 1990s, though much less than transmis-
sion lines formed by JJ connected in parallel [20]. However, the former began to attract quite a lot of attention recently
[21, 22, 23, 24, 25, 26, 27, 28], especially in connection with possible JTL traveling wave parametric amplification
[29, 30, 31].
The interest in studies of discrete nonlinear electrical transmission lines, in particular of lossy nonlinear transmission
lines, has started some time ago [32, 33, 34], but it became even more pronounced recently [35, 36, 37]. These studies
should be seen in the general context of waves in strongly nonlinear discrete systems [38, 39, 40, 41, 42, 43, 44].
In our previous publication [45] we considered shock waves in the continuous JTL with resistors, studying the influence
of those on the shock profile. Now we want to analyse wave propagation in the discrete JTL, both lossless and lossy
The rest of the paper is constructed as follows. In Section we formulate quasi-continuum approximation for the discrete
lossless JTL. In Section we show that the problem of a running wave is reduced to an effective mechanical problem,
describing motion of a fictitious particle. In Section the velocity and the profile of the kink, and in Section - of the soliton
are found from the solution of the effective mechanical problem. In Section we rigorously justify the quasi-continuum
approximation for the kinks and solitons in certain limiting cases. In Section we discuss the effect of dissipation on
the waves propagation in the discrete JTL. In Section we briefly mention possible applications of the results obtained in
the paper and opportunities for their generalization. We conclude in Section . In the Appendix we propose the integral
approximation to the discrete equations.

The quasi-continuum approximation

Consider the model of JTL constructed from identical JJ and capacitors, which is shown on Fig. 1. We take as dynamical
variables the phase differences (which we for brevity will call just phases) ϕn across the JJ and the charges qn which have
passed through the JJ. The circuit equations are

~

2e

dϕn
dt

=
1

C
(qn+1 − 2qn + qn−1) , (1a)

dqn
dt

= Ic sinφn , (1b)

where C is the capacitor, and Ic is the critical current of the JJ.
Everywhere in this paper we’ll treat qn(t) (φn(t)) as a function of two continuous variables (z, t), where z = nΛ, and
will make the simplest assumption,

qn+1 − 2qn + qn−1 = Λ2 ∂
2q

∂z2
+

Λ4

12

∂4q

∂z4
. (2)

(To keep in (2) only the first term would be an even simpler assumption, but the effects we’ll be talking about are absent
in this approximation.) We will call (2) the quasi-continuum approximation and will se later that in certain limiting cases
it can be rigorously justified.
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Figure 1: Discrete JTL (left) and discrete JTL with the capacitor and the resistor shunting the JJ and another resistor in series with the
ground capacitor (right).

Newtonian equation

The running wave solutions are of the form

ϕ(z, t) = φ(x) , q(z, t) = q(x) , (3)

where x = Ut− z, and U is the running wave velocity. For such solutions, and after the truncation, Eq. (1) becomes the
ordinary differential equation

U
2 dφ

dx
=
d sinφ

dx
+

Λ2

12

d3 sinφ

dx3
; (4)

in this paper, for any velocity V , V ≡ V√LJC/Λ, and LJ = ~/(2eIc). Integrating with respect to x we obtain

Λ2

12

d2 sinφ

dx2
= − sinφ+ U

2
φ+ F , (5)

where F is the constant of integration. Multiplying Eq. (5) by d sinφ/dx and integrating once again we obtain

Λ2

24

(
d sinφ

dx

)2

+Π(sinφ) = E , (6)

where

Π(sinφ) =
1

2
sin2 φ− U2

(φ sinφ+ cosφ)− F sinφ , (7)

and E is another constant of integration. Equation (6) can be integrated in quadratures in the general case.
We can think about x as time and about sinφ as coordinate of the fictitious particle, thus considering (5) as the Newtonian
equation. We are interested in the propagation of the waves characterised by the boundary conditions

lim
x→−∞

φ = φ1 , lim
x→+∞

φ = φ2 , (8)

Thus the problem of finding the profile of the wave is reduced to studying the motion of the particle which starts from an
equilibrium position, and ends in an equilibrium position.
Using the expertise we acquired in mechanics classes, we come to the conclusion that the initial position corresponds to
maxima of the "potential energy" Π(sinφ), and so does the final position. Either these are two different maxima, or the
same maximum. In the latter case the particle returns to the initial position after reflection from a potential wall. (See
Figs. 2 (above) and 3.) In the first case the solution describes the kink, in the second - the soliton.
One should compare the running wave velocity with the velocity u(φ1) of propagation along the JTL of small amplitude
smooth disturbances of φ on a homogeneous background φ1 [45]

u2(φ1) = cosφ1 (9)

(in this paper we consider only the solutions which lie completely in the sector (−π/2, π/2).) From the fact that there is
a maximum of the "potential energy" at the point φ1, follows that

d2Π(φ)

dφ2

∣∣∣∣
ϕ=ϕ1

< 0 . (10)

Calculating the derivatives we obtain

U
2
> cosφ1 , (11)

that is the running wave is supersonic.
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The kinks

In the case of the kink, going in Eq. (5) to the limits x→ +∞ and x→ −∞ we obtain

U
2
ϕ1 = sinϕ1 − F , (12a)

U
2
φ2 = sinφ2 − F . (12b)

Solving (12) relative to U
2

and F we obtain we obtain

U
2
=

sinφ1 − sinφ2

φ1 − φ2
≡ U2

sh(φ1, φ2) , (13a)

F =
φ1 sinφ2 − φ2 sinφ1

φ1 − φ2
; (13b)

the reason, why we have chosen subscript sh for the velocity in (13a), will become clear in Section .
The result for the kink velocity (13a) is more robust than it looks. In fact, summing up (1a) from far to the left of the kink
up to far to the right of the kink we obtain

~

2e

d

dt

∑

n

φn =
1

C
[(qn+1 − qn)1 − (qn+1 − qn)2] . (14)

From the running wave ansatz follows

d

dt

∑

n

φn =
U

Λ
(φ1 − φ2) . (15)

To deal with the r.h.s. of (14) we need to approximate the finite difference only far away from the kink, where everything
changes slowly, and the continuum approximation

qn+1 − qn = Λ
∂q

∂z
(16)

is enough. From (16) and the running wave ansatz follows

(qn+1 − qn)i =
Λ

U

(
dqn
dt

)

i

=
Λ

U
sinφi . (17)

Substituting into (14) we recover (13a).
Returning to (13) and taking into account additionally the equality

E = Π(sinφ1) = Π(sinφ2) , (18)

we obtain

φ2 = −φ1 . (19)

Thus the kinks which can propagate in JTL are very special. We also obtain

F = 0 , (20a)

U
2
= U

2

sh(φ1,−φ1) =
sinφ1

φ1
≡ U2

k(φ1) . (20b)

Π(sinφ)− E =
1

2
(sinφ− sinφ1)

2 − sinφ1

φ1
[cosφ− cosφ1 − (φ1 − φ) sinφ] . (20c)

Equation (20c) and the results of integration of Eq. (6) for this "potential energy" are graphically presented on Fig. 2
(above).
Consider specifically the limiting case |φ1| ≪ 1. Expanding the "potential energy" with respect to φ and φ1 and keeping
only the lowest order terms we obtain the approximation to Eq. (6) in the form

Λ2

(
dφ

dx

)2

=
(
φ2
1 − φ2

)2
. (21)

The solution of Eq. (21) is

φ(x) = −φ1 tanh
φ1x

Λ
. (22)

Equations (22) coincides with that obtained by Katayama et al. [36]. So does Eq. (20b), being expanded in series with
respect to φ1 and truncated after the first two terms:

U
2

k(φ1) = 1− φ2
1

6
. (23)
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Figure 2: The "potential energy" (20c) (left) and the kink profile calculated with this energy according to Eq. (6) (right). We have
chosen ϕ1 = .5.

The solitons

For the soliton ϕ2 = ϕ1, and two equations of (12) become one equation. As an additional parameter we take the
amplitude of the soliton (maximally different from ϕ1 value of ϕ), which we will designate as ϕ0. Adding to (12) the
equation

E = Π(sinϕ0) = Π(sinϕ1) (24)

and solving the obtained system we obtain

U
2

sol(ϕ1, φ0) =
(sinφ1 − sinφ0)

2

2[cosφ0 − cosφ1 − (φ1 − φ0) sinφ0]
, (25a)

Π(sinφ)− E =
1

2
(sinφ1 − sinφ)

2 − U2

sol(φ1, φ0) [cosφ− cosφ1 − (φ1 − φ) sinφ] . (25b)

Equation (25b) is graphically presented on Fig. 3 (left).
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Figure 3: The "potential energy" (25b) (left) and the soliton profile according to Eq. (27) (right)

Considering the limiting case |φ1|, |φ0| ≪ 1, expanding Eq. (25b) with respect to all the phases and keeping only the
lowest order terms we obtain Eq. (6) in the form

Λ2

(
dφ

dx

)2

= (φ− φ1)
2
(φ− φ0) (φ+ 2φ1 + φ0) . (26)

Equation (26) can be integrated in elementary functions

φ = φ1 −
(4φ+∆φ)∆φ

4φ cosh2 Φ+∆φ
, (27)

where ∆φ ≡ φ1−φ0, φ ≡ (φ1 +φ0)/2, Φ ≡
√

(3φ1 + φ0)∆φ x/(2Λ). Equation (27) is graphically presented on Fig.
3 (right).
In an another limiting case of weak soliton (∆φ cotφ1 ≪ 1), Eq. (6) takes the form

Λ2

(
dφ

dx

)2

= 4 tanφ1 · (φ− φ1)
2
(φ− φ0) . (28)

The solution of Eq. (28) is

φ = φ1 −∆φ sech2
(√

∆φ tanφ1x/Λ
)
. (29)

Velocity of the soliton in this approximation is

U
2

sol(φ1, φ0) = cosφ1 −
sinφ1

2
∆φ. (30)
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The controlled quasi-continuum approximation

Let us return to Eq. (2). Looking at Eqs. (22) and (27) we realize that in the description of the kinks and solitons
with |ϕ1| ≪ 1, the expansion parameter is ϕ2

1; thus the quasi-continuum approximation (2) can be rigorously justified.
However, strictly speaking, truncation of the expansion should be performed in accordance with the truncation of the
series expansion of the sine function, and Eq. (4) in the consistent approximation should be written as

U
2 dϕ

dx
=
dϕ

dx
− 1

6

dϕ3

dx
+

Λ2

12

d3ϕ

dx3
. (31)

Equation (31) clearly shows the competition between the nonlinearity, described by the second term in the r.h.s. of the
equation, and the intrinsic dispersion, caused by the discreteness of the line, described by the third term. Note that (22) is
the exact solution of Eq. (31) (with U given by (23)).
Looking at Eq. (29) we realize alternatively, that the quasi-continuum approximation can be rigorously justified when it
is applied to the description of the solitons with tanφ1 · (φ1 − φ0) ≪ 1. The latter quantity is the expansion parameter
in the r.h.s. of Eq. (2) in this case. So in the consistent approximation, Eq. (2) should be written as

U
2 dψ

dx
= cosφ1

dψ

dx
− sinφ1

2

dψ2

dx
+ cosφ1

Λ2

12

d3ψ

dx3
, (32)

where ψ = φ− φ1. Note that Eq. (29) is the exact solution of Eq. (32) (with U given by (30)).
Here we would like to attract the attention of the reader to the following issue. Common wisdom says that the continuum
approximation and the small amplitude approximation are independent - there could be a wave with small amplitude,
which allows to expand the sine function, but which varies fast in space (wavelength comparable to lattice spacing), so the
continuum limit is not justified. And there could be the opposite situation (large amplitude, long wavelength), in which
the sine needs to be retained but the continuum limit is allowed.
However, for the kinks and the solitons these approximations are not independent. Parametrically, the length scale of
the waves is of the order of the lattice spacing Λ, so, naively, the continuum (or even the quasi-continuum) limit is not
justified. What we have shown above, is that for the waves with small amplitude |φ1| (tanφ1(φ1 −φ0)), the length scale
is Λ/|φ1| (Λ/(tanφ1(φ1 − φ0))), thus justifying the quasi-continuum approximation.

The shocks

Consider JTL with the capacitor and resistor shunting the JJ and another resistor in series with the ground capacitor, shown
on Fig. 1 (right). As the result, Eq. (1) changes to

~

2e

dφn
dt

=

(
1

C
+R

∂

∂t

)
(qn+1 − 2qn + qn−1) , (33a)

dqn
dt

= Ic sinφn +
~

2eRJ

dφn
dt

+ CJ
~

2e

d2φn
dt2

, (33b)

where R is the ohmic resistor in series with the ground capacitor, and CJ and RJ are the capacitor and the ohmic resistor
shunting the JJ.
Considering again the running wave solutions we obtain the generalization of Eq. (5)

Λ2

12

d2 sinφ

dx2
+

(
CJ
C

+
R

RJ

)
U

2
Λ2 d

2φ

dx2
+

(
R

ZJ
cosφ+

ZJ
RJ

)
UΛ

dφ

dx
= − sinφ+ U

2
φ+ F , (34)

where ZJ ≡
√
LJ/C is the characteristic impedance of the JTL, and we discarded the terms with the derivatives higher

than of the forth order.
We impose the boundary conditions (8) and try to understand what part of the analysis of Section can be transferred to
the present case. The results (12) are determined only by the r.h.s. of Eq. (5), so are (4), following from (12). Since the
r.h.s. of Eqs. (5) and (34) are identical, these equations are valid in the present case also. In particular, we obtain

U
2
= U

2

sh(φ1, φ2) , (35)

which explains the subscript we introduced in Eq. (13a).
On the other hand, the resistors, by introducing the effective "friction force", break the "energy" conservation law, which
means that the stationary kinks and the solitons we considered previously are no longer possible, however weak the
dissipation is. However in the lossy JTL the solutions with |φ2| ≠ |φ1| (the shocks) are possible.
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The continuum approximation
Looking at Eq. (34) we understand, that when CJ and/or R are large enough, and/or Rj is small enough the first term in
the l.h.s. of (34) (the second term in (2)) can be discarded, hence the continuum approximation is valid, and (34) acquires
Newtonian form [45]

(
CJ
C

+
R

RJ

)
d2ϕ

dτ2
+

(
R

ZJ
cosϕ+

ZJ
RJ

)
dϕ

dτ
= − sinϕ+ U

2
ϕ+ F , (36)

where we have introduced the dimensionless time τ = x/(UΛ). In distinction from case of the kinks and the solitons,
now the fictitious particle trajectory connects the "potential energy" maximum with the "potential energy" minimum,
The shocks in the framework of the continuum approximation were studied in our previous publication [45]. In particular,
in the simple case when CJ = 0, R = 0 (when (36) is similar to equation describing the motion of a fluxon in biased long
JJ [42]) and for weak shock (∆φ · cotφ1 ≪ 1), where ∆φ ≡ (φ1 − φ2)/2, Eq. (36) takes the form

ZJ
RJ

dψ

dτ
= sinφ

(
ψ2 −∆2φ

)
, (37)

where φ ≡ (φ1 + φ0)/2 and ψ ≡ φ− φ. The solution of (37) is

ψ = −∆φ tanh

(
RJ
ZJ

∆φ sinφ · τ
)
. (38)

The qualitative analysis
For qualitative analysis of Eq. (34) in the general case, it is better to present it as a system of two first order differential
equations

[
cosφ

12
+

(
CJ
C

+
R

RJ

)
U

2
]
Λ
dχ

dx
=

sinφ

12
χ2 −

(
R

ZJ
cosφ+

ZJ
RJ

)
Uχ− sinφ+ U

2
φ+F , (39a)

Λ
dφ

dx
= χ . (39b)

Now, one important feature of shocks can be understood immediately. We are talking about the direction of shock
propagation. Linearising Eq. (39) in the vicinity of the fixed points (χ, φ) = (0, φ1) and (χ, φ) = (0, φ2) we obtain

Λ

(
dχ/dx
dφ/dx

)
=

(
Mi Ki

1 0

)(
φ− φi
χ

)
, i = 1, 2 (40)

where

Ki =
U

2 − cosφi

cosφi/12 + (CJ/C +R/RJ)U
2 , (41)

and here we are not interested in Mi. From the fact that φ1 is the unstable fixed point, and φ2 is the stable fixed point we
obtain

cosφ2 > U
2

sh(φ1, φ2) > cosφ1 . (42)

The inequalities (42) allow only one direction of shock propagation - from larger cosφ to smaller cosφ. Taking into
account (9), we can present (42) as

u2(φ2) > U
2

sh(φ1, φ2) > u2(φ1) , (43)

thus establishing the connection with the well known in the nonlinear waves theory fact: the shock velocity is lower than
the sound velocity in the region behind the shock, but higher than the sound velocity in the region before the shock [1].
Let us write down inequalities (42) explicitly

cosφ2 >
sinφ1 − sinφ2

φ1 − φ2
> cosφ1 . (44)

We will combine the case we studied up to now, when φ1 was the phase before the shock and φ2 - behind the shock, with
the opposite case, which corresponds to indices 1 and 2 in (44) being interchanged. The points in the phase space of the
shock boundary conditions (φ1, φ2), for which neither (44), nor its interchanged version are satisfied, has very simple
geometric property. The point (φ1, φ2) belongs to that region, if the secant of the curve sinφ between the points φ1 and
φ2 crosses the curve, like it is shown on Fig. 4 (below). Because sinφ is concave downward for 0 < φ < π/2, and
concave upward for −π/2 < φ < 0, it never happens if φ1, φ2 have the same sign. Hence the shock can exist between
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Figure 4: The phase space of the boundary conditions on the ends of the JTL ϕ1 and ϕ2. The region, which corresponds to the forbidden
shock boundary conditions, is shaded (left). The geometric property of the points belonging to the shaded region (right).

any such points. It is not so for ϕ1 and ϕ2 having opposite signs. We present the phase space of shock boundary conditions
on Fig. 4 (above). The forbidden region is shaded.
When the asymptotic phases on the two sides of the JTL belong to the shaded region, probably there exists some inter-
mediate ϕin in between, such that the shocks between ϕ1 and ϕin, and between ϕ2 and ϕin are allowed. Say, when the
phases are ϕ1 and −ϕ1, the system can chose the intermediate value ϕin = 0. In this hypothetical case, the shocks move
in the opposite directions, and the central part with the phase ϕin = 0 expands with the velocity 2Ush(ϕ1, 0). However,
the case of multiple shocks being simultaneously present in the system demands further studies.

The numerical integration
Equation (34) can be easily integrated numerically. For aesthetical reasons let us simplify it by puttingR = 0 andCJ = 0.
(Actually, the physical meaning and the relevance of the resistor in series with the ground capacitor is not obvious. We
included it because we were able to do it for free. The capacitance of the JJ is certainly physically relevant. Anyhow,
when CJ/C ≪ 1, it can be ignored.) After the simplification and substitution of the results for U and F from (4), the
equation becomes

cosφ

12
Λ2 d

2φ

dx2
=

sinφ

12

(
dφ

dx

)2

− ZJ
RJ

UΛ
dφ

dx
− (sinφ− φ2)(φ1 − φ)− (sinφ1 − sinφ)(φ− φ2)

φ1 − φ2
.

The result of the numerical integration are shown on Fig. 5 (compare with Figs. 2 (below) and ??).
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φ

Figure 5: The shock profile according to Eq. (45). We have chosen ϕ1 = 1, ϕ2 = .5, ZJ/RJ = .005.

Dissipation is always present in real experiments. And yet we can observe solitary waves (though they are nonstationary,
but practically identical to the corresponding stationary solitons at any given moment of time) in case if dissipation is
weak enough. Looking at Fig. 5 we realize that weak dissipation does not completely kill solitary waves, it just makes
them nonstationary/attenuating. Such solitary waves are observed in numerical calculations and in experiments, as was
the case with granular chains [41, 43]. On the other hand, there is a critical rate of dissipation which transforms oscillating
stationary shock waves into monotonous [47].

Discussion

Recently, quantum mechanical description of JTL in general and parametric amplification in such lines in particular
started to be developed, based on quantisation techniques in terms of discrete mode operators [48], continuous mode
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operators [49], a Hamiltonian approach in the Heisenberg and interaction pictures [50], the quantum Langevin method
[51], or on partitions a quantum device into compact lumped or quasi-distributed cells [52]. It would be interesting to
understand in what way the results of the present paper are changed by quantum mechanics. Particularly interesting looks
studying of quantum ripples over a semi-classical shock [53] and fate of quantum shock waves at late times [54]. Closely
connected problem of classical and quantum dispersion-free coherent propagation in waveguides and optical fibers was
studied recently in Ref. [55].
Finally, we would like to express our hope that the results obtained in the paper are applicable to kinetic inductance
based traveling wave parametric amplifiers based on a coplanar waveguide architecture. Onset of shock-waves in such
amplifiers is an undesirable phenomenon. Therefore, shock waves in various JTL should be further studied, which was
one of motivations of the present work.

Conclusions

We analytically studied the running waves propagation in the discrete Josephson transmission lines (JTL), constructed
from Josephson junctions (JJ) and capacitors. Due to the competition between the intrinsic dispersion in the discrete JTL
and the nonlinearity, in the dissipationless JTL there exist running waves in the form of supersonic kinks and solitons. The
velocities and the profiles of the kinks and the solitons were found. We also studied the effect of dissipation in the system
and find that in the presence of the resistors, shunting the JJ and/or in series with the ground capacitors, the only possible
stationary running waves are the shock waves, whose velocities and the profiles were also found. We have proposed the
integral approximation, which is alternative to the quasi-continuum approximation.
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Summary. In this work, we study locally resonant acoustic chains with inerters. Topological properties are investigated on the example
of one-dimensional chain with diatomic mass-in-mass unit cells based on the band structure and eigenstate analysis. The existence of
interface modes in finite chains is confirmed through natural frequencies and frequency response function analysis. Tuning of interface
modes due to introduced inertia amplification effect is observed and investigated in details.

Introduction

The interest for investigation of topologically protected interface states in acoustic and mechanical metamaterials has
significantly grown over the past years. Inspired by the phenomena from solid states physics such as the valley and
quantum Hall effects, researchers discovered a number of equivalent phenomena in mechanical systems based on acoustic
and elastic wave propagation analysis [1]. Since the beginning there was a need to control wave propagation properties in
such periodic systems based on approaches that can be divided into two main groups. The first group encompasses active
approaches where different external fields such as magnetic or electric field are employed for wave propagation control
purposes [2]. The second group encompasses passive or semi-passive strategies that are often based on application of
external passive damping devices [3]. Since their discovery, inerters have been widely accepted as efficient vibration
attenuation devices [4]. Based on the inertia amplification effect, they are able to reduce the frequency and change
properties of periodic structures and other mechanical systems [5]. Here, we apply ideal inerter elements to change the
band structure of the locally resonant acoustic chain and at the same time keep the topological properties of the original
lattice without inerters.
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Figure 1: Illustration of one-dimensional locally resonant acoustic chain with interface.

Mathematical model

Let us consider a one-dimensional locally resonant acoustic chain with an interface, for which the equation for the unit
cell in the general case can be expressed as

maü
p
(ζ)a + (kζ + kζ+1)u

p
(ζ)a − kζu

p
(ζ−1)a − kζ+1u

p
(ζ+1)a + kb

(
up(ζ)a − u

p
(ζ)b

)
+

ja

(
2üp(ζ)a − ü

p
(ζ−1)a − ü

p
(ζ+1)a

)
+ jb

(
üp(ζ)a − ü

p
(ζ)b

)
= 0,

(1)

and

mbü
p
(ζ)b + kb

(
up(ζ)b − u

p
(ζ)a

)
+ jb

(
üp(ζ)b − ü

p
(ζ)a

)
= 0, (2)

where ζ = 2, 3, ...,N−1, u(ε)a and u(ε)b, ε = 1, 2, ...,N are displacements of outerma and innermb masses, respectively
kε, kb are the springs stiffnesses, while ja, jb are the inerter parameters connecting outer and inner masses, respectively.
It should be noted that for the adopted notation, the repeating unit cell of the last outer mass is connected to the next unit
cell through the spring kN+1 = k1, where equations for the first and the last mass-in-mass sub-systems can be written
accordingly. We note that the values of outer and inner masses, inerter parameters and stiffness of inner mass springs are
assumed to be the same for different mass-in-mass sub-systems. Size of a unit cell depends on the number of different
springs and mass-in-mass sub-units. The system of equations for the one-dimensional finite chain constructed from two
sub-lattices connected at interface can be obtained by following the notations given in (Fig.1).

Results and discussion

Topological properties of locally resonant acoustic lattice can be examined through dispersion and eigenstate analysis of
a representative unit cell based on the topological invariant called the winding number (here denoted as w) or by using
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(a) Band structure of a diatomic unit cell (b) Finite chain k1 > k2 (c) Finite chain inerters k1 > k2
Figure 2: Band structure, natural frequencies and frequency response function of the one-dimensional locally resonant
acoustic chain with diatomic mass-in-mass unit cells.

the the bulk-edge correspondence. Dispersion curves for the representative unit cell can be obtained as a solution of the
eigenvalue problem based on Eqs.1 and 2 by considering the stiffnesses k1 = k(1 + γ) and k2 = k(1 − γ), with k
denoting the mean stiffness and γ is the dimensionless parameter. Natural frequencies and frequency response function of
the finite chain can be obtained from the corresponding system of equations by considering the N = 30 unit cell on each
side of the interface. Fig. 2a shows dispersion curves of a diatomic unit cell with (dashed lines) and without (full lines)
inerters when γ = 0.5, m2/m1 = 0.5, m2/m1 = 0.5, k = 10 × 103[N/m], kb = 8 × 103[N/m] and ja = jb = 0.02.
Four bands and three band gaps can be noticed, where II band gap highlighted in green is of locally resonant origin. By
comparing the lattices when k1 > k2 and k1 < k2 does not change the band structure but it changes the topology of
eigenvectors i.e. the winding number of individual bands change its value from w = 1 to w = 0. This change physically
means that interface modes can appear between the two lattice types. For the finite chain, we can confirm the existence of
interface modes within the band gaps by observing its natural frequencies and frequency response function (Figs. 2b and
2c). In the diagram showing the natural frequencies, normalized with respect to the frequency of the local resonator, one
can observe four interface modes. The presence of these modes is confirmed in the frequency response function diagram
of the outer interface mass. Interface modes that appear inside the band gap II and above the last band are trivial since
they will disappear if we change lattice configuration to low stiffness springs (k1 < k2) at the interface (see Fig. 1). The
other two interface modes will remain in both configurations and they are robust and topologically protected. In this case,
the effect of inertia amplification on interface states can be seen by comparing the interface mode frequencies of chains
with (black dashed lines) and without (red dashed lines) inerters in Fig. 2b. The results reveal the shift of interface mode
frequencies to lower values. This effect is especially pronounced at higher frequencies while shifting at lower frequency
band gaps is smaller. The similar analysis can be performed for one-dimensional lattices with triatomic mass-in-mass unit
cells with and without inerters, where quantized topological invariant winding number can be recovered only in the case
when one of the springs connecting the outer masses is different from others.

Conclusions

Recent advances in discovering exotic metamaterials have provided a new insight for understanding the essential processes
that create unique wave propagation phenomena and they have initiated a wide range of possible applications in industry
and other fields of science. This study is a step forward towards a better understanding of the role of inerters in passive
control and tuning of interface modes in locally resonant acoustic chains. Parametric study has demonstrated a significant
shifting of interface states when inertia amplification effect is introduced while the topological properties of bands were
preserved. This opens new possibilities for application of inerters in more complex lattices or periodic structures capable
of generating interface modes.
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Summary. Phononic media with contact nonlinearity enable unique wave responses, which brings new capabilities in controlling
the propagation of mechanical energy both passively and actively. Our previous studies of phononic media with periodic “rough"
contacts have demonstrated different wave responses under zero or strong precompression, however, wave dynamics of these system
under weak precompression is yet to be understood. Such understanding can help improve the dynamic response of these materials
for wave propagation control. Here, we numerically study nonlinear wave propagation through phononic material with rough contacts
such that the contacts are weakly compressed and exhibit a strong nonlinear response at high amplitude excitations. Different from
uncompressed and strongly compressed media, this system disintegrates the excited waves into constant amplitude compression pulses
followed by an oscillatory tail of decaying amplitudes. These two wave profiles are linked through a transition zone in the form of a
rarefaction front. Such wave response is attributed to the mechanics of weakly-compressed contact that transmits tension-compression
forces at low amplitudes but only compression forces at high amplitudes. We also demonstrate the tunability of the amplitude, speed,
and energy of compression pulses via external precompression. Further, owing to the band gap characteristics of the underlying linear
phononic media, these materials display spectral filtering of the harmonic waves. Overall, the capability of these materials to transfer
information or energy via compression pulses, amplitude-dependent material response, energy transfer from the excitation frequency to
other frequency-wavenumber regimes, and tunability through precompression could pave the way for the development of mechanical
devices for advanced wave control.

Introduction

Phononic materials are periodic media that allow spatial and temporal control over mechanical waves. Specifically, Bragg
scattering [1] and local resonance [2] phenomenon in these materials have enabled band gaps, which are frequencies of
strong wave attenuation. These materials also exhibit unprecedented characteristics such as mode conversion [3], Anoma-
lous polarization [3, 4] and wave directionality [5] by virtue of their unit cell geometry. While these studies are within
the linear regime, incorporating nonlinearity further enhances dynamic properties in the form of amplitude-dependent
response, irreversibility, and frequency conversion (see the review of [6]). All of these exotic properties make nonlinear
phononic materials potential candidates for designing engineering materials and devices with advanced functionalities.
A route to achieve nonlinearity within phononic media is via contact interfaces. Phononic media with contact nonlinearity
demonstrate excellent flexibility as they can be tuned from linear to a strongly nonlinear regime, through externally applied
precompression. When uncompressed, these phononic materials does not support propagation of linear waves, essentially
behaving as “sonic vacuum" [7]. On the other hand, high amplitude wave excitations can enable strongly nonlinear
wave signatures. This has been demonstrated in granular crystals, which are ordered ensembles of particles (or grains)
exhibiting Hertzian contact nonlinearity [8] and in continuum phononic materials with rough contacts [9]. While the type
of contact nonlinearity and modeling of contacting bodies as discrete or continuum reveals interesting differences, the
contact-based phononic media, in general, have shown excellent promise in enriching the wave dynamics.
Importantly, the combined effects of periodicity and nonlinearity in contact-based phononic media support different forms
of nonlinear waves. For example, uncompressed (strongly nonlinear) granular crystals support the propagation of solitary
waves, which are localized traveling waves with a hump-type wave profile propagating with constant speed and amplitude
[7, 10]. Depending upon the mass of the striker, the system can support trains of solitary waves as well [11]. On the
other hand, strongly compressed (weakly nonlinear) granular crystals support the propagation of harmonic (of oscillatory
nature) waves. As a result, the system exhibits amplitude-dependent band diagrams with propagating and attenuation
frequency zones [12]. Within a weakly nonlinear regime, granular crystals support energy transfer between frequencies
due to harmonic generation [12]. The system can even support discrete breathers [13], which are spatially localized
and temporally periodic modes, at band gap frequencies. Damped granular crystals support shock waves that gradually
decay in time [14]. Beyond the elastic regime, asymmetric nonlinearity of elastic-plastic Hertzian contacts support the
propagation of “signoton", which is a shock wave causing an instantaneous change in the deformation direction [15].
Our recent studies on continuum phononic media with rough contacts reported the emergence of stegotons (a different
form of solitary waves with stepwise spatial profile) and acoustic resonances, when uncompressed (i.e. strongly nonlinear
interfaces) [9], and frequency conversion from wave self-interactions when strongly compressed (i.e. weakly nonlinear
interfaces) [16]. These recent studies further suggest the role of contact nonlinearity in phononic media in enabling unique
wave responses with no analog in linear theory.
Despite these studies, nonlinear wave propagation through phononic media with weakly-compressed rough contacts is yet
to be understood. There are open questions such as (1) how the reported nonlinear responses of these phononic media
(acoustic resonances, stegotons and harmonic generation) change when non-zero precompression and high amplitude
excitation is involved and (2) whether both strongly and weakly nonlinear wave responses co-exist together. Further,
weak precompression may in fact support additional nonlinear responses not possible with uncompressed or strongly
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Figure 1: (a) Compressed phononic material with periodic contacts having rough features at the microscale. Schematic of dashed
rectangle shows contact modeling as nonlinear springs between elastic layers. (b) Nonlinear contact pressure-gap relationship at rough
contacts. The contacts exhibit strongly nonlinear responses as wave displacements, u, are larger than static predeformation, δ0. Inset is
a temporal schematic of the excited wave pulse.

compressed media.
In this paper, we numerically study nonlinear wave propagation through continuum phononic material with weakly com-
pressed rough contacts. We excite wave pulse with amplitude larger than static predeformation to enable strong non-
linearity. We report the evolution of excited waves with propagation distance demonstrating the generation of localized
traveling waves and subsequently their separation from low-amplitude harmonic waves. We study the wave response at
different center frequency pulses and discuss the frequency-filtering abilities of the phononic material due to its disper-
sion characteristics. Finally, we also compare the speed and amplitude of generated pulses with the one formed in the
uncompressed system, and show the tunability of propagation properties through precompression. The focus of the study
is to illustrate nonlinear wave responses achievable in the weakly compressed system, different from uncompressed and
strongly compressed configurations.
The paper is organized as follows: First, we describe the phononic material system and corresponding numerical setup.
Then, we illustrate the transformation of input waves into waves of different forms due to nonlinearity and dispersion. The
tunability of wave propagation is discussed later. Finally, we conclude the paper and provide potential future directions.

Phononic material with weakly compressed rough contacts

The studied phononic material is a one-dimensional system consisting of linear elastic layers of aluminum (E = 69 GPa,
ν = 0.33, ρ = 2700 kg/m3) of identical length, a, with roughness on either side at the microscale [Fig. 1(a)]. These
layers are compressed externally under a precompression, p0, thus forming a continuum with periodic rough contacts.
The layers and contact are assumed to be infinite in the y-direction. The study assumes the wavelength of propagating
waves to be three orders of magnitude larger than the rough features of the contacts, allowing contacts to be modeled as
nonlinear springs [17]. However, we study wave propagation at wavelengths comparable to layer thickness, thus capturing
the effects of continuum layers as well. Due to the inherent feature of contacting bodies, this material does not support any
tensile forces during a loss of contact. We assume the roughness on the contacting surface such that the asperities (uneven
features on nominal surfaces) are uniformly distributed and that hysteresis associated with their plastic deformation is
already removed through multiple loading-unloadings. Under these assumptions, the contacts follow a purely quadratic
nonlinear relation between contact pressure, p(∆u), and gap, ∆u [Fig. 1(b)] [18]. Thus, the contact nonlinearity within
our system is as follows:

p(∆u) =

{
0, ∆u > 0,
C2∆u2

4 , ∆u ≤ 0.
(1)

where C = 6× 1010
√

Pa/m [18]. Since u > δ0 in our analysis (i.e. wave displacement is larger than the predeformation
caused by p0), the dynamics of rough contacts is non-smooth (strongly nonlinear) as contact surfaces can collide and
separate [Fig. 1(b)].
To study nonlinear wave propagation through these phononic materials, we construct a finite element (FE) model using
COMSOL Multiphysics 5.5a with solid mechanics module based on our previous work [16, 9]. The layers are considered
as continua while the contacts are modeled through spring elements with nonlinear characteristics as defined in Eq. 1. The
numerical simulation is conducted in two stages: first, the model solves the static problem of external precompression to
determine the deformed state of the phononic material and predeformation in the springs. Then, a wave propagation study
is conducted through transient analysis. The output of the static analysis is considered as the initial conditions for the wave
propagation problem. We model a larger number of unit cells than what we analyze to avoid the effect of end reflections,
essentially simulating a phononic material infinite in the positive x-direction. A longitudinal wave pulse [wave schematic
in Fig. 1(b)] of amplitude, U , and center frequency, f , with a Gaussian modulation (parameters, ζ = 2/f , σ = 0.5/f
for Eq. 4 of [9]) was excited from the entire left edge of the FE geometry. Note that the maximum displacement of the
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Figure 2: Evolution of input pulse wave with center frequency at Ω = 0.5. (a) Displacement-time profile and (b) frequency content
of the propagating wave at multiple locations inside the phononic material. Wave displacements, u, are normalized by pulse excitation
amplitude, U , and spectral amplitudes are normalized by spectral excitation amplitude, AE . The signals are recorded at the center point
in the corresponding layers and the layer indices are numbered from the excitation boundary. Red dashed lines are linearized band gap
edges.

input pulse [max(| +u |, | −u |)] is smaller than excitation amplitude, U , due to Gaussian modulation. This specific wave
profile corresponds to the typical response of a broadband ultrasonic contact transducer.

Nonlinear wave disintegration

In this section, we study the evolution of the input wave profile in the phononic material with weak external precompres-
sion and high amplitude excitation. Specifically, we discuss an example case of δ0/u ≈ 0.83, which allows us to enable
strong nonlinearity as well as study the effect of external compression. To inform the selection of frequencies for analysis,
we obtained the linearized dispersion of the phononic material [16]. A non-dimensional frequency, Ω, is introduced such
that the frequencies are normalized by the lower-edge frequency of the first band gap of the linearized phononic media for
the applied p0 (i.e. band gap starts at Ω = 1). We study two representative cases of input pulse: (1) with center frequency
in pass band (Ω = 0.5) and (2) with center frequency at band edge (Ω = 1). The first pulse, consisting of wide band
of frequencies within 0 < ∆Ω < 1, was excited to analyze nonlinear wave propagation in a highly dispersive frequency
regime of the linearized phononic media. On the other hand, the second pulse, consisting of wide band of frequencies
within 0 < ∆Ω < 2.5, was excited to analyze the effect of band gaps on nonlinear wave propagation.
The wave profile changes as the wave propagates through the phononic material [Fig. 2(a)]. Particularly, the input
pulse that originally consists of both compression and extension displacement, gradually transforms to a profile which is
predominantly in compression only [compare wave profile in layer 1 vs in layer 20 in Fig. 2(a)]. As the wave propagates,
the tensile portion of the pulse vanishes with each layer [note gradual reduction in negative displacements from layer 2
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Figure 3: (a) Spatio-spectral and (b) spatio-temporal plots of nonlinear wave propagation for excitation at Ω = 0.5. Spatio-spectral plot
(normalized by its maximum value) is shown at an instant when the leading pulse is between the 10th and 20th layer (left) and between
the 40th and 50th layer (right). Dashed yellow lines are linearized band gap edges. Layer indices are marked from the excitation
boundary. (c) Temporal profile of the disintegrated wave inside the 40th layer. Wave amplitude is denoted in terms of particle velocity,
v, normalized by excitation amplitude, U , and angular frequency, ω.

to 20 in Fig. 2(a)]. Moreover, the transmitted compression part is followed by small-amplitude oscillatory waves. The
Gaussian input pulse eventually evolves into a waveform that contains three distinct features: (1) a steep increase in profile
at the wave front, followed by (2) a gradual amplitude reduction, and (3) an oscillatory tail. This transformation can be
understood as follows: The profile of the pulse transmitted across a contact is a combined effect of contact nonlinearity
and weak compression. The contacts transmit all compressive forces, whereas only tensile forces that are just enough to
counteract the external precompression are transmitted. As a result, once tensile forces exceed external precompression, a
contact loss takes place. Therefore, the only harmonic waves supported inside the phononic material are those that contain
small amplitude displacements.
This wave evolution also causes frequency conversions, meaning that energy is transferred within the spectral domain. In
fact, both strongly and weakly nonlinear effects occur within the phononic material. Specifically, layer 1 resonates at a
frequency, Ω = 2 [note resonant oscillations in Fig. 2(a) and a spectral peak in Fig. 2(b) for layer 1]. This resonance
corresponds to the mode of the layer under the fixed-forced boundary condition. Note that layer 1 is held fixed at the left
end by virtue of excitation profile whereas the right end is a rough contact. This mode is at a frequency slightly higher
compared to the first fixed-free mode of the layer, i.e. acoustic resonance given by Ωr = 1.876 (Ωr = c0/4a, where c0
is the wave speed of the bulk material). This is because, unlike the uncompressed system, the weakly compressed system
experiences a non-zero spring force at the contact end, which pushes the mode of the layer to a higher frequency. Even,
layer 2 shows a spectral peak at the same frequency [refer inset in Fig. 2(b) for layer 2]. This is surprising since, in an
uncompressed system, the second layer from the excitation boundary resonates at a frequency twice the resonance of layer
1 [9]. This is because layer 2 loses its contact with adjacent layers after wave interaction and the contact loss remains
in effect due to the lack of external precompression. As a result, layer 2 resonates under free-free boundary conditions.
In the current system, however, both layers (1 and 2) are in contact due to external precompression - a state not possible
in an uncompressed system. Due to their persistent contact even after the wave-contact interactions, the resonant energy
of layer 1 is partly transmitted to layer 2 causing a spectral peak at Ω = 2. In subsequent layers, second harmonics are
generated, i.e. Ω = 1 [refer to the spectral peak at Fig. 2(b) for layer 5] - a feature typical of weakly nonlinear systems.
These harmonics, however, lie on the band gap edge and beyond. Thus, they do not propagate and therefore their spectral
amplitude vanishes at later layers, for example, layers 10 and 20. Frequencies within the pass band propagate while those
close to the band gap edge propagate with extremely slow speed. Eventually, the propagating frequency components
consist primarily of low frequencies close to 0 Hz, i.e. a localized traveling wave.
One can think of the transformation of the input wave profile and its frequency content as a “disintegration" of the input
pulse. Here, we refer to disintegration as a transformation of input pulse into (1) leading pulses of compressive nature, (2)
transitioning zone of rarefaction nature, and (3) tails of decaying amplitudes of harmonic nature. This can be seen in terms
of the spatial distribution of frequency content [Fig. 3(a)] and temporal dependence of particle velocity [Figs. 3(b) and
(c)]. Despite exciting energy in the system around Ω = 0.5, the energy content within phononic material spreads spatially
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Figure 4: (a) Spatio-spectral and (b) spatio-temporal plots of nonlinear wave propagation for excitation at Ω = 1. Spatio-spectral plot
(normalized by its maximum value) is shown at an instant when the leading pulse is between the 1st and 10th layer (left) and between
the 40th and 50th layer (right). Dashed yellow lines are linearized band gap edges. Layer indices are marked from the excitation
boundary. (c) Temporal profile of the disintegrated wave inside the 40th layer.

due to dispersion while some remains trapped in the form of layer resonances [Fig. 3(a)]. The oscillations correspond
to frequencies near the band edge that propagate at a much slower speed. The leading pulse propagates faster than the
oscillatory tails and thus overtakes them, causing disintegration, which is clearly visible away from the excitation bound-
ary. The pulse and oscillatory wave profiles are linked through a rarefaction front [Fig. 3(c)]. As a result, the duration
over which a rarefaction wave exists in a layer increases with propagation distance [Fig. 3(b)]. This shows that phononic
material with contact nonlinearity can support rarefaction waves given non-zero external precompression. Interestingly,
similar wave disintegration has been reported in nonlinear metamaterials but with softening-type nonlinearity, i.e. where
the exponent of power-law nonlinearity is < 1 [19, 20]. Specifically, these studies reported that an excited compression
pulse transforms into a leading rarefaction pulse in tensegrity [19] and origami metamaterials [20].
A similar wave disintegration occurs even in the case when the center frequency of the excited pulse is at the linearized
band gap edge, i.e. Ω = 1 (Fig. 4). Importantly, the frequencies Ω > 1 do not propagate through the phononic material,
indicating that the band gap exists at these frequencies in this strongly nonlinear regime. In this case, oscillatory tails
consist of frequencies within the pass band only. Since the excitation frequency is closer to the resonance frequency of
layer 1, there are stronger resonant oscillations of layer 1 compared to when the excitation center frequency is Ω = 0.5
[Compare oscillations at layer index = 1 in Fig. 4(b) and Fig. 3(b)]. The generated compression pulses in these phononic
materials are in fact localized traveling waves that propagate with constant speed and amplitude. Due to the hybrid nature
of the phononic material, which is continua connected through discrete nonlinearity, these compression pulses are in the
form of stegotons showing a step-wise spatial profile [9].

Tunability of compression pulses

In this section, we characterize the dependence of propagation properties of nonlinear waves on external precompression.
Specifically, we discuss how external precompression can be used to tune and control the leading compression pulses.
The ability to control the speed and amplitude of these pulses can allow greater flexibility and feasibility in utilizing these
phononic materials for engineering applications.
By controlling external precompression while keeping the input amplitude the same, we can control the amplitude of the
generated compression pulse. The absolute amplitude of these pulses increases with an increase in precompression [Fig.
5(a)]. This is surprising since as precompression increases, the ratio between predeformation and wave amplitude (δ0/u)
increases. As a result, the strength of nonlinearity decreases, which in turn is expected to cause relatively weaker momen-
tum transfer across the contacts. In other words, increasing precompression is expected to generate compression pulses
with decreasing amplitudes. However, keeping the same excitation displacement amplitude in the analysis requires larger
external work to be done on the system for larger precompressions. This is because the dynamic excitation has to work
against the stronger contact forces developed from increased precompressions. Overall, increasing precompression draws
more input energy for the same excitation frequency and amplitude, which subsequently generates compression pulses
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Figure 5: Tunability of nonlinear waves through precompression. (a) Disintegrated wave profile inside the 150th layer for three different
precompressions. Dependence of pulse (b) amplitude and (c) wave speed on precompression. Red dashed line is the precompression
threshold below which contact clapping occurs.

with larger amplitudes. The rarefaction and harmonic wave amplitudes also increase with compression pulse amplitudes.
In other words, stronger precompression supports tensile waves of high amplitudes. Based on these observations, we can
conclude that weakly compressed systems exhibit nonlinear wave responses that are a mix of uncompressed and strongly
compressed systems, and further allow control over these responses. Specifically, the high amplitude portion of the exci-
tation contributes to strongly nonlinear responses (i.e. compression pulses) as seen in the uncompressed system and low
amplitudes contribute to weakly nonlinear responses (i.e. frequency filtering and harmonic waves) as seen in the strongly
compressed systems. However, the transition zone from compression pulse to harmonic oscillations is seen only in weakly
compressed systems. As waves propagate, compression pulses separate from the rarefaction waves. It is worth noting that
the time delay between the compression pulse and rarefaction front can also be controlled through precompression [Fig.
5(a)].
As discussed, the compression pulses are in fact solitary waves as these pulses propagate with constant speed and ampli-
tude. Next, we discuss how the amplitude and speed of these pulses depend on precompression and the threshold value
of precompression that can still generate these strongly nonlinear responses. Interestingly, the compression pulses are
generated even for the cases where contact clapping is restricted, i.e. when predeformation is larger than the excitation
amplitude (δ0/u > 1) [Fig. 5(b)]. Despite the lack of clapping, this regime is not necessarily weakly nonlinear since
excitation amplitudes are not small enough. Note that there exists quadratic nonlinearity between contact force and dis-
placement due to the deformation of rough asperities. This is possibly causing the balance between nonlinearity and
dispersion to form a compressive pulse. Further, the amplitude of generated pulses decreases beyond δ0/u > 1 - a thresh-
old beyond which no clapping is possible. The change in amplitude of compression pulses is less sensitive to δ0/u > 1
compared to δ0/u < 1 [note the change in pulse amplitude dependence on precompression before and after the red dashed
line in Fig. 5(b)]. The maximum amplitude of the compression pulse is attained at δ0/u = 1. This is the threshold where
clapping is possible and energy added to the system is more than the energy added for δ0/u < 1.
Contrary, the wave speed of the compression pulses, c, (normalized by bulk wave dilatational wave speed, c0) increases
monotonically with precompression [Fig. 5(c)]. This is consistent with Fig. 5(b) for δ0/u < 1 since the amplitude
and speed of these waves are proportional to each other. We also observe that wave speed changes dramatically for low
precompression and depends linearly on precompression at larger values. For δ0/u > 1, wave speed increases despite
a decrease in amplitude. This indicates that the pulses generated beyond δ0/u > 1 have a different speed-amplitude
relationship than solitary waves generated from clapping.
As expected, the fraction of energy carried by the compression pulses as a function of total energy in the system decreases
with an increase in precompression (Fig. 6). In fact, the energy carried by the pulses is almost negligible (two orders
smaller) for precompressions u/δ0 > 1.5. This indicates the region of precompression where the phononic material
behavior changes into a weakly compressed system.

Conclusions

In this paper, we studied high amplitude nonlinear wave propagation through phononic material with weakly compressed
rough contacts. The source of nonlinearity within the material comes from two mechanisms: (1) contact separation and

ENOC 2022, July 17-22, 2022, Lyon, France

269



ENOC 2020+2, July 17-22, 2022, Lyon, France

0 0.5 1 1.5 2
0

0.5

1

u
δ0

Clapping No Clapping

Ep

ET

Figure 6: Dependence of the energy carried by the compression pulses (Ep) as a fraction of total energy (ET ) on precompression.

collision at high amplitudes and (2) quadratic contact force-displacement relationship during the contact. Application of
non-zero precompression during analysis revealed that both strongly and weakly nonlinear wave responses can coexist.
Specifically, the phononic material supports both solitary waves as well as frequency filtering. Importantly, an additional
wave signature in the form of wave disintegration is observed in the weakly compressed system. The input pulse breaks
down in three different wave forms: (1) a localized traveling wave in the form of compression pulse, (2) a rarefaction
wave front, and (3) an oscillatory tail of decaying amplitude. A compression pulse initially leads the wave propagation
before separating from other wave forms due to its greater wave speed. Oscillatory tails are associated with the periodic
waves at frequencies in the vicinity of band gap and therefore spread spatially. Finally, the propagation properties of the
compression pulse, i.e. their amplitude and speed, can be tuned through external precompression.
Contact-based phononic materials would practically require non-zero precompression to keep all surfaces in contact.
The results presented in this paper give an idea of how a slight deviation in system parameters dramatically changes
the behavior of the phononic material. The effect not only influences the values of propagation parameters but in fact
introduces new types of waves. From an application perspective, these weakly compressed phononic materials can be
used for developing mechanical sensors and delay switches. Particularly, the rate at which information is carried from one
end to the other can be simply controlled in-situ through external precompression. The combined ability of information
transfer and frequency filtering could help develop new imaging devices to isolate spurious scattering while transmitting
captured data.
While we elucidated wave responses from weak compression, a detailed study of the effects of excitation frequency, pulse
bandwidth, and different contact laws is necessary to fully understand the capability of the system. Higher frequency
excitation may cause stronger momentum transfer across contacts generating strong compression pulses while different
contact laws may dictate the speed-amplitude relationship. Wave excitation with narrow bandwidth may help study higher
harmonic generation while wide band excitation could cause wave mixing within input frequencies. These complex be-
havior may help advance the understanding of how contacts can be exploited to manipulate the propagation of mechanical
energy in an unprecedented way.
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A Partitioned Finite Element Method (PFEM) for power-preserving discretization of
port-Hamiltonian systems (pHs) with polynomial nonlinearity
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Summary. The Partitioned Finite Element Method introduced in [7] provides a structure-preserving discretization for the solution
of systems of boundary controlled and observed Partial Differential Equations (PDEs), formulated as distributed-parameter port-
Hamiltonian systems (pHs). In particular, the energy balance is preserved at the discrete level. This method, already well-developped
for linear systems, is also suitable for nonlinear systems with polynomial nonlinearity, such as the 2D Shallow Water Equations, or the
full von-Kármán plate equations.

Port-Hamiltonian systems (pHs)

These are dynamical systems ruled by a Hamiltonian function and conservation laws, together with interaction ports for
control u through actuators, and observation or measurements y via sensors; this modelling tool proves very useful for the
analysis and control of multiphysics systems: see e.g. [8] for a general presentation. PHs can be finite dimensional (i.e.
described by Ordinary Differential Equations (ODEs) with a finite number of d.o.f), or infinite dimensional (i.e. described
by Partial Differential Equations PDEs), see [13]. In both cases, all the variables involved in the description do have a
clear physical meaning, in contrast with many methods available in the mathematical literature: in particular, anisotropic
and heterogeneous media can be accounted for in a very natural way, with no extra complication w.r.t the isotropic and
homogeneous cases.

General setting [3]
LetH the Hamiltonian functional, and (α1, α2) the energy variables in the domain Ω. The co-energy variables are defined
as the variational derivatives of the Hamiltonian w.r.t. these energy variables: ei := δαiH. The dynamical system reads:

∂t

(
α1

α2

)
=

[
0 −L∗

L 0

](
e1
e2

)
,

u∂ = γ0e1,

y∂ = γ⊥e2,
(1)

and the differential operator L and its adjoint L∗ satisfy the following abstract Green’s formula:

〈e2, L e1〉L2(Ω,A2)
− 〈L∗ e2, e1〉L2(Ω,A1)

= 〈γ0e1, γ⊥e2〉∂Ω . (2)

The energy variables αi ∈ L2(Ω,Ai), where the sets Ai are either scalar, vectorial or tensorial quantities. The co-energy
variables ei belong to some appropriate Sobolev spaces, namely: e1 ∈ HL :=

{
v1 ∈ L2(Ω,A1)| Lv1 ∈ L2(Ω,A2)

}
, and

e2 ∈ HL∗

:=
{
v2 ∈ L2(Ω,A2)| L∗v2 ∈ L2(Ω,A1)

}
. Then, the evolution of the Hamiltonian is given by:

d

dt
H(α1(t), α2(t)) = 〈u∂(t), y∂(t)〉∂Ω , (3)

corresponding to a lossless open system, a generalization of a conservative closed system.

Worked-out examples in structural, fluid mechanics and electromagnetism
The practical cases dealt with so far are:

• L = div and L∗ = −grad, for vectorial and scalar fields in 2D in [12] and [5],

• L = Div and L∗ = −Grad, for tensorial and vectorial fields in 2D in [1] and [4],

• L = curl and L∗ = curl, for vectorial fields in 3D in [9],

• L = divDiv and L∗ = Gradgrad = Hess for tensorial and scalar fields in 2D in [2].

In each case, the energy and co-energy variables are defined in accordance with continuum mechanics and physics.

The Partitioned Finite Element Method (PFEM)

This method makes use of the finite element method to open systems of conservation laws, i.e. with collocated boundary
controls and observations; it was first introduced in [6], fully detailed in [7], and extended to damped systems in [10].
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Principle
The Partitioned Finite Element Method boils down to 3 steps: first provide a weak formulation of the coupled first order
system, second perfom an integration by parts on one of the two lines as to highlight the desired boundary control, and
third apply a Galerkin procedure by choosing finite element families for each component including the boundary, giving
rise to large sparse matrices.
Let us denote the shape functions ϕ1

i for the first variables, ϕ2
j for the second variable and ψk for the boundary variables,

set the vectors Φ1 := [ϕ1
1 · · ·ϕ1

N1
], Φ2 := [ϕ2

1 · · ·ϕ2
N2

] and Ψ := [ψ1 · · ·ψN∂
], and define the discrete Hamiltonian as

H(α1,α2) := H(Φ1 α1,Φ2 α2), we end up with the following finite-dimensional port-Hamiltonian system:
[
M1 0
0 M2

]
d

dt

(
α1

α2

)
=

[
0 −LT
L 0

](
e1
e2

)
+

[
0
B2

]
u∂ ,

M1e1 := ∇α1
H,

M2e2 := ∇α2
H,

M∂ y∂ =
[
0 BT2

](e1
e2

)
.

(4)

The mass matrices Mi of dimension Ni×Ni are symmetric and positive definite. Matrix L is N2×N1, and the boundary
control matrixB2 isN2×N∂ . Then, mimicking (3), the power balance for open systems is preserved at the discrete level:

d

dt
H(α1(t),α2(t)) = uT∂M∂y∂ . (5)

Linear examples
When the Hamiltonian is a quadratic and separable functional of the energy variables, the co-energy variables are linear
w.r.t. the energy variables, and an explicit closed-form for (4) can be easily obtained, either in terms of αi, or of ei. This
strategy has been fully developped and worked out on the anisotropic heterogeneous 2D wave equation in [12], on the
Reissner-Mindlin thick plate in [1], on the Kirchhoff-Love thin plate in [2] and also on Maxwell’s equations in 3D in [9].

Nonlinear examples
Now the same strategy applies to nonlinear models, keeping the energy and co-energy variables apart. In this case though,
the link between the co-energy variable ei and the energy variables αi is no more linear and requires some special care.
However, in the case of a polynomial nonlinearity, explicit relations can be provided at the discrete level, and more
important, these relations can be computed off-line (i.e. an extra application of the FEM does not prove necessary at each
time step). This has been worked out on the irrotational 2D Shallow Water in [5] with a nonlinear and non-separable
Hamiltonian, on the heat equation with internal energy as Hamiltonian in [11]. The full von-Kármán plate model in [4] is
another candidate.

Acknowledgment Part of this work has been performed in the framework of the Collaborative Research DFG and ANR
project INFIDHEM n◦ ANR-16-CE92-0028 (http://websites.isae.fr/infidhem).
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Summary: The most common type of human snoring is characterized by vibrations of the soft-palate, induced by passing air during 
respiration. Despite being a widespread disorder, its occurrence is poorly understood and, consequently, clinical treatment is often 
ineffective. This physical system can be characterized, in its essence, by a cantilevered beam subjected to axial flow in a confined 
passage. These type of fluid-structure interaction systems have been a subject of research for many years, as its fundamental behavior 
is found in many other practical applications. Most studies are concerned solely with the conditions for linear stability and do not 
explore the ensuing nonlinear behavior of the system. This is particularly delicate as fluttering beams in confined flows are known to 
often result in dynamics with intermittent impacts between the beam and the side-walls. Here we present a nonlinear analytical 
resolution to a simplified 1-D model, based on a modal beam and bulk-flow equations. The model accounts for dissipation through 
distributed (frictional) and localized head-loss terms. The latter are imposed at the boundary conditions and aims to describe the 
complex effects occurring outside the domain (turbulence, vortex shedding, etc.). The present analytical resolution leads to a compact 
system for linear stability analysis, but also to a nonlinear formulation of the fluid-structure interaction. The inclusion of a 
regularized contact model allows for the computation of the full nonlinear dynamics, including intermittent impacts. Linear stability 
results are compared to previously published results using 2-D CFD models, and the relative merits of the model are discussed. A 
series of limit cycles with intermittent impacts between the beam and side-walls are presented to illustrate the nature of the post-
instability oscillations. To the authors knowledge, the proposed formulation presents, for the first time, a framework for the 
comprehensive understanding of the nonlinear dynamics associated with flexible beams in confined axial flow.  
 

Introduction 
Recent studies suggest that no less than 30% of the adult population snores habitually. However, due its inherent 
complexity, the underlying physics and their relation to the type and degree of the disorder remain poorly understood 
and, consequently, treatment responses are often ineffective [1] [2]. The most common form of snoring is that of palatal 
snoring, where the vibration of the soft-palate/uvula (see Figure 1-(a)) is induced by the passage of air during respiration. 
This system can be categorized as a flow induced vibration problem. More specifically, it can be modelled as a flexible 
cantilever beam in confined axial flow [3] [4].  

The static and dynamic instabilities associated with flexible beams/plates subject to axial flow occur also in different 
contexts from enhanced heat transfer [5], energy harvesting devices [6] or wind musical instruments [7]. The subject 
has been studied extensively [8], particularly for the case of unconfined flows. In these systems, the typical instability is 
of the flutter type. In the work of Shoele & Mittal [9], for example, we find some elucidating results regarding the 
influence of relevant non-dimensional parameters like the fluid-beam mass ratio, the reduced velocity (inverse of 
Strouhal number) or the confinement ratio (channel height to beam length ratio). Their results show that, at low beam-
fluid mass ratios, the instability is of the single-mode flutter type, involving the coupling of the first two in-vacuo beam 
modes. As mass ratios increase, the initial single-mode flutter ceases to be the principal instability, and successive 
“mode-transitions” occur, whereby multiple higher-order fluttering modes prevail. This type of instability is commonly 
referred to as coupled-mode flutter.  

More recently, the advances in computational efficiency have enabled the possibility to simulate these fluid-structure 
interaction (FSI) systems numerically by solving the Navier-Stokes equations in 2D and 3D domains  [10]. These FSI 
models allow a more accurate representation of the physics. However, they also require considerable computational 
time, which becomes a handicap when analyzing problems whose behavior depends on a wide variety of parameters. 
For a more thorough parameter mapping, 1D models, based on simplified equations of motion, are not only 
computationally more efficient but also more tractable, and may provide valuable insights into the core dynamics of the 
problem.  

In the context of simplified approaches, we note the work of Nagakura & Kaneko [11] that have used leakage flow 
theory to model the linear stability of a cantilever beam in a confined passage. Based on the work by Inada & Hayama 
[12], they formulate a 1D problem where flow pressure and velocity are taken as cross-sectionally averaged. The 
confinement is restricted to symmetric channels of constant cross-section, viscous effects are accounted for by a 
distributed friction term and the energy losses at the trailing edge are encapsulated by a localized head-loss term, 
imposed at the boundary condition.  

By and large, the analytical models developed so far deal solely with the conditions for instability, using linearized 
equations of motions to study the effect of various parameters on the stability boundaries. Although undeniably a 
crucial information about the system dynamics, this gives us little insight about the ensuing nonlinear behavior. The 
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analysis of the nonlinear dynamics might by of valuable interest to various applications, giving information about 
human snoring, but also working regimes in wind musical instruments or in energy harvesting devices, for example.  

In the context of unbounded flows, a number of theoretical and experimental studies can be found, illustrating the array 
of possible limit cycles arising in this type of systems [13] [14]. However, for instabilities in a confined passage, 
nonlinear modelling results and experimental observations have demonstrated the regular occurrence of limit cycles 
with intermittent impacts between the beam and the side walls [15] [16].  

In this paper, we deal with a simplified 1D model in the spirit of Nagakura & Kaneko’s work [11]. Contrary to their 
work, we admit channel profiles of any shape. More importantly however, we present an analytical resolution, based on 
formal solutions of the flow pressure and velocity fields, that leads not only to a compact system for linear stability 
analysis but also to a fully nonlinear flow formulation. This formulation can be used to explore post-instability regimes 
at very low computational costs. Additionally, to overcome the previously mentioned limitations, we add the possibility 
of contact between the flexible beam and the channel walls, enabling the calculation of limit-cycle oscillations (LCO) 
with, potentially, intermittent impacts. 

Model Description 
The model presented here deals with the fluid-structure interaction of a flexible beam confined by flow on each upper 
and lower sides, as illustrated in Figure 1. The formulation presented in the following is generic, in that it can, in 
principle, be applied to beams with arbitrary boundary conditions. However, in this paper we will deal solely with the 
particular case of a cantilever beam.  

 

Figure 1 (a) Cross-sectional view of a human upper airway; (b) Schematic representation of the model.  

Structural dynamics 
The dynamics of a flexible linear beam are defined in terms of N  modes, decoupled from the fluid. The modal 
parameters: modal masses nm , frequencies n , damping ratios n  and mode shapes ( )n x  can be calculated 

analytically for a beam with uniform cross-section or numerically for beams of any geometry, through either the Euler-
Bernoulli or Timoshenko 1D linear beam equations. The beam displacement is developed as 

 
1

( , ) ( )
N

n n
n

y x t x q t
=

= ( )  (1) 

 and the beam motion is finally described by the following set of N  modal equations  

( )2
2 1

0

( , ) ( , )( ) 2 ( ) ( ) ( ) , 1, 2
L

n n n n n n n n n np x t p x tm q t m q t m q t b x dx n N   −+ + = =   (2) 

where b  is the beam width and the modal forces are given by the projection of the pressure fields 1( , )p x t  and 2( , )p x t  

(associated with the flow in the upper and lower channels, respectively), unto the beam modes. 

Fluid dynamics 
To derive the incompressible bulk-flow equations, we first consider small-to-moderate fluctuating channel heights 

( , )ch x t , defined in terms of the beam motion 

 1 1 2 2( , ) ( ) ( , ) ; ( , ) ( ) ( , )h x t H x y x t h x t H x y x t= − = +   (3) 

where 1( )H x  and 2( )H x  are the distances from each wall to the position of the beam at rest and the index  1,2c =  

corresponds to the upper and lower channels, respectively. Following the derivation by Antunes & Piteau [17], the flow 
variables are taken as cross-sectionally averaged, ( , )cp x t  and ( , )cu x t . The continuity and momentum equations of the 

fluid are given, respectively, for each channel 1,2c = , by  
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 ( ) ( ) ( )20 ; 0w bc c
c c c c cc c c c

h p
h u hh u h u

t x xt x
  

    + = + + + =+     
  (4) 

where   is the fluid’s density, w
c  and b

c  are the shear stresses at the two interfaces (fluid-wall and fluid-beam) in 

each channel. Following the bulk-flow approach, the tangential stresses will be formulated as a head-loss model, given 
by 

 , ,1
| |

2
w b w b
c c c cu u f =  (5) 

where w
cf  and b

cf  are the Fanning friction coefficients for each interface. Additionally, we assume both interfaces 

have equivalent frictional properties, hence w b
c cf f f= = . 

Aside from the distributed losses, we include as well singular dissipative effects at the boundaries. These are enforced at 
the boundary conditions and aim to encapsulate, in a simplified manner, the energy losses (turbulence, vortex shedding, 
etc.) occurring outside the domain. The second order system (4) is then submitted to the following flow boundary 
conditions at 0x =  and x L= :  

 ( ) ( )2 2
0 0

1 1
(0, ) ( ) ; ( , ) ( )(0, ) (0, ) (0, ) ( , ) ( , ) ( , )

2 2c c Lc c c c c c Lp t P t p L t P tu t u t u t K u L t u L t u L t K = − = −− +  (6) 

where 0K  and LK  are the singular head-loss coefficients at the boundaries; 0( )P t  and ( )LP t  are the imposed 

pressures. For the particular case of a cantilevered beam, the head-loss coefficient 0K  is bound to have a minimal effect 

on the dynamics, as it acts on the clamped end of the beam. For steady inflow (in the positive x−direction), it acts 
simply as a control-valve, limiting the flow energy entering the domain.  On the other hand, the turbulent effects 
expected at the trailing-edge suggest that LK  will probably have a significant effect on the coupling dynamics. 

Following reference models [11] [18], we will take 1LK =  and 0 0K = , which as shown to provide a reasonable 

representation in these types of FSI systems.  

Nonlinear analytical approach using formal solutions 
Integrating the continuity equation (4) with respect to x  leads us to a formal solution for the velocity fields in each 
channel c : 

 
( ) ( , )

( , )
( , )

c c
c

c

Q t h x t dx
u x t

h x t

−
=                  (7) 

where the “constants” of integration (actually, time domain functions) ( )cQ t  represent the global unsteady flow rates 

(per unit width) in each channel. After replacement of (7) in the momentum equation (4) and again integrating with 
respect to x , we obtain the formal solution for the pressure field in each channel, 

( )

( )

2' '

2 3 2 3

'
2

3 3

1
2 ( ) 2 ( )

( , ) ( )
( ) ( )

( )

c cc c c c cc
c c

c cc c c c
c c

c c c cc
c

c c

h h dxh dx h h dx h h dxh
Q t Q t

h hh h h h
p x t dx S t

h dx Q t h dx Q th
Q t f

h h



    − + − + −    = + 
 − −  + +     

  


 

   (8) 

where spatial and temporal derivatives are denoted by an upper dash and dot, respectively. The new “constants” of 
integration ( )cS t  describe the pressure at the entrance of the channels ( ) (0, )c cS t p t= . From here on, to simplify 

notation, we define the following auxiliary variables describing the terms in the formal solutions 

 

( ) ( )( )

( )( ) ( )( )

2

'
2 3

' '
2 3 3

1
( , ) ; ( , ) ; ( , ) 2 sign ( ) ;

1
( , ) 2 sign ( ) ; ( , ) sign ( ) ;

cc c c c
c c c c c c

c c c c c

cc
c c c c c c c c

c c c

h dxh dx h dx h h dx
A x t B x t C x t h f h dx Q t

h h h h h

h dxh
D x t h f h dx Q t E x t h f h dx Q t

h h h

= − = = − + + −

 
 = − + − = + −
 
 

   

   (9) 
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To enforce the boundary conditions, we replace the formal solutions (7)-(8) into expressions (6). After some algebra, 

we obtain two expressions for the constant of integration ( )cS t , in terms of  ( )cQ t , ( )cQ t  and the beam motion 

( , ) ( , )c cA x t E x t− . At the leading edge ( 0x = ) we have simply 

 ( )( )( )20 0
1

( ) 1 sign ( ) (0, ) ( )
2c c c cS t P Q t K B t Q t= − +  (10) 

while at the trailing edge (x L= ) we get 

 

( )
( )( )

( )

( )

2
2

2

( , ) ( )

( , ) ( , ) ( , ) 1 sign ( , ) ( , ) ( ) ( )

( ) ( ) ( , )
( , ) 1 sign ( , ) ( , ) ( ) ( )

2

( , )
1 sign ( , ) ( , ) ( )

2

c c

c c c c c c L c

c L c
c c c c L c

c
c c c L

B L t dx Q t

D L t dx A L t B L t A L t B L t Q t K Q t

S t P t B L t
E L t dx A L t B L t Q t K Q t

A L t
A L t B L t Q t K



−

 + + − + 

 = −
 + + − +   

 

+ − +







( , )cC L t dx

 
 
 
 
 
 
 
 
 
 

 +  

  (11) 

Then, combining (11) and (10), we are able to remove the constant of integration ( )cS t  and obtain two (one for each 

channel) first-order nonlinear ODEs in terms of the unsteady flow rates ( )cQ t , 

 

( )
( )( )

( )( )

( )

2

0
2

2

2

( , ) ( )

( , ) ( , ) ( , ) 1 sign ( , ) ( , ) ( ) ( )

(0, )
( , ) 1 sign ( )

2 ( )
( , )

1 sign ( , ) ( , ) ( )
2

( , )
1 sign ( , )

2

c c

c c c c c c L c

c
c c

c

c
c c c L

c
c c

B L t dx Q t

D L t dx A L t B L t A L t B L t Q t K Q t

B t
E L t dx Q t K

Q t
B L t

A L t B L t Q t K

A L t
A L t B

−

 + + − + 

 
− + 

 +
 

 + − +   

+ − +







( ) 0( ) ( )
( , ) ( ) ( , ) 0L

c L c
P t P t

L t Q t K C L t dx

−

  + + =  

  (12) 

Replacement of the formal solution for the pressure fields (8) into the beam modal equations (2), leads to a set of 2N  
nonlinear ODEs, in terms of the modal displacements ( )nq t , modal velocities ( ) ( )n nr t q t=  and the two unsteady flow 

rates 1( )Q t  and 2( )Q t . Together with the two flow rate ODEs (12), they form a closed set of first-order nonlinear 

differential equations describing the 1D fluid-structure model, in the form 

        + = CA x B x  (13) 

where  1 1 1 2( ), ( ), ( ), ( ), ( ), ( )N Nr t r t q t q t Q t Q t=x ,  A  and  B  are (dense) matrices of size 2 2N + , and  C  is 

a vector containing constant flow terms. Effectively, we are able to discretize our continuous 1D problem into a set of 
ODEs. However, there are nonlinear terms associated with beam motion (e.g.cA dx ) which contain modal summations 

in the denominator. As these terms cannot be simplified analytically, we do not reach “true” time-space separation, in 
the sense that the formulation does not contain time-independent spatial operators. During time-domain integrations, 
these terms need to be calculated at each time-step. Despite this fact, the formulation allows for temporal-integrations of 
the nonlinear system at very modest computational costs.  

Results: linear stability and numerical validation 
In this paper, for compactness, we have not shown the linearization of the above-mentioned system. It will suffice to 
say that linearization of the expressions above leads to a closed set of 2 2N +  ODEs (with constant spatial operators), 
which can then be formulated as an eigenvalue problem, from which we can infer the linear stability of the system 
under a set of given parameters.  

In this section, with the aim of assessing the viability of the 1D simplified modelling approach and validating our 
results, we compare the linear stability results from our model to reference results. Even though the present modelling 
approach allows for channels of arbitrary shapes ( )cH x , we will consider only symmetric channels of constant section, 

i.e. 1 2( ) ( )H x H x H= = , on which most literature is based on. For the same reason, we will analyze configurations with 

flow in the positive direction only.  

Following reference studies [9], we will present results in terms of the following non-dimensional parameters 
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where *U  is a reduced velocity (essentially the inverse of a Strouhal number), *M  is the fluid-beam mass ratio, and 
*H  is the confinement ratio. In our formulation, 0 1 2(0) (0)H H H= +  and the fluid velocity 0U  is given by the steady 

component of the inlet velocity, i.e. 0 1 2 0( )U Q Q H= + . Additionally, the Reynolds number Re is accounted 

implicitly by the Fanning friction coefficient f . To this end, we note the commonly used relation between Reynolds 

number Re and the friction coefficient f , established based on empirical data of steady flow [19], given by 

 
1

0

0.25
0

12Re for Re Re (laminar)
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f

f

−

−

 = 


= 
 (15) 

where 0Re  is the Reynolds number separating laminar from turbulent flow ranges, taken here as 0Re 2500= . 

Comparison to results from a 2-D viscous model 

Here we compare linear stability results from our simplified model to those obtained by a more realistic 2D viscous 
model developed recently by Cisoni et al. [20]. In their paper [20], a 2D model is used to solve the nonlinear Navier-
Stokes equations in the time-domain, including viscous effects. Several parametric sweeps were carried out to obtain 

stability curves in the nondimensional * *( )U M−  plane, for several *( ,Re)H  pairings. Figure 2 shows a typical 

stability map in the * *( )U M−  plane, calculated with the present model and with the 2-D viscous model. Here, an 

undamped beam was considered, 0n = , the confinement ratio was set at * 1/10H =  and the Reynolds number at 

Re 100= . Note that, in our formulation, the Reynolds number is set implicitly following relation (15), which leads to a 

friction coefficient 0.14f  . On the left are the stability boundaries in the * *( )U M−  plane and on the right the 

frequencies of the corresponding neutrally stable modes. 

 

Figure 2 – Stability boundary in the * *( )U M  plane (left) and the corresponding frequencies (right) for a system with confinement 

* 1/10H =  and Reynolds number Re 100= . The 2-D model results were retrieved from those presented in [20].  

The cascading stability boundary shown in Figure 2 is a typical result of cantilevered structures subject to axial flow, 
reported in many previous studies, including models which assume inviscid flow (see review in [9]). We note that 
results from the present model agree qualitatively well with those from the 2D model. Despite some minor quantitative 
differences, the overall stability behavior of the system is well encapsulated. Namely, the sharp transitions in the 
stability curves, associated with the well-known mode-switching behavior and illustrated clearly by the abrupt changes 
in the instability frequency, are well represented. This behavior occurs at increasing mass-ratios, whereby the first 
unstable mode in the system transitions from lower to higher order, i.e. the main unstable (coupled) mode is dominated 
by in-vacuo beam modes of progressively higher order. To clarify, Figure 3 illustrates the complex mode shapes 
associated with the various points (a)-(f) indicated in Figure 2. The minor quantitative differences (slight vertical and 

horizontal shifts in the * *M U−  plane), are likely explained by the inherent differences in the 1D and 2D modelling 
approaches, namely, the explicit vs. implicit account of viscous effects or the parabolic vs. constant velocity profiles 
stemming from explicit/implicit account of boundary layer effects. 
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Figure 3 – Complex mode-shapes of the neutrally-stable modes associated with the boundary points (a)-(f) indicated in Figure 2. The 
real and imaginary parts of the mode shapes are indicated in blue and red, respectively. The grey lines illustrate the actual beam 
motion associated with the corresponding complex mode shapes.  

Results: time-domain integrations and nonlinear dynamics 

In this section we aim to explore the nature of the nonlinear regimes associated with a linearly unstable system through 
numerical time-domain integration. The set of nonlinear ODEs described in above (13) was solved using MATLAB’s 
solver ode15i [21], an implicit scheme with variable time-stepping. Numerical simulations were started with the 
solutions of the steady configuration nq , cQ  as initial conditions, and a small perturbation force was applied to all 

beam modes to induce eventually unstable dynamics. 

Stability and impact boundaries 
As a first step to characterize the nonlinear behavior of the system, we examine the role of impacts and when they are 
more likely to occur. To this end, a series of numerical time-domain integrations were performed in the non-

dimensional parametric space * *( , )U M . We considered a symmetric configuration with confinement ratio * 1 10H = , 

and friction coefficient 0.14f = . The simulations were run for several seconds until one of the following scenarios 

was encountered: (1) oscillations gradually decreased converging to the steady solution (linearly stable dynamics), (2) 
the oscillations grew until a stable limit cycle was reached, without the occurrence of impacts, or (3) oscillations grew 
until the beam eventually comes into contact with one of the walls, at which point the simulations were stopped. The 
difference between the latter two scenarios enabled us to estimate an “impact boundary”, that is, a frontier in the 

* *( , )U M plane separating limit cycles with and without impacts. Because contact was not accounted in this first study, 

the beam was described by only 10N =  modes. All modal damping coefficients were set to 0.01n = . The resulting 

map is shown in Figure 4. 

 

Figure 4 – Stability map of a system with confinement ratio * 1 10H =  and friction coefficient 0.14f = , in the * *( , )U M  plane. 

The linear stability boundary (black line) is compared to the limit cycle boundary found by the nonlinear simulations (orange 
circles). The impact boundary (blue line) illustrates the frontier in which unstable dynamics lead to contact between the beam and 
the confinement walls. The nonlinear limit cycles associated with the points marked (1a-c) will be shown in the following sections.   

ENOC 2022, July 17-22, 2022, Lyon, France

280



 

ENOC 2020+2, July 17-22, 2022, Lyon, France 
 

We see that the stability boundary predicted by the linearized system is coherent with the unstable dynamics observed 
in the nonlinear simulations. As for the impact boundary, we note that the regions in which limit cycles without impacts 
occur (grey area) are not extensive. Noticeably, we underline the fact that for small mass ratios (heavy beams or light 
fluids) these regions simply do not exist and the flutter instability, however weak, inevitably leads to large amplitude 
beam motions and eventual contact with the side walls. This seems physically plausible as, in these cases, the inertia of 
heavier beams will tend to outweigh the restoring forces from a light fluid.  

Elastic impact model 
Numerous experimental (and modelling) observations [3] [4] [14] [16] demonstrate that nonlinear motions of 
cantilevered plates in confined axial flow regularly present intermittent impacts between the beam and the side-walls. 
Consequently, previous attempts at modelling limit-cycle oscillations (LCO), eventually encountered limitations in their 
solutions, at regimes where the motion of the plate is large enough that collisions become inevitable.  

In the current bulk-flow formulation, the addition of dynamic impact between the beam and the side walls is not a trivial 
task. One of the major challenges relates to the fact that the solutions for flow velocity and pressure fields present 
singularities at the moment of contact, i.e. when the channel height 0ch = . Consequently, classical penalty methods, 

reliant on “interpenetration”, are incompatible with the current flow model. Without dealing with these delicate issues, 
here we present a pragmatic approach, based on a regularized impact formulation, that allows us to include impacts in a 
simple manner that is compatible with the flow formulation. Since the fluid equations do not allow for beam 
penetration, an impact force ( , )iF x t  is applied on the beam just before contact, in regions of the beam which have 

trespassed a small regularization parameter   (Figure 5). In essence, we allow some flow leakage at the moments of 
“contact”, such that an impact force can be applied to the beam without fully restricting the flow dynamics. 

 
Figure 5 – Illustration of the beam violation right before contact and corresponding impact force. 

A simplified version of a classic Hertz model is considered, where the impact force is linearly proportional to a 
violation parameter ( , )v x t , describing the penetration distance between the beam a “virtual” wall defined by 

( )cH x − , as illustrated in Figure 5. Then, the impact force ( , )iF x t  is given by 

 
( , ) if ( , ) 0

( , )
0 otherwise

i
i

k v x t v x t
F x t


= 


 (16) 

where ik  is an impact stiffness and the violation amplitude is given by ( , ) ,cv x t h x t= − ( ) . The sign of ( , )iF x t  is 

defined for each channel: 0iF   for 2c = ;  0iF   for 1c= .  

Illustrative examples of limit-cycle oscillations with intermittent impacts 
Here we illustrate a few limit cycles that include intermittent impacts, namely, the solutions for the configurations 
indicated in Figure 4 by points (1a), (1b) and (1c). These configurations have a constant mass ratio of * 1M =  and 
various reduced velocities  * 7, 8.5, 10U = , respectively. For these simulations, a large number of beam modes was 

considered, 40N = , to ensure the impact dynamics are well represented. In the following simulations, the non-

dimensional impact stiffness was taken as * 2 6
1 1 10i ik k m= = (normalized by the stiffness of the first beam mode) and 

the non-dimensional regularization parameter 310H −= .  

Figure 6 shows snapshots of the beam motion and Figure 7 the evolution of the modal velocities ( )nr t  and the unsteady 

flow rates ( )cQ t , for the three configurations (1a), (1b) and (1c). Moreover, in Figure 8 we show the phase-portrait of 

the beam tip, the evolution of the tip displacement ( , )y L t , the spectra of the tip velocity and RMS-value of the modal 
displacements ( )nq t , for all three configurations. Finally, we show in Figure 9 the impact force applied on the beam 

throughout the limit cycles. The impact force is expressed as the spatial integral of ( , )iF x t , normalized by a reference 

force 2
0 1F mf H= , where m is the total mass of the beam and 1f  is the frequency of the first in-vacuo beam mode.  
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Figure 6 - Snapshots of the beam motion during one cycle for configurations (1a), (1b) and (1c). 

 

Figure 7 - Temporal evolution of the modal velocities ( )nr t  (left) and unsteady flow rates ( )cQ t (right) in the limit cycles associated 

with configurations (1a), (1b) and (1c). For clarity, time scales are normalized by the fundamental period of the corresponding limit-
cycle 0T . 

In Figure 6 we notice that, in all cases, intermittent contact occurs solely at the tip of the beam. As the velocity *U  
increases (1b-c), impacts become more violent and the beam motion becomes increasingly perturbed, as higher order 
beam modes are intermittently excited and start playing a more prominent role in the overall beam motion. These 
effects are also seen by the evolution of the modal velocities shown in Figure 7 and the RMS-values in Figure 8 . When 
impacts are relatively weak (1a), the tip simply “grazes” the wall and the overall beam motion is not significantly 
altered compared to the mode shapes estimated by the linear stability analysis.  

Similarly, the oscillations of the flow rates become increasingly abrupt in the presence of violent impacts. However, it is 
interesting to note that sharp changes in the unsteady flow-rate (e.g. bottom-right plot in Figure 7) do not occur at the 
moments of contact but rather at the moments when the beam motion rapidly shifts from one side of the channel to the 
other. This effect can be illustrated, for example, by the beam-tip motion shown in Figure 8. Here we notice that as 
impacts become stronger, the overall contact time also becomes larger, meaning as well that the beam-tip will shift 
sides more abruptly, hence generating sharp fluctuations in the flow-rates. As expected, flow rates also oscillate around 
a value slightly lower than their steady component cQ . This means that the overall mass transport is reduced by the 

fluttering beam, compared to a static scenario. This seems physically plausible as, during flutter, some of the energy 
carried by the flow is transferred to the beam and lost through either structural dissipation or increased flow-dissipation 
effects. 

In Figure 8 we note that the motions become increasingly nonlinear in the presence of stronger impacts. The phase-
portrait shows more perturbed motions with larger gradients. Naturally, the spectra of the beam tip show a large number 
of high order harmonic components, increasing in amplitude as impacts become more violent. It is worth noting that, in 
limit cycles with very strong impacts (1c), the oscillations are not strictly periodic. Although the low frequency motions 
are stable, we notice small high frequency perturbations, related to the unsynchronized motion of the intermittently 
excited higher order beam modes. This behavior is clearly illustrated by the spectra of (1c), where we notice not only an 
increase in the amplitude of the harmonics, but also a visible presence of noise-like spectral behavior. Nevertheless, 
these motions might be tentatively classified as perturbed periodic oscillations, rather than aperiodic dynamics. 

The impact forces represented in Figure 9 illustrate the fact that, during each beam-wall interaction, the beam tip 
impacts the wall multiple times. This chattering effect is a typical behavior of systems with impacts in multi-modal 
structures. In weaker impacts (1a) we notice only a few impacts of decreasing strength while in more violent regimes 
(1b-c) contact is composed of multiple impacts with stronger associated forces and an overall longer chattering time.  
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Figure 8 - Phase-portrait of beam tip (top-left); root-mean-square (RMS) value of the modal displacements (top-right); beam tip 
displacement (bottom-left) and spectra of the tip velocity (bottom-right, for the three configurations (1a), (1b) and (1c). For clarity, 
time/frequency scales are normalized by the fundamental period/frequency of the corresponding limit-cycle 0T  and 0f . 

 

Figure 9 – The evolution of the non-dimensional impact force through the limit-cycles associated with configurations (1a), (1b) and 
(1c). For clarity, time scales are normalized by the fundamental period of the corresponding limit cycle 0T .  

Conclusions  
In this paper we have presented a framework for the comprehensive study of the nonlinear dynamics of a flexible beam 
subject to axial flow in a confined passage. Previous studies have been constrained by either large computational costs 
associated with 2D CFD models, the lack of a nonlinear flow formulation, and/or by the occurrence of contact between 
the beam and the side-walls. Here, a 1D model was formulated where the beam is described by its in-vacuo modes and 
incompressible bulk-flow equations, including distributed and localized head-losses, are used for the flow in both 
channels. An analytical resolution, based on the formal solutions for the velocity and pressure fields, is developed and 
leads to a fully nonlinear formulation of the fluid-structure interaction. Moreover, the possibility of contact between the 
beam and the walls is accounted for by a regularized impact model.  

As a preliminary assessment of the potential of the proposed approach, results of linear stability analysis were compared 
to reference results using more realistic 2D CFD model. Overall, results were positively validated with only minor 
quantitative differences, at least for relatively narrow passages. Although not shown here, for brevity, it is worth noting 
that for larger confinement ratios 1 5H L  , we notice larger errors, as expected from the simplifying assumptions 

made in the bulk-flow approach. 

Subsequently, nonlinear time-domain integrations were performed in order to illustrate the dynamical behavior 
occurring in such systems. Firstly, several simulations were performed to characterize the nonlinear dynamics for 

different configurations in the * *( , )M U -space. This led to a mapping of the nonlinear dynamics, separating the regions 

where limit cycles with and without impacts occur. Results suggest that, for low mass ratios (heavy beams/light fluids), 
the initial flutter instability always leads to contact, likely due to the contrast of the inertia of a heavy beam to that of a 
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light fluid. For moderate-to-large mass ratios, there are regions in the * *( , )M U -space where limit cycles without 

impacts occur, although these are relatively narrow. Secondly, several LCO with intermittent impacts were shown to 
elucidate the nature of the resulting nonlinear regimes. The lack of experimental data on the ensuing limit-cycles 
prevents us from a meaningful validation of our results, nevertheless, they seem physically plausible and consistent with 
experimental observations, at least qualitatively.  

To the authors best knowledge, the presented framework allowed, for the first time, the calculations of the post-
instability behavior of fluttering beams in confined flow, including vibro-impact dynamics. Future work might deal with 
the refinement of the impact model, to treat flow contact conditions and include damping. Moreover, bifurcation 
analysis using methods for the calculation and continuation of periodic solutions can contribute to a more 
comprehensive understanding of the associated nonlinear dynamics.  
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Summary. This paper describes an experimentally verified local and spatial model of a standing waves acoustic levitation system. By 
tailoring the waveforms fed to an array of ultrasonic transducers, arranged in a dome formation, individual potential-wells’ can be created 
and altered periodically. The waveforms contain a fast part, geared to produce the nonlinear acoustic field and a slow part, tuned to create 
slow modulation of the local stiffness and principle parametric excitation. The latter can bring about large controlled oscillations of the 
levitated objects. Presented is a local, nonlinear model describing the dynamics of an individual acoustically levitated particle in a single 
potential well. And, for the first time, the dynamics of coupled floating particles tied through the weak nonlinear acoustic field, is shown. 
Nonlinearity of the acoustic field serves several purposes here: (i) It creates the nonlinear field with potential-wells and hence acoustic 
levitation (ii) It creates large motions and that produce hopping out of potential wells, given a suitably modulated slow excitation. 

Introduction 

This paper describes a method to perform fast dynamic manipulation of acoustically levitated particles. The results 
extend high frequency and high intensity acoustic excitation methods to dynamically manipulate standing and traveling 
wave patterns affecting particles’ motion in 3D space in a controlled manner. Sound pressure levels that are generated 
in standing waves patterns at around 40 kHz can exceed 140db within a restricted area, giving rise to nonlinear acoustic 
phenomena. Such nonlinear phenomena can hold and mobilize particles of several millimeter in size at 10-80Hz 
frequencies. State-of-the-art research enables quasi-static motions of levitated particles by affecting the acoustic field 
and to slowly move their stable locations. The present work shows experiments where parametric excitation is created 
by modulating the acoustic field such that particles can be made to oscillated within acoustic potential wells. To achieve 
these goals, high order nonlinear models are generated, and embedded in a fast (1MHz sampling rate) excitation signals. 
The main uses of acoustic manipulation are in containerless and micro-gravity processing where contamination is a 
concern, when mild holding forces are sought and when particles and drops are to be mixed or moved in unison.   
  Described is the model of slow particle motion and its link to the fast (ultrasonic) acoustic excitation. In addition, some 
fast videos of a working experimental system are analyzed to produce qualitative and quantitative parameters shading 
light on the physical phenomenon. If  viscosity has a small effect compared with the higher order acoustic radiation 
forces, the analysis of acoustic levitation devices (ALD), usually considers higher terms beyond the linear 
approximation of the pressure and particle velocity, but viscosity is often neglected in the initial computations. 
Acoustic radiation pressure and force – simplified form 
 To predict nonlinear acoustic phenomenon creating the levitation, the well-known linear acoustic wave equation (2), 
does not suffice, and higher order terms should be considered [1,2]. Neglecting dissipation and heat related loss [3,4] 
for simplicity, one can obtain the fundamental nonlinear effect that predicts the stable acoustic potential-wells in space.  
These field parameters are used, whereas it is assumed that there is no mean flow in the cavity: 
 0 1 2 0 1 2 1 2 0 1 2..., ... ..., ...p p p p= + + + = + + + = + +  =  + + +u u u u u u .  (1) 

The pressure field comprising the ambient pressure 0p  and high order terms 1p  and 2p , u is the particle velocity field 

expended in a similar manner and ρ is the density field comprising the ambient density and higher order terms. In the 
linear case, the wave equation reduces to 
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In the nonlinear case, the time-averaged acoustic radiation pressure can be calculated from these linear fields [1]: 
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whereas c0 is the sound speed in the medium. The radiation force acting on an object is calculated as:  

    ( )
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whereas S0 is the object surface while n represents the surface normal vector. Viscous effects that create oblique and 
tangent forces [5] are ignored her. For small (i.e., the radius is much smaller than the acoustic wavelength) rigid 
spheres, the acoustic radiation force is approximated by: 
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Here, R, ρp and cp are the sphere radius, density and sound speed in the sphere,in•  are computed in the absence of the 
sphere in the field, and U is called Gor'kov potential [6]. It is now possible to define the total potential energy as Utot = 
U + Ugravity, and levitate objects steadily in the minima of Utot. 
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Analytical model of a levitated particle subjected to parametric excitation 
 The dynamics of an acoustically levitated particle is governed by several physical effects: acoustic radiation forces, 
acoustic streaming, drag force and inertia. To accommodate effects not considered by (5) the following dynamical 
model for an acoustically levitated particle subjected to PE was developed, were the parameters were estimated 
experimentally [7]. 
 ( )( )( ) ( )2 2 3 2 2 3

1 2 3 2 32 1 cos cos .u u u u u u u F             + + + + +  + + =    (6) 

Equation (6) is dimensionless, where u is the particle position relative to the equilibrium position, ζi are damping 
coefficients, γ is the parametric excitation (PE) magnitude generated by modulating the voltage provided to the 
transducer [7], κi are nonlinear stiffness coefficients, Ω is the scaled parametric excitation frequency and F is an 
external force amplitude. The damping coefficients related terms dissipates energy from the system and can be due to 
drag, viscosity and acoustic streaming.  The paper will include some asymptotic analysis and experimental results. 

Contactless particle manipulation via standing wave acoustic levitation - experiments 
  In standing wave-based levitation, a strong standing wave acoustic field is generated in a confined space, also known 
as the acoustic cavity. When an object is placed in the cavity it is subjected to an acoustic radiation pressure, the control 
of this pressure allows manipulation of the object.  The ability to control the motion of a floating particles vertically and 
horizontally is demonstrated by the experimental system depicted in Fig.1. 

  
Figure 1. Left: Fast video set-up. Showing single levitated particle and fast Video recording (40,000 fps). Right/top: Fast video 

particle tracking using (DIC), horizontal oscillations within the potential-well for =16.5 Hz. Right/bottom: vertical oscillation by 
inducing =31 Hz  videos. Links: horizontal and vertical.) 

 Another feature not predicted by the Gor'kov's theory is the coupling between levitated particles when the acoustic field 
is modulated at suitable frequencies as shown below (see also [7]). The frames shown in Figure 2 illustrates that the 
bottom particle is stationary while the top and 2nd from bottom move in unison. The latter is caused by higher order 
forces than described by Gor'kov's theory and is one of the proposed topics. 
 

 
Figure 2. Showing 3 frames from a fast video, spaced about 5 milliseconds apart. Using the experimental system Fig.1. See seconds 

7-8 in Link to VIDEO #1. For modulating the excitation at 37.83 Hz. 

Conclusions 

Presented is the analysis and experiments of an acoustic levitation system capable of manipulating levitated particles by 
means of time varying nonlinear effects. It is shown that previously ignored effects are important for the dynamics of an 
array of levitated particles. Nonlinear effect are controlled by a model based fast signal processor, showing good 
agreement with the asymptotic model. 
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Cristal Baschet: minimal model to predict the emergence of self-sustained oscillations

Audrey Couineaux, François Gautier and Frédéric Ablitzer
Laboratoire d’Acoustique de l’Université du Mans, CNRS UMR 6613, Le Mans, France

Context

The Cristal Baschet (Fig. 1a) is a contemporary musical instrument composed of a large number of glass rods arranged
in chromatic scale. The sound is produced by rubbing glass rods with wet fingers, which causes the occurrence of stick-
slip phenomenon. Each rod is connected to an assembly of threaded shafts, whose mechanical properties determine the
pitch of the note. The vibrations are then transmitted to large metal sheets or cones that act as radiating elements. The
manufacturing and tuning of the instrument is essentially based on empirical know-how and involves many parameters.
Their influence on the sound and playability of the instrument is not clearly understood. One of the problems encountered
is the difficulty to produce sounds in the high register of the instrument. In this study, a minimal model of Cristal Baschet
is developed to analyze the emergence of self-sustained oscillations by means of linear stability analysis, with the aim of
proposing design rules to improve the playability of the instrument.

Model

The minimal model focuses on the interaction between the wet finger and an isolated resonator (Fig. 1b). The resonator
consists of a glass rod connected to a threaded shaft. Its dynamic behavior is represented by a set of modes. The modal
parameters, which depends on design parameters (geometry, material properties...), can be obtained from a finite element
model or from experimental modal analysis of the instrument. To model the occurrence of self-sustained oscillations from
the frictional interaction with the finger, the knowledge of mode shapes at the interaction point is sufficient. Two gesture
parameters, i.e. parameters that are controlled by the musician, are considered: the velocity of the finger vf along the rod
and the normal force FN exerted by the finger on the rod. To describe the interaction between the finger and the resonator,
the friction law considered in this study assumes that the glass rod perfectly sticks to the finger during sticking phases
(∆v = 0) and that the friction force during sliding phases depends on the relative velocity ∆v = u̇ − vf between the
finger and the glass rod [2]. The sliding friction force is therefore expressed as FT = µ(∆v)FN with

µ(∆v) = µd +
µs − µd

1−∆v/v0
, (1)

where µs is the coefficient of static friction, µd the asymptotic coefficient of dynamic friction and v0 a parameter control-
ling the shape of the friction curve (Fig. 1c).
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Figure 1: (a) Cristal Baschet (adapted from [1]). (b) Interaction between wet finger and resonator. (c) Friction curve and
its linearization around static equilibrium in sliding situation.

Linear stability analysis

As a first step to determine the conditions at which the self-sustained oscillations can occur, the stability of the static
solution in a sliding state is examined [3]. For this purpose, it is considered that the glass rod is in static equilibrium (i.e.
u̇ = 0) under the action of a constant friction force Fs resulting from the motion of the finger at constant speed. Assuming
small fluctuations of the glass rod velocity around its equilibrium position, a linearization of the friction curve around the
static solution is performed to express the corresponding variations in friction force as FT ≈ Fs + Cu̇, where coefficient
C represent the local slope of the friction curve (Fig. 1b). Inserting this linearized expression into the modal equations
yields

Mq̈+
(
C− CΦfΦ

T
f

)
q̇+Kq = ΦfFs , (2)
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where M = diag(mn), C = diag(2mnξnωn), K = diag(mnω
2
n) are the modal mass, damping and stiffness matrices,

and Φf is a column vector containing the value of each mode shape at the location of the finger. Looking for a solution to
the homogeneous equation in the form Qeλt, one obtains an eigenvalue problem

(
λ2M+ λ

(
C− CΦfΦ

T
f

)
+K

)
Q = 0 , (3)

where each eigenvalue λ characterizes an oscillating component whose amplitude either decreases (if Re(λ) < 0) of
increases (if Re(λ) > 0) over time, corresponding respectively to stability or instability of the static equilibrium. Self-
sustained oscillations occurs when the smallest modal damping ratio ξeff = −Re(λ)|λ|−1 is negative (Fig. 2). The
threshold depends on gesture parameters and friction law (both included in coefficient C) and design parameters (through
the value of mode shapes Φf at the interaction point).

Time-domain simulations

In order to verify the criterion calculated from linear stability analysis, time-domain simulations are performed using an
explicit numerical scheme of the form

x(ti+1) = Ax(ti) +Bf(ti) , (4)

where x is a vector containing all modal coordinates and their time derivatives and f is a vector containing the modal
forces. The coefficients in A and B are obtained using a piecewise constant approximation of the right-hand side of
modal equations. At each time step, the unknown friction force FT exerted by the finger on the glass rod is obtained
by enforcing a sticking or sliding condition. The results of time-domain simulations (Fig. 3) are in agreement with the
predictions of linear stability analysis. The amplitude grow rate at various levels of normal force follows the same trend
as the evolution of effective modal damping ratio shown in Fig. 2.
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Figure 2: Smallest effective damping ratio ξeff as a
function of the normal force FN exerted by the finger
and its velocity vf . The dashed line indicates the limit
between positive and negative values of the damping
ratio, corresponding to stability or instability of the
static equilibrium in sliding situation.
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Figure 3: Velocity of the glass rod u̇ and friction force FT
obtained from time-domain simulation. The red dashed lines
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els of force correspond to points 1 to 6 in Fig. 2. Although
masked by the scale fixed for the velocity, the third level of
normal force leads to oscillations with increasing amplitude
but low growing rate, not allowing to see the permanent pe-
riodic regime.

Conclusion

The minimal model of the Cristal Baschet describes the dependence of the amplitude grow rate of instabilities on the
physical parameters: it is shown that the law of friction plays an essential role but its influence depends also on the mode
shapes of the resonator at the connection point. These modal parameters are directly adjusted by the instrument maker
when he tunes the mobility of these resonators. The model shows that a too low mobility can be responsible for the
difficulties in obtaining the sound in the upper register.
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Parametrically driven morphing of thin piezoelectric surfaces

Biagio Carboni∗, Stefano Catarci∗ and Walter Lacarbonara ∗

∗Dipartimento di Ingegneria Strutturale e Geotecnica, Sapienza University of Rome, Rome, Italy

Summary. The possibility of exploiting the parametric resonance phenomena to perform morphing of piezoelectric surfaces is here
investigated analytically and numerically. The case study consists of a PVDF beam subject to an in-plane pulsating strain applied
through voltage variation. The dynamical excitation induces an out-of-plane parametric resonance of the beam which can be driven to
excite desired individual modes or combination of them through nonlinear coupling. A nonlinear reduced order model for a piezoelectric
thin Euler-Bernoulli beam is developed considering the multi-physics piezo-elastic coupling. The conservation of the electric charge is
enforced in 3D while the equations of motion are expressed in 1D using the arclength parametrization along the beam centerline. The
analytical treatment is based on the method of multiple scales and allows to obtain the region of the forcing parameters for which the
parametric resonance is achieved. The analytical solutions are validated against numerical results provided by the finite element code
ABAQUS through which a full 3D nonlinear model is addressed. The analytically obtained transition curves (representing the boundary
between resonant and non resonant behavior in the space of forcing parameters) and the frequency response curves are compared to
those obtained numerically achieving a good agreement. The voltage thresholds for which the parametric resonances are induced, and
the robustness of the responses suggest that the investigated phenomenon is a promising strategy for surface dynamic morphing.

Introduction

A piezoelectric formulation valid rigorously only for parallelepiped-shaped beams is proposed. The model is focused on
the parametric resonances induced by a pulsating voltage whose gradient is defined along the thickness [1]. The transition
curves defining the forcing parameters for which the beam exhibits a parametric resonance are obtained using the method
of multiple scales [2, 3]. The nonlinear equations of motion of the continuous piezoelectric beam are reduced employing
a full-basis Galerkin-discretization of the continuous piezoelectric beam [4, 5].
Finally, the closed form asymptotic results are compared with those obtained by the direct integration of the nonlinear
dynamic problem performed with the nonlinear finite element software ABAQUS [6]. The results show a good agreement
and the simplified hypotheses adopted for the piezoelectric beam model are confirmed. The implemented assumptions
could be also used for developing a simplified piezoelectric shell model.

Equations of motion

Consider the 3D Euclidean space with a Cartesian fixed frame (s, y, z) where the position of each point can be defined by
a vector x = se1 + ye2 + ze3. The straight beam exhibits a rectangular cross-section of edges b and h and the position
of each section along the beam span l, in the reference configuration, is described the vector r0 = se3 with s ∈ [0, l].
The local frame in the reference configuration is denoted by (b1

0, b2
0, b3

0). Unit vectors b10 is collinear with e1 while
the pair (b20, b3

0) represents a centered and principal frame for the beams cross-section.
The mechanical problem is formulated in the plane e1 − e3, and the displacement of the central line is denoted by
u(s) = u(s)b1

0 + v(s)b3
0. The rotation of the beam cross sections is θ(s) = θ(s)b2

0 where b2
0 coincides with e2.

According to Saint-Venant ansatz, stresses and strain states are simplified: σ22 = σ33 = σ23 = σ12 = 0 ε22 = ε33 =
γ12 = γ23 = γ13 = 0.
On the other hand, it is assumed that the voltage V varies only in the z direction according to the electric boundary
conditions to which it is subject. We are interested in the problem in which the top beam surface at z = h/2 is connected
to ground and presents V (h/2) = 0. On the bottom surface a voltage different from zero is assigned, V (−h/2) = Φ.
Moreover, it is assumed that the potential varies with a quadratic law across the relatively small beam thickness according
to

V (z, t) = Φ0(t) + Φ1(t)z +Φ2(t)
z2

2
. (1)

. Imposing the potential boundary conditions given above yields

Φ1(t) = −
Φ(t)

h
. (2)

The beam axial force and the bending moment can be obtained by integration over the cross-section of the elastic axial
tension.
The equations of motion for the nonlinear beam in the current local frame can be written as

N ′ +
µ

ν
M ′ = ρAü cos θ + v̈ sin θ, (3)

µN + (
M ′

ν
)′ = −ρAü sin θ + v̈ cos θ. (4)

where the shear force has been condensed using equation for the balance of the angular momentum, the prime indicates
differentiation with respect to s and the overdot with respect to time t. Equation (4) can be condensed considering that
the axial force is constant along the beam.
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Figure 1: Parametric resonance regions for the PVDF sample where the black solid lines are obtained according to the fifth order
solutions for the lowest three beam modes assuming ζ = 3 % and V0 = 5 V; the black and red circles denote nonresonant and resonant
responses provided by ABAQUS while the blue circles indicate resonant responses for the plates modes; the gray and blue vertical thin
lines are placed at twice the frequencies of the beam-like modes and twice the plate-like frequencies, respectively; the black dashed
horizontal lines denote the amplitudes of the AC voltage V1 for which the ABAQUS simulations were run, namely, (1.5, 2.5, 5) V.

The Method of Multiple Scales

The unknown displacement is expressed as follows

v(s, t) = ǫv1(s, t0, t2, t4) + ǫ3v3(s, t0, t2, t4) + ǫ5v5(s, t0, t2, t4). (5)

and Φ1 = V0 + ǫ2V1 cosΩt where the forcing frequency is Ω = 2ω + ǫ2σ. The parameter σ represents the detuning of
the forcing frequency with respect to twice of the frequency of the excited mode. Moreover, the damping ratio is assumed
as ǫ2ζ. Collecting the terms with the same order of ǫ, the nonlinear equation of motion can be written up to the 5th order
and solved asymptotically.

Results

The transition zones identified by ABAQUS are in accordance with the transition curves evaluated with the closed form
expression. In fact, the threshold points provided by ABAQUS are very close to the asymptotically obtained curves (see
Fig. 1). In particular, the correction obtained with the 5th order frequency response curves (black solid lines) show that
the fully numerical and reduced model are in close agreement.

Conclusions

The present paper investigates the parametric resonance conditions induced by a pulsating voltage in a PVDF copolymer
beam/plate. The piezoelectric properties of the PVDF film are exploited to induce an initial tensile stress that makes
the structure stiffer and increases the natural frequencies. A nonlinear piezoelectric beam model is developed and the
transition curves for the lowest three modes are computed using the method of multiple scales. The obtained results
are validated via ABAQUS through which the piezoelectric system is addressed within geometrically nonlinear problem
formulation.
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Particle Damping of Floating Oscillating Surge Wave Energy Converters
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Summary. Expanding the deployment of oscillating surge wave energy converters to deep waters requires mounting them on sub-
merged platforms close to the water surface. One issue is that large amplitude waves, required for better energy generation, induce
large platform motions, particularly in the surge direction. These motions could adversely impact the flap’s hydrodynamic performance.
We investigate, through an explanatory experimental study, the use of particle damping to control the surge motion of the platform un-
der different wave excitations. The results point to complex nonlinear effects of particle damping and couplings among the different
degrees of freedom, which yield differing responses under different excitation parameters.

Introduction

Oscillating surge wave energy converters (OSWEC) are one of the most efficient means for capturing and converting
wave energy into a more useful form of energy, e.g., electricity. Because the surge component of ocean wave energy is
most prevalent near the water surface, OSWEC wave capture components must be positioned near that surface to realize
maximum efficiency. This placement, however, constrains their deployment to shallow water sites. In contrast, mounting
the OSWEC onto a submerged platform close to the water surface, as schematically shown in Figure 1, expands the
deployment range to deep water locations where there is need to power observation stations, autonomous underwater
robots, offshore islands, ships and submarines, among many other blue economy systems and devices.

Platform Surge Roll

Yaw

Heave

Sway

Pitch

Oscillating flap

Particle damping

Figure 1: Schematic of oscillating surge wave energy converter mounted on a platform

Although resonance is always desired to achieve large amplitude motions for efficient energy generation, optimal wave
energy conversion from a pitching flap-type device may not take place at resonance. Designing the flap to be resonant
requires a relatively small added mass, which results in a small wave force. In contrast, designing the flap to attract a large
wave force requires a large added mass, which results in a non-resonant device [1]. Clearly, larger wave forces induced by
larger wave amplitudes, could be more effective in increasing the power capture than operating at resonance conditions
for OSWEC. In the case of a floating oscillating surge wave energy converters (FOSWEC), large wave forces, intended to
increase the flap’s rotational displacement, could also induce significant platform motions, which may adversely impact
the response of the flap oscillator and reduce the level of generated power. Consequently, it is important to control the
platform’s motion.
One control approach is to introduce passive damping by attaching a set of cylinders or boxes containing particle dampers
to the platform, as schematically shown in Figure 1. This robust approach is particularly effective and practical under
random excitation [2] and when considering the harsh operational conditions of FOSWEC in high sea states, over a broad
range of frequencies defined by irregular wave spectra. Here, we perform experiments in a wave tank to investigate the
effectiveness of particle damping in reducing the motion of the platform while increasing the flap’s response as desired
to enhance the energy generation. The results are used to characterize complex nonlinear effects and nonlinear couplings
among the different degrees of freedom.

Experimental Setup

The experiments were performed in the wave tank of the Davidson Laboratory. The tank is 100 m long, 5.4 m wide and
2.1 m deep. The waves are generated by a dry-back, six-paddle, electrically driven, flap type wave-maker capable of
generating regular and spectral waves with periods between 2 and 5 seconds and heights up to 0.65 m. Each paddle has
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an individual servo-drive with purpose-built digital controller. The tests were performed on a scaled floating oscillating
flap mounted on a platform positioned 0.79 m below the water surface. The 1.2 m wide, 0.95 m high and 0.127 m thick
oscillating flap (Figure 1) was composed of an aluminum frame filled with foam. Its total mass and mass moment of
inertia were respectively 21.5 kg and 5.5 kg.m2. The flap was hinged to the ( 1.5 m x 1.17 m) platform, which was
built using T-slotted framing rails attached by corner brackets. The platform was held by four strings at the corners
that extended underwater and connected to extension springs with loop ends that were firmly held in position by heavy
weights on the bottom of the tank. The particle damping system consisted of four 5-cm PVC tubes that were 0.53 m
long. These tubes were partially filled with low carbon steel spheres having a diameter of 1.9 cm to yield 18% mass ratio.
A displacement sensor was placed on top of the flap frame to measure the relative linear displacement between the flap
and the platform. A 3-phase accelerometer and a 3-phase gyroscope IMU were mounted on the platform to measure all
rotational and translational accelerations. One wave wire, placed at 5 m upstream of the flap, was used to measure the
incident wave height. All data were acquired at the rate of 100 Hz. Tests were conducted for different wave heights and
periods.

Particle damping

Without PD 

With PD      

Figure 2: Reduction in surge amplitude induced by particle damp-
ing for a wave period of 4 seconds and amplitude of 4.5 cm.

Figure 2 shows that particle damping yielded a 73% re-
duction in the platform’s surge displacement when the pe-
riod of the excitation 4.5 cm-wave was set to 4 seconds.
This reduction percentage was not, however, consistent.
Damping particles did not cause any reduction in the surge
displacement when the wave period was set to 4.5 sec-
onds. Furthermore, the platform surge displacement in-
creased by 150% at the lower wave period of 2.85 seconds.
Analysis of the pitch and yaw motions showed similar re-
sponses, pointing to the complex nonlinear dynamics of
particle damping and the coupling between the different
degrees of freedom.The impact of reducing the surge mo-
tion on the rotational displacement of the flap is deduced
from figure 3, which shows that particle damping of the
platform’s surge motion increased the angular rotation of
the flap by about 40%.

PD  

PD  

Figure 3: Increase in angular displacement of the flap under particle
damping of the platform’s surge motion. Wave period 4 seconds.

In the full paper, we will evaluate and discuss all mech-
anisms contributing to particle damping of the surge re-
sponse of the platform. These include collisions between
the particles and the container, inelastic particle-to-particle
collisions, and frictional losses. These depend on different
factors including mass ratio defined as the ratio of the mass
of the damping particles to the total mass of the platform
and flap; void ratio defined as the ratio of volume not occu-
pied by particles to volume occupied by particles; porosity
defined as the ratio of volume not occupied by particles to
bulk volume of the particles; clearance defined as the dis-
tance particles can travel before impacting the wall, rolling
friction; and coefficients of restitution among the particles
and with the enclosure. We will also elaborate on the cou-
pling between the different degrees of freedom and energy
transfer between the flap and platform motions.

Conclusions

We tested in a wave tank the use of particle damping to control the surge motion of a near-surface platform supporting an
oscillating surge wave energy converter. The data showed effective damping and enhanced flap oscillations under specific
excitation conditions, but less effective or even increased motions under other conditions. These observations point to the
complex nonlinear features of particle damping.
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Summary. Particle dampers show a huge potential to efficiently damp lightweight structures. However, they suffer from

their nonlinear characteristics and the multitude of influence parameters. For horizontal vibrations of low frequency, re-

cently, the rolling attribute of spheres has been used to obtain high energy dissipation rates in driven particle containers.

As long as the particle container’s acceleration amplitude stays below the gravitational acceleration, this rolling effect

of spheres can be used. Hereby, the estimation of the damper’s energy dissipation is accurately possible using analytical

formulas.

In this paper, a design guideline for a systematic damper design for an underlying structure of low first eigenfrequency

under free vibration is presented. To develop this guideline, the analytical expression of the rolling effect of spheres is an-

alyzed in detail. The particle damper is separated into multiple layers with different lengths. Hence, a high damping ratio

over a large vibration amplitude range can be obtained. For experimental validation purposes, a simple beam-like struc-

ture is utilized. A good agreement between expected and experimental obtained vibration response is achieved for the de-

signed particle dampers.

Introduction

To reduce large vibrations amplitudes of lightweight structures, passive damping techniques are often used.
Classical liquid dampers are commonly utilized for these applications. Those dampers are well studied and
mathematically easy to describe. However, liquid dampers fail under harsh environmental conditions and do need
an anchor point. Thus, for applications where liquid dampers are not suitable, alternative damping technologies
are necessary. Hence, particle dampers are an alternative, due to their simple and robust design.
Particle damping technology uses containers that are attached to the vibrating structure and are filled with
granular material. By structural vibrations, momentum is transferred to the granular material which start to
interact with each other. Due to these interactions, energy is dissipated by impacts and frictional phenomena
between the particles. Particle dampers show great advantages compared to other damping technologies, as
these add only little mass to the primary system [4], are cost-efficient devices, and might be applied to a wide
frequency range [2]. Particle dampers can also be applied in harsh environmental conditions [14, 18]. One
popular example are spacecraft applications [13]. Despite particle damper’s huge potential, their design is still a
non-trivial and challenging task. This is because particle motion, also called motion mode, and the damper’s
energy dissipation correlate in a non-trivial way, which is often poorly understood. Identifying these correlations
is still part of ongoing research, see e. g. [3, 6, 7, 16, 19, 20, 21].
Especially, for low frequency vibrations, the use of particle dampers is rarely seen so far. For these vibrations,
the particle container’s acceleration amplitude is mostly below the gravitational acceleration. Hence, particles
begin to stick and no relative motion between particles and container is obtained. Thus, only a little amount
of energy is dissipated [5]. To face this problem, recently, in [12] the rolling attribute of spheres is studied for
horizontal vibrations. It is shown that for low filling ratios, particles begin to slide and roll over the container
base instead of sticking. For vibration amplitudes below a certain threshold stroke, which only depends on the
filling ratio of the damper, no synchronous particle motion is obtained. This motion is named scattered state.
The scattered state results in a comparatively low energy dissipation. Increasing the amplitude of the vibration
above the threshold stroke, a synchronous particle motion with the container is obtained. The particles start
to move as one particle block and collide inelastically with the container walls. This results in high energy
dissipation rates and is called rolling collect-and-collide motion mode. For both observed motion modes, in [12]
analytical equations are derived describing the damper’s energy dissipation. These analytical equations are
validated by comparison to experimental measurements of a driven particle container.
In this paper, the damper design of [12] is adopted to damp a structure of low first eigenfrequency under free
vibration. Therefore, the analytical equations are studied in detail and a simple design guideline is derived. The
idea of the design guideline is to separate the particle damper into multiple layers with different lengths. Hence,
different vibration amplitudes can be damped efficiently, leading to high damping ratios on a large amplitude
range. For validation purposes, a simple beam-like structure is utilized. The base point of the beam is fixed.
The particle damper is mounted at the tip of the beam and the damper’s velocity is measured using a laser
scanning vibrometer. Thus, the system’s free response is measured.
This paper is organized as follows: First, in Sect. Motion Modes the occurring motion modes for low-intensity
horizontal vibrations are introduced. In the following Sect. Design Guideline, the particle damper’s design
guideline is developed. Then, in Sect. Experimental Validation the design guideline is applied to design a
particle damper for the free vibration attenuation of a simple beam-like structure. Finally, a conclusion is given.
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Motion Modes

A motion mode describes the motion of a particle bed inside a harmonic vibrating container of the form
xc = X sin(Ω t), with container amplitude X and angular frequency Ω = 2 π f . For such a container movement, the
corresponding container velocity and acceleration follow to ẋc = V cos(Ω t) and ẍc = −A sin(Ω t) with V = X Ω
and A = X Ω2. For such a container movement, different motion modes of the particle bed can be observed.
Various influence parameters affect the occurring motion mode, like excitation intensity and frequency but
also gravity, excitation direction, or particle size. The most common motion modes are solid-like, local
fluidization, global fluidization, convection, Leidenfrost effect, bouncing collect-and-collide, and buoyancy
convection [3, 6, 7, 16, 19, 20, 21].
For horizontal vibrations of low acceleration amplitude, i. e. A < g with g being the gravitational acceleration,
two different motion modes can be observed if spherical particles on flat container bases with low filling ratio
are used, see [12] for a detailed discussion. An example of such a container is shown in Fig. 4 in form of the
later utilized particle damper. The observed motion modes inside this container are called scattered and rolling
collect-and-collide and are depicted schematically in Fig. 1. Particle trajectories of these two motion modes,
obtained by discrete element simulations, are shown in Fig. 2 [12]. Interestingly, both motion modes only depend
on the so-called optimal stroke Xopt, which only depends on the clearance h, i. e. the distance of the particle bed
to the opposite container wall as indicated in Fig. 1. Following [12], the optimal stroke is obtained to

Xopt ≈ 0.4 h. (1)

To judge about the particle damper’s efficiency the effective loss factor η̄ [6, 11] is used. It is calculated by a
scaling of the dissipated energy of the particle damper per radian Ediss with the kinetic energy of the particle
system using the mass of the particle bed mbed, i. e. the mass of all particles, to

η̄ =
Ediss

Ekin
=

Ediss
1
2 mbed V 2

. (2)

Scattered state: The scattered state occurs for container amplitude X < Xopt. This motion mode is similar to
the gaslike state observed by Sack [15] under the condition of weightlessness. The particle movement is randomly
and chaotic. Hence, in Fig. 1 just a schematic representation of the movement of the particles is shown. Particles
are hitting each other and the container walls at random phases. In [12] it is observed that a higher vibration
amplitude X leads to more particle collisions while a higher clearance h leads to fewer particle collisions.
The analytical solution of the effective loss factor of the scattered state is shown in Fig. 3 for X < Xopt being a
good approximation to experimental measurements [12]. The effective loss factor starts close to zero for very low
container amplitudes, i. e. X ≪ Xopt, and increases linearly. At the transition to the rolling collect-and-collide
motion mode, i.e. at X = Xopt, the highest value of 0.4 is reached.
Rolling collect-and-collide: The second motion mode observed for low frequency horizontal vibrations is the
rolling collect-and-collide one, see also Fig. 1 and Fig. 2. Within this motion mode, i. e. for X > Xopt, the
particle bed rolls and slides as one single particle block over the container’s base. Thus, the translational and
rotational velocities of every single particle are assumed to be identical. First, the particle bed is pushed by the
container until the container reaches its maximum velocity, i. e. at Ω t = n π with n ∈ N. At this time point the
container is positioned at xc = 0 and its velocity is maximal, i. e. ẋc = ±V . As the particle bed is pushed by the
container, almost no rotational movement of the particles is seen during this pushing phase, i. e. ϕ̇p = 0. When
the particle container has reached its maximum velocity and starts to decelerate, the particle block leaves the

rolling collect-and-collide (X > Xopt)

L

h

ẋp = V, ϕ̇p = 0 ẋp = xc(ti), ϕ̇p = 0

t

ẋp < V, ϕ̇p > 0

t

xc

t

xc

t g

xc

scattered state (X < Xopt)

Figure 1: Motion modes at different container strokes for low acceleration amplitudes.
(ẋc : container velocity, ẋp : particle bed velocity, ϕ̇p : angular velocity of particles)
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a) Scattered state.
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Figure 2: Particles trajectories obtained from DEM simulations for different container strokes [12].
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Figure 3: Effective loss factor for scattered and rolling collect-and-collide motion mode [12].

container wall and the single particles start rolling due to friction with the container base. The particle block
collides inelastically with the opposite container wall at the impact time point ti. During this impact multiple
inter-particle and particle–wall impacts occur. Although, by every single impact, only a small amount of energy
is dissipated, in sum a perfectly inelastic collision of the particle bed with the container wall is achieved, i. e. the
particle block adopts the velocity of the container [1, 17]. During this inelastic collision, the rotational movement
of the particles stops. This sequence is repeated when the particle container moves in the other direction. Hence,
in sum, two particle impacts with the container walls occur during one vibration cycle.
The effective loss factor for this motion mode is shown in Fig. 3 for X > Xopt. The effective loss factor starts
at X = Xopt with its maximum value η̄max ≈ 0.91 and decreases slowly to higher container amplitudes. This
progression of the effective loss factor can be explained by taking the relative velocity between particle bed and
container at the impact time point with the container wall into consideration. For very high container amplitudes,
i. e. X ≫ Xopt, the particle bed leaves the container wall with a high velocity. Thus, the particle bed collides
after a short period with the opposite container wall, i.e. Ω ti → 0. Consequently, the relative velocity between
particle bed and container at impact is comparatively low, resulting in a low efficiency. When the container
amplitude decreases, i. e. is getting closer to Xopt, the impact time point increases, and thus the relative velocity
at impact increases as well. This leads to a higher damper efficiency. The threshold for this motion mode is
at an impact time point of Ω ti = π. For this time point, the container is located at xc = 0 but moves in the
other direction as the particle block, i. e. ẋc = ∓V . This is the impact time point of maximum relative velocity
between particle bed and container and thus of the highest efficiency. For this time point, X ≈ 0.4 h holds. For
even lower container strokes, the system switches to the scattered state. This switch happens as for the rolling
collect-and-collide motion mode less than two impacts with the container wall per vibration cycle would occur.
However, this is a necessary condition of this motion mode.

One should note that the experimental results in [12] are in good agreement with the analytical solutions
of the effective loss factor shown in Fig. 3. However, in [12] the testbed to subject the particle container to
a sinusoidally motion is set up very precisely. It is obtained that especially a container tilt or a high friction
coefficient, significantly lower the effective loss factor.
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Design Guideline

To design an appropriate particle damper, at first some general points have to be discussed. At first, it is
assumed that the system that should be damped is described by

Mẍ + Dẋ + Kx = 0, (3)

with mass M , structural damping D, stiffness K and particle damper position x. In [8] a detailed description is
given, of how to derive this equation of motion for arbitrary structures.
For the damper design, the effective loss factor, see Fig. 3, has to be considered. As the particle damper exhibits
much higher effective loss factors during the rolling collect-and-collide motion mode, this motion mode should be
realized during the operation of the damper. Likewise, any free vibration of a structure with initial amplitude X0

will decrease in amplitude over time. Hence, the particle layers should be designed such that X0 > Xopt holds to
ensure an operation within the rolling collect-and-collide motion mode. However, the question arises of how to
design the particle layers, i. e. particle mass and clearance h, appropriately.
In the first step, the necessary particle mass needs to be determined. It can be calculated by the desired damping
ratio of the structure ζd and the effective loss factor, see [9]. However, the effective loss factor is not known and
changes over time. Experimental measurements, as discussed later, have shown that an appropriate designed
particle damper exhibits an effective loss factor of about η̄ = 0.5 on a large amplitude range. So this is a good
starting value for design. The particle mass is obtained to

mbed ≈ 2 M
ζd

η̄
. (4)

Many experimental measurements, see [8], have shown that a separation of the particle container into at least
three layers leads to good damping properties. To ensure a high damping over a large vibration amplitude range,
the damper layers should be designed such that

X0

Xopt
= {2, 4, 6} , (5)

see also Fig. 3. Inserting Eq. (5) into Eq. (1) the clearances of the three damper layers are obtained to

h =

{
5

4
,

5

8
,

5

12

}

· X0. (6)

Hence, starting from an initial vibration amplitude X0, the effective loss factors are η̄0 = {0.69, 0.38, 0.25} and
are increasing as the vibration amplitude decreases until the optimal strokes of the individual damper layers
are reached. When the optimal stroke of a layer is reached, the particle bed within this layer switches to the
scattered state, and the energy dissipation of this layer reduces dramatically. The three optimal strokes are
obtained by Eq. (5) to

Xopt =

{
1

2
,

1

4
,

1

6

}

· X0. (7)

Hence, the minimum vibration amplitude of the system will be about Xmin ≈ 1
6 X0 as for lower vibration

amplitudes all three particle layers will be in the scattered state. Hence, only a little amplitude reduction is
achieved from that moment. To ensure uniform damping, the particle mass should be distributed evenly over
the damper layers. It should be noted that lower vibration amplitudes could be reached if additional damper
layers are used with a higher ratio of X0/Xopt = 6. However, for very low vibration amplitudes, the effects of
friction or little container tilts are becoming more and more dominant. Hence, additional damping might be
hard to realize for very low container amplitudes. See [12] for further details.
To enable the inelastic collision property of the rolling collect-and-collide motion mode, see also Sect. Motion

Modes, in each particle layer at least three by three particles should be used. To decrease the influence of
friction a high particle radius is beneficial. As particle material, steel has been proven to be very durable [9, 12].

Experimental Validation

In the following, the presented design guideline shall be validated experimentally. The used experimental setup
is shown in Fig. 4. It consists of a simple beam-like structure with the particle damper mounted at its tip. The
elastic length of the steel beam is 512 mm with a rectangular profile of 80 mm × 2 mm and a Young’s modulus
of E = 200 GPa. The base point of the beam-like structure is fixed and the tip consists of an additional mass and
the particle container with a total weight of 1270 g. The particle container is made of polyvinyl chloride (PVC)
and has a quadratic cross section with an inner edge width and height of 40 mm and a length L of 120 mm in
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excitation direction. The container is separated into three horizontal layers with a height of 11 mm each, as
shown in Fig. 4-right. Additionally, the length of each layer can be adjusted by separation walls. The container’s
velocity is measured using a laser scanning vibrometer, the PSV-500 from Polytec, with a sampling frequency
of 250 kHz and integrated internally to obtain the output position. The measurement starts at the first zero
crossing of the particle container.
For this system, the mass and stiffness for Eq. (3), follow to M = 1.058 kg and K = 143 N/m. The
eigenfrequency of the undamped system is f0 = ω0/(2π) = 1.85 Hz. This numerical obtained eigenfrequency
is very close to the experimental measured one with only a difference of 0.02 Hz. The structural damping
parameter D is obtained from measurements and is with a value of 0.032 kg/s rather small [8, 10]. All three
particle layers are filled with 16 steel spheres of 5 mm radius. Hence, a total particle weight of 196 g is
used. To verify Eq. (4) for the necessary particle mass, a damping ratio ζ = 0.046 should be measured with
this particle setting. An initial amplitude of X0 = −63 mm with clearances according to Eq. (6) are used,
i. e. h ≈ {80, 40, 25} mm. The initial acceleration is A0 = 8.5 m/s2 < g. Consequently, the particle bed is
in the rolling collect-and-collide motion mode from the very beginning. The three resulting optimal strokes
are Xopt = {32, 16, 10} mm. Figure 5 shows the trajectory of the system’s tip, i. e. the particle damper, and the
hull curve of the undamped system. Additionally, the obtained damping ratios are depicted.
During the first vibration cycle, a damping ratio of ζ = 0.035 is achieved, which increases as the container
amplitude decreases. The damping ratio stays high with values around ζ ≈ 0.046, i. e. the desired damping ratio.
Around the three optimal strokes, i. e. at container amplitudes of Xc = {32, 16, 10} mm, a kink towards lower
damping ratios is seen. This happens as here the corresponding particle layer switches into the scattered state,
leading to a reduced energy dissipation. For container amplitudes below 11 mm, only very small damping ratios
of about ζ ≈ 0.02 are achieved. This container amplitude is close to the theoretical minimum value Xmin with
10 mm. The low damping ratios are achieved for strokes below 11 mm because all three particle layers are in the
scattered state from that moment. In summary, for this system, the design guideline has been proven to be very
efficient.
Sensitivity analyses: To prove that the design guideline also works efficiently for other systems, the beam-like
structure is modified. The same initial amplitude, the same particle mass and the same clearances are used. For
the first modification, an additional mass of 942 g is mounted at the tip. Its total mass is hence M = 2.0 kg.
The new eigenfrequency of this system results in f0 = 1.35 Hz. Due to the higher system mass, the achievable
damping ratio according to Eq. (4) reduces to ζ = 0.025. The experimental results of the container stroke and
damping ratios are shown in Fig. 6. The results show the same qualitative behavior as for Fig. 5, but on a larger
time scale, due to the higher system mass. The measured damping ratios are around ζ ≈ 0.025. Hence, the
design guideline works still efficiently for this system.
For a second modification, a different beam is used. This steel beam has the same length but with a rectangular
profile of 80 mm×3 mm instead of 80 mm×2 mm. This significantly changes the stiffness to K = 484 N/m. The
system’s mass is only a little affected, i. e. M = 1.108 kg. The system’s eigenfrequency follows to f0 = 3.33 Hz.
Due to the increases eigenfrequency of the system, the acceleration at the initial stroke X0 increases to A0 =
28 m/s2 > g. This causes the system to be in the bouncing collect-and-collide motion mode first [8]. Here, the
particles are flying thru the container instead of rolling. Indeed, the optimal stroke is only little affected as it is
achieved to Xopt ≈ 0.32 h compared to Xopt ≈ 0.4 h. The maximum effective loss factor value is η̄max ≈ 1.27
compared to η̄max ≈ 0.91. In Fig. 7 the trajectory of the system’s tip and the damping ratios are depicted.
Again, the results show similar qualitative behavior as for Fig. 5. Although the theoretical maximum effective
loss factor is higher, the damping ratios are very similar compared to Fig. 5. Probably, the container layers
hinder the deployment of a purely flying particle state. Indeed, this requires further investigations. Still, the
design guideline even works well for container accelerations above the gravitational constant.

fixed
support

tip with
particle damper

elastic link

particle layers

Figure 4: Simple beam-like structure setup with overview (left) and augementation of its tip (right).
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Figure 5: Damped simple beam-like structure with clearances according to Eq. (6) with a) trajectory of tip and b) damping ratios.
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Figure 6: Damped simple beam-like structure with extra mass with a) trajectory of tip and b) damping ratios.
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Figure 7: Damped simple beam-like structure with stiffer beam with a) trajectory of tip and b) damping ratios.
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Conclusion

In this paper, a systematic design guideline for the development of layerd particle dampers for low frequency
horizontal free vibrations is presented. Hereby, the rolling collect-and-collide motion mode of the particle bed
is employed. The particle damper is separated into multiple particle layers and filled with steel spheres. Via
the design guideline, the necessary particle mass for the desired damping ratio is determined only based on the
structure’s mass. A simple analytical equation is given to design the clearances of the different particle layers,
i. e. the distances between the particle bed and the opposite container wall.
The efficiency of the design guideline is verified experimentally. A simple beam-like structure is used for this
task. The structure is subjected to an initial deflection and the damping ratio of the free vibration is measured.
The damping ratios are close to the designed values. Finally, sensitivity analyses are performed by changing
either the stiffness of the beam or by adding mass. Either way, the good damping performance is conserved.
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Tracing periodic solutions in noise-contaminated experiments

Sandor Beregi, David A. W. Barton, Djamel Rezgui and Simon A. Neild
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Summary. In our study, we trace the steady-state solutions of a periodically forced nonlinear oscillator experimentally using control-
based continuation. Our investigation is motivated by nonlinear aeroelastic oscillations where the noise load of experiments is often
significant due to the unsteady flow in the wake of the vortex-shedding, oscillating bodies. Polluting our experiment with different
amount of noise, we evaluate the resilience of the control-based continuation method against random perturbations and assess its
capability to retain the response of the underlying deterministic system.

Introduction

Tracing a family of periodic solutions is a long-established area of studying nonlinear systems. For numerical dynamical
models, the techniques of bifurcation analysis have become standardised and are available nowadays in several software
packages. In experiments however, the steady-state periodic solutions are often traced by performing parameter-sweeps.
Although this approach is usually easy to implement it provides limited information from the system as it can capture
stable solutions only. Control-based continuation is a technique which implements the ideas of bifurcation analysis in
experiments [1]. By applying feedback-control on the system, this method is capable to trace both stable and unstable
steady-state periodic oscillations in an experimental setting. To achieve this, a control process is introduced which has
to be stabilising and non-invasive, i.e. the steady-state solution of the controlled system is also solution of the open-loop
system.
Our study is motivated by examples of aeroelastic oscillations originated in the interaction between inertial, structural
and aerodynamic forces. The related vibrations, such as stall flutter of an aerofoil, caused by the periodic detachment
and re-attachment of the flow, or the galloping oscillation of blunt elastic structures (e.g. cables) in airflow due to vortex-
generation around the body, are substantially nonlinear phenomena. In the literature, several semi-empirical, low-degrees-
of-freedom models were developed to investigate these oscillations [2]. Since these models use empirical coefficients there
is a great demand for reliable parameter identification methods in this area.

Tracing steady-state solutions in noise-polluted experiments

In experiments, it may be challenging to obtain data which represent the dynamics of the investigated system accurately
if the measurements subject to significant noise, as it is often the case with aeroelastic oscillations.
A nonlinear analysis of aeroelastic dynamical models can reveal a rich structure of different steady-state solutions and
bifurcations [3, 4]. Nevertheless, in a physical experiment, these oscillations can result in a highly unsteady flow in the
wake of the vortex-shedding objects. Thus, one may observe that the magnitude of measurement noise is comparable
to the vibration amplitudes. In such conditions, the standard, open-loop parameter-sweeps may not be satisfactory for
the characterisation of the system. For instance, in parameter regions with two co-existing stable steady-state solutions,
the system may jump repeatedly between the two domains of attraction leading to an incomplete coverage of even the
stable solutions [5]. The aim of our study is to demonstrate that tracing the solutions with a control-based method is more
resilient against random perturbations than open-loop parameter-sweeps.

Case-study: parameter identification of a forced nonlinear oscillator under noise-load

U

F

m

Figure 1: Left panel: The forced nonlinear oscillator. Right panel: The analogous model of vortex-induced vibrations.

To assess the capability of control-based continuation to deal with measurement noise we traced the steady-state solutions
of a periodically forced nonlinear oscillator (see Fig. 1). In the experimental rig, the nonlinearity is primarily provided by
the magnets mounted to the end of the elastic plate. As the plate vibrates the magnets are passing before the electromag-
netic coil resulting in a nonlinear restoring force. The experiment can also be polluted with additional noise by driving
current through the coil; thus, measurements can be conducted at different noise-levels.
This experimental setup may be seen as analogous to vortex-induced aeroelastic vibrations. These vibrations are similar
to the galloping phenomenon in a sense that they can be originated in the vortex-shedding behind a blunt object as in
the case of bridge cables. However, unlike in case of galloping where the frequency of vortex-shedding is equal to the
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Figure 2: Steady-state response of the periodically forced nonlinear oscillator for different forcing amplitude. The blue markers
correspond to amplitude-sweeps, the red ones to control-based continuation, respectively. The blue and red curves indicate the response
of the fitted model while the dashed orange curve indicates the low-noise response in the panels corresponding to medium and high
noise-levels.

vibration frequency, in case of vortex-induced vibrations, the frequency belonging to vortex-generation depends on the
Strouhal number of the flow around the aerofoil [3]. Thus, while galloping is essentially considered as a self-excited
vibration, vortex-induced vibrations are often modelled as forced nonlinear systems. One example is the semi-empirical
model of Goswami et al. [6] given in the form

m
(
ẍ+ 2ζωnẋ+ ω2

nx
)
= F (x, ẋ, ẍ, ωt) (1)

where m is the mass of the vibrating object, ωn is the structural natural angular frequency, ζ is Lehr’s damping coefficient
whereas the aerodynamic force F contains both the nonlinear and the periodic forcing terms.

Robustness against noise

We traced the S-shaped branch of periodic solutions of the experimental rig at different noise levels by performing both
open-loop parameter-sweeps and control-based continuation. The acquired data was then used to identify the parameters
of a one-degree-of-freedom Duffing-like oscillator with seventh-order nonlinearity. The results of parameter-sweeps and
control-based continuation are compared in Fig. 2. At low noise level, the system can be characterised equally well by
both methods. If a medium level of noise (around 25 % of the maximum vibration amplitude) parameter-sweeps begin to
lose a part of the stable solutions as the jumps from low to high vibration amplitudes occur earlier than the folds in the low-
noise solution branch. In the meantime, control-based continuation is still able to retain the original response reasonably
well. However, at high noise levels (about 50 % of the maximum vibration amplitude) even the response curve fitted to the
data obtained by control-based continuation visibly deviates from the branch corresponding to low noise. Nevertheless,
control-based continuation still performs better as parameter-sweeps scarcely capture the bistable parameter region at this
level of noise.

Conclusions

Comparing the response curves, acquired at different noise-levels, indicates that control-based continuation is more re-
silient against noise than open-loop parameter sweeps. Furthermore, having information about the unstable steady-state
solutions of the system is clearly advantageous at nonlinear parameter fitting to noisy measurements. Therefore control-
based continuation could be effectively used to investigate nonlinear aeroelastic systems experimentally.
Of course, our experimental rig has a relatively simple bifurcation diagram with only one bistable parameter domain
and we also have access to the low-noise system. Consequently, if a more complicated structure of bifurcations is ex-
pected, based on deterministic theoretical models, the relationship between the measured and theoretical results may be
less straightforward. Therefore, it is interesting to investigate what kind of response one can expect to find in a noise-
contaminated measurement and how are the results obtained from the experiment related to the underlying deterministic
system [7].
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Abstract 
In this study, active vibration control of bladed drum (BLUM), which has a high modal density, with piezoelectric 
patches utilizing decentralized controller evaluated experimentally. BLUM has 76 protruding blades, which create 76 
modes in a short interval of frequency named as high modal density. High number of modes in a very short frequency 
range makes mitigating them quite challenging. In this article, 76 collocated pairs of piezoelectric patches are used to 
damp the vibration of these modes. These modes relate to the displacement of the blades. Therefore, piezoelectric 
patches are used as sensor to measure the displacement of each blade. Then the collocated actuator piezoelectric patch 
applies a force in a reverse direction to reduce displacement of the blade, actively. In order to avoid to cause any 
disturbance for air flow around the blades, the piezoelectric patches are glued in the bottom groove of BLUM where 
there is no air flow. The blades of BLUM are inclined and in order to increase the performance of the system, the 
piezoelectric patches are produced in a trapezoidal shape which will increase the control authority of system. 76 Open 
loops are extracted and an IFF controller is designed to implement in a decentralized manner. 76 pairs of piezoelectric 
patches are glued on the structure and connected to the connector board. Also, a circuit is designed and produced based 
on the controller’s transfer function to apply on the setup in a decentralized way. The 76 controller boards are connected 
to the connector board to control the structure’s vibration. The structure is excited by the acoustic speakers in the 
frequency band which the first family mode exists. The structure displacement is measured by a laser vibrometer. The 
performance index of system shows that in the controlled condition all of 76 modes in the first family mode are damped 
remarkably. 
 
Keywords: BLUM, Active Vibration Control, Decentralized Controller, Piezoelectric sensor/actuators, Family 
Mode, High Modal Density. 
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Summary. The aim of this contribution is to review and compare three different methods that have been proposed in order to derive
reduced-order models for geometrically nonlinear structures, and relying on a nonlinear technique to better take into account the
nonlinearities of the initial problem. The three methods are: implicit condensation, quadratic manifold derived with modal derivatives,
and projection onto an invariant manifold, tangent at the origin to the linear eigenspace of the master modes. The methods are briefly
reviewed theoretically and then compared with dedicated examples.

Nonlinear techniques for model-order reduction

In the realm of reduction methods for geometrically nonlinear structures, numerous methods have already been proposed
in the past, and one can roughly divide the methods according to the fact that they use either a linear or a nonlinear
change of coordinates. Among the linear methods, the POD is well-established and has been used for a long time. For the
nonlinear techniques, the review paper [1] proposes an overview with applications to finite element (FE) problems.
When referring to vibrating structures discretized by the FE method, mainly three different nonlinear techniques have
been proposed in the last years: implicit condensation (IC), quadratic manifold derived with modal derivatives (QM), and
the direct parametrisation method for invariant manifolds, giving rise to either graph style or normal style solutions.
The implicit condensation is a non-intrusive method that can be used with any FE code. It relies on applying a series
of static loads, having the shape of the selected master modes, to the structure; and retrieving the associated nonlinear
displacements [2]. From this set that creates a stress manifold [3], a fitting procedure is derived in order to get the nonlinear
restoring force of the master coordinates, which takes implicitely into account the non-resonant coupled modes in a static
manner [2, 4].
The quadratic manifold method with modal derivatives have been introduced with the aim of proposing a nonlinear change
of coordinates, directly applicable from the FE nodes of a mesh [5]. The main idea is to embed the modal derivatives,
earlier defined in order to take into account the amplitude dependence of a mode when the nonlinearities are taken into
account, as the quadratic component of the nonlinear mapping. The Galerkin projection is then used to compute the
reduced dynamics from the nonlinear mapping.
The invariant manifold approach relies on firm theoretical results from dynamical systems theory. The main idea is
to use an invariant manifold that is tangent to the master modes of interest at the origin, in order to obtain a rigorous
computation of the amplitude dependence. Whereas the idea has been first introduced by Shaw and Pierre in the 90s [6],
later embedded in the normal form theory in order to define nonlinear mappings [7], recent contributions tackled the
problem of uniqueness by introducing spectral submanifolds (SSM) [8], as well as using the parametrisation method for
invariant manifolds [9] in order to unify the previous derivations in the same settings, allowing one to select either a graph
style solution or a normal form approach. However, until recently, the direct application of these methods to FE problems
still remained difficult since the derivations assumed the problem expressed in the modal basis as a starting point. Recent
contributions overcame this issue, by proposing a direct computation of the reduced dynamics, from the FE nodes to the
invariant-based span of the phase space, thanks to dedicated nonlinear mappings, see e.g. [10, 11, 12].

Comparisons

Theoretical results
The three reduction methods have been compared in details in the following references [13, 4, 14]. In particular, it has been
clearly demonstrated that both IC and QM methods needs a slow/fast assumption in order to propose accurate predictions.
By slow/fast separation, it is meant that the eigenfrequencies of the slave modes needs to be larger than those of the master
modes. This frequency gap has been estimated in [4, 14] to be around 4, based on the hardening/softening prediction of
a single mode reduction. As a matter of fact, this limitation of these two methods comes from their derivation, which is
static in nature and neglects important dynamical couplings. In particular, both IC and QM methods are neglecting the
velocity dependence in the proposed nonlinear mappings, which then creates important limitations and the need to have
this slow/fast separation [4, 14, 1]. As underlined for example in [1], when taking back the velocity dependence in the
nonlinear mapping proposed in the QM method, then one recovers the more complete change of coordinates proposed
with a direct normal form approach as proposed in [10].
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Figure 1: (a) Backbone curves for a linear beam resting on an elastic foundation, comparison between QM methods with
either full modal derivatives (MD) or static modal derivatives (SMD), Implicit condensation (ICE), and direct normal
form (DNF). Reference solution in black. (b) Comparison between Implicit condensation (IC), direct normal form (DNF)
and full-order solution for a MEMS micromirror.

Numerical results
Two different numerical results are reported for the sake of illustration. The first case consists in computing the backbone
curve of a linear beam resting on a nonlinear elastic foundation with reduction to a single master mode. The results
are shown in Fig. 1(a), highlighting that in such a case, only the solution based on invariant manifold theory is able to
correctly reproduce the softening behaviour [15]. The second example is that of a MEMS (Micro Electro Mechanical
System) micromirror, discretized with 3D block elements. The mesh has 15 341 nodes.Fig. 1(b) highlights that the IC
method overpredicts the hardening behaviour of this structure [16].
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Summary. This paper presents a general methodology to obtain a reduced order model (ROM) of geometrically nonlinear electro-
mechanical structures with piezoelectric transducers. A standard modal reduction is used and the ROM is built using a finite-elements
software thanks to a non-intrusive strategy. In this context, this article focuses first on the validation of the proposed reduced order
modelling strategy, especially for the piezoelectric part of the ROM, and second to the use of three-dimensional finite elements and
associated convergence issues.

2

20 mm

stack plate

Silicon circular plate

Piezoelectric layer + electrodes

Piezoelectric CircularPiezoelectric
patches

PZT

Ti
Pt

Si
SiO

Figure 1: (left) Photograph of two examples of piezoelectric thin structures: a circular plate with eight piezoelectric patches and a
micro-plate with two annular piezoelectric patches. (right) cutaway view of the microplate, showing its laminated structure

Geometrical nonlinearities, due to large transverse displacements of thin structures, are encountered in a large range of
applications, as long as the thickness of the structure is small corresponding to the other dimensions. On the other hand,
the use of piezoelectric materials to actuate or/and sense the vibrations is also widely spread. Applications, among oth-
ers, range from vibration control [3, 11] to Micro/Nano-Electro Mechanical Systems (M/NEMS) developments, whose
purpose can be to master and use the geometrically nonlinear behaviour [12, 14, 10]. This paper focuses on the numer-
ical computation of the frequency response, in the frequency domain, of structures with geometrical nonlinearities and
equipped with piezoelectric patches. Recent advances in non-intrusive reduced-order finite element modeling of nonlinear
geometric structures offer new perspectives for massive nonlinear prediction in structural computation [7]. An application
on piezoelectric nanobridges of such a method has been proposed in [6, 15]. Apart those two references, to the knowledge
of the authors, the case of both geometrical nonlinearities and piezoelectric electromechanical coupling has been scarcely
considered in the past literature. The purpose of this paper is to fill this gap and to propose a non intrusive method able to
efficiently compute the coefficients of a modal reduced order model, taking into account both the geometrical nonlineari-
ties and the direct and converse piezoelectric couplings.

Common architectures of thin structures with piezoelectric layers (see examples on Fig. 1) are often laminated, such as
beams with complex cross section [13] and laminated beams/plate structures [2, 4, 1]. When modelling such a structure
in a finite-element context, one can consider equivalent single layer theories [9, 6] or simply use three-dimensional finite
elements (3DFE). Because in our case some layers of the structure are piezoelectric, in most of the cases, only 3DFE are
available in commercial codes. In this article, we will consider both approaches.

We consider an elastic structures with P piezoelectric patches discretized by the finite-elements method. The vector
containing the mechanical degrees of freedom is denoted by U(t) and V (p) denotes the voltage across the terminals of the
p-th. piezoelectric patch. As shown in [6], considering a modal expansion of U(t) on K modes (Φk, ωk) of the structure
with all piezoelectric patches short circuited, U(t) =

∑K
k=1 Φkqk(t), one obtains the following system of equations for

the modal coordinates qk(t) and the voltages V (p), ∀ k = 1, . . .K, p = 1, . . . P :




q̈k + 2ξkωk q̇k + ω2
kqk +

K∑

i,j=1

βkijqiqj +
K∑

i,j,l=1

γkijlqiqjql +
P∑

p=1

χ
(p)
k V (p) +

P∑

p=1

N∑

i=1

Θ
(p)
ik qiV

(p) = Fk,

C(p)V (p) −
K∑

k=1

χ
(p)
k qk −

K∑

i,j=1

1

2
Θ

(p)
ij qiqj = Q(p).

(1a)

(1b)
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In the above equations, three independant groups of term can be identified. First, the geometrical nonlinearities create
quadratic and cubic terms in qk with coefficients βkij and γkijlk. Secondly, the piezoelectric linear coupling creates two

terms of coefficients χ(p)
k , which correspond to the exchange of energy between the k-th. vibration mode and the p-th.

piezoelectric patch. Then, both geometrical nonlinearities and piezoelectric coupling are responsible of additional cou-
pling terms, of coefficient Θ(p)

ij , not symmetric because of the 1/2 factor in the second equation. In addition, C(p) is the
electric capacitance of the p-th. patch, Fk is the mechanical forcing and Q(p) is the electric charge contained in one of the
electrodes of the p-th. patch.

In this context, this article has several purposes. First, it will be shown that it is possible to extend a particular non intrusive
method, the so-called stiffness evaluation procedure (STEP), relying on the static application of prescribed displacements
and introduced in [8], to compute the piezoelectric coefficients χ(p)

k and Θ
(p)
ij using a commercial code in a non intrusive

way. Then, even if the STEP has been validated in many articles in the past (see [5] and reference therein) to compute
the geometrically nonlinear part of the ROM (the quadratic and cubic terms with coefficients βkij and γkijlk), it will be
shown that using 3DEF is not as straightforward as it could appear at first and that it conducts to strange behaviours of
slow convergence as a function of the number K of modes retained in the expansion basis, much slower that in the case
of the use of plate or shell two-dimensional finite-elements. Finally, the computation of the coupling coefficients χ(p)

k and

Θ
(p)
ij will be validated with comparison to an analytical reference model of a three layers hinged hinged beam with two

colloacated piezoelectric patches.
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Summary. In this contribution we present a method to directly compute asymptotic expansion of invariant manifolds of large finite
element models from physical coordinates and their reduced order dynamics on the manifold. We show the accuracy of the reduction
method on selected models, exhibiting large rotations and internal resonances. The results obtained with the reduction compared to
full-order harmonic balance simulations show that the proposed methodology can reproduce extremely accurately the dynamics of the
original systems with a very low computational cost.

Introduction

Slender structures in large amplitude vibration exhibit geometric nonlinear effects that modify their dynamics. To accu-
rately model structures with complex geometries, large finite element models with a high number of degrees of freedom
are often required. Numerically, the geometric nonlinear forces affect all the elements in the structure thus making the
simulation of such problems very demanding in terms of computational cost. Reduced order models of geometrically
nonlinear structures are then an attractive solution to drastically reduce the size of the problem whilst maintaining the
accuracy.
In damped systems, slow invariant manifolds are low-dimensional attractors for the dynamics of high-dimensional non-
linear systems, and therefore represents the ideal candidate for model order reduction. However, their computation was
until very recently limited to small system written in modal coordinates [?]. Recent developments by the authors [2-4]
have proposed the Direct Parametrisation of Invariant Manifolds method (DPIM) to compute invariant manifolds directly
in physical coordinates, thus extending the applicability of said model order reduction strategy to large FE structures. A
similar work is done in [5].

Direct parametrization of Invariant Manifolds (DPIM)

Mechanical structures in large deformations display geometric nonlinearities in the form of quadratic and cubic restoring
forces. When discretised with the finite elements method, the dynamics of such structures can be written as a system of
N ordinary differential equations in time, with N the number of degrees of freedom:

MÜ+CU̇+KU+G(U,U) +H(U,U,U) = 0 (1)

Invariant manifolds tangent to a given linear master subspace of the system are computed as an arbitrary order (o) asymp-
totic expansion of the physical coordinates U in terms of the so-called normal coordinates z, which are tangent to the
linear modal coordinates of the selected master mode:

U =
o∑

p=1

Ψ(p)(z) (2)

The reduced dynamical model, which represents the dynamics on the computed manifold, is also built as a polynomial
function of the normal coordinates in first-order form:

ż =

o∑

p=1

f (p)(z) (3)

The coefficients of the change of coordinates Ψ and reduced dynamics f are then found iteratively order by order by
assembling a so-called homological equation for each monomial in z, which results in the solution of a series of N ×N
linear system of equations.

Numerical Results

Since each homological equation is underdetermined, different styles of parametrisation can be chosen by selecting appro-
priate resonance conditions, namely the Real Normal Form style (RNF), the Complex Normal Form style (CNF), and the
Graph style [3]. The main difference between Normal Form styles and the Graph style is that in the former the manifold
is parametrised as an embedding, whereas in the latter it is parametrised as a graph. In most cases, the results provided
by each style are very similar but in case the computed manifold presents a folding, the graph style would diverge in
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the vicinity of the folding point [6]. Physically, the folding of an invariant manifold can be seen as the point where the
nonlinear mode becomes less and less represented by its linear counterpart, at a level such that as the nonlinear modal
amplitude continues increasing, then the linear one starts to decrease.
The first nonlinear mode of a cantilever beam is studied here, and it is shown in Fig. 1 that the graph style fails at rep-
resenting the full system dynamics when the amplitude of oscillations has order of magnitude comparable to the beam
length. This failure can be observed both in the non-physical softening effect in the backbone curve and in the divergence
of the invariant manifold. On the other hand, both normal form styles can perfectly reproduce the folding in the mani-
fold and the backbone curves obtained with these styles are perfectly overlapped with that obtained from continuation of
the full order model, up to very large amplitude oscillations. This exemplifies how powerful the method is in perfectly
reproducing the dynamics of a large finite element system with a single oscillator reduced order model.
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Figure 1: Model reduction of the first nonlinear mode of a cantilever beam up to large amplitude vibration. Backbone curves (top left),
reconstruction of reduction at point A and B along the backbone curves (top right), and invariant manifolds (bottom). Three different
parametrisation styles are used, and the full order model solution is obtained with harmonic balance method (HBFEM)

Conclusions

Nonlinear modes have become an essential tool for engineers in that they proNonlinear modes have become an essential
tool for engineers in that they provide crucial insights on the dynamics of structures. The computation of nonlinear modes
and their associated invariant manifolds for model order reduction is of utmost importance for modern industry. In this
respect, the extension of nonlinear modes calculations to large scale finite element models is a critical issue that will
allow the use of this tool in industrial scale problems. The method proposed here is based on a classical asymptotic
expansion of invariant manifolds, but its computation is adapted to the case of FE models with a high number of degrees
of freedom. The rigorous mathematical foundation of the method coupled with a thoughtful implementation make it
extremely accurate and fast, thus making it the ideal candidate for reduced order modelling of geometrically nonlinear
structures in an industrial framework.
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Data-driven aerodynamic models for reduced-order aeroelastic simulations
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Summary. Time-dependent aerodynamic loads of thin elastic structures subjected to airflow can be calculated by numerous methods.
Analytical, semi-empirical, reduced-order, and CFD-based models can be utilized to calculate the aerodynamic loads. Calculations
of the aerodynamic loads are influenced by nonlinear aerodynamic effects for large deformations of the elastic structure, such as
dynamic stall, hysteresis, and vortex formation. In this work, the applicability and accuracy of a data-based identification method for
calculating the aerodynamic loads in the time domain are investigated. To create the data-based model, high precision validated CFD
simulations were used. The model was constructed using the SINDy (Sparse Identification of Nonlinear Dynamics) algorithm. After the
initial data fitting process, the reduced-order aeroelastic simulations with the identified aerodynamic models run up to five magnitudes
faster than classical high precision FSI simulations. The most significant advantage of this method is that it can be applied to a large
variety of different geometries, and it is also accurate for large deformations and large angles of attack in the nonlinear aerodynamic
regime.

Introduction

Obtaining accurate and efficient aerodynamic models has been a fundamental goal of research efforts in aeronautics over
the past century [1]. Aerodynamic models are essential for designing aircrafts [2], building large span elastic bridges [3].
Accurate aerodynamic models are used to evaluate static and dynamic aeroelastic stability and develop feedback control
laws for aircraft. Closed-form solutions for the attached incompressible unsteady flow problem around a two-dimensional
(2D) airfoil exist in both the frequency and time domains [4]. However, these models do not provide acceptable results in
the case of rapid oscillations and high angles of attack.
Semi-empirical models such as ONERA and Leishman-Beddoes can be used to approximate the aerodynamic nonlinearity
caused by the dynamic stall and flow separation. Lelkes and Kalmár-Nagy modeled the aerodynamic forces for large
angles of attack as a piecewise linear function, which was able to capture the phenomenon of dynamic stall [5].
Considering machine learning advancements, developing reduced-order models based on data obtained from measure-
ments or numerical simulations began to gain popularity recently [6]. An overview of data-driven methods in aerospace
engineering is given by Brunton et al. [7]. In the work of Pohl et al. [8] the SINDy method is used to derive polynomial
models for the lift of an airfoil.
In this paper, the Sparse Identification of Nonlinear Dynamics (SINDy) method [9] is applied to create accurate aerody-
namic models of a simple flat plate subjected to airflow using data obtained from CFD (Computational Fluid Dynamics)
simulations.

Sparse Identification of Nonlinear Dynamics (SINDy)

In this paper, we use the Sparse Identification of Nonlinear Dynamical systems (SINDy) method, introduced by Brunton
et al. [9, 10], and later refined in the work of Champion et al. [11]. An overview of the method and the description of
the Python package that is used in our paper is given by Silva et al. [12]. Sparse Identification of Nonlinear Dynamics
is a method based on representing the model as a system of possible nonlinear ordinary differential equations, whose
right side can be written as a linear combination of some elementary functions [9]. Then a sparsity promoting regression
is applied to determine the coefficients, resulting in easily interpretable models with only a few active terms. Physical
constraints can be easily incorporated by constraining the regression procedure.
The LASSO and the STLSQ optimization method have been used for the regression. These methods have l1 and l2
regularized objective functions, respectively. The STLSQ procedure incorporates an adjustable threshold, any coefficient
below this threshold is neglected. Then the regularization is repeated again for some iterations. The norms are defined as

l1(x) =
n∑

i=1

|xi|, (1)

l2(x) =

√√√√
n∑

i=1

(xi)2. (2)

Using the formulas (1) and (2), the objective functions for the LASSO and STLSQ optimization procedure are respec-
tively:

1

2n
||y −Xw||22 + λ ||w||1 , (3)

1

2n
||y −Xw||22 + λ ||w||22 . (4)
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To determine the hyperparameters, the Optuna [13] package was used. Using this package, a multiobjective optimization
was performed with the objectives defined as the error of the integrated model and the number of terms. So-called Pareto-
optimal hyperparameter groups were determined. This means that for a given group, there are no other groups, which
would result in an improvement over both objectives. This way, multiple models can be chosen, depending on the needs
of the given task.

Identified models

The CFD simulations that the models have been trained on were obtained by prescribing a sinusoidal oscillation for the
pitch (α) or the plunge (h) motion of the flat plate wing, with a 1m chord length. During the simulations we prescribed
the motion in the following form

α(t) = αamp cos(ωt), h(t) = hamp cos(ωt), (5)

where αamp and hamp are the oscillation amplitudes, and ω is the angular frequency of the oscillation.
Data were obtained for three oscillation amplitudes and frequencies of the pitching and plunging motion, resulting in 18
different time series of the aerodynamic lift coefficient. The details of the CFD simulations are described in [14, 15].
Three models were identified, one for each frequency. The frequency was nondimensionalized; the resulting reduced
frequency is defined as k = ωb

U , where b is the half chord length, U is the wind velocity, and ω is the angular frequency of
the oscillation.
The aerodynamic model equations were created by using the state variables α, α̇, CLα

, h, ḣ, CLh
. The Reduced-Order

Models (ROMs) of the pitch CLα
and the plunge CLh

induced lift coefficients are

ĊLα
(α, α̇, CL; k) = a1(k)α+ a2(k)α̇+ a3(k)CLα

+ a4(k)α
2 + a5(k)αα̇ . . . , (6)

ĊLh
(h, ḣ, CLh

; k) = b1(k)h+ b2(k)ḣ+ b3(k)CLh
+ b4(k)h

2 + b5(k)hḣ . . . , (7)

where a lexicographic ordering was used for the coefficients ai(k) and bi(k), which are listed in Table 1 and 2. We assume
that the total lift coefficient CL is the sum of the pitch and the plunge induced lift coefficients, i.e.,

CL = CLα
+ CLh

. (8)

Reduced frequency a1 a2 a3 a11 a16 a19 a35 a50

k = 0.1 0.213 5.42 0 249 0 0 -665.76 -1.52·106
k = 0.2 12.2 0 -2.70 0 0 0.799 0 0
k = 0.5 4.01 6.32 -1.34 0 -56.5 0.463 0 0

Table 1: The coefficients of the pitch reduced-order model (Eq. (6)).

Reduced frequency b1 b2 b3 b9 b35 b50

k = 0.1 -0.172 2.874 -0.398 0 0 0
k = 0.2 -0.715 2.33 -0.34 0 0 0
k = 0.5 -6.47 6.43 -1.6 -0.033 14113 23599

Table 2: The coefficients of the plunge reduced-order model (Eq. (7)).

We determined the Normed Root Mean Squared Error (NRMS) of the aerodynamic models using the formula

NRMSCL
=

1

CLmax − CLmin

√√√√
∑N
i=1

(
CL − ĈL

)2

N
, (9)

where N is the number of data points, CL is the CFD simulation data, ĈL, is the predicted value by the ROM simulation,
CLmax is the maximum, while CLmin is the minimum value of the CFD simulation data. The NRMS for the three pitch
and three plunge models can be found in Table 3 and 4, respectively.
For the reduced frequency k = 0.1, the lift coefficients from the CFD simulation and the fitted model as the a function of
the angle of attack for oscillation amplitudes αamp ∈ {2◦, 5◦, 10◦} are shown in Figure 1.
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(a) αamp = 2◦ (b) αamp = 5◦ (c) αamp = 10◦

Figure 1: Comparison of the identified ROM with the CFD simulation for k = 0.1 and αamp ∈ {2◦, 5◦, 10◦}.

Figure 2 illustrates the comparison of the identified ROM with the CFD simulation for k ∈ {0.1, 0.2, 0.5} and αamp =
10◦. It can be observed that the models provide a very good fit overall, can reproduce the nonlinear behavior associated
with the high angle of attack and high-frequency oscillations.

(a) k = 0.1 (b) k = 0.2
(c) k = 0.5

Figure 2: Comparison of the identified ROM with the CFD simulation for k ∈ {0.1, 0.2, 0.5} and αamp = 10◦.

For the reduced frequency k = 0.1, the lift coefficients from the CFD simulation and the fitted model as the a function of
the plunge displacement for oscillation amplitudes hamp ∈ {0.02m, 0.05m, 0.10m} are shown in Figure 3. For the low
reduced frequency k = 0.1, the reduced-order model gives an almost perfect fit.
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(a) hamp = 0.02m (b) hamp = 0.05m (c) hamp = 0.10m

Figure 3: Comparison of the identified ROM with the CFD simulation for k = 0.1 and hamp ∈ {0.02m, 0.05m, 0.10m}.

Figure 4 illustrates the comparison of the identified ROM with the CFD simulation for k ∈ {0.1, 0.2, 0.5} and plunge
amplitudes hamp = 0.1m. It can be observed that the models provide a very good fit overall, can reproduce the nonlinear
behavior associated with the high plunge amplitudes and high-frequency oscillations.

(a) k = 0.1 (b) k = 0.2 (c) k = 0.5

Figure 4: Comparison of the identified ROM with the CFD simulation for k ∈ {0.1, 0.2, 0.5} and hamp = 0.10m.

Oscillation amplitude Model for k = 0.1 Model for k = 0.2 Model for k = 0.5

2◦ 2.53% 1.88% 1.66%
5◦ 2.45% 2.25% 0.94%
10◦ 3.44% 4.62% 1.61%

Table 3: The NRMS values of the identified aerodynamic models for the pitching motion.

Oscillation amplitude Model for k = 0.1 Model for k = 0.2 Model for k = 0.5

0.02m 0.46% 0.67% 4.73%
0.05m 0.4% 0.65% 4.13%
0.10m 0.36% 0.65% 0.89%

Table 4: The NRMS values of the identified plunge aerodynamic models.
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Performance of the models for coupled pitch and plunge motions

To check the accuracy of the identified models, we have run coupled pitch and plunge motion simulations. We defined
the following coupled motion

α(t) = αamp cos(ωt), h(t) = hamp cos(ωt+ φ), (10)

where φ is the phase between the motions of the pitch and plunge.
In Figure 5 the comparison is shown between the CFD simulation, and the identified ROM model for k = 0.1, αamp =
10◦, and hamp = 0.1m for three different phase shift values. Both the combined pitch-plunge model and also the pitch-
only model is shown. It can be observed that the combined model can capture the nonlinear aerodynamic forces for the
coupled pitch and plunge motion. Using the combined model, the error in the maximum value of the lift is reduced by up
to 87%. The NRMS values of the combined model for the three test cases were under 5%.

(a) φ = 80◦ (b) φ = 90◦ (c) φ = 100◦

Figure 5: Comparison of the identified ROM with the CFD simulation for k = 0.1, αamp = 10◦, and hamp = 0.1m.
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Conclusions

The significant problem of creating reduced-order models for aerodynamic loads, valid for large amplitude, and frequency
oscillations, was studied. The SINDy method was utilized to extract the governing differential equation of the aerody-
namic lift coefficient from CFD data of a flat plate with pitching and plunging motion. This method resulted in easily
interpretable, simple models. It was shown that the identified models for one particular frequency show excellent agree-
ment with the CFD simulation data for varying amplitude oscillations. The future goal of this research is to couple the
created aerodynamic model to the structural dynamical model of a flexible plate subjected to airflow.
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Summary. This work presents results of experimental investigation and a low-order model development for resonant complex dynamics of 
a cantilever macro-plate. The plate is fabricated from a ‘hyperelastic’ material using 3D printing technology. The geometry of the plate with 
cut-outs is optimized such that the second linear bending mode frequency 𝜔ଶ is nearly twice the linear first twisting mode frequency 𝜔ଵଵ . 
Based on the observed 2:1 resonant response under harmonic excitation near 𝜔ଶ, a low-order 2 DOF dynamic model is developed to 
simulate the plate response. The unknown model parameters are extracted using Harmonic Balance solutions and curve fitting techniques. 
A good agreement is observed between the analytical and the experimental results for different excitation levels. 

Introduction 
Modal coupling and their influence on system response continues to attract much interest and has been the subject of 
several review papers that study the influence of mode interactions on different structures from the macro to the micro 
scale and their potential applications [1]. Internal resonance is among the primary nonlinear coupling mechanisms 
between the different modes of vibration which can be triggered when the ratio between the frequencies of coupled modes 
is commensurate and the directly excited response amplitude exceeds a certain threshold [1]. Parameter estimation 
techniques have received significant attention for developing models that can predict the complex dynamics of a structure 
under loading conditions that are difficult to test experimentally [2]. Most of the prediction techniques rely on error 
minimizing algorithms that minimize the difference between predictions of the analytical model and the experimental 
results. Conventionally, one system state is experimentally measured, and the other states are derived using numerical 
integration or differentiation techniques which amplify noise at low or high frequency. Processing the signal to reduce 
the high frequency noise might remove the response at higher harmonics and also introduce aliasing in the data [2]. 
Frequency response approach based on curve fitting eliminates the issues associated with signal processing but requires 
more theoretical effort and a comprehensive understanding of the system model and the effects of different coefficients 
on the response [2]. In this work, the plate geometry, Fig. 1a, is designed following the topology optimization procedure 
described in [3] such that for the cantilever plate, the second bending mode 𝜔ଶ ሺͳ 𝐻𝑧ሻ and the first twisting mode 𝜔ଵଵ ሺ͵ͷ.ͷ 𝐻𝑧ሻ are in 2:1 ratio. The plate is fabricated using 3D printing technology from a hyperelastic material thus 
incorporating material nonlinearity. To study the plate dynamics, a TIRA shaker is used to actuate the plate at different 
acceleration levels and a laser Doppler vibrometer is used to record the response. 

                       
                                                           (a)                                                                        (b) 
Figure 1: (a) The dimensions of the optimized plate are in millimeters showing the laser measurements point. Plate thickness = ͳ.ʹ 𝑚𝑚. (b) The FFT of the impulse response showing the first three modes of vibration (insets: Corresponding mode shapes). 

Results and discussion 
To capture the modal interaction of the two modes in the cantilever plate response, two coupled oscillators described by 
generalized coordinates ݑሺݐሻ and ݒሺݐሻ are considered. The directly driven mode ݑሺݐሻ is modeled as nonlinear oscillator 
with linear natural frequency 𝜔ଶ along with cubic 𝛼𝑐ݑଷሺݐሻ and quadratic 𝛼𝑞ݑଶሺݐሻ nonlinear stiffness forces. The 
experimental data for the directly excited mode shows a nonlinear dependence of the damping on the amplitude of 
vibration implying that a nonlinear dissipation mechanism needs to be incorporated. Here, a nonlinear damping model 
compromising of quadratic displacement multiplied by the velocity ݑଶሺݐሻݑ. ሺݐሻ is assumed. The secondary mode amplitude ݒሺݐሻ, the mode only excited due to its coupling with the primary mode, is modeled with a linear oscillator of frequency 𝜔ଵଵ which equals to half the driven mode frequency 𝜔ଶ, and a nonlinear interaction term. The interaction between the 

two oscillators is assumed to be nonlinear in the form of (ݒሺݐሻ)ଶ
 acting on the driven oscillator and ݑሺݐሻݒሺݐሻ acting on 

the secondary oscillator. The equations of motion normalized by the modal masses 𝑚ଵ,ଶ are then: ݑ.. ሺݐሻ + ʹ𝜉ଶ𝜔ଶݑ. ሺݐሻ + ሺ𝜔ଶሻଶݑሺݐሻ + 𝛼𝑞ݑଶሺݐሻ + 𝛼𝑐ݑଷሺݐሻ + ʹ𝜉𝜔ଶݑଶሺݐሻݑ. ሺݐሻ = 𝛾ଶ(ݒሺݐሻ)ଶ + 𝑟𝐴 cosሺΩݐሻ                                                                                                                                                                      ሺͳሻ ݒ.. ሺݐሻ + ʹ𝜁ଵ𝜔ଵଵݒ. ሺݐሻ + ሺ𝜔ଵଵሻଶݒሺݐሻ = 𝛾ଵݑሺݐሻݒሺݐሻ                                                                                                                           ሺʹሻ                        
where 𝜉ଶ, 𝜉ଵ are the modal damping ratios acting on the driven and the secondary oscillators, respectively. 𝜉 is the 
nonlinear damping coefficient. 𝛾ଶ , 𝛾ଵ are the coupling coefficients between the two modal amplitudes, A is the amplitude 
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of the base excitation acceleration, and r is the projected modal force acting on the driven oscillator. To extract the 
unknown parameters, the system of equations are initially numerically integrated for different values of the parameters 
and the numerical results are compared with experimentally recorded data. Also, the effect of each parameter on the final 
response is studied which helps in understanding its influence on the system response. Subsequently, the harmonic balance 
method is used to solve for steady state solutions of Eq. (1) and Eq. (2) in which the response is assumed to have the form 
of a truncated Fourier series. In the current analysis, two harmonics plus the constant term are utilized. To find the 
unknown parameters, the parameter extraction procedure is divided into multiple steps. The resonant frequencies values 𝜔ଶ and 𝜔ଵଵ can be inferred from the impulse response results given in Fig. 1b and are found to be 𝜔ଵଵ = ͵ͷ.ͷ 𝐻𝑧 and 𝜔ଶ = ͳ 𝐻𝑧. Then, the response in which only the directly excited mode has non-zero response and the internal 
resonance has not yet activated is considered, see Fig. 2 for the case of 1.65g base excitation. The system of equations 
assuming zero coupling coefficients, that is, 𝛾ଵ and 𝛾ଶ are set equal to zero, are solved for different values of the unknown 
parameters 𝜉ଶ, 𝛼𝑞, 𝛼𝑐, 𝜉, and 𝑟 until the simulation results match the experimentally recorded frequency response, as 
shown in Fig. 2. To extract the coupling coefficients 𝛾ଵ and 𝛾ଶ, the experimental response at 1.75 g, Fig. 3, is considered, 
and the 2 DOF model in Eq. (1) and Eq. (2) is solved for different sets of coupling coefficients until error is minimized 
between the harmonic balance results and the experimental response curve. Summary of the all the extracted parameters 
is given in Table 1. To verify the 2DOF model with the extracted parameter values, Eq. (1) and Eq. (2) are used for higher 
excitation levels and the simulation results are compared with the corresponding experimental data. As shown in Fig. 4, 
the harmonic balance results at various excitation levels are in reasonable agreements with the experimental 
measurements.

 
Figure 2: Experimental and harmonic balance frequency 
response results (HB) for the 1.65 g excitation case. 
 
 

 
(a) 

 
                      (a)                                          (b)     
Figure 3: Experimental and harmonic balance frequency 
response results (HB) for the 1.75 g excitation case with 
internal resonance activated. (a) Near 𝜔ଶ. (b) Near 𝜔ଵଵ . 

 
                                          (b)

Fig. 1: Frequency response of the macroplate to a harmonic base excitation at different acceleration levels with internal resonance 
activated. (a) Experimentally recorded results. (b) Harmonic balance results. 

Table 1: Summary of the extracted parameters. 

Parameter 𝜔ଵଵ 𝜔ଶ 𝜉ଶ 𝛼𝑞 𝛼𝑐 𝜉 𝑟 𝛾ଵ 𝛾ଶ  𝜉ଵ 
Value 35.5  71  ʹ.ͷ × ͳͲ−ଷ  × ͳͲ ͳ.ͷͶ × ͳͲଵ ͳ.ͷ × ͳͲସ 0.525 ͳ.Ͷͷ × ͳͲ ʹ.͵ × ͳͲ 0.1 

Summary and Conclusions 
A two-mode nonlinear model to predict the resonant response of a 3D printed cantilever macroplate to a base excitation 
is developed. The system is modeled with two nonlinearly coupled oscillators. The plate is designed such that the linear 
natural frequencies 𝜔ଶ and 𝜔ଵଵare in 2:1 frequency ratio. A harmonic balance analysis is used to approximate the 
response of the coupled oscillators using curve fitting techniques to extract the unknown parameters. The parameter 
estimation procedure is divided into three steps. In each step, the experimentally recorded results are used to find a subset 
of the unknown parameters. The final estimated parameters are used to predict the response at higher excitation levels. 
The analytical model predictions are seen in good agreement with experimental data.  
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Parametric analysis of a Nonlinear Energy Sink for an unstable dynamic system

Rémy Tanays, Leonardo Sanches and Guilhem Michon
ICA, Université de Toulouse, ISAE-SUPAERO, MINES ALBI, UPS, INSA, CNRS, Toulouse, France

Summary. The theoretical study of the change of steady state regime of an unstable dynamic system coupled to a nonlinear energy
sink with the respect of a set of parameters is developed in this paper. This study is carried out by the use of asymptotic methods
(multiple scale method mixed with harmonic balance method), it leads to singular perturbed system that is studied with geometric
singular perturbation theory. The steady state regime of the dynamic system is linked to the information extracted from the singular
perturbed system : the slow flow fixed points and their stability. From this information, analytical conditions are established. These
conditions lead to parametric analysis and bifurcation diagrams which are describing the mechanism of steady state regime change.
This study will allow to test huge and important set of parameters for a NES rapidly in comparison of numerical or experimental studies.

Introduction

The use of Nonlinear Energy Sink (NES) based on Targeted Energy Transfer is very efficient solutions for passive control.
A NES is a device composed of a light mass or inertia compared to the main system, a nonlinear stiffness and a viscous
linear damper. NES have been developed for the past ten years and many different technologies are used in order to realize
them experimentally. A state of the art is presented in [1] about these technologies such as piece-wise linear, non-smooth,
vibro-impact, bistable and magnetic NES.
Among several applications, NES are used to control dynamic instabilities or resonances, e.g.: helicopter ground reso-
nance, friction system (Hultèn’s model), airfoil system and systems under periodic excitation.
In order to control unstable or resonant system through nonlinear vibration absorber, a design approach needs to be carried
out. The method used for designing a NES consists in predicting the response of the nonlinear system through asymptotic
analytical approach. Among different approaches, the complex-averaging method (CX) [2] and the method of the multiple
scale combined with the harmonic balance method (MMS-HBM) [3] have been extensively applied. These approaches
lead into a singular perturbed set of differential equations of the modulation response amplitude.
This system of equation is later treated by applying the Geometric Singular Perturbation Theory (GSPT) [4] which de-
compose the complex motion of the system into a fast and a slow dynamic. Such methodology has been recently used to
survey the response regimes reached with a NES coupled to a primary system [5]. Based on the best authors knowledge,
the GSPT has only been used on the modulation equation obtained with CX-method and this approach has not been further
developed for parametric study of the NES’s parameters applied on the mitigation of unstable systems.
In this work, the design of NES used to mitigate divergent oscillations of unstable system is carried out. The fast and flow
dynamics of the singular perturbed system obtained with the combined MMS-HBM is treated with GSPT. The relation
between the critical manifold of the fast dynamics, the nature and position of the fixed points of the slow dynamics and
the NES response is evaluated. Finally, an extensive parametric study maps the different regimes of the dynamic system
for a large set of NES’s parameters and instability severity of the primary system.

Development and Results

The dynamic system considered is a single degree of freedom composed of a mass M , a linear stiffness K and a linear
negative damping coefficient C (SDOF in black line) coupled to a NES, composed of a mass m, a nonlinear stiffness k
and a linear damping factor c (red line) attached (see Figure 1).

m
c

k

x(t) y(t)

Figure 1: Mechanical model : in black an unstable SDOF, in red a Nonlinear Energy Sink (NES) attached.

By introducing a relative displacement v = x − y between the main system and the NES and the usual parameters such
as ω2 = K

M , ζ = C
2ωM , λ = k

M , rc = c
M and rm = m

M the equations of motion are obtained :
{
ẍ+ 2ζωẋ+ ω2x+ rcv̇ + λv3 = 0
rmv̈ − rmẍ− rcv̇ − λv3 = 0

(1)

After applying the whole method (MMS-HBM and GSPT) and getting the information from the slow flow (SIM, fixed
points, singular folded points, slow flow dynamics and stability) and the fast flow (modulation equation and dynamic fixed
point) it is possible to obtain the dynamic of the system represented in Figure 2.
The slow-flow fixed points in red are governing the response of the phase portrait (in black) Figure 2. The cycle is
governed mainly by the SIM (in blue), after reaching the first fold point, the system has enough energy to jump on the
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Figure 2: Nonlinear manifold, Slow flow information and Dynamic information with physical parameters rm = 4%,
α = 2%, ζ = −1%, Λ = 50.

other stable branch of the Slow Invariant Manifold (SIM). The highest fixed point which is unstable is forcing the system’s
amplitude to decrease to the second folded point in order to jump back on the first stable branch of the SIM.
From a parametric study, it is possible to understand that the stability (highly linked to the position) of the slow flow fixed
points governs the change of steady state response. It is also possible to highlight it by producing a bifurcation diagram
(Figure 3a).
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Figure 3: Bifurcation mechanism.

Figure 3a shows the mechanism responsible for the steady state regime change. There are three specific areas that will lead
to three different regime. The regime one corresponds to a Limit Cycle Oscillations (LCO) with strong or low modulated
response (Figure 3b). This regime appears when the intermediate slow flow fixed point is between the two folded singular
point of the SIM and unstable. When this fixed point is moving toward the first folded singular point, it becomes stable
and then leads to the regime two (Figure 3c). Finally, this point move to the static fixed point (0,0) and leads to the regime
three (Figure 3d).

Conclusion

The analytical study of a complex dynamic system composed of an unstable single degree of freedom and a NES through
asymptotic methods and singular perturbation method have been addressed. The theoretical result obtained allowed to
improve the influence of the NES parameter on the steady state regime of the dynamic system by conducting extensive
parametric study and computing bifurcation diagrams. All these results will now be used to design a NES theoretically
and reduce the numbers of iterations needed to design a NES that will mitigate the response of an unstable dynamic
system.
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Summary. In this paper, the analysis of a self-excited suspension bridge under turbulent wind flow is carried out. The stationary wind is 
responsible for self-excitation, while the turbulent part is responsible for parametric excitations. The simultaneous presence of those 
excitations is taken into account in a specific resonance condition. The periodic solutions are studied by means of a perturbation method and 
the effects of the turbulence on the dynamics of the structure are analyzed. 

Introduction 

Suspension bridges are long, slender flexible structures which are very sensitive to dynamic actions induced by wind, 
which causes a variety of instability phenomena, related to different kind of excitation. In particular, the aeroelastic 
instability dealing self-excited vibrations, such as galloping and flutter, is of particular interest, since these phenomena 
may cause devastating effects, leading to structural collapse like in the famous Tacoma Narrows bridge. The aeroelastic 
behavior of long-span bridges, and especially the aeroelastic instability, has drawn remarkable attention in the fields of 
structural engineering and physics. The modern era of bridge aeroelasticity was launched by [1]-[4]. More recently, many 
linear and nonlinear aeroelastic analysis frameworks for cable-supported bridges were developed, e.g. [5]-[9], to predict 
the aeroelastic response of bridges under steady and turbulent winds (the most by solving the motion equations by 
numerical tools). 
In this paper, the aeroelastic behavior of a suspension bridge is investigated by a continuous model. A simple analytical 
model of suspension bridge, subjected to turbulent wind flow, is proposed to analyze the aeroelastic in-plain instability 
(galloping). The objective is to take into account the possible occurrence of Hopf bifurcations, due to the steady part of 
the wind, and to analyze modifications on the solutions due to the turbulent part. The main innovative aspect relies in 
directly attacking the continuous problem by perturbation methods, leading to approximate formulae suitable for 
preliminary designs.  

Model 

A standard single-span suspension bridge, made of a main cable, a stiffening girder, uniformly distributed hangers (or 
suspenders) and two supported towers or pylons, is considered. The main cable is rigidly connected to the support towers, 
assumed to be rigid. The main cable is assumed to be uniform and elastic, and its bending stiffness is ignored. The 
structure is subjected to a turbulent wind flow of velocity 𝑈ሺݐሻ, blowing orthogonally to the plane of the bridge. A scheme 
of the model is shown in Fig. 1. 
 

Figure 1: Single-span suspension bridge model. 
 

Linear visco-elastic continuous models of beam and cable are formulated, coupled by vertical suspenders, modeled as 
uniformly distributed axially rigid links. Both external and internal damping are accounted, this latter according to the 
Kelvin-Voigt rheological model. The aeroelastic effects of the wind are evaluated via the classical quasi-static theory.  
 
Aerodynamic forces 
The aerodynamic load is caused by the wind, which blows orthogonally to the plane of the bridge, with time-dependent 
velocity 𝑈ሺݐሻ. This, triggers in-plane forces, which depend on the structural velocity, as result of the aeroelastic 
interaction. Only forces on beam are accounted, while force on the cable are neglected. Nonlinear aerodynamic forces are 
formulated in the framework of the quasi-steady theory (see [10]); by truncating them to the third-order, they read: 
 𝑝 = − ቀܾଵ𝑈ሺݐሻݒሶ + ܾଷ ଵ𝑈ሺ௧ሻ ሶݒ ଷቁ (1) 
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where the coefficients ܾ𝑖 are aerodynamic coefficients depending on the shape of the cylinder cross-section. The wind 
velocity is decomposed as 𝑈ሺݐሻ = ݑ̅ +  ,is a constant (average) part, representing the steady component ݑ̅ ሻ, whereݐሺݑ
and ݑሺݐሻ is a periodically time-dependent part, representing the turbulence. By assuming that the turbulent part is small 
compared to the steady one, the aerodynamic force is expanded is Taylor series.  
 
Equation of motion 
The dimensionless motion equations read: 
 𝜌ଶሺͳ + 𝜂߲௧ሻݒ′′′′ − ሺͳ + 𝜂߲௧ሻݒ′′ + Λଶሺͳ + 𝜂߲௧ሻ ∫ భమ−భమݏ݀ݒ + ሷݒ + ቀܿ𝑒 + ܾଵ(̅ݑ + ሻ)ቁݐሺݑ ሶݒ + ܾଷ ቀଵ௨̅ − ௨ሺ௧ሻ௨̅మ ቁ ሶݒ ଷ = Ͳݒ ቀ− ଵଶ , ቁݐ = Ͳ 𝜌ଶሺͳ + 𝜂߲௧ሻݒ′′ ቀ− ଵଶ , ቁݐ = Ͳݒ ቀଵଶ , ቁݐ = Ͳ, 𝜌ଶሺͳ + 𝜂߲௧ሻݒ′′ ቀଵଶ , ቁݐ = Ͳ   (2) 

 
The dimensionless parameters Λଶ and ρଶ accounts: the first, for the elastic and geometric properties of the cable (known 
as the Irvine-Caughey cable parameter [11]); the second, for the beam-cable stiffness ratio. The dimensionless terms 𝜂 , 𝜂 and ܿ 𝑒 are internal and external damping parameters. The Eqs. (2) are a generalization of the motion equations 
provided for the first time by Bleich et al. in [12], and recently re-examined by [13], accounting for additional damping 
and aerodynamic loads. They describe an infinite-dimensional system, parametrically excited by the turbulence. Here the 
turbulent part is considered harmonic, i.e., ݑሺݐሻ = ݑ̂ cosሺΩݐሻ, where ̂ݑ is the amplitude and Ω = ʹ߱ + 𝜎 is the frequency 
of the parametric excitation, chosen close to the double of the natural frequency ߱, with 𝜎 a small detuning. Therefore, 
the condition of principal parametric excitation occurs. 
To investigate the behavior of the structure in the nonlinear field, close to the dynamic bifurcation, a nonlinear asymptotic 
analysis is carried out. The Multiple Scale Method (MSM) is used, by directly attacking the partial differential equations 
of motion. A bifurcation equation in the amplitude of motion a(t) is obtained, from which periodic oscillations and their 
stability are analyzed.  

Main results 

The mains results consist in the stability domains (Fig. 2a) and bifurcation diagrams (Fig. 2b). 
 

Figure 2: (a) Stability domains; (b) Bifurcation diagrams in presence of turbulent wind. 
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Shape Optimization of Curved Mechanical Beams for Zero-Dispersion Point

Sahar Rosenberg∗ and Oriel Shoshani∗
∗Ben-Gurion University of the Negev, Be’er-Sheva 84105, Israel

Summary. In this study, we develop an optimization procedure of zero-dispersion point in curved mechanical beams. The zero-
dispersion point is associated with a zero-slope in the frequency-amplitude relation of a nonlinear resonator. As an outcome, local
to this zero-dispersion point, the nonlinear effect of amplitude-to-frequency noise conversion is eliminated, albeit the large oscillation
amplitude. This zero-dispersion point can be used for noise suppression and frequency stabilization of precision clocks and sensitive
detectors. The overall goal is to obtain the zero-dispersion point at the highest possible amplitude (for signal-to-noise ratio enhance-
ment) and frequency (for resolution enhancement). To this end, we found the optimal midpoint elevation of the curved beam and
optimized its initial bell-shape function using a genetic algorithm to maximize the frequency and energy level of the zero-dispersion
point.

Many technological applications use micromechanical beams as a frequency-selective element to attain high RF frequen-
cies. The practical requirement to operate above the noise floor of the device necessitates the need for large-amplitude
oscillation (relative to the small size of the micro-beam); these large amplitudes lie deep in the nonlinear range, where there
is considerable amplitude-to-frequency (A-f) noise conversion. However, in a specific class of nonlinear resonators, the
dependence of oscillation frequency on the energy (or amplitude) may be non-monotonic, generating energy levels where,
locally, the frequency is independent of the energy. For example, the oscillation frequency ω(Etot) can exhibit a softening
behaviour for low energy levels Etot < EZD, and hardening behaviour for high energy levels Etot > EZD, where in the
transition between these two behaviours, there is an extremum of the frequency corresponding to a zero-dispersion (ZD)
point Etot = EZD satisfying the condition dω/dEtot|EZD = 0 (Fig. 1, left panel). Hence, small amplitude fluctuations
are not translated into frequency fluctuations near this ZD point. Consequently, the ZD point can be used for suppres-
sion of frequency noise in both open-loop [1] and closed-loop [2] systems at large vibration amplitudes, which guarantee
operation above the noise floor of the device with a large signal-to-noise ratio (SNR).
In this study, we analyze the possibility to generate an optimal ZD point from the well-known and thoroughly explored
curved micro-beam [3, 4] (Fig. 1, right panel). In the curved beam, there are inherently hardening and softening non-
linearities, and therefore, we can obtain the ZD point, where these opposing nonlinearities cancel one another and the
fluctuations in the amplitude of vibrations do not locally affect the frequency [5].

Anchor Anchor

h

x

dwbz

ℓ

Figure 1: Left panel: The frequency-energy backbone curve of a nonlinear resonator with a zero-dispersion point. At the point of
zero-dispersion, Etot = EZD, there is an extremum of the frequency with a zero slope, and hence, the frequency is locally constant.
Right panel: Definition sketch of a curved micro-beam. The doubly clamped micro-beam of length ℓ and rectangular cross-section
(b× d) have an initial shape of an inverse bell, which is described by a function w0(x) and a maximal depth of h = |w0(ℓ/2)|.

We consider the conservative transverse vibration of a clamped-clamped shallow arch micro-mechanical beam of an
initial shape described by w0(x) with a maximal height of h, width b, thickness d and length ℓ (Fig. 1, right panel).
We wish to obtain a reduced-order nonlinear model for the beam and analyze its dynamics using the Euler-Bernoulli
beam model. We assume that the flexural motion of the beam is dominated by its fundamental frequency, and use a
single-mode approximation, w(x, t) = q(t)φ(x), where φ(x) is the eigenfunction of the fundamental mode that satisfies
the doubly clamped beam boundary conditions. We perform a Galerkin projection onto φ(x) to obtain the following
nonlinear ordinary differential equation for the modal coordinate q(t)

q̈ + ω2
0q + βq2 + γq3 = 0. (1)
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For an initially bell-shaped beam with w0(x) = hφ(x), the coefficients ω2
0 , β and γ in Eq. (1) are a function of h (the

normalized initial elevation of the midpoint of the beam). Moreover, Eq. (1) has an exact analytical solution that describes
the strongly nonlinear dynamics of q(t) in terms of elliptic functions [5]. Thus, we can find closed-form expressions for
the ZD point dω/dEtot|EZD

= 0 that yield the energy at the ZD point EZD, and the fundamental frequency at the ZD
point ω(EZD). We note that both EZD and ω(EZD) are functions of the coefficients ω2

0 , β and γ, which in turn are
functions of h. Therefore, using the initial elevation h as the design parameter, we can optimize these two expressions
EZD = f(ω2

0 , β, γ) = f(h) and ωZD = g(EZD) = g(ω2
0 , β, γ) = g(h). Specifically, by setting dEZD/dh = 0, we can

find the initial elevation h that maximize the energy level of the ZD point, max{EZD(h)}, and by setting dωZD/dh = 0
we can find the initial elevation h that maximize the frequency of oscillation at the ZD point, max{ωZD(h)}. As can be
seen form the left panel of Fig. 2, EZD is an increasing monotonic function of h, and thus, the maximal EZD is achieved
at the maximal initial elevation that is possible hmax. In contrast, ωZD is not a monotonic function of h (Fig. 2, left panel).
Therefore, for given dimensions and properties of the beam, there is a unique optimal frequency (Fig. 2, left panel).
Using the bell-shaped beam w0(x) = hφ(x) as an initial shape of the curved beam, we apply a genetic algorithm [6] to
find the optimal shape of the curved beam that yields a ZD point at the highest frequency and energy level. The genetic
algorithm uses the initial shape of the beam to create a population (group of shape functions) of other solutions in its
vicinity. After calculating the objective function dω/dEtot|EZD

= 0 for each individual (certain shape function) of the
population, the algorithm creates the next generation of population using the fittest solutions of the last generation by: (i)
selection, where the fittest solutions survive for the next generation, (ii) crossover, where each two solutions are being
used to create a new solution, and (iii) mutation, where some of the solutions are changed randomly. For each shape
function, we used spectral methods to calculate the coefficients of Eq. (1) and find its ZD point. After 500 generations
of a population of 15 individuals, the algorithm converged to an optimal shape function. The ZD point of the new shape
function is achieved at energy levels 3 times higher than the initial bell-shaped beamw0(x) = hφ(x) and with a frequency
of more than 3 times higher (see Fig. 2, right panel).

0 0.005 0.01 0.015 0.02

0

20

40

60

1

1.5

2

2.5

3

3.5

4

4.5

10
-3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 2: Left panel: The frequency-energy dependency of a bell-shaped beam. The fundamental frequency of oscillation ω is overlaid
by the frequency of oscillation at the ZD point ωZD (black) as a function of the total energy of the system Etot for different values of
initial elevation h. The maximal oscillation frequency at the ZD point, max{ωZD(h)}, is denoted by the red crossmark on the curve of
ωZD. Right panel: Comparison between the initial bell-shaped function of the beam (in blue) and the optimal shape function after 500
generations of a population of 15 individuals (in red). The frequency and energy of the zero-dispersion point in the optimal shape are
threefold higher than in the bell-shaped beam.
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Recent advances on spectral-submanifold-based model reduction: bifurcations and
configuration constraints
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Summary. We show how spectral submanifold theory can be used to construct reduced-order models for forced nonlinear systems
possibly with internal resonances. We perform continuation of equilibria (or limit cycles) of the reduced-order models to obtain (quasi-)
periodic response of the full system and predict their bifurcations. In addition, we show how to construct reduced-order models for
constrained mechanical systems using spectral submanifolds. These reduced-order models enable bifurcation analysis and efficient
extraction of backbone and forced response curves of high-dimensional mechanical systems with configuration constraints.

Introduction

The analysis of high-dimensional nonlinear mechanical systems has been a significant challenge. The construction of
reduced-order models for original high-dimensional systems is then of great importance because they enable efficient
nonlinear analysis. Among these constructions, the reduced-order models based on invariant manifolds are prominent
for nonlinear systems as they are supported by rigorous theory. In particular, the theory of spectral submanifolds (SSM)
has laid a solid foundation for constructing mathematically rigorous reduced-order models [1]. Recent developements [2]
have enabled the computation of SSMs and their reduced dynamics in physical coordinates. The software implementation
of the method has been available in an open-source package, SSMTOOL [3]. In previous studies, the applications have been
limited to two-dimensional SSMs. Here, we derive reduced-order models on higher-dimensional SSMs to analyze systems
with internal resonances. We integrate continuation package COCO [4] with SSMTOOL to obtain forced response curves
and perform bifurcation analysis of internally resonant mechanical systems. We further demonstrate how SSMTOOL can
handle mechanical systems with configuration constraints.

Reduced-order model and bifurcation analysis

Reduced-order model
We consider a periodically forced nonlinear mechanical system

Mẍ+Cẋ+Kx+ f(x, ẋ) = ǫf ext(Ωt), (1)

where x ∈ Rn is displacement vector; M ,C,K ∈ Rn×n are the mass, damping and stiffness matrices; f(x, ẋ) is
a Cr smooth nonlinear function such that f(x, ẋ) ∼ O(|x|2, |x||ẋ|, |ẋ|2); and ǫf ext(Ωt) denotes external harmonic
excitation. Let z = (x, ẋ), the equation of motion (1) can be transformed into a first-order form

Bż = Az + F (z) + ǫF ext(Ωt), 0 ≤ ǫ≪ 1, (2)

with appropriate definition of A,B,F and F ext. We assume that z = 0 is an asymptotically stable fixed point at ǫ = 0.
We construct SSM-based reduced-order model for (2) in following steps

1. We determine the master subspace for reduction based on external and internal resonances. Specifically, we first
include the modes subject to (near) external resonance with excitation frequency Ω to the master subspace. We
further add the modes having internal resonances with the externally resonant modes to the master subspace.

2. We compute the parametrization Wϵ(p,Ωt) of the SSM associated with the master subspace along with its reduced
dynamics ṗ = Rϵ(p,Ωt), where the parameterization coordinates p are of the same dimension as the that of the
master subspace. We express the parametrizations Wϵ(p,Ωt) and Rϵ(p,Ωt) as Taylor series expansion in p and
determine the unknown expansion coefficients by balancing polynomials in the invariance equation, as shown in [2].

3. We transform the reduced dynamics ṗ = Rϵ(p,Ωt) to factor out the Ωt-dependent terms. In particular, using the
transformation p = H(Ωt)q with an explicit diagonal matrix H , we obtain an autonomous reduced-order model

q̇ = h(q,Ω, ǫ). (3)

Further details about the above construction can be found in our preprint [5].

Bifurcation analysis
The bifurcation analysis of the full high-dimensional system (2) is simplified to the bifurcation analysis of the reduced-
order model (3). This simplification enables the prediction of bifurcations of periodic/quasi-periodic orbits of the full
system (2) via the bifurcations of the equilibria/limit cycles of the reduced-order model (3). For instance, we simply iden-
tify Hopf bifurcations of equilibria and limit cycles in the reduced system (3) to predict the existence of two-dimensional
and three-dimensional quasi-periodic invariant tori in the full system (2) of arbitrary dimension.
We have integrated the continuation package COCO with SSMTOOL to perform such bifurcation analysis. Specifically, we
have developed the following three toolboxes within SSMTOOL.
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Figure 1: A chain of pendulums (left) with n = 41 and the forced response curve of rotation angle of the last pendulum (right).

• SSM-ep: continuation of (bifurcated) equilibria of the reduced-order model (3) and the construction of correspond-
ing (bifurcated) periodic orbits of the full system (2);

• SSM-po: continuation of (bifurcated) limit cycles of the reduced-order model (3) and the construction of corre-
sponding (bifurcated) two-dimensional quasi-periodic invariant tori of the full system (2);

• SSM-tor: continuation of two-dimensional quasi-periodic invariant tori of the reduced-order model (3) and the
construction of corresponding three-dimensional quasi-periodic invariant tori of the full system (2).

More details about these toolboxes and their applications to finite-element examples can be found in our preprints [5, 6].

Extension to constrained mechanical systems

Now, we consider a periodically forced nonlinear mechanical system with configuration constraints of the form

Mẍ+Cẋ+Kx+ f(x, ẋ) +G⊤λ = ǫf ext(Ωt), g(q) = 0 (4)

where x,M ,C,K,f , ǫ,f ext carry the same definitions as in (1), g : Rn → Rm (m < n) represents configuration
constraints, G = ∂g/∂q, and λ denotes the Lagrange multipliers corresponding to the configuration constraints.
With z = (x, ẋ,λ), we can again transform (4) into the first-order form (2) with appropriate definition of A,B,F and
F ext. We assume g(0) = 0 such that the origin z = 0 is still a fixed point of the full system (2). We further assume that
G(0) is of full rank, i.e., the constraints g are not redundant and the origin is not a singular configuration. As a result, the
vector λ of the Lagranian multipliers is well-defined. Under these assumptions, the matrix B is singular and the matrix
pair (A,B) has 3m infinite eigenvalues corresponding to the m configuration constraints.
Indeed, the computation of SSM and its associated reduced-order model does not require the invertibility of B matrix [2].
This enables us to use SSMTOOL to construct SSM-based reduced-order model for the full system (4) following the same
procedure as in the previous section. Hence, we can again perform bifurcation analysis and obtain backbone and forced
response curves of the constrained system (4) directly from the SSM-based reduced-order (3).
As a demonstration, we consider a chain of planar pendulums attached to a harmonically excited oscillator, as shown in
Fig. 1. The configuration constraints in this system come from the revolute joints. We extract the forced response curve
of the system via a two-dimensional SSM-based reduced-order model. As shown in the right panel of Fig. 1, the forced
response curve predicted by this reduced-order model agrees with the one obtained from the numerical time integration
of the full system, thereby demonstrating the effectiveness of SSM reduction.

Conclusions

We derived SSM-based reduced-order models for nonlinear systems with internal resonances. Such reduced-order models
enable efficient nonlinear analysis of the full systems with arbitrary dimensions. We further extended this analysis to
constrained mechanical systems where the equations of motion are in the form of differential-algebraic equations.
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Summary. This paper develops a data-driven reduced-order model of the viscous Moore-Greitzer (MG) partial differential equations
(PDEs) by threading together ideas from dimensionality reduction to sparse regression and compressed sensing. Numerical simulation
of the infinite dimensional viscous MG system is reduced into low dimensional data using principal component analysis (PCA) and
autoencoder neural networks based dimensionality reduction methods. Based on the observation that MG equations close to bifurcations
have a sparse representation (normal forms) with respect to high-dimensional polynomial spaces, we use the Sparse Identification
of Nonlinear Dynamics (SINDy) algorithm which uses a collection of all monomials as a sampling matrix and a sparse regression
technique to recover a system of two sparse ordinary differential equations (ODEs) with cubic nonlinearities.

Introduction

This paper develops data-driven theory and algorithms to detect and mitigate stall compressor instability. The motivation
is to produce a high-fidelity simulation of a jet engine compressor called the digital twin, which has the ability to monitor
and diagnose complex systems to improve performance efficiency and utilization. Jet engine compressor models typically
integrate a hierarchy of multi-physics and multi-fidelity models which are continually updated with data streams from
the sensors. The model used to describe airflow inside the jet engine compressor is the viscous MG equations [12, 22]
which consist of a nonlinear partial differential equation (PDE) and two ODEs. There are three types of Hopf bifurcations
that can exist in the viscous MG equations corresponding to physical oscillations dominated by the ODE (surge), PDE
(rotating stall), or a mixture of both. The objective of this particular work is to use optimization and regression techniques
from machine learning to arrive at a lower dimensional description of the PDE from datasets. The success of compressor
reduced-order modelling is rooted on accurate representations of the multi-physics and multi-fidelity models.

First, we describe the viscous MG equations, provide an explicit expression for the system’s equilibrium, and show that
the steady operating axial flow and pressure drifts from the aforementioned equilibrium during PDE bifurcation. Then,
we introduce reduced-order modeling (ROM) to significantly alleviate computational costs by projecting the high dimen-
sional state variables onto a low-dimensional subspace. We perform ROM on simulated data from viscous MG equations
to construct a set of “good” basis functions. Approximations of bases spanning this subspace are constructed using prin-
cipal component analysis (PCA) [15, 28] and both linear and nonlinear autoencoder neural networks [26, 27].

It is impossible to effectively “learn” from high dimensional data unless there is some kind of implicit or explicit low
dimensional structure. Over the past 10 years, researchers have focused on sparsity as one type of criteria for low-
dimensional structure. The inherent sparsity of natural signals is central to the mathematical framework of compressed
sensing [5, 6, 9]. The main aim of compressed sensing is to construct a sparse vector from linear measurements of the
vector such that the number of observed measurements m is significantly smaller than the dimension n of the original
vector and satisfies the “Restricted Isometry Property” (RIP). Intuitively, the existence of a RIP implies that the geome-
try of sparse vectors is preserved through the measurement matrix, as illustrated in a high dimensional application [23].
These techniques rely heavily on the fact that many dynamical systems can be represented by governing equations that
are sparse in the space of all possible functions. The assumption for the low dimensional structure for the MG equations
originates from the center manifold theory in dynamical systems [13, 31], where a high dimensional system undergoing
Hopf bifurcation can be fully described by projecting the equations onto the subspace of a 2-dimensional center manifold.

Finally, we adapt a recently developed technique called Sparse Identification of Nonlinear Dynamics (SINDy) [4, 7, 8]
which has demonstrated the ability to recover governing equations of complex dynamical systems. The methods presented
in SINDy approach the problem of automating the discovery of dynamic equations that describe natural systems through
the lens of sparsity-promoting regression techniques such as Least Absolute Shrinkage and Selection Operator (LASSO)
[29]. To lend insight into this process, the SINDy algorithm was applied to simulated data from various ROM models to
recover their respective sparse equations which is then used to reconstruct the original system’s dynamics.

Viscous Moore-Greitzer Equations

Model and Analysis
Turbo-jet engine is comprised of 3 parts: axial flow compressor where air gets compressed, the plenum where the air un-
dergoes combustion and rapidly expands, and the turbine where the air is let out (see for example, Figure 1 in [30]). The
flow enters from atmospheric pressure at the inlet duct, proceeds through the compressor block where the static pressure
is increased, enters the outlet duct, and then exits to atmospheric pressure through the downstream turbine’s throttle. The
compressor is made out of an entrance duct, an inlet guide vane (IGV), multiple stages of stator-rotor pairs, and an exit
duct towards the plenum. A stator is a rotary system with static blades and a rotor comprises of revolving blades.
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The following basic assumptions of the MG compressor model [12, 22] are made. The pressure rise across the compres-
sor lags behind the pressure drop delivered by the throttle due to mass storage in the exit duct (or plenum). Across the
compressor, the difference between the pressure delivered by the compressor and pressure rise that currently exists across
the compressor acts to accelerate the flow rate through the compressor. The flow is assumed to be incompressible and
irrotational everywhere except inside the plenum where combustion occurs and rapidly expands the air.

The viscous MG equations for a cylindrical axial flow compressor consist of Laplace’s partial differential equation (PDE)
for disturbance velocity potential φ̃ ′(t,θ ,η)

φ̃ ′ηη + φ̃ ′θθ = 0. (1)

with boundary conditions

ψc(Φ(t)+(φ̃ ′η)0)−
1

2π

∫ 2π

0
ψc(Φ(t)+(φ̃ ′η)0)dθ −m(φ̃ ′t )0−

1
a
(φ̃ ′tη)0−

1
2a

(φ̃ ′ηθ )0−
ν

2a
(φ̃ ′ηθθ )0 = 0 (2)

at η = 0 and φ̃ ′= 0 at η =−∞ and a pair of ordinary differential equations (ODEs) for annulus average of axial momentum
Φ(t)

Ψ(t)+ ℓc
dΦ(t)

dt
=

1
2π

∫ 2π

0
ψc(Φ(t)+(φ̃ ′η)0)dθ . (3)

and pressure drop from across the compressor Ψ(t)

dΨ(t)
dt

=
1

4B2ℓc
(Φ(t)−F−1

T (Ψ(t))). (4)

The subscripts of φ̃ ′ indicate partial derivatives with respect to time t, angular θ and axial η coordinates of the cylindrical
compressor. (·)0 means the quantity is evaluated at the compressor entrance η = 0. a is the internal compressor lag,
lc = lI + lE + 1

a is the characteristic compressor length (dimensionless quantity normalized with respect to compressor
radius), and B is the plenum to compressor volume ratio [11]. Detailed derivation of the non-viscous model can be found
in [11, 12, 22] while the viscous model was developed in [1, 21] and thoroughly derived in [3].

The compressor ψc(φ) and throttle FT (φ) characteristic functions that are considered follow [12, 22]

ψc(φ) = ψc0 +H

[
1+

3
2

(
φ

W
−1
)
− 1

2

(
φ

W
−1
)3
]

(5)

FT (φ) =
φ 2

γ2 . (6)

H and W are the characteristic height and width of the compressor and ψc0 is a value determined by experiments. Throttle
coefficient γ describes the amount of opening - large γ implies a wide open throttle while small γ implies a closed throttle.
Equations (1), (2), (3), and (4) can be combined into a compact state-space form ∂y

∂ t = Ay+ f(y) following [2]

∂

∂ t




g
Φ

Ψ


 =




K−1
(

ν
2

∂ 2

∂θ 2 − 1
2

∂
∂θ

)
0 0

0 0 0
0 0 0







g
Φ

Ψ


+




aK−1(ψc(Φ+g)− Åψc)
1
lc
( Åψc−Ψ)

1
4B2lc

(Φ− γ
√

Ψ)


 (7)

by introducing state variable g
g(t,θ) = (φ̃ ′η)0 = ∑

n∈Z

|n|φ̃ ′n(t)einθ = ∑
n∈Z

gneinθ . (8)

where
φ̃ ′(t,θ ,η) = ∑

n∈Z

Å̃φ ′n(t)e
|n|η+inθ , (9)

is the solution to (1) and we define

Åψc =
1

2π

∫ 2π

0
ψc(Φ+g)dθ . (10)

as well as an operator K that acts on φ = ∑n∈Z φ̃neinθ such that

K(φ) = ∑
n∈Z

(
1+

ma
|n|

)
φ̃neinθ . (11)

To inspect the nonlinearities in f(y), we perform Taylor series’ expansion on ψc(Φ+ g) up to the third cubic term to
expand the integrand of Åψc

Åψc = ψc(Φ)+
1
2

ψ ′′c (Φ)
m+n=0

∑
m,n∈Z

gmgn +
1
6

ψ ′′′c (Φ)
k+m+n=0

∑
k,m,n∈Z

gkgmgn. (12)
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Note that g(t,θ) has a vanishing average property due to assumptions made to the disturbance flow. Therefore, Åψc is only
a function of t and not θ and as a result, K−1( Åψc) = 0. The nonlinearity vector f(y) becomes

f(y) =




aK−1(ψ ′c(Φ)g+ 1
2 ψ ′′c (Φ)g2 + 1

6 ψ ′′′c (Φ)g3)
1
lc
(ψc(Φ)+ 1

2 ψ ′′c (Φ)∑
m+n=0
m,n∈Z gmgn +

1
6 ψ ′′′c (Φ)∑

k+m+n=0
k,m,n∈Z gkgmgn−Ψ)

1
4B2lc

(Φ− γ
√

Ψ)


 . (13)

The system (7)’s equilibrium consist of ge(θ) = 0 and Ψe = ψc(Φe) = FT (Φe) which means (Φe,Ψe) lies on the intersec-
tion of curves (5) and (6). Φe can be solved by finding the root of the polynomial

− H
2W 3 Φ3

e +

(
3H

2W 2 −
1
γ2

)
Φ2

e +ψc0 = 0. (14)

(14) has one real root and a pair of imaginary roots, where the real root is

Φe =
3

√
X−Y 3 +

√
X(X−2Y 3)+

3

√
X−Y 3−

√
X(X−2Y 3)−Y (15)

and

X =
W 3

H
ψc0 , Y =

2W 3

3H

(
1
γ2 −

3H
2W 2

)
. (16)

For our analysis, γ is the bifurcation parameter to be varied for different kinds of Hopf bifurcation.

The Jacobian of f(y) at equilibrium is

∇fye =




aK−1(ψ ′c(Φe)) 0 0
0 1

lc
ψ ′c(Φe) − 1

lc

0 1
4B2lc

− 1
4B2lc

γ2

2Φe


 . (17)

The eigenvalues of (A+∇fye) corresponding to the PDE are

λn =

(
a|n|
|n|+am

)(
ψ ′c(Φe)−

ν

2a
n2− 1

2a
(in)

)
(18)

and the eigenvalues of (A+∇fye) corresponding to the ODEs are

µ1,2 =
1

2lc

[(
ψ ′c(Φe)−

γ

8B2
√

Ψe

)
±
√(

ψ ′c(Φe)+
γ

8B2
√

Ψe

)2

− 1
B2


 . (19)

Hopf bifurcation occurs when a pair of (A+∇fye) eigenvalues’ real parts cross the imaginary axis with the derivative of
the real parts with respect to γ is not equal to zero. There are three possibilities: surge (ODE bifurcation), stall (PDE
bifurcation), and combination (simultaneous ODE and PDE bifurcations).

The critical bifurcation point for surge is γc,surge such that Re(µ1,2) = 0. When γ < γc,surge, surge occurs. It is difficult to
obtain an explicit expression for γc,surge but γc,surge is the solution to

Φe(γc,surge)

(
2− Φe(γc,surge)

W

)
−

γ2
c,surge

4B2

W 2

3H
= 0. (20)

The condition for surge is ∂
∂γ
(Re(µ1,2))

∣∣∣
γc,surge

> 0.

The critical bifurcation point for stall is γc,stall such that Re(λ1) = 0. When γ < γc,stall , stall occurs. Again, it is difficult
to obtain an explicit expression for γc,stall but γc,stall is the solution to

Φe(γc,stall)

(
2− Φe(γc,stall)

W

)
− νW 2

3aH
= 0. (21)

The condition for stall is ∂
∂γ
(Re(λ1))

∣∣∣
γc,stall

> 0.
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It is possible for the largest PDE eigenvalue pairs and both ODE eigenvalues to simultaneously cross the imaginary axis.
This is achieved when γ = γc,combo where

ψ ′c(Φe(γc,combo)) =
γ2

c,combo

8B2

1
Φe(γc,combo)

=
ν

2a
. (22)

For the combination case, it is possible to calculate the expression for the normal form which are the diagonal entries of
(A+∇fye)(γc,combo)

D(γc,combo) = T−1(A+∇fye)T(γc,combo) = diag







(K−1
(

ν
2 (1−n2)− 1

2 ni
)

1
2lc

√
ν2

a2 − 1
B2

− 1
2lc

√
ν2

a2 − 1
B2





 . (23)

Rotating Stall Simulation Results
The system of equations (7) is integrated using the spectral method. θ ∈ [−π,π) is discretized into 512 equally spaced
points, leading to a system of 514 ODEs (512 of which are Fourier coefficients of g(t,θ)) to be numerically integrated
using SciPy’s solve_ivp with dt = 0.1. The following parameter values are used in all cases

lc = 8, m = 1.75, a = 1/3.5, ν = 1, ψc0 = 1.67H, H = 0.18, W = 0.25. (24)

The plenum to compressor volume ratio B and the throttle opening γ are chosen to produce different type of bifurcations,
and for the stall case, the simulations results are given below in Figure 1.
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Figure 1: Stall dynamics of viscous Moore-Greitzer equations: (a) Φ(t) and (b) Ψ(t) do not settle at their stable equilib-
rium values due to influence from PDE Hopf bifurcation. (c) Amplitude of g(t,θ) in t settles to a non-zero value during
Hopf bifurcation. (d) Phase portrait of ODE states Φ(t) and Ψ(t) which does not settle at the equilibrium point.

Dimensionality Reduction for Reduced-Order Modelling (ROM)

Principal Component Analysis (PCA)
PCA is also known as proper orthogonal decomposition (POD) in mechanical engineering [15] and discrete Karhunen-
Loève expansion in signal processing and information theory [20]. PCA is a method to find principal axes in high
dimensional data. These principal axes span the eigenvectors of the covariance matrix of the measurements which are
orthonormal to each other such that the individual data along these directions are linearly uncorrelated. PCA can also be
used as a dimensionality reduction tool by truncating a measurement’s linear combination in its principal axes. Construct-
ing basis functions from data using PCA can be formulated mathematically as a low-rank matrix approximation problem
which can be easily computed by using the singular value decomposition (SVD) [10].
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Suppose we have N observations of n-dimensional data

Y = [y1 . . .yN ] (25)

where Y ∈❘n×N , yi = y(ti) ∈❘n. After centering the data about its empirical mean to get Y0, define a transformation
W ∈❘n×m where m< n in the context of dimensionality reduction. The lower dimensional data is calculated by

X0 = WT Y0. (26)

If we use PCA, then the transformation is defined as

W = Pm = [p1 . . .pm] (27)

where pm are the principal axes of Y0 or the first m eigenvectors of the covariance matrix Y0YT
0 .

Neural Network Implementation of PCA
An autoencoder is a type of multilayer feedforward neural network that at its simplest form (see Figure 2 without 64-nodes
hidden layers) has an input layer with n nodes, followed by a hidden layer with m nodes (where m < n), followed by an
output layer with n nodes. When the activation functions are chosen to be linear, the input-output relationship is given by

ŷ = W2(W1y+b1)+b2 (28)

where W1,WT
2 ∈ ❘m×n are the encoder and decoder weight matrices, and b1 ∈ ❘m, b2 ∈ ❘n are the encoder and de-

coder bias vectors. Once the optimal {W1,W2,b1,b2} are found, we can construct an encoder to reduce the input into a
reduced-order data x ∈❘m using {W1,b1} and a decoder to convert the encoded data back to its original dimension using
{W2,b2}.

Under certain assumptions on the error function landscape, the minimization problem for the autoencoder reduces to

min
{W2}
‖Y0−W2W+

2 Y0‖2
F . (29)

where W+
2 is the Moore-Penrose inverse/pseudoinverse [25] of W2. For the case when the columns of W2 are orthonormal

like Pm, then W+
2 = WT

2 will make (29) equal to the reconstruction error of PCA. Therefore, it is clear that Pm is a solution
to the autoencoder optimization problem. The problem is that the product of Pm with any proper orthogonal matrix
Q ∈❘m×m will be a minimizer W2, such that there are infinitely many solutions. Coupled with the fact that mini-batch
stochastic gradient descent [19] is the go-to optimization algorithm in today’s neural network frameworks, there is no
guarantee that W2 converges to the same value when the training procedure is repeated, let alone align itself to Pm. While
any W2 in this space can be used to mimic the input data almost perfectly, this inconsistency is an issue in our problem as
we would like to further uncover the underlying structure of the encoded measurements X = [x1 . . .xN ].

Regularized Linear Autoencoder
An approach to recover the principal axes from autoencoder weights is based on the following hypothesis [26]: the first m
left singular vectors of W is also the first m principal axes of Y0. This hypothesis can be framed as an autoencoder with a
regularizer or penalty to the sum of the Frobenius norms of the encoder weight matrix W1 and decoder weight matrix W2

min
{W1,W2}

‖Y0−W2W1Y0‖2
F +λ (‖W1‖2

F +‖W2‖2
F). (30)

For a large enough λ value, the error surface is guaranteed to be convex with a single global minima which will correspond
to the principal axes [17]. Additionally, the minimum values of this loss function is W∗

1 = WT
2 unlike W∗

1 = W+
2 in the

original approach.

Nonlinear Principal Component Analysis (NLPCA) and Autoencoder
NLPCA was developed to uncover the underlying nonlinear manifold in large dimensional datasets. The neural network
architecture we are considering to train our NLPCA autoencoder is shown in Figure 2.

X = W2 tanh(W1Y+b1)+b2

Ŷ = W4 tanh(W3X+b3)+b4. (31)

We choose the nonlinear activation function tanh() as in [27] under the justification that a trigonometric function would
fit well with the solutions of the MG equations which are spanned by the Fourier basis (8). The NLPCA autoencoder is
trained to minimize the loss function of

min
{W1,2,3,4,b1,2,3,4}

‖Y− Ŷ‖2
F . (32)

The resulting {W1,2,3,4} and {b1,2,3,4} are then used to construct an encoder and decoder as per (31).
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Figure 2: Autoencoder architecture for MG compressor data with tanh() activation function

Sparsity in Reduced-Order Data

Over the past two decades, researchers have focused on sparsity as one type of low-dimensional structure. Given the
recent advances in both compressed sensing [6, 9] and sparse regression [29], it has become computationally feasible
to extract system dynamics from large multimodal datasets. The term sparse in signal processing context refers to the
case where signals (or any type of data, in general) have few non-zero components with respect to the total number of
components. It is well known in dynamical systems, the normal forms provide a way of finding a coordinate system
in which the dynamical system takes the “simplest” or “minimal” form. The normal forms, which are sparse in the
space of homogeneous vector polynomial of certain degree, is calculated by making judicious choices of the solutions to
the homological equations [13]. Hence, in the context of our work, close to the bifurcation point, the sparse regression
techniques rely heavily on the fact that many dynamical systems can be represented by governing equations that are sparse
in the space of all possible functions of a given algebraic structure.

Compressed Sensing
Compressed sensing (CS) is a technique for sampling and reconstructing sparse signals that can be represented by k<< n
significant coefficients over an n- dimensional basis. The central goal of CS is the recovery of sparse vectors from a
small number of linear measurements, which distinguishes CS from other dimensionality reduction techniques. In [9] and
[6], the original sparse (k-sparse) signal is projected onto a lower-dimensional subspace via a random projection scheme,
called the sampling matrix. More precisely, this broader objective is exemplified by the important special case in which
one is interested in finding a vector S ∈❘n using the (noisy) observation or the measurement data

Y = ΘS+η , where Θ ∈❘m×n with k < m< n, (33)

is the known sensing or sampling matrix and η is the measurement noise.

In general, this problem cannot be solved uniquely. However, if S is k-sparse i.e., if it has up to k non-zero entries, the
theory of CS shows that it is possible to reconstruct S, a k-sparse vector in❘n uniquely from m linear measurements even
when m << n, by exploiting the sparsity of S. This can be achieved by finding the sparsest signal consistent with the
vector of measurements [9], i.e.

argmin
S∈❘n

‖S‖0 subject to ‖Y −ΘS‖2 ≤ ε (34)

where ‖S‖0 denotes the l0 norm for S (the number of non-zero entries of S), while ε denotes a parameter that depends on
the level of measurement noise η . However, l0 minimization problem (34) is a non-convex problem which is NP-hard.

Instead of problem (34) we consider its l1 convex relaxation which may be stated as

argmin
S∈❘n

‖S‖1 subject to ‖Y −ΘS‖2 ≤ ε (35)

where the l1 norm (sum of the absolute values of the entries of S) is a convex function. Hence (35) is a convex optimization
problem which can accurately approximate the solution to (34) in polynomial time with high probability if measurement
matrix Θ is chosen to satisfy a necessary condition called “Restricted Isometry Property” (RIP) [5, 6]. One should note
that the l1 minimization in (35) is closely related to the LASSO problem [29]

argmin
S∈❘n

‖Y −ΘS‖2
2 +α‖S‖1 (36)

where α ≥ 0 is a regularization parameter. If ε and α in (35) and (36) satisfy some special conditions, the two problems are
equivalent; however, characterizing the relationships between ε and α is difficult except for the special case of orthogonal
sensing matrices Θ. The practical success of the LASSO can be attributed to the fact that in many cases S is sparse.
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Sparse Identification of Dynamical Systems (SINDy)
Sparse identification of nonlinear dynamics (SINDy) [4] is an algorithm for discovering the dynamical equations directly
from the data. The problem of model discovery from data can be formulated as a feature selection problem in machine
learning. The SINDy algorithm takes m-time measurements of x ∈❘n, X = [x(t1), . . . ,x(tm)]T ∈❘m×n and attempts to
discover the structure of a nonlinear differential equation of the form

Ẋ = f(X(t))≈Θ(X)S (37)

where Θ(X) = [θ1(X),θ2(X), ...,θp(X)] ∈❘m×p form the dictionary of basis functions, and S = [s1 ... sk ... sn] ∈❘p×n

is the matrix of coefficients, where each column sk corresponds to an equation with p terms. p is the maximal number of
n-multivariate monomials of degree at most d. The majority of S entries are zero while the remaining non-zero entries
identify the active terms contributing to the sparse representation of the dynamics f(X). To guarantee sparsity, SINDy is
reformulated as a LASSO problem

argmin
sk

1
m

m

∑
i=1
‖ẋ(ti)−Θ(x(ti))sk‖2

2 +α‖sk‖1 (38)

where α is the l1 regularization coefficient. LASSO is an optimization algorithm that finds a sparse solution for (38) by
initializing sk = 0 and at each iteration, it tries to find an update for sk one entry at a time. The coefficient α acts as a
threshold such that if the an optimal condition involving α is not satisfied for a particular sk entry, the entry is chosen to
be equal to zero. Increasing the value of α leads to more zero entries in sk, resulting in a sparse model.

The dictionary of basis functions for monomial sampling of dynamical system is

Θ(X) =



| | | | |
1 X XP2 XP3 . . .
| | | | |


 . (39)

The dictionary Θ(X) is constructed by appending candidate nonlinear functions of X column-wise. Here, higher order
polynomials are denoted as XPd where d is the order of the polynomial considered. For example, element 1 is a column-
vector of ones, element X is as defined above, element XP2 is the matrix containing the set of all quadratic polynomial
functions of the state vector x, and is constructed as follows:

XP2 =




x2
1(t1) x1(t1)x2(t1) . . . x2

2(t1) . . . x2
n(t1)

x2
1(t2) x1(t2)x2(t2) . . . x2

2(t2) . . . x2
n(t2)

...
...

. . .
...

. . .
...

x2
1(tm) x1(tm)x2(tm) . . . xm

2 (tm) . . . x2
n(tm)


 . (40)

We interpolate the reduced MG simulation data as a dynamical systems with cubic nonlinearity which is up to XP3 .

ROM Results and Analysis

We run 10 simulations of the viscous MG equations’ stall case for t ∈ [0,500] with dt = 0.1. The initial conditions for
g(t,θ)’s amplitude, Φ, and Ψ are drawn from the normal distribution with mean 0.1 and standard deviation 0.05. The
first 2000 data points (up to t = 200) containing the transient dynamics are discarded. This gives us 10 Y ∈ ❘3000×514

datasets. We perform k-fold cross validation [14] on PCA, regularized autoencoder, and NLPCA autoencoder to find the
best ROM parameters to bring down the data dimension to 2. Both autoencoders’ training were performed using Adam
optimizer [16] with learning rate of 10−4 for 10 epochs of 4 mini-batch size for the regularized linear autoencoder and 20
epochs of 4 mini-batch size for the NLPCA autoencoder.

We encode the 10 datasets using the 3 different encoders to obtain 3 versions of 10 X ∈ ❘3000×2. For each group of
reduced-order/encoded data, we perform a cubic nonlinearity dynamical system identification using PySINDy [8] paired
with LASSO optimizer from Python’s sklearn package. We train the 3 groups of 10 X datasets in order to find the best
α which hits the sweet spot between sparsity and accuracy using grid search [18]. After finding the best α for each group,
we perform another k-fold cross validation to decide on a model that best represent the 10 datasets of each ROM.

The discovered reduced governing equations satisfy the normal form if it is sufficiently described by 4 coefficients
µ,ω,b1,b2 up to an acceptable numerical tolerance

ẋ1 = µx1−ωx2 +b1(x
2
1 + x2

2)x1−b2(x
2
1 + x2

2)x2

ẋ2 = ωx1 +µx2 +b2(x
2
1 + x2

2)x1 +b1(x
2
1 + x2

2)x2. (41)

ENOC 2022, July 17-22, 2022, Lyon, France

334



ENOC 2020+2, July 17-22, 2022, Lyon, France

However, when the linear operator is semi-simple (as in Hopf bifurcations), the correct identification of a normal form
depends critically on the null space of the homological operator [13]. The consequence of this fact is that the nonlinear
terms in normal form (41) commutes with the linear term. As shown in [24], a consequence of this property is that, when
the equation is normalized to any finite degree, say k = 3, and truncated, it will have symmetries that were not present in
the original system. More precisely, rewriting the normal form equations (41) at the bifurcation point (µ = 0) as

ẋ = Ax+ f ∗(x) x ∈ R
2, (42)

and letting x = exp(At)y, the transformed equations are

ẏ = exp(−At) f ∗(exp(At)y) y ∈ R
2. (43)

Using the commutation property [24] of the normal form f ∗,

exp(−At) f ∗(exp(At)y) = f ∗(y), ∀t ∈ R, ∀y ∈ R
2,

the normal form equations in the new variables y reduce to

ẏ = f ∗(y) y ∈ R
2. (44)

For post-bifurcation dynamics, the discovered reduced governing equations satisfy the normal form (44) if it is sufficiently
described by 2 coefficients (b1,b2) up to an acceptable tolerance

ẏ1 = b1(y
2
1 + y2

2)y1−b2(y
2
1 + y2

2)y2

ẏ2 = b2(y
2
1 + y2

2)y1 +b1(y
2
1 + y2

2)y2. (45)

Hence, MG equations close to a Hopf bifurcation have a sparse representation (45) with respect to high-dimensional poly-
nomial spaces. The practical success and importance of the LASSO can be attributed to correctly identifying the relevant
variables when the underlying model is sparse. LASSO algorithm is used in the subsequent sections to recover a system
of two sparse ordinary differential equations (ODEs) with cubic nonlinearities.

For the reconstruction, the obtained SINDy equations are integrated using the forward Euler method with a fixed integra-
tion time step dt = 0.1 to be consistent with the chosen smoothed forward difference differentiation scheme. The global
truncation error is then subtracted from the raw numerical integration result to correct the estimate. Lastly, the integrated
SINDy data are fed into the decoder of the respective reduction methods to reconstruct the high dimensional time series
and compared with the original dataset.

PCA and SINDy
The best SINDy regression is obtained using a LASSO threshold of α = 0.11, which outputs a system of two ODEs with
8 coefficients and a R2 score of 0.9999 on the test data ‖|Ẋ‖| as

ẋ1 = −0.000144x3
1−0.008137x2

1x2−0.000144x1x2
2−0.008136x3

2

ẋ2 = 0.008136x3
1−0.000144x2

1x2 +0.008136x1x2
2−0.000144x3

2. (46)

The normal form coefficients (−0.000144,0.008136) are visibly detected. Reconstruction results for a chosen random
dataset are shown on the left in Figure 3.

Regularized Linear Autoencoder and SINDy
The best SINDy regression is obtained using a LASSO threshold of α = 0.30. The output is a system of two ODEs with
9 coefficients and a R2 score of 0.9999 on the test data ‖|Ẋ‖| and is given as

ẋ1 = −0.000440x2
2−0.000145x3

1 +0.008138x2
1x2−0.000143x1x2

2 +0.008138x3
2

ẋ2 = −0.008136x3
1−0.000144x2

1x2−0.008139x1x2
2−0.000144x3

2. (47)

The normal form coefficients (−0.000145,−0.008138) are also visibly detected, albeit with wider deviation in values
compared to (46) and an additional quadratic term in the first equation. Reconstruction results for a chosen random
dataset are shown on the right in Figure 3.

NLPCA Autoencoder and SINDy
The best SINDy regression is obtained using a LASSO threshold of α = 0.60. The output is a system of two ODEs with
11 coefficients and a R2 score of 0.9998 on the test data ‖|Ẋ‖| which does not satisfy the normal form. A representative
equation (since the outcome is always random) is given as

ẋ1 = −0.001031x2
2−0.000091x3

1 +0.007704x2
1x2 +0.000429x1x2

2 +0.006863x3
2

ẋ2 = −0.001664x2
1−0.000580x2

2−0.007607x3
1−0.000473x2

1x2−0.007470x1x2
2−0.000237x3

2. (48)

Reconstruction results for a chosen random dataset are shown in Figure 4.
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Figure 3: Reconstruction of viscous MG stall dynamics using PCA and SINDy (on the left) and regularized linear autoen-
coder and SINDy (on the right): (a) Φ(t), (b) Ψ(t), and (c) g(t,θ) reconstruction results at t = 0,100,200,300

Conclusions

We have showed that it is possible to fully reconstruct the solutions of the viscous MG equations from a system of 2 ODEs
up to cubic nonlinearity, constructed from data sets by sparse regression. Additionally, it seems that the only requirement
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Figure 4: Reconstruction of viscous MG stall dynamics using
NLPCA autoencoder and SINDy

to detect the normal form of the PDE Hopf bifur-
cation is to have reduced-order data that falls along
the first two principle axes, and reconstruction qual-
ity is entirely independent of whether normal forms
of the underlying PDE is detected or not. The
NLPCA autoencoder has to be trained for twice as
long (double the number of epochs) compared to the
linear autoencoder in order to converge to the lo-
cal minimum that produces great reconstruction re-
sult. Table 1 summarizes our findings for the three
chosen dimensionality reduction methods. Our sim-
ple approach rooted in physics-based machine learn-
ing which involves a priori knowledge of sparsity
and the center manifold theory allows us to bypass
deep neural network performing synchronized dimen-
sionality reduction and SINDy approach in [7]. It
is shown in Table 1 that performing dimensional-
ity reduction and SINDy independently does not re-
sult in any significant reconstruction loss. Addi-
tionally, it would be interesting to find out if non-
linear principal components would lead us to nor-
mal form discovery from a nonlinear autoencoder, and
if those components can be found using a simple
regularization based approach to ensure the convex-
ity of loss landscape just like its linear counterpart
[17].
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PCA Linear Autoencoder NLPCA Autoencoder

Training time 25 s 103 s 283 s
PDE reconstruction R2 score from training data 0.8973 0.8973 0.9916

PDE reconstruction R2 score from SINDy equations 0.8950 0.8948 0.9890
Number of RHS terms in reduced equations 8 9 11

Normal form detected yes yes no

Table 1: Summary of viscous MG equations’ reconstruction from SINDy models identified from different ROMs.
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3D FEM Model of Intact Human Middle Ear  Compared to Lumped Mass Model and 
Experimental Results 
 
 Robert Zablotni*, Rafal Rusinek* 

*Department of Applied Mechanics, Lublin University of Technology, Poland 
  
Summary. The human body can be considered by micro biomechanical systems and human middle ear is one of the smallest of those 
systems. In this abstract, finite elements method model and three degrees of freedom lumped mass model of human middle ear is proposed. 
Moreover in introduction it contains description of intact human middle ear. 
Keywords: middle ear; stapes vibration; relaxation; ligaments modelling 

Introduction 

The human body can be considered as a set of micro biomechanical systems where human middle ear is one of the 
smallest of those systems. Human ear can be divided into three basic parts sequentially: external ear, middle ear and 
internal ear. Through auditory canal sonic waves reaches tympanic membrane which sets in motion three bones of a 
middle ear – the malleus, the incus and the stapes. The stapes transfers waves to the internal ear. Nest in semicircular 
canals mechanical vibrations are converted into nerve impulses. Over the years, many attempts have been made to 
create models of the human ear. The first study in this field was published in 1961 by Möller [1] where the first scheme 
of middle ear mechanism was proposed. Next, a similar model was investigated by Zwislocki [2]. In both publications, 
authors used an electrical circuit to analyse middle ear system. Currently, the most popular models of human ear are 
created by means of finite elements method, rarely as lumped mass models. Due to microscopic structure of human 
middle ear, examinations are extremely difficult. Moreover experimental studies must be carried out on the human 
temporal bone, therefore the amount of research is limited. For the above reasons, it is necessary to create models of the 
middle ear and their validation, because the tests carried out on them are limited only by the computing power of 
computers. Research on human ear models could lead to breakthroughs in the field of laryngology and otolaryngology. 
 

Results and Discussion 

The intact human middle ear lumped mass model is presented on Figure 1(a). There are three masses in the model: mm, 
mi and ms. Each mass corresponds to one of the bones of the human middle ear: mm – the malleus, mi – the incus and ms 
– the stapes. All masses are connected to each other by springs and dampers that correspond to joints, ligaments and 
tendons in s human middle ear. In this case presented here, the human middle ear with the Kelvin–Voigt type of 
viscoelasticity is used for analysing. Parameters as stiffness and damping coefficients of the middle ear used in 
numerical simulations were taken both from experimental validation and literature. Figure 1 (b) shows meshed Finite 
Elements Method (FEM) model of the intact human middle ear to compare numerical results. This model was created 
by Micro CT scanning of the human middle ear. Three bones: the malleus, the incus and the stapes and the eardrum was 
separated and then they have undergone a scanning procedure. Parts that were obtained were connected in Computer 
Aided Design (CAD) software. Moreover simplified ligaments and tendons were created in CAD and were connected to 
the bones. At the end, a simplified cochlea and oval window was made in order to connect the stapedial annular 
ligament (SAL). Material data for the Finite Elements Model of intact human middle ear was taken from the literature 
[4]. 
 
(a)                                                                                                                      (b)                       

      
Figure 1: Models of intact human middle ear. (a) 3 degrees of freedom (dof) lumped mass model [3], (b) finite elements method 

model. 
 
The most demanding aspect of Finite Elements Method modelling was setting the mesh in such a way that the objects 
do not interpenetrate during the simulation of motion. The next difficulty is determining the time of stabilization for the 
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system. Another demanding task is to set appropriate boundary conditions of the system which allow proper 
reproduction of the occurring movements in the middle ear as a result of being forced by an acoustic wave onto the 
eardrum. The FEM model is compared with the experiment results to assess its correctness . 
 

 
Figure 2:Function of velocity versus time measured on stapes footplate for not-steady state of vibrations in Finite Elements Method 

model of intact human middle ear for the frequency equal to 200Hz. 
 
In Figure 2, function of velocity versus time for not-steady state of vibrations of human middle ear in FEM model can 
be observed. For the undefined Rayleigh damping parameters for human middle ear the rumble phenomenon can be 
observed. By using the appropriate damping parameters velocity of the stapes can be obtained and compared to the 
experimental data. 
 

Conclusion 

A novelty in the Finite Elements Method model is obtaining parts by the Micro CT scanning, which gives an accurate 
representation of the geometry of the bones of the human middle ear. On the basis of the lumped mass model of intact 
human middle ear and experimental results, correctness of the FEM model is approved. For the FEM model of the 
human middle ear, the appropriate material parameters and the Rayleigh’s damping parameters allow to shorten the 
calculation time and obtain results with a similar value to the results obtained experimentally. In the future FEM model 
will be used to develop model of the middle ear with active implant. 
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Computational model of Deep Brain Stimulation (DBS). Transitions from Healthy to
Parkinsonian and DBS treatment.

Konstantinos Spiliotis∗, Jens Starke ∗

∗Institute of Mathematics, University of Rostock, D-18057 Rostock, Germany

Summary. The basal ganglia network plays an important role in the movement and emotional control. Changes in the structure and
dynamics of the network are closely related to pathological disorders (Parkinson, Dystonia, Depression etc). We developed a large
scale biophysical neuronal model in order to study the effect of Deep Brain Stimulation (DBS) in Parkinson and Dystonia. The neural
network model consists of 4 major areas of basal ganglia, Globus Pallidus External and Internal (GPE)-(GPI), Subthalamic nucleus
(STN) and Thalamus. By changing several model parameters related to the synaptic weights, as well as the frequency of external DBS
stimulus, the model switches the dynamics from normal to pathological (Parkinson-Dystonia) to DBS treatment behavior. Combining
both, numerical bifurcation analysis and Equation Free Methodology (IEFM), we detect systematically in the parametric space, the
dynamical regimes of different dynamics.

Introduction

Deep Brain Stimulation (DBS) consists a revolutionised treatment for movement and mental disorder. After 1997 when the
Food and Drug Administration (FDA, USA) approved DBS as a treatment for tremor, the development was rapid includ-
ing several diseases (Parkinson, Dystonia, Epilepsy) but also mental Disorders (Depression and Obsessive-Compulsive
Disorder)[1]. Even in our days then main mechanism behind this treatment remain mysterious. One of the main obstacles
is the lack of one coherent framework which joins the different levels-scales of mechanism ranging from microscopic
(neurophysiology and genetic variations of the neurons), to macroscopic (i.e. tremor and dyskinesia). An intermediate
level, the mesoscopic, is related with dynamics of specific networks of neurons in different nucleus of BG. The dynamics
of these networks constitute the bridge of micro and macro behaviour since are affected from the neuron’s properties and
the emergent patterns which arise define the macroscopic action. In this spirit we propose a computational large-scale
biophysical model related to the Parkinson Disease (PD) and DBS treatment. Based on the work presented in [2, 3] we
model 4 areas of the Basal Ganglia (BG); the Globus Pallidus External and Internal (GPE-GPI) the Sub-Thalamic Nucleus
(STN) and the Thalamus. We show how the variations in the synaptic weights connectivity between the BG areas affects
the macroscopic dynamics, switches from normal to PD and how the DBS on the STN acts as a treatment affecting the
whole network. In addition, during DBS the model reveals a de-synchronization of the GPI activity which is projected
to Thalamus. Combining both, numerical bifurcation analysis and Equation Free Methodology (EFM) [4] and Implicit
Equation Free Methodology [5] for multiscale modelling, we detect systematically in the parametric space, the dynamical
regimes of different dynamics. Main parameters are the connectivity weights and frequency of DBS.

Description of the Basal Ganglia Network

All BG regions follow the Hodgkin Huxley current balanced formalism. The STN neurons follow the equation [2]

C
dVi
dt

= −ICa − INa − IK − IT − IL − IAHP − IGS − ISS + IDBS (1)

where C is the membrane capacity, ICa, INa, IK are the ionic currents, IL is the leak current, IAHP and IT are the
after hyperpolarized and T currents which are depended on the calcium concentration. The postsynaptic currents ISS =
gSS(V − VS)

∑
j sj and IGS = gGS(V − VG)

∑
j sj correspond to internal STN excitation and inhibition from GPE

respectively. The si is the activation variable [2, 3] and the summation is taken over the presynaptic neurons. The GPE-
GPI neurons follow similar current balance equation

C
dVi
dt

= Iapp − ICa − INa − IK − IT − IL − IAHP − ISG − IGG (2)

where the currents are defined in the same way as the STN [2]. Iapp represents the input current from the striatum and has
the same constant value for all GPE neurons. Finally the Thalamic neurons follows the equation

C
dVi
dt

= IL − ICa − INa − IK − IT − IL − IGiTh + ISM (3)

where the ISM describes the input from sensory motor cortex. The detailed form of the currents and the values of
parameters are described in [2].
The STN and GPE areas include N=500 neurons each while the GPi and Thalamus consist of N=200 neuron. For each
area we use a small world of network with k = 10 and p = 0.01[6]. The interconnections between different layers are
1-1 i.e. one STN neuron is adjacent with one GPE neuron and one GPI neuron communicate with one thalamic neuron.
A representative image is depicted in Fig.1.
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Figure 1: Illustrative image of the whole BG network. Different areas are depicted as small world network. (b) Dynamics of Thalamic
neurons under the external input which comes from sensory motor cortex.

Figure 2: Dynamics of the Thalamics neurons in normal case(first row). During the PD (middle row) and finally under the DBS
treatment.

Results

We investigate the dynamics with respect the connectivity weights between the GPI and thalamus. For small value of
inhibition gGiTh the thalamic neurons reacts in rights way to external sensory motors inputs see Fig 2. For higher value
of gGiTh i.e. higher inhibition, thalamus produces Parkinsonian behaviour: ineffective response to external sensory motor
input, while with DBS on and with same connectivity parameters as the PD behaviour, the model shows dynamics close to
normal case: The thalamus after transient period, reacts similar (approximately) to healthy normal case see Fig.2. In order
to analyse the emergent dynamics we will perform numerical bifurcation analysis, under the Equation Free Methodology
[5]. The macroscopic variables are the mean values of the membrane voltage of the four areas.
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Cracking Down on Criminals: A Mathematical Model Expoloring Strategies for
Curbing Criminal Behaviour

Joanna Sooknanan and Donna M. G. Comissiong
Department of Mathematics and Statistics, The University of the West Indies, St Augustine Campus,

Trinidad, West Indies

Summary. Criminal behaviour is a rapidly growing challenge internationally. Policy makers are usually charged with developing
strategies to control its spread - while limited by financial constraints. With the use of a model adapted from epidemiology, control
strategies in the form of time dependent prevention and treatment efforts to curtail the spread of criminal behaviour may be evaluated.
The first control strategy applied encourages potential criminals away from a life of crime while the second strategy targets criminals.
We find that a combination of strategies leads to the biggest reduction in the number of criminals and of potential criminals. To be
effective, strategies based on single controls require the implementation of more intensive efforts at the start of the control effort.

Extended Abstract

One of the greatest social challenges plaguing many countries nowadays is that of criminal behaviour and its ensuing
prevention and reduction. Violent crime can have a negative effect on a countrys economy in a variety of ways. These
include reduced economic growth, a decline in tourism, increased emigration in conjunction with a resulting brain drain,
a reluctance to invest locally by foreign investors and a general feeling of fear and insecurity by the population. This is
compounded when limited resources are available to policy makers. Especially in such instances, whatever measures are
used must be cost effective.
An innovative approach to tackling crime that is rapidly gaining popularity is to consider criminal behaviour as an infec-
tious disease and then to use a public health approach to mitigate its spread [1, 2]. This approach may also be used when
designing strategies to prevent or disrupt the contagion process, which may then be tested using mathematical models
from epidemiology - compartmental models.
Optimal control theory has been implemented to study strategies for the treatment of many diseases including waterborne
diseases, HIV, Ebola, Dengue and Pandemic Influenza. In recent times [3], modelling of behaviour using an infectious
disease approach has been done for fanatical and violent ideology, violent crime and burglary and gang membership. Our
paper deals with the application of optimal control to a dynamic model of criminal behaviour treated as an infectious
disease. Our aim is to find the best strategy in terms of combined efforts of prevention and treatment that would minimize
the total number of criminals and its cost.

Model Formulation
The population under consideration N(t) consists of people who are “at risk”for engaging in or have engaged in criminal
behaviour. N is divided into four disjoint compartments/classes based on status with respect to criminal behavior. These
are:

P : Members of the population who are susceptible to criminal behaviour - Potential Criminals.

C : Members of the population who are engaged in criminal behaviour - Criminals.

J : Members of the population who are in prison or in a juvenile delinquency centre.

R : Members of the population who were in an prevention or treatment program and have permanently left life of crime
- Recovered people.

Figure 1: Model Diagram

We consider two separate control programs u1(t) and u2(t) applied to the P and C subgroups with the goal of “recovery”.
These represent programs or strategies which encourage positive behaviour change and include programs designed by the
government as well as outreach programs by social service groups, neighbourhood organizations, and the faith community.
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The first control strategy u1(t) is applied to potential criminals P who may become criminals by interaction with criminals
C at the rate βCP

N . However, since a prevention control scheme is applied to the P class, u1(t)P individuals progress to
the recovered class R. Individuals in the criminal class may enter a treatment control program at the rate u2(t) or go to
jail at the rate φ. On release from jail, a fraction (1− f) re-join the criminal class and the remainder enters the recovered
class at a rate of fγ where γ−1 represents the time spent in jail. For ease of analysis purposes, we assume a constant size
population N with an entry and death rate into the population given by µ. The rate of entry into the system is proportional
to the population size and is given by µN . Figure 1 shows the structure of flows within the model which is described by
the following set of nonlinear differential equations:

P ′ = µN − βCP

N
− u1(t)P − µP (1)

C ′ =
βCP

N
+ (1− f)γJ − u2(t)C − φC − µC (2)

J ′ = φC − γJ − µJ (3)

R′ = u1(t)P + u2(t)C + fγJ − µR (4)

N = P + C + J +R (5)

Model Analysis – Equilibria and Stability
We study the existence and stability behaviour of the system at its equilibrium points. Two possible equilibrium states are
found – the criminal-free equilibrium where the system only consists of potential criminals and the coexistence equilib-
rium. Coexistence (or endemic) equilibrium points are steady-state solutions where the disease “criminality”persists in
the population.
The issue of whether or not a disease can invade a host population and persist or remain endemic involves the introduction
of a threshold known as the basic reproductive number R0. In our model, R0 represents the average number of potential
criminals who are recruited to the criminal class c. If R0 < 1, then the criminal-free equilibrium is locally asymptotically
stable. If R0 > 1, then the criminal-free equilibrium is unstable, and the introduction of a criminal will result in an
outbreak. In the early stages of a crime outbreak, R0 is the key quantity of interest, and our goal is to identify mitigation
strategies to reduce it below the threshold R0 = 1.

Formulation of the Optimal Control Problem
Our first control strategy (0 ≤ u1(t) ≤ 1) includes programs and practices that target individuals who have an elevated
risk for becoming criminals. The second control strategy (0 ≤ u2(t) ≤ 1) includes programs to treat criminals. Our
goal is to minimize the number of criminals while at the same time minimizing the cost of controls u1(t), u2(t) over a
time period T given the initial population sizes of all three classes p(0), c(0) and j(0). Thus, we are seeking the optimal
control pair (u∗1(t), u

∗
2(t)) so that

J(u∗1, u
∗
2) = min {J(u1, u2) : (u1, u2) ∈ U} (6)

where the Lebesgue measurable control set U is defined as

U = {u1(t), u2(t) : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, t ∈ [0, T ]} (7)

subject to the model equations.
The objective functional is defined as

J(u1, u2) =

∫ T

0

[
Kc(t) +

B1

2
u21 +

B2

2
u22

]
dt (8)

where B1 and B2 are the relative weights attached to the cost or effort required (human effort, material resources, in-
frastructural resources etc.) to implement each of the control measures. K measures the comparative importance of
the criminal burden relative to the control costs. Pontryagin’s maximum principle [4] is used to solve this optimal con-
trol problem numerically using the backward-forward sweep method [5, 6] with the initial conditions given in [7] and
reasonable estimates for the model parameters.
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Summary. Control-based continuation (CBC) is a testing method that maps the nonlinear dynamic features of a physical system di-
rectly from experiments. The application of CBC has been so far limited to electro-mechanical systems. In this paper, we numerically
investigate the application of CBC to a synthetic gene network, the toggle switch. The network’s behaviour is simulated using a nonlin-
ear model (with and without noise), and model predictive control (MPC) is exploited to control its dynamics, through the definition of
an appropriate control objective function. Our preliminary results show that MPC-based CBC can accurately capture the continuation
curve obtained numerically on the full nonlinear model.

Introduction

Mathematical modelling is widely used in System and Synthetic Biology to understand nonlinear biochemical phenomena
(e.g. gene expression temporal oscillations), and to design and validate engineered gene circuits. Although widely used,
biochemical models can be challenging in both their derivation and associated parameter identification [1, 2]. Parameter
and model uncertainty can significantly alter the reliability of model predictions of nonlinear dynamic behaviours.
The application of control-based continuation (CBC) to biological systems, not attempted to date, has the potential to
overcome these difficulties, improving the understanding of naturally-occurring nonlinear biochemical dynamics (e.g.
oscillations in signalling pathways) and enabling the rapid prototyping of engineered gene regulatory network dynamics.
CBC is a non-parametric method that combines feedback control with principles of numerical continuation to map out the
dynamic features of a nonlinear physical system directly during experimental tests [3]. The fundamental principles of CBC
are well established and the method has been applied to a wide range of non-living (i.e. electro-mechanical) systems [4, 5].
In this contribution, we investigate the use of CBC to detect and track the equilibria of the toggle switch, an engineered
genetic circuit [6]. Model-predictive control (MPC), previously exploited to control biological systems [7], is employed to
steer the system’s dynamics towards steady-state and stabilise unstable responses of the underlying uncontrolled system.

Control-Based Continuation of a synthetic toggle switch’s dynamics

We investigate the application of CBC on a toggle switch, one of the first and best characterised synthetic gene network
implemented to date in living bacterial cells [6, 8]. The gene network consists of two repressors (LacI and TetR) and two
inducers (Atc and IPTG). Each repressor affects the opposite gene’s production, which can be externally tuned through
the addiction of chemical inducers. Levels of LacI and TetR can be observed thanks to fluorescent reporters (Figure
1A). The associated deterministic model is mathematically described by a set of four nonlinear differential equations
taking into account mRNA transcription and translation of both repressors. For the stochastic scenario, a SDE model for
the description of biochemical systems based on pseudo-reactions is considered [9].
We chose Model-Predictive Control (MPC) as control strategy to implement CBC; this method combines state estimation,
model prediction and optimization algorithms to find the optimal actuation to apply to a system. At each time step i, the
choice of the optimal sequence of N control inputs is based on the minimization of the cost function

Ji =

N∑

k=1

(N − k + 1)e(i+ k)2, (1)

where the error e(i+ k) is defined as the difference between the control target and the prediction of the system’s response
over N samples. The system response to a particular sequence of control inputs is predicted by integrating in time a linear
model of the system. This linear model was identified prior to closed-loop simulations using input-output in-silico data
and time-domain subspace algorithms. At each time step i, the initial conditions required to initialise simulations are
obtained using a Kalman filter that was also derived during the linear identification process. When an optimal sequence
of inputs is found, only the actuation for the next time step is applied to the system. This whole optimization process is
repeated at each actuation time step i.
Cost function (1) usually includes an additional term to balance tracking performance and control effort. This term is not
considered here but replaced by optimization constraints limiting the control action u at time step i to be no more than
30% different from the control action at time step i− 1.
The inducer IPTG is considered to control the toggle switch’s dynamics. IPTG regulates the expression of a fluorescent
reporter gene, which is a proxy for the TetR concentration (see Fig. 1A). The controller based on the optimization of
Eq. (1) with constraints allows to reach any meaningful value of the TetR concentration. At steady state, the value of
the control input (IPTG) can be interpreted as the bifurcation parameter [10]. Recording IPTG for a range of target
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Figure 1: MPC-based CBC of a synthetic toggle switch. A) Schematic representation of the toggle switch, adapted from [6], where RFP and

GFP represent the fluorescent proteins binding with LacI and TetR. B) CBC results and numerical continuation bifurcation diagram (COCO
software) are shown as red points • and a dotted line (−−), respectively; blue points • design the bifurcation points. IPTG is the inducer, used as
bifurcation parameter. C) CBC results on the stochastic model are represented as a density plot: 10 repetitions of the same experiment are run and 300
points are collected.

concentrations, the equilibrium curve of the uncontrolled toggle switch can be traced out. Fig. 1B shows the excellent
agreement obtained between bifurcation diagram computed using standard numerical continuation algorithms (dashed
line) and CBC results (red dots). Saddle-node bifurcations are highlighted in blue in Fig. 1B. For the stochastic case,
multiple simulations are considered and 300 points are collected (Fig. 1C).

Conclusions

This paper investigates the use of CBC for tracking the equilibrium of synthetic gene regulatory networks. Our preliminary
in silico results demonstrate the feasibility of the approach and the ability of CBC to capture both the stable and unstable
behaviours of the original, uncontrolled system. In particular, in the absence of noise, the equilibrium curve measured
using CBC perfectly agrees with the one computed using standard numerical continuation. In the stochastic scenario,
CBC is still able to uncover the bistable nature of the system as data points qualitative follow the equilibrium curve of the
underlying deterministic model. Unstable steady states collected using CBC also prove to be beneficial when estimating
model parameters that reproduce bistability. The introduction of CBC to characterise cellular dynamics could benefit
both the System and Synthetic Biology communities, providing a valuable tool to explore complex nonlinear dynamics
and to gather important information that can eventually enable a more precise prototyping of those dynamics into novel
synthetic gene circuits. The application of CBC to biochemical experiments could be done using microfluidics/microscopy
platforms for real-time monitoring and control of gene expression in living cells via dynamic modulation of inducer
molecules [11].
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Summary. The architecture and quality of bone tissue in an adult organism predominantly depends on bone cellular organisation and 
communication processes that are highly driven by external mechanical loading. How physical forces and changes in the mechanical 
properties of cells and tissues contribute to development, cell differentiation, physiology, and disease, in general, is a major interest of 
mechanobiology. This paper outlines how mathematical models can help to improve current understanding of bone cellular 
mechanobiology. Here we introduce an adapted mathematical model for bone remodeling in the form of generalized S-system equations 
(Lotka-Volterra system) of fifth order that includes periodic received and transduced signal of external loading. Critically, we approach the 
modelling through both deterministic and stochastic methods, which allow us to consider the intrinsic noisiness of the process.In particular, 
this model includes osteocytes mechanobiology, which, apart from their biochemical processes and their interactions with other bone 
remodeling cells, includes external periodic signal transduction and influence that represents a significant advance to the field.  

Background and Aims 

The bone cell lineages are permanently active in the process of bone remodelling that resorbs old and forms the new 
content of bone. These activities happen on the daily base with a progression of several micrometres of local bone 
turnover. The bone architecture and quality depend on many biological, biochemicals, hormonal and physical factors 
among which external static and dynamic loading play an important role. The bone adaptive mechanobiological 
processes are governed by the osteoblasts (OBs), osteoclasts (OCs), and osteocytes (OcYs) cells working in concert, all 
capable of transducing mechanical strain signals into biochemical cues for osteogenesis [1]. However, Osteocytes 
(OcYs) in particular have been shown in vitro to be the most mechanosensitive bone cell type, demonstrating a higher 
intrinsic sensitivity to loading than other osteogenic cells. They have also recently been shown to direct osteogenesis in 
other bone cell types, reinforcing the theory that osteocytes sense mechanical loading in the bone matrix and then 
orchestrate the adaptive bone remodeling response [2]. Owing to their presence deep within bone matrix, direct 
experimental observation of osteocytes in vivo has proven extremely challenging. As such, the precise mechanical 
stimuli, which they experience in vivo, and the mechanisms whereby they sense and transmit these stimuli, remain 
unknown. Although it is possible to mechanically stimulate bone and quantify the tissue-level changes that occur, it is 
still extremely challenging to simultaneously delineate the cellular and molecular mechanisms that give rise to these 
changes. Further, the complexity of the skeletal processes and their interactions with the rest of the body limits the 
ability of a single biological model to capture all of the relevant biological, biochemical, and biophysical mechanisms of 
remodelling on all scales simultaneously. Moreover, the parameterization of an established accompanying mathematical 
model is difficult, given its dependency on the accuracy and availability of data. However, in-silico experiments on 
established mathematical model reveal important features of nonlinear connections between variables and dependency 
on parameters of the system. In many cases, the quality of a scientific field depends on how well the mathematical 
models, developed on the theoretical side, agree with the results of repeatable experiments. Lack of agreement between 
theoretical mathematical models and experimental measurements often leads to important advances as better theories 
are developed. With this research, we wish to emphasize the importance, reliability and credibility of mathematical 
models as a great way of cementing biological intuition. Specifically, they provide causative mechanisms linking inputs 
and outputs, thereby illuminating underlying assumptions that determine a biological system’s dynamics. Finally, they 
offer a means of predicting new outcomes, as well as highlighting the most sensitive modelled components, resulting in 
the construction of new experimental hypotheses and more focused experimentation. 

Methods and mathematical models 

To address the question of how different bone cells interact with each other and the bone microenvironment during 
remodelling, several cell population models have been proposed in Refs. [3-6]. These types of models are able to 
monitor changes in cell numbers and bone volume over time and they all modelled the free dynamics of the bone cell 
system. The formalism of a cell population model can be generalised to be of the form of a S-System of equations of     order that corresponds to the number of included cellular lineages,                 

                                                           
If we include OcY, OB, OC and preosteoblastic (pOB) lineages of cells together with a bone mass equation it will be 
system of 5th order (   ). System (1) is a homogeneous system of coupled ordinary nonlinear differential equations 
that is more specifically. In one cycle of targeted remodeling the number of activator cells, both resorbing and forming, 
is bounded above by approximately 10 OCs and up to 300 OBs, so that in the dynamics of the system (1) the number of 
OCs drops below one, which occurs frequently. Of course, since we are dealing with exact numbers of cells, such a 
measurement is unrealistic. 
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Critically, the problem stems from the direct use of differential equations that assume a modelled population is large 
enough, for a continuum hypothesis to approximately hold. This hypothesis is obviously invalid at such small 
population sizes. Thus, for such low numbers of cells it is more correct to produce a discrete interaction model. 
Specifically, we use a stochastic analogue to simulate the creation and degradation, which encapsulates the noisy 
features of individual cell division and death [7-9]. From system (1) we are able to extract the stochiometric creation 
and degradation relations, and present its probabilistic analogue:                                                                              

Although parameter values exist in the literature they are mainly approximate and are proposed to simplify and justify 
the model. Further, in all of the literature it is assumed that the     parameters are constant. However, in real bone 
remodelling processes the     parameters may depend on time and other factors. Unfortunately, these parameters cannot 
be directly measured and have to be estimated. Based on these recent biological experimental findings we introduce the 
modification of the model by editing the power low term     to time dependent oscillatory function                , 
what represent transduced signal of OcY, and inserting the mechanical periodic excitation               to the 
responding OcYs.   

Results & Discussion 

We find that the model can capture the essential autocrine, paracrine and synergistic characteristics of bone cell 
communication processes in response to the external incentives. Specifically, including oscillatory signals with small 
delays between received and send a signal by OcY  provides the closest matches between mathematical data and 
biology theory. This can be seen from Fig. 1 where after the period of resorption, the depression of green   line below 
zero, come the significant changes in the activation of osteoblasts (yellow   line) that results in formation period, the 
green line above the zero. Comparing with the green line at Fig 1 a) that has no over formation above steady-state value          We prove that under the influence of the external periodic signal the local formation of the newly 
remodelled bone will exceed the amount of resorbed old bone. 

 
Figure 1: One cycle of bone remodeling: a) free cell communication; b) periodically forced dynamics with external periodic source 

and parameter      out of synchronization by a factor of π/2, all parameter values are taken from [6] except          

Conclusions 

The results of our research highlighted the importance of the external excitation and mechanotransduction of the signal 
by the bone cell in the regular bone turnover. The in-silico experiments with forced Lotka-Volterra system of 
population equations pinpointed the importance of nonlinear deterministic and stochastic analysis in the field of 
mechanobiology. 
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Summary. We present an efficient formulation of the path integration method to approximate the response probability density functions
(PDF) of nonlinear stochastic differential systems. We obtain the time-dependent PDF at the next time point by solving the Chapman-
Kolmogorov (CK) equation, where we integrate the probability density function (TPDF) of the transition from one state to another
(TPDF), for all possible states, weighted by the PDF at the current time. We iteratively evaluate the CK equation via a partitioned
formulation of the path integration method: the PDF is represented as an interpolated function, the TPDF from one state to the other is
approximated using a numerical scheme, and the integral is evaluated using the Gauss-Legendre quadrature. We record the integration
process in a so-called step matrix and transform the evaluation of the CK equation to a matrix-vector multiplication. We demonstrate
that this approach increases the performance of the path integration method compared to previously established approaches and analyse
the accuracy of different interpolation and time-stepping methods.

Introduction

The probability density function (PDF) is an important tool to investigate the response statistics of dynamical systems
subjected to noise excitation. When the dynamical system is represented as a stochastic differential equation (SDE),
a commonly used method to determine the response PDF is to solve the corresponding Fokker-Planck or Kolmogorov
forward equation. This partial differential equation rarely has an exact analytical solution, and thus in most cases, we
have to use a numerical approximation method to solve it. The simplest method to obtain the PDF is through time-domain
Mone-Carlo simulations when we numerically integrate the SDE in time and use the realised trajectories to approximate
the PDF.
Another method to obtain the PDF of an SDE is the path integration (PI) method. Here we have to solve the Chapman-
Kolmogorov (CK) equation, formulated to describe the law of total probability for dynamical systems. The PI method has
proven to provide an accurate estimate of the time evolution of the PDF of a dynamical system; however, the CPU time
required to compute a PDF is still an issue. The computation time is a critical problem to address if the dimensionality of
the state space of the investigated dynamical system is high or when we want to obtain the steady-state PDF for a slowly
converging system. In previous formulations of the PI method [1, 2, 3, 4] the CK equation was directly solved in each
time step, even in the case of time-invariant or time-periodic systems. There are works [5] that utilise FFT to speed up the
time it requires to evaluate the CK equation for each time step; however, the CK equation is still evaluated at each time
step.
In this work, we provide a modular approach to solve the CK equation and analyse the effect of different interpolation
methods on the accuracy and the performance of the approximation of the PDF delivered by the numerical solution of
the CK equation. Furthermore, we transform the process of evaluating the CK equation to a matrix multiplication which
significantly speeds up the computation of PDFs of time-invariant and time-periodic systems.

Chapman-Kolmogorov Equation

We consider stochastic differential equations in the form

dx(t) = f(x, t)dt+ g(x, t)dWt, (1)

where x =
[
x1 . . . xd

]⊤
is the Rd-valued stochastic state variable, Wt is the R-valued Wiener process (Brownian

motion), f : Rd × [0, T ] 7→ Rd, g : Rd × [0, T ] 7→ Rd. We can assume, that the diffusion term g has only d − k + 1
nonzero terms:

gi(x, t) ≡ 0 for i < k ≤ d. (2)

We use the Chapman-Kolmogorov equation to obtain the probability density function p(x, t) in discrete times tn and
tn+1:

p(x, tn+1) =

∫

Rd

p(x, tn+1|x0, tn)p(x0, tn)dx0. (3)

As the solution of the Chapman-Kolmogorv equation is not available in an analytical form for a general smooth f and g,
we need to discretise (3) using the path-integration approach. We approximate the transitional probability density function
(TPDF) p(x, t|x0, t0) with the help of a numerical stepping scheme, interpolate the probability density function (PDF)
p(x,t), and evaluate of the integral with the help of the Gauss-Legendre quadrature.
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We record the whole calculation process in a step matrix Sn and substitute the evaluation of the integral (3) with a
matrix-vector multiplication:

pn+1 = Snpn. (4)

In pn we record the interpolation values describing the PDF p(x, t). In case the SDE in (1) is time-invariant or time-
periodic, this approach will lead to a very performant method to solve (3).

Accuracy and Performance

Due to the partitioned formulation of the PI method we are able to separately investigate the effect of the time stepping
method used for the approximation of the TPDF p(x, tn+1|x0, tn) and the interpolation method of the PDF p(x, tn) on the
accuracy of the approximation. We analyise the different time stepping and interpolation methods through the response
PDF of a cubic oscillator:

ẍ(t) + 0.3ẋ(t)− x(t) + 0.25x(t)3 =
√
0.075 ξ(t). (5)

The steady-state PDF pst(x, ẋ) of (5) is approximated with the help of the path integration method and is compared with
the true solution [6]. To characterise the accuracy of the PI method we use ε1 that is obtained by integrating the absolute
error between the true and approximated steady state PDF pst(x, ẋ) for the all the states x, ẋ ∈ R.

Figure 1: Steady state PDF pst(x, ẋ) of the cubic oscillator (5)

.

61

a)

Direct integration of cubic

2 2

b)

Figure 2: Error ε1 as a function of (a) time step ∆t and (b) number of interpolation nodes N / CPU time of the approximated steady
state response PDF pst(x, ẋ) of the cubic oscillator (5)

.

We demonstrate that our new formulation allows accurate computation of the PDF of noise-driven nonlinear dynamical
systems significantly faster than previous formulations. Additionally, we show that the increased performance of the PI
method allows the parametric analysis of a vibro-impact energy harvesting device that is used to harvest energy from
noisy ambient vibrations.
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Integral feedback in synthetic biology: Negative-equilibrium catastrophe [1]

Tomislav Plesa∗, Alex Dack† and Thomas E. Ouldridge†
∗Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Wilberforce Road, Cambridge, CB3 0WA, UK
†Department of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK

Summary. A central goal of synthetic biology is the design of molecular controllers that can manipulate the dynamics of intracellular
networks in a stable and accurate manner. To address the fact that detailed knowledge about intracellular networks is unavailable,
integral-feedback controllers (IFCs) have been put forward for controlling molecular abundances. These controllers can maintain
accuracy in spite of the uncertainties in the controlled networks. However, this desirable feature is achieved only if stability is also
maintained. In this paper, we show that molecular IFCs can suffer from a hazardous instability called negative-equilibrium catastrophe
(NEC), whereby all nonnegative equilibria vanish under the action of the controllers, and some of the molecular abundances blow up.
We show that NECs place a fundamental limit to design and control of molecular networks.

Extended Abstract

A main objective in synthetic biology is to control living cells [1, 2]. This challenging problem requires addressing a
number of complicating factors displayed by intracellular networks:

(N) Nonlinearity. Intracellular networks are bimolecular (nonlinear), i.e. they include reactions involving two reacting
molecules.

(HD) Higher-dimensionality. Intracellular networks are higher-dimensional, i.e. they contain larger number of coupled
molecular species.

(U) Uncertainty. The experimental information about the structure, rate coefficients and initial conditions of intracel-
lular networks is uncertain (noisy).

To mitigate challenge (U), molecular integral-feedback controllers (IFCs) have been put forward, which can maintain
accurate control of molecular abundances in spite of some of the uncertainties in the controlled networks [3, 4]. However,
this desirable feature is achieved only if stability is also maintained - an important problem which has been predominantly
studied when unimolecular and/or lower-dimensional networks are controlled [4, 5, 6, 7]; in contrast, intracellular net-
works are generally bimolecular and higher-dimensional (challenges (N) and (HD) stated above). To bridge the gap, in
this paper we focus on the question of fundamental importance to intracellular control: How do molecular IFCs perform
when applied to biochemical networks which are bimolecular, higher-dimensional and uncertain?
We show that at the center of this question are equilibria - stationary solutions of the reaction-rate equations that govern
the deterministic dynamics of biochemical networks. In particular, molecular concentrations can reach only equilibria
that are nonnegative. In this context, we show that molecular IFCs can destroy all nonnegative equilibria of the controlled
system and lead to a control failure; furthermore, this failure can be catastrophic, as some of the molecular abundances
can then experience an unbounded increase with time (blow-up) at both deterministic and stochastic (chemical master
equation) levels. We call this hazardous phenomenon, involving absence of nonnegative equilibria and blow-up of some
of the underlying species abundances, a negative-equilibrium catastrophe (NEC), which we outline in Figure 1. In context
of electro-mehanical systems, analogous phenomenon is known as integrator windup. We show that unimolecular IFCs do
not exist due to a NEC. We then derive a family of bimolecular IFCs that are safeguarded against NECs when uncertain
unimolecular networks, with any number of molecular species, are controlled. However, when IFCs are applied on
uncertain bimolecular (and hence most intracellular) networks, we show that the problem of preventing NECs generally
suffers from the curse of dimensionality - the problem becomes intractable as the number of interacting molecular species
increases. NECs therefore have broad implications for design and control of molecular networks at both deterministic and
stochastic levels.
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Figure 1: Caricature representation of a successful and catastrophically failed intracellular control. Shown are mean-field concentrations
of two intracellular species, denoted by X1 (green) and X2 (yellow), and two controller species, denoted by Y1 (red) and Y2 (blue);
the goal is to steer the equilibrium of X1 to a desired set-point.
Panels (a)–(b) display a cell successfully controlled with a molecular IFC. In particular, panel (b) shows that the species X1 approaches
a desired equilibrium, shown as a black dashed line, while the equilibria for the remaining species X2, Y1 and Y2 are positive.
Panels (c)–(d) display a cell that has taken lethal damage due to a failure of the IFC. In particular, as shown in panel (d), the target
equilibrium for X1 enforces a negative equilibrium for the species X2. However, since molecular concentrations are nonnegative, this
equilibrium cannot be reached and, therefore, control fails. Furthermore, the failure is catastrophic, as concentrations of some of the
underlying species (in this example, species X2 and Y1) blow up, placing a lethal burden on the cell. Analogous phenomenon occurs
at the stochastic level.
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Dynamical Analysis of a Multibody Wave Energy Converter excited by Random Waves

Marten Hollm∗, Leo Dostal∗, Joshua Höhne∗ and Robert Seifried∗

∗Institute of Mechanics and Ocean Engineering, Hamburg University of Technology, Hamburg,
Germany

Summary. The dynamics of a novel multibody wave energy converter based on inclined single modules connected to a frame are
investigated, on which generators convert the corresponding relative motion into electrical power. Thereby, it is studied under which
conditions the inclined individual modules perform the largest relative motions in regular and irregular waves. For this, different setups
are analyzed in the presence of wave excitations, which is generated by a random non-white Gaussian stochastic process.

Introduction

Renewable energies play an increasingly important role in modern energy systems. As a consequence, hydropower, solar
and wind energy are becoming more and more important. In addition to these well-known examples of renewable energy
generation, there is also the possibility to obtain energy from ocean waves. Since wave energy has a high power density
compared to wind and solar energy, it is also promising for energy generation [1]. Therefore, several new concepts of wave
energy converters (WEC) have been studied in the last years. For example a pendulum energy converter was investigated,
whereby its pivot is excited by water waves in such a way that a rotational motion of the pendulum is generated, which
can be converted to electrical energy, cf. [2, 3, 4, 5].
This paper deals with the analysis of the dynamical behavior of a multibody WEC, where generators mounted on a frame
are each excited by a randomly moving cylindrical floating body (CFB). The CFBs are floating in ocean waves and
the energy generation of the generators results in additional damping. Our results consider the case of excitation by a
non-white Gaussian random process, which can for example be encountered in real sea states.

Description of the mechanical system

The mechanical system mainly consists of a frame and N CFBs. Figure 1 shows the side view of the structure for the case
of N = 2 in still water and in the presence of harmonic water waves. In this work, only the motion of the system in the
xy-plane with horizontal coordinate x and vertical coordinate y is considered. Each CFB moves along guided rods with
corresponding displacement ξi in a plane, which is inclined with respect to the frame by the corresponding adjustable
inclination angle εi, i ∈ {1, . . . , N}. The frame can freely move in the xy-plane, whereby the angle of rotation is denoted
by β and the horizontal and vertical displacements of the frame are denoted by xF and yF, respectively. It is assumed
that the frame is in contact with the sea surface and that only the CFBs are excited by water waves. Thereby, the CFBs
and the frame are connected by springs and mechanical friction is accounted for by a velocity dependent damping force.
Generators convert the relative motion between the CFBs and the frame to electrical energy, leading to an additional
electrical damping force.
Let

z = [xF, yF, β, ξ1, . . . , ξN ]T (1)

be the vector of all degrees of freedom of the multi body WEC. Then, the general equation of motion of the mechanical
system can be written as

M(z, t)z̈ + k(z, ż, t) = q(z, ż, t), (2)

whereby t is the time, M is the generalized mass matrix, k is the vector of Coriolis, centrifugal and gyroscopic forces and
q is the vector of the applied forces.
In order to compute the hydrodynamic forces, the water pressure pmust be integrated over the wetted surface of each CFB.
Using potential flow theory and Bernoulli’s equation of fluid dynamics, the radiation problem as well as the diffraction
problem of a moving cylinder has to be solved in order to calculate the hydrodynamic forces [6]. For incoming harmonic
water waves with wave amplitude A and wave frequency ω, the corresponding sea surface is given by

η(x, t) = Re{A exp(i(κx− ωt))} with ω2 = κg tanh(κH), (3)

whereby κ denotes the wave number, g the gravity constant and H the water depth. For this type of water waves,
Yeung [7] and Garrett [8] have computed the velocity potential of radiation and diffraction by expressing them as a series
of eigenfunctions for the case of a single truncated cylinder. Using this theory, it is assumed that the motion of CFBs does
not lead to hydrodynamic forces, which affect other CFBs.

Description of random sea waves

A well-known model of random long-crested sea waves is given by the superposition of harmonic waves with wave
frequencies ω and corresponding wave numbers κ(ω). With this, the wave amplitude of each harmonic wave component
depends on the underlying sea state, which is given by the corresponding one-sided spectral density S(ω), cf. [9, 10].
Then, a one dimensional irregular long-crested wave surface can be written as
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Figure 1: Sketch of the mechanical system in still water position (a) and in the presence of harmonic water waves (b).

Z(x, t) =

∫ ∞

0

cos (ωt− κ(ω)x+ ε(ω))
√

2S(ω)dω, (4)

whereby the integral is not Riemann integral but a summation rule over the frequencies ω. An example for such generated
sea waves is shown in Figure 2, where either the space or time is fixed at x = 0 or t = 0, respectively.
With this developed mechanical model and the study of corresponding numerical results, a detailed analysis is performed
showing the influence of design parameters, like the inclination angles εi or the number N of CFBs, in order to maximize
the harvested energy.

Figure 2: Evolution of a random sea surface in time and space.
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Summary. This study deals with the roughness-induced normal vibration problem occurring when a rigid rough body slides on a rigid rough 
surface. To predict this dynamic behaviour, we propose to model the effective random excitation source under the assumption of a very small 
number of contacts, each affected by a statistically independent stochastic process. Each process is obtained by considering the separation 
between both topographies when they touch in a single point. Statistical and spectral properties of the vibrational excitation are characterized. 
On this basis, we demonstrate the relevance of the proposed modelling to reproduce the experimental observations. 

Introduction 

When a rigid rough body slides on a rigid rough surface, it exhibits random vibrations normal to the nominal contact 
surfaces. Under light contact pressure, this behaviour is known as roughness-induced vibrations leading to a broadband 
noise, so-called roughness noise [1]. This problem is a huge nonlinear and stochastic dynamic problem. Indeed, it includes 
both microscopic and macroscopic scales (roughness versus slider macro-size), short time scales, non-smooth dynamics 
(loss of contact) and stochastic excitations induced by roughness. Depending on the sliding velocity, recent experimental 
works about this vibrational problem have clearly shown two main dynamic regimes, observable on the dynamic motion of 
the slider normal to the surfaces in contact [2,3]. For low sliding velocities, the slider remains very close to the above solid, 
like a grazing regime, with negligible probability of contact losses. Conversely, for high sliding velocities, the slider 
jumps above the track with free flights, like a bouncing regime, leading to numerous mechanical shocks between 
asperities. As an example, these two regimes can be identified on figure 1 which shows the evolution of the slider’s free 
flight time rate 𝛱 versus the sliding velocity 𝑉. This experiment concerns a stainless steel upper slider in dry contact 
under its own weight (104 g mass) with a 25x25 mm² apparent surface and a 30 µm RMS roughness. The antagonist 
stainless steel 25x300 mm² surface is also with a 30 µm RMS roughness. The slider was either pulled or pushed with 20 
tests per operating way, which is presented in figure 1 through the uncertainty bars. Further, an example of the vertical 
acceleration history �̈� of the slider observed in the bouncing regime is shown in figure 2. We can clearly observe long 
free flights for which �̈� = ݃, and short impacts. 

 

  

 
Figure 1: Slider’s free flight time rate versus the sliding velocity  Figure 2: Vertical acceleration in the bouncing regime 

The vertical dynamic behavior of the upper slider under its own weight, i.e. submitted to a light normal force, can be 
heuristically modelled by an equivalent randomly excited bouncing ball system [2,3]. On the basis of this assumption, the 
transition velocity which separates the two regimes can be predicted by the knowledge of an equivalent random excitation 
source. This excitation is directly related to the characteristics of the tribological system, defined by the surface 
topographies, the size of the upper slider, the sliding velocity, and so on. So, being able to model such an excitation 
constitutes one of the keys to a better knowledge of the nonlinear and stochastic roughness-induced dynamics of sliding 
bodies. Precisely, the main goal of this paper is to address this question. In particular, we have proceeded to describe the 
probability density function and the power spectral density of this stochastic excitation as a result of the two sliding 
conformal rough surfaces in the case of light normal load. 

The proposed approach for modelling the excitation source 

The excitation source results from interactions between the two rough surfaces in sliding contact. It can be viewed as the 
normal displacement 𝑧𝐺 of the center of mass of the slider 𝑮. When the applied pressure is very low compared to the 
material stiffness, one can reasonably assume that the contact is ensured by only three points of contact. Such three-points 
contact situations are the focus of the present study.  
3-points contact modelling and normal displacement of the slider’s center of mass 
The 3 points in contact necessarily surround the center of mass of the slider. Normal displacements 𝑧 under the points 
correspond to the separation of the associated antagonist asperities. The schetch in figure 3 represents this scenario. Now, 
assume that the altitude of each contact, 𝑧, and also their respective positions (points 𝑷ሻ are known, the vertical motion 
of the center of mass is given by 𝑧𝐺 = 𝛼ଵଶ𝑧ଷ + 𝛼ଶଷ𝑧ଵ + 𝛼ଷଵ𝑧ଶ, where 𝛼 represents the absolute barycentric coordinates, 
or area coordinates. Considering isotropic surfaces, the three barycentric coordinates are statistically equivalent. 
Furthermore, one assumes that displacements 𝑧 and coordinates 𝛼 are independent random variables. So, the 
displacement of the center of mass behaves like the following random variable �̃�𝐺 = ሺ𝑧ଵ + 𝑧ଶ + 𝑧ଷሻ/3. 
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Figure 3: (a) Slider and location of its center of mass 𝑮, location of each 
contact point 𝑷, and area coordinates 𝛼; (b) the equivalent sliding system. 

 
Finally, if we assume that points 𝑷 are sufficiently separated with distances larger than a characteristic topography 
wavelength to ensure that displacements 𝑧  are independent, and if we assume that the probability density functions �݂�𝑗ሺ𝑧ሻ are almost the same �݂�ሺ𝑧ሻ, one obtains the probability density function of �̃�𝐺, i.e. ݂ 𝑧𝐺ሺ𝑧ሻ = 3ሺ �݂� ∗ �݂� ∗ �݂�ሻሺ3𝑧ሻ. In 

the same way, one can calculate the power spectral density 𝑆𝑧𝐺𝑧𝐺ሺ𝑘ሻ as follows 𝑆𝑧𝐺𝑧𝐺ሺ𝑘ሻ = 𝑆𝑍𝑍ሺ𝑘ሻ/3.  
One-point contact modelling  
In this frame, we need to characterize the probability density function �݂�ሺ𝑧ሻ and the power spectral density 𝑆𝑍𝑍ሺ𝑘ሻ. It was 
done in the case of the separation at single-point contact between self-affine topographies. The main results [4] obtained 
by direct simulations and extreme value theory approach are: (i) the normal motion RMS amplitude is much smaller than 
that of the equivalent roughness of the two topographies and depends on the ratio of the slider’s lateral size over a 
characteristic wavelength of the topography; (ii) due to the nonlinearity of the sliding contact process, the power spectral 
density contains wavelengths smaller than the smallest wavelength present in the underlying topographies.  

Results and conclusion 

In order to validate the proposed scenario, we compared the predicted characteristics of the vertical motion of the center 
of mass of the slider to the results during grazing regimes obtained through sliding experiments described in the 
introduction section and direct simulations of the sliding contact.  
   

  
Figure 4: Pdf of the vertical motion of 𝑮; blue: experimental result; 
yellow: direct simulation; red: extreme value theory. 

Figure 5: PSD of the vertical motion of 𝑮; blue: experimental 
result; yellow: direct simulation; red: analytical. 

 
As we can observe, the statistical properties (see figure 4) as well as the spectral contents (see figure 5) are well captured 
by the proposed modelling. Within its framework, it was therefore also possible to accurately predict the velocity threshold 
separating the grazing regime to the bouncing regime. For this, the vertical motion of the slider has been heuristically 
described with good agreement by the dynamics of an equivalent random bouncing ball system for which the 
characteristics were given in a previous work [5], including memory effect related to a combination between the sliding 
velocity and  characteristic wavelengths of the equivalent excitation. 
To conclude, we have proposed a complete modelling to describe the roughness-induced normal vibration at a dry sliding 
conformal contacts under light load. Good agreements were obtained with respect to experiments as well as direct 
simulations. More generally, we provide an improved understanding of roughness-induced vibration problems and a  
better knowledge of the associated friction and noise. 
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ANALYSIS OF COUPLED NON-LINEAR OSCILLATORS
BY THE ASYMPTOTIC NUMERICAL METHOD
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∗Univ Bretagne Sud, CNRS UMR6027, IRDL, France

Summary. This study is based on the theoretical and experimental works of Cadiou et al. [1, 2] who designed a non-linear vibration
absorber using an electro-magnetomechanical coupling. The present work limits itself to the pure mechanical response of a 2 degrees-
of-freedom oscillator with a cubic non-linear coupling between the Linear Oscillator (LO) and the non-linear energy sink (NES). The
numerical analysis is performed using the Harmonic Balance Method (HBM) in association with the Asymptotic Numerical Method
(ANM), following the initial idea proposed by Cochelin et al. [3]. This approach offers an understanding of resonance mechanisms of
the LO and energy transfers to the NES. Numerical experiments are performed in order to identify influence of the parameter values.
Numerical results are also compared to theoretical ones. They confirm the relevancy of the numerical approach which may be retained
to the design of a non-linear vibration absorber.

Extended Abstract

Non-linear energy sinks (NES) are known for their efficiency in the vibration mitigation as they do not have to be tuned to
the natural frequency of the supporting structure. In this study, a 2 degrees-of-freedon (DOF) model is analysed (Fig.1).
It is composed of a Linear Oscillator (LO) non-linearly coupled with the absorber (NES). The LO is defined with its mass
m1, a constant stiffness k1 and a viscous damping parameter c1. The absorber is defined through its mass m2, its viscous
damping parameter c2 and its cubic stiffness k2c. The LO is directly excited by an harmonic force f(t) = Fcos(ωt).
Finally, x1(t) and x2(t) denote the LO and NES displacement, respectively. Thus, the problem to be solved reads:

{
m1ẍ1 + c1ẋ1 + k1x1 + c2(ẋ1 − ẋ2) + k2c(x1 − x2)3 = Fcos(ωt)

m2ẍ2 − c2(ẋ1 − ẋ2)− k2c(x1 − x2)3 = 0

In this study, the problem is solved coupling the Asymptotic Numerical Method (ANM) with the Harmonic Balance
Method (HBM). The former is a continuation technique based on Taylor series of the unknowns while the later is a
decomposition of unknowns into truncated Fourier series.
In order to efficiently apply the ANM, quadratic recast of equations is a preliminary stage. So, auxiliary variables yk = x2k
and velocity variables vk = ẋk (k = 1, 2) are defined and the non-linear dynamic problem formally reads:

Ẏ = G(Y , ω) with: Y = {x1, x2, v1, v2, y1, y2}⊤

The HBM is then applied and the unknown Y is decomposed into truncated Fourier series with H harmonics:

Y = Y 0 +

H∑

p=1

[
Y cp cos(pωt) + Y sp sin(pωt)

]

Fourier series are introduced into the non-linear dynamic problem. After balancing terms of the same harmonic index, the
components Y 0, Y

c
p and Y sp are identified and collected into one single unknown vector X . Thus, the non-linear problem

reads:

R(X,ω) = 0 with: R(X,ω) = −ωM(X) + C+ L(X) +Q(X,X)

where M(X),C,L(X) and Q(X,X) stand for, respectively, the mass operator, the constant external forcing, the linear
operator and the quadratic one. The convenient quadratic expression of the residual R allows to solve the problem using
the ANM in order to continue solutionX in respect to the parameter ω. The main advantage of this approach is to compute
exactly the associated Jacobian matrix of the residual R. So, unknowns X and ω are sought as truncated series of the
path-parameter a:

X =
N∑

k=1

akXk and ω =
N∑

k=1

akωk with a = 〈X −X0, X1〉+ (ω − ω0)ω1

Then, the validity domain of one ANM step is evaluated according to: amax = (ǫ‖X1‖/‖XN‖)1/(N−1) and a new
continuation step can be performed: Xnew

0 = X(amax) and ωnew
0 = ω(amax). More details can be found, for example, in

[4, 5, 6, 7, 8].
This procedure is applied to analyse the dynamic response of the LO and the NES. The response curves are in good
agreement with the numerical ones established in [1, 9] for a non-linear vibration absorber without electro-magneto-
mechanical coupling (Fig.2).
Additional simulation are performed, for different values of the force F , to identify the appropriate values of the ANM
parameters, mainly the number of harmonics H , the truncation order N and the tolerance threshold ǫ (Fig.3).
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Figure 1: Single-degree-of-freedom oscillator non-linearly coupled with a NES

In particular, continuous solutions are obtained and several dynamic behaviours are highlighted according to the excitation
force level F . Bifurcations (Hopf and Neimark-Sacker) are also computed in accordance with theoretical predictions
obtained through a combination of the Complexification-Averaging method and the Multiple Scales method [1, 9].
The very first results show the relevancy of the numerical approach which is going to be used in order to study the dynamic
behaviour of composite hydrofoil coupled to a NES [10].
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Figure 2: Evolution of the LO amplitude as a function of the frequency for F = 40 N with H = 5 harmonics. Comparison with result
from [1].

Figure 3: Evolution of the LO amplitude as a function of the frequency. Influence of the parameters on the dynamic behavior: F = 20
N with H = 1 harmonic (A) ; for F = 80 N with H = 1, 3, 5 harmonics (B).
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Control-based continuation of orbits with complex time profile

Jan Sieber∗, Courtney Quinn†

∗Department of Mathematics, University of Exeter, UK
†CSIRO, Hobart, Austrialia

Summary. We illustrate how unstable trajectories with complex time profiles and large period can be tracked using feedback control-
based continuation. The experimental or computational effort is proportional to the period. The approach requires the feedback control
to be stabilizing within time of order 1 uniformly along the orbit. The approach is illustrated with a stochastic simulation of a delay
model for the Mid-Pleistocene transition of the palaeoclimate ice ages.

Control-based continuation
Control-based continuation applies feedback control to turn a controllable nonlinear dynamical system with inputs and
outputs into a system of nonlinear equations, which can then potentially be solved by general-purpose nonlinear solvers or
continuation (curve tracking) algorithms; see [2, 6, 7] by Renson, Barton et al and Schilder et al for detailed descriptions
of the methodology. The approach assumes that the user (e.g., experimenter) has implemented a stabilizing feedback
control loop. One may assume that the dynamical system follows an ODE of the type

ẋ(t) = f(t, x(t), µ, u(t)) where x(t) ∈ Rn with output y(t) = g(t, x(t), µ) where (e.g.) y(t) ∈ R, (1)

and µ are system parameters. In the experiments of [2, 6, 7] the dynamical systems were forced oscillators, the output y
was a position coordinate and the feedback control was in the form of a PD control, u(t) = kp[y(t)− yr(t)] + kd[ẏ(t)−
ẏr(t)], with a reference time profile yr. The control is said to be stabilizing the (for example) T -periodic trajectory
x∗(t) (with output y∗(t) = g(t, x∗(t), µ)) of the uncontrolled system ẋ = f(t, x, µ, 0), if for every T -periodic reference
yr ≈ y∗ and initial conditions (t, x) close to (t, x∗(t)) the controlled system (1) converges to a unique T -periodic limit
ylim(t) ≈ y∗(t). Moreover, the approach requires that the asymptotic input-output map Y : (yr, µ) 7→ ylim is continuously
differentiable in the space of T -periodic functions. If the stabilization condition is satisfied for the feedback control
y−yr 7→ u, then one may find the periodic orbit y∗ of the uncontrolled system as fixed point of the map Y : yr = Y (yr, µ)
if and only if yr = y∗, regardless of the dynamical stability of y∗. This enabled the authors of [1, 2, 5, 6, 7] to track
response curves through limit (fold/saddle-node) bifurcations, track fold bifurcations in two parameters, and detect stable
and unstable directions of saddle-type orbits in mechanical oscillator experiments.

Solving the nonlinear fixed-point problem y = Y (y, µ)

One difficulty when solving for (or tracking) fixed points of the input-output map Y is that the Jacobian of Y (yr, µ) with
respect to its arguments, which Newton iteration-based solvers require, is not known, and can generally be obtained only
by performing repeated experiments for small deviations of the inputs, (yr + δyr, µ + δµ). For mechanical oscillator
experiments the periodic orbits are nearly harmonic such that [7] approximated yr with low-order harmonics: yr(t) ≈
PN [yr](t) :=

∑N
ℓ=−N yℓbℓ(t), where, in their case, bℓ(t) = cos(ℓωt) for ℓ ≤ 0, bℓ(t) = sin(ℓωt) for ℓ > 0, ω = 2π/T

and N ≤ 10 typically. Barton, Renson et al used a (Newton-)Picard iteration, splitting yr = yP + yQ with yp ∈ rgP1 and
yQ ∈ rgQ1 (QN = I − PN ). They observed that, for fixed (yP , µ), the iteration yQ 7→ Q1Y (yp + yQ, µ) converges to
a limit yQ within measurement accuracy in one or two iterations, defining a map YQ(yP , µ). This reduced the fixed point
problem to the low-dimensional yP = P1Y (yp + YQ(yP , µ), µ) in rgP1, for which a finite-difference approximation of
the Jacobian is feasible.
We generalize this Newton-Picard approach to problems where we expect a severely non-harmonic fixed point y∗, that
is, typically problems with large period T . Our illustrating example below considers a forced system with forcing as
shown in fig. 1(top-left). The Picard iteration yQ 7→ QNY (yP + QNyQ, µ) suffers a linear low-frequency instability
for increasing periods T and fixed N . This is best illustrated considering the simplest case ẋ = ax − k[y − yr] with
y = g(x) = x and 0 < a < k for (1) on an interval [0, T ]. In this case the map Y is linear and commutes with PN
and QN , and the map y 7→ Y y has unstable eigenvalues corresponding to eigenfunctions of the form exp(2πiℓt/T ) for
all ℓ < T

√
a(2k − a)/(2π) =: m. Thus, for the Picard iteration y 7→ QNY (yp + y) (with fixed yP ) to converge, the

projection PN must be injective on the space spanned by the m lowest harmonic modes. This criterion determines the
necessary dimension of the space rgPN of variables in which one has to formulate the nonlinear problem for the Newton
iteration, which is in general high-dimensional for large periods T :

yP = PNY (yP + YQ(yP , µ), µ) for yp ∈ rgPN , where dim rgPN ∼ N ≫ 1 for T ≫ 1, such that N ∼ T . (2)

The problem can be addressed if the control law yr − y 7→ u stabilizes such that perturbations decay on a time horizon h
of order 1 uniformly in [0, T ] (using the additional arguments in y to indicate initial time and initial condition for state x):

|y(t; t0, x1)− y(t; t0, x2)| ≤ C exp(−γ(t− t0))|x1 − x2| (3)

in (1) for γ > 0, C of order 1, independent of the period T . In this case perturbations at time t0 do not have noticeable
influence anymore at time t0+h (where h is s.t. C exp(−γh)≪ 1). If criterion (3) is satisfied, we may choose for rgPN ,
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for example, the space of piecewise constant functions: [PNy](t) = T/N
∫ tℓ
tℓ−1

y(s)ds =: yℓ if t ∈ Jℓ = [tℓ−1, tℓ),
where tℓ = ℓT/N . The variable for the nonlinear problem (2) is then (y1, . . . , yN , µ), and (2) poses an equation on each
interval Jℓ. Due to the finite-time decay condition (3), [∂/∂yℓ]PNY |Jν is small if the distance between ν and ℓ satisfies
|ν − ℓ| > hN/T =: q = O(1). Hence the Jacobian ∂PNY/∂yP has only q non-zero diagonals. This implies that
deviations δyℓ and δyν can be applied simultaneously if |ℓ− ν| > q when determining the finite difference approximation
for ∂PNY/∂yP . Consequently, the fixed point problem (2) with a projection PN chosen such that the Picard iteration is
linearly stable on rg[I −PN ] can be solved with a (computational or experimental) effort that grows linearly in the period
T because the number of necessary evaluations of Y is independent of the period T .

Example — quasiperiodically forced delay differential equation (DDE) modelling the Mid-Pleistocene transition
We demonstrate the feasibility for a simple quasiperiodically forced model for palaeoclimate ice ages, modelling the
Mid-Pleistocene transition, which is a simplification of a model originally proposed by Saltzman & Maasch, see [3, 4],

dx(t) =
[
−px(t− τ) + rx(t)− sx(t− τ)2 − x(t− τ)2x(t)− aI(t)

]
dt+ σdWt, (4)

for the global ice mass anomaly x over the last 2 million years. Quinn et al [3, 4] observed that the forcing by variability
of solar insolation I(t), shown in fig. 1(top-left), causes a transition at time tc from small-amplitude fluctuations around
an equilibrium (at x = −0.5) to a large-amplitude limit cycle for forcing amplitudes a greater than some critical value ac
(ac = 0.1 for transitions without noise). The time tc is close to where the Mid-pleistocene transition from rapid to slow
ice ages occurrs in data sets. Continuation of the saddle and the attractor for positive a without noise (using DDE-Biftool)
shows that the two non-autonomous trajectories pinch at tc. In the infinite-time limit, saddle and node form a strange non-
chaotic attractor at the critical amplitude ac. We track the saddle for the non-autonomous system (enforcing artificially
periodic boundary conditions) as a test case for the control-based continuation of complex time profiles with random
disturbances of size σ. Feedback control was trivially applicable by adding it to the solar insolation: aI(t) + k[yr − y],
where output y = x. A typical time profile is shown (in red) in fig. 1(bottom-left), the partial bifurcation diagram is in
fig. 1(bottom-right). Note that saddle and node do not form a smooth saddle-node near a = ac without noise.
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Figure 1: (top-left) Solar insolation I(t) at 65◦ degree North in the summer [4]; (bottom-left) nonautonomous attractor and saddle,
and large-noise (σ = 6 × 10−3) trajectory illustrating transition near time tc, caused by saddle-node pinching; (top-right) approx-
imate dx/dt illustrating magnitude of disturbance; (bottom-right) partial bifurcation diagram for value of saddle and attractor at tc.
Parameters as in [3]: p = 0.95, r = s = 0.8, τ = 1.31, Euler-Maruyama scheme stepsize 0.1, σ = 3× 10−3, N = 200, gain k = 2.

Potential future experimental test cases are forced mechanical single-degree-of-freedom oscillators with hardening non-
linearity where one may track connecting orbits caused by brief spikes of the forcing amplitude.
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Summary. We discuss the new GUI environment of the MATLAB software package MatCont for numerical bifurcation studies
of continuous dynamical systems. It is built upon the corresponding command line package Cl_MatCont. The package is freely
available via sourceforge.net/projects/matcont and offers both interfaces. Mathematically, the functionalities of MatCont with respect
to bifurcation techniques are unrivalled. For instance, no other software allows to compute the normal forms of codimension two
bifurcations of periodic orbits, or to start curves of codimension one bifurcations of periodic orbits from codimension two equilibrium
points. Though widely used, the previous version of MatCont was at the end of its life span of maintainability and the new MatCont
gives it a fresh start. It is completely reorganized with a better documentation and an improved data handling with a Data Browser,
a Diagram Organizer and a Spreadsheet Viewer. Other new features are the Command Line Interface, the functionality of computing
Poincaré maps and many facilities to simplify the use of the software. As an application we discuss a computational model that describes
the stabilization of percept choices under intermittent viewing of an ambiguous visual stimulus at long interstimulus intervals. Unlike
previous studies we incorporate the time that the stimulus is on (Ton) and off (Toff ) explicitly as bifurcation parameters of the model.
We compute the bifurcations of periodic orbits responsible for switching between alternating and repetitive sequences. We show that
the region of bistability of repeating and alternating behavior is a wedge in the parameter plane bounded by two curves of limit point
bifurcations of periodic orbits and one curve of period-doubling bifurcations.

Introduction

We consider smooth continuous dynamical systems of the form

dx

dt
≡ ẋ = f(x, α), x ∈ Rn, α ∈ Rm, (1)

with state variable x, parameter α and f a sufficiently smooth function (continuous derivatives up to order 5 are needed in
some cases). The numerical bifurcation analysis of (1) requires a dedicated software package. For this purpose MATCONT

was developed, a MATLAB continuation toolbox available at http://sourceforge.net/projects/matcont/. It is a successor
package to CONTENT [7] and LINBLF [6].
Bifurcation analysis usually starts with equilibria and periodic orbits (limit cycles). The stable ones can be found by time
integration of the system, see the MATCONT manual [4], §6.2 and §7.4. By numerical continuation under variation of
a single system parameter one can detect and study the codimension one bifurcations, i.e. limit points and Hopf points
for equilibria, limit points of cycles, period-doubling and Neimark-Sacker (torus) bifurcation points for periodic orbits.
Further continuation of these codimension one bifurcations under variation of two system parameters leads to the detection
and study of codimension two bifurcation points; there are 5 codimension two types of bifurcations of equilibria and 11
types for periodic orbits. MATCONT allows to study all these bifurcations numerically and perform many related tasks,
including the study of orbits homoclinic to saddle, homoclinic to saddle-node and heteroclinic orbits. Critical normal
form coefficients are computed at bifurcation points. For this we rely on symbolic derivatives or if these are not available,
on finite difference approximations. Bifurcation curves are defined by a system of equations consisting of fixed point and
bifurcation conditions. The continuation curves can be visualized using the plot capabilities of the GUI; this can be done
during and after the continuation. Special windows are provided to help with maintaining systems, diagrams and curves
when generating a large amount of data.
Earlier versions of MATCONT and their functionalities were described in [1] and [2]. We will restrict to the new features in
the renovated 2019 environment MATCONT7.1 and later versions. From a computer science point of view MATCONT7.1
is a completely new creation. It has a clear separation of computational and control routines to facilitate the maintain-
ability. Its GUI allows a maximal flexibility to reprogram the layout of windows, buttons and input fields on the screen.
It contains automatic tests to check if a new MATLAB version produces the same results as the previous version. Error
handling of plots is much improved so that malfunctioning of plots (for any reason) does not crash the computations.
Unlike the previous versions, it has an external documentation ([8], Ch. 6) and a detailed internal documentation. The
internal documentation of a source file is accessed by typing ‘doc filename.m’ on the command line; a reference
page is then generated based on the comments in the source file.
The core mechanism of the new MATCONT environment is an intermediate layer of routines between CL_MATCONT

and the GUI as seen by the user. It is described in [8], Chapter 6; the main elements in this mechanism are the MATLAB
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classes settings, session and solution, cf. the section Command Line Interface. This layer also protects against nonsense
input in the CL_MATCONT routines.
Important other parts, which can be used semi-autonomously are the generator of the system m-files (SysGUI.m), the
spreadsheet viewer (GUISimCurveTable.m and GUIContCurveTable.m) and the GUI subsystems Data Browser and Dia-
gram Organizer, which are stored in subfolders of the GUI folder. The main driver files are matcont.m, GUI/MATCONTGUI.m
and GUI/Session.m.
For the practical use of MATCONT it is best to start with the tutorials which are provided with the software; the manual
[4] is a good reference to the command line version CL_MATCONT.
To study a system in MATCONT one has to describe it in a system m-file, which serves as a handle to the system. MAT-
CONT provides an interface to build such m-files, see the manual [4], §4 or the first tutorial.
The MATCONT panels are described in [8], Ch. 5. The main MATCONT panel is shown in Figure 1. We note in particular
the tab line at the top with the six tabs Select, Type, Window/Output, Compute, Options, and Help.

Figure 1: The main MATCONT panel.

Data management in MATCONT

The Diagram Organizer
The database of MATCONT consists of an archive of systems one of which is the current system.
A system is internally characterized by a system m-file, a system mat-file and a system directory, all with the name of the
system. They are all in the subdirectory Systems of MATCONT. When a MATCONT session is closed (Select|Exit) then
the session information is stored in a file session.mat in the Systems directory. This allows to restart the MATLAB
session at the point where it was stopped.
The m-file is a readable file that contains all defining information on the system; the mat-file contains the same information
in a structured way that is accessible to the MATCONT software. Both stay unchanged as long as the system is not changed
or deleted.
The directory of each system also contains a file session.mat which contains the information that is necessary to
restart or reproduce the computations on that system at the stage where it was left, including the position and contents of
all windows. However, plots have to be redrawn.
The system directory also has at least one default subdirectory called diagram. This and other subdirectories of the
system directory are called diagrams. Each diagram contains a number of mat-files and each mat-file describes a computed
curve with enough information to recompute the curve. Each computed curve contains a number of special points, which
includes the first point, the last point, bifurcation points, and zeros of userfunctions but other entities may also be defined
as special points. An important example of this is the case of an orbit where a Select Cycle object is identified as a special
point (for more details see the section Other New Features).
Clicking Select|Organize Diagrams in the main MATCONT panel opens the Diagram Organizer which allows to move
curves from one diagram to another, see Figure 2.

The Spreadsheet Viewer
The Spreadsheet Viewer allows to inspect all stored data of a computed curve. It can be accessed by pressing the View
Curve button in a Curve window that is opened in the Data Browser. However, it is not possible to load data from the
Spreadsheet Viewer for further use in MATCONT.
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Figure 2: The Diagram Organizer panel.

The Command Line Interface

The Command Line Interface (cli) is a collection of MATLAB commands that allow to use practically all GUI function-
alities from the command line in an interactive way.
This has a number of advantages. First, if the number of state variables or parameters is large and provided by an external
file, then it is possible to load them as vectors directly into MATCONT. Second, it allows to write a MATLAB script that
uses MATCONT in a semi-automatic way, for example to perform a bifurcation analysis for a range of values of parameters
which are fixed in each particular bifurcation analysis. Third, it allows to load the raw computed data of a continuation or
simulation directly into the Matlab workspace.
In the cli we address directly the intermediate layer of routines. This requires to set one or more of the class variables
settings, session, solution as global.
To illustrate the use of the cli we introduce the Rössler system [10]:





ẋ = −y − z
ẏ = x+Ay
ż = Bx− Cz + xz,

(2)

where (x, y, z) are the phase variables, and (A,B,C) are the parameters. We introduce it in MATCONT under the name
ROESSLERTest and let the derivatives of order 1, 2 and 3 be computed symbolically. To perform a time integration we
select the initial point type ’Point’ and input x = 1, y = 2, z = 3, A = 0.2, B = 0.4, C = 0.7 as initial values. In the
Integrator window we set the interval to 200. We then turn to the MATLAB command line to inspect the settings:

>> global settings

>> settings

settings =

system: ROESSLERTest

IP: Point (P)

option_pause: At Special Points

option_archive: 2

option_output: 1

=============================

time: 0

co_x: 1

co_y: 2

co_z: 3

coord: [ 1, 2, 3 ]

parameters: [ 0.2, 0.4, 0.7 ]

pa_A: 0.2

pa_B: 0.4

pa_C: 0.7

=============================

Interval: 200
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eventfunction: <disabled>

InitStepSize_sim: <automatic>

MaxStepSize_sim: <automatic>

RelTolerance: 0.001

AbsTolerance: 1e-06

Refine: 4

Normcontrol: false

>> settings.co_x

ans =

1

>> settings.coord

ans =

1 2 3

We can also change some of the settings:

>> settings.coord.set([-5 5 10])

>> settings.parameters.set([0 0.4 4.5])

In the GUI we can check that these changes are visible in the Starter window. There we can also perform the computation.
The outcome is stored in the solution class. We inspect it in the MATLAB command window:

>> global solution

>> solution

solution=

SimCompSolution with properties:

t: [1477x1 double]

y: [1477x3 double]

method: @ode45

tspan: [0 200]

options: [1x1 struct]

param: [0 0.4000 4.5000]

tE: []

yE: []

iE: []

>> solution.y

ans=

-5.0000 5.0000 10.0000

-5.0763 4.9739 9.5078

...

We return to the GUI, select the last point of the computed orbit (use the View Result button in the Control panel) and
declare it to be an equilibrium. By default the Curve Type will now be ‘Equilibrium’. We again inspect the settings:

>> settings

settings =

system: ROESSLERTest

IP: Equilibrium (EP)

=============================

InitStepsize: 0.01

MinStepsize: 1e-05

MaxStepsize: 0.1

MaxNewtonIters: 3

MaxCorrIters: 10

MaxTestIters: 10

VarTolerance: 1e-06

FunTolerance: 1e-06

TestTolerance: 1e-05
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Adapt: 3

MaxNumPoints: 300

CheckClosed: 50

=============================

co_x: -0.000335576810360529

co_y: -0.000180608885605843

co_z: -3.20127988121691e-05

coord: [ -0.00033557681, -0.00018060888, -3.2012798e-05 ]

parameters: [ 0, 0.4, 4.5 ]

pa_A: 0

pa_B: 0.4

pa_C: 4.5

pa_A_select: false

pa_B_select: false

pa_C_select: false

test_EP_BP: true

test_EP_H: true

test_EP_LP: true

eigenvalues: true

=============================

We need to select an active parameter in the equilibrium continuation. This can be done via the Starter window or via
the command line:

>> settings.pa_A_select.set(true)

We will also restrict the number of computed points to 49. This can be done either via the Continuer window or via the
command line:

>> settings.MaxNumPoints.set(49)

We execute the continuation in the GUI. The solution data can be obtained in the MATLAB Command window:

>> solution

solution=

ContCurve with properties:

x: [4x49 double]

v: [4x49 double]

s: [3x1 struct]

h: [5x49 double]

f: [3x49 double]

>> size(solution.x)

ans=

4 49

So far all driving steps were executed in the GUI, where they were relegated to the session class. In a more advanced
use of the cli we can also perform these steps from the command line by declaring the session class global. We then
add the commands:

>> global session

>> session

The session output recalls the settings and then offers a choice of three buttons, labeled

View Computations View Actions View Switches

Clicking the first button is equivalent to executing the command
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>> session.select()

It provides the numbered list of computations (usually time integrations or continuation runs) that can be selected from
the given Initial Point type. They can be selected by clicking, or by typing

>> session.select(k)

where k is the list number.
Clicking the second button is equivalent to executing the command

>> session.compute()

It provides a fixed list of options, namely Forward, Backward, and Extend. The list can be handled as in the previous
case.
Clicking the third button is equivalent to executing the command

>> session.switches()

It provides the list of objects that can be chosen as new Initial Points. The list can be handled as in the previous cases.
One can change the type of an initial point from the command-line by using the instruction

>> session.changeInitPoint(’H’) %force IP type to be ’Hopf (H)’

We note that it is always possible to get information about the current system:

>> settings.system

ans =

CLSystem with properties:

name: ’RoesslerTest’

coordinates: {’x’ ’y’ ’z’}

parameters: {’A’ ’B’ ’C’}

dim: 3

time: ’t’

handle: @ROESSLERTest

userfunctions: {}

ufdata: []

diagramlocation: ’H:\MatCont7p1\Systems\ROESSLERTest’

derstr: ’SSSNN’

equations: [3x14 char]

Event functions and Poincaré maps

A Poincaré section is a (in general, curved) surface in phase space that cuts across the flow of a dynamical system. The
Poincaré map transforms the Poincaré section onto itself by relating two consecutive intersection points. Only those inter-
section points count, which come from the same side of the section. In this way, a Poincaré map turns a continuous-time
dynamical system into a discrete-time one. If the Poincaré section is carefully chosen no information is lost concerning
the qualitative behaviour of the dynamics. For example, if the system’s state is attracted to a limit cycle, one observes dots
converging to a fixed point in the Poincaré section as in Figure 5.
When computing an orbit (t, y(t)) in MATLAB an event can be defined as going through a zero of a scalar event function
G(t, y). If G does not explicitly depend on time in an autonomous dynamical system, this functionality can be used to see
the Poincaré map in action. However, one shortcoming of the MATLAB solvers is that they do not interactively report on
these events.
In the 6.11 and earlier versions of MATCONT, Poincaré maps were therefore computed by using a specific curve type,
called Discrete Orbit (DO). For this type of orbits the ODE solvers were manipulated to use an explicitly implemented
approximation strategy to locate the Poincaré intersection points.
In the new GUI, there is no longer a specific curve type. In order to allow for interactive plotting of events, the plot routine
monitors sign changes of the values of the event function. Whenever a sign change is observed, the solver is called again
on a smaller part of the curve to extract the event. Due to the implementation of this workaround, the list of detected
events after computation in rare cases might contain more events than were displayed on an interactive plot.
For the sake of generality MATLAB allows to define vector-valued event functions whereby each component function
defines its own event. This is done by setting the Events property to a handle to a function, e.g. @events with the syntax
[value,isterminal,direction] = events(t,y,varargin)
where y is a state vector. The input variable varargin is a cell array that contains the values of the parameters. If
parameters are explicitly used in the definition of the event function, then varargin should be replaced by an explicit
list of parameter names.
If there are k event functions then for i ∈ {1, . . . , k} :
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• value(i) is the value of the i−th event function.

• isterminal(i) = 1 if the integration is to terminate at a zero of the i−th event function and 0 otherwise.

• direction(i) = 0 if all zeros of the i−th component are to be computed (the default), +1 if only the zeros are
needed where the event function increases, and -1 if only the zeros are needed where the event function decreases.

The use of event functions to compute Poincaré maps in CL_MATCONT is discussed in the manual [4]. We now illustrate
the GUI implementation by example. We consider again the Rössler system (2).
Suppose that we want to compute an orbit and detect two events along it, namely x = 0.2 and y = 0.3. We need only the
events where x, respectively y, are increasing and the integration will not be terminated if an event is detected.
We then define an event function testEV as follows:

function [value,isterminal,direction]= testEV(t,y,varargin)

value=[y(1)-0.2;y(2)-0.3];

isterminal=zeros(2,1);

direction=ones(2,1);

end

The function testEV.m is placed in the MATCONT main directory (or anywhere else on the MATCONT path)
We integrate the Rössler system from 0 to 100 starting from the point [−5; 5; 10] with parameter values (0.25, 0.4, 4.5)
and input the name ‘testEV’ (without quotes) in the EventFunction field of the Integrator, see Figure 3.

Figure 3: Integrator with an Event function.

We also open a MATCONT Plot3D window to display the state variables in the range {−9 ≤ x ≤ 9,−9 ≤ y ≤ 9,−2 ≤
z ≤ 11}. The 3D output is shown in Figure 4. We note that zeros of the first event function are marked as ‘E1’, those of
the second as ‘E2’ and so on.
In Figure 5 we show the convergence of the iterates if the Poincaré map to a fixed point in a Plot2D window with
{4.22 ≤ x ≤ 4.32, 2.3 ≤ z ≤ 2.8},
The computed output is stored in the mat-file of the computed curve, from where it can be recovered for further use. It
can also be sent directly to the MATLAB workspace by pressing the Export button in the Data Browser window that is
opened by pressing the View Curve button in the Control window after the integration run. In the latter case we get the
following output in the MATLAB command window :

exported=

SimCompSolution with properties

t: [1461x1 double]

y: [1461x3 double]

method: @ode45

tspan: [0 100]

options: [1x1 struct]

param: [0.2500 0.4000 4.5000]

tE: [33x1 double]

yE: [33x3 double]

iE: [33x1 double]

Here tE is the vector of time points where events were discovered, yE is the corresponding matrix of state variables and
iE is a vector of ones and twos which refer to either the first or the second event.
Event points can also be selected as special points in the data browser and by double-clicking on the labels in the plots.
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Figure 4: Time integration with event points that converge to fixed points.

Figure 5: Convergence of the iterates of the Poincaré mapto a fixed point, alternating between points at the bottom left side and the top
right side.

Other new features

The new MATCONT has been improved and extended with many new functionalities:

1. The Select Cycle object is presented as a Special Point after each time integration. Selecting it as an initial point
opens a subpanel with two fields that allow to choose a convergence criterion and a number of mesh intervals for
initializing a curve of periodic orbits that starts from the periodic orbit found by time integration. The number of
collocation points is always 4 by default. We note that this requires that the computed orbit covers between one and
two periods of the periodic orbit.

2. Graphical 2D and 3D plots are reorganized: only one layout window is presented and nearly everything can be
plotted, i.e. many earlier restrictions are lifted.

3. Clicking Options|Plot Properties in the main panel (Figure 1) opens an edit box panel which allows to assign plot
properties (color, linestyle, ...) to each type of computed curve. Defaults are provided for all types of computed
curves, which can be overwritten using MATLAB code in the edit boxes. For curves of equilibria and curves of
limit cycles, it is possible to differentiate between stable and unstable parts of the curves. Advanced MATLAB
users can edit the file GUICurveModifications.m to add new differentiations of the plot properties within a curve.

4. Error handling of plots is improved so that plot errors caused by command line interference, or by GUI interference
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when computations are suspended, do not crash the computations.

5. Each input field has input restrictions and these are checked to minimize input errors. So for example it will not
be possible to input a float or a question mark if a positive integer value is required. Errors are reported in the
MATLAB command line. On the other hand, numerical fields can be filled with MATLAB expressions, provided
they can be evaluated in the command line. So one can insert 2 ∗ Pi instead of its decimal expansion 6.283184...

6. In continuation plots it is possible to click on a found singular point to obtain information on the curve where it
was found, the type of point and the normal form coefficients. By double clicking one selects the point as an initial
point for another continuation.

7. The Scroll - key can be used to scroll through MATCONT windows. This functionality had to be implemented
separately as MATLAB does not provide this functionality as part of their standard library.

8. Several special keys can be used to control continuation computations, namely: Escape to stop, Space bar to
resume, Enter to pause and Control to continue (when pressed) or to pause (when released). The use of the
Control key is new.

Example: Percept switching in the human visual system

Percept switching under the action of an ambiguous visual stimulus is a well-known phenomenon in psychophysics, see
e.g. [5, 9]. In [9] the authors discuss a neural explanation of the stabilization of percept choices under intermittent viewing
of an ambiguous stimulus. They consider the following system:





X ′
1 = (Stim− (1 +A1)X1 + βA1 − γS(X2))/τ

X ′
2 = (Stim− (1 +A2)X2 + βA2 − γS(X1))/τ

A′
1 = −A1 + αS(X1)

A′
2 = −A2 + αS(X2)

(3)

with state variables X1, X2, A1, A2 and fixed parameters α = 5, β = 4/15, γ = 10/3, and τ = 1/50. The primary
dynamical variables X1, X2 are the ‘local fields’, which correspond to the percept-related components of the membrane
potentials of the neurons that encode the two competing percepts, indicated by 1 or 2 respectively. To each primary
variable an adaptation variable is associated, called A1, A2 respectively. In the local field interpretation these correspond
to the (averaged and scaled) gating variables of the neurons. Stim is the amplitude of the stimulus. S(X1) is a sigmoidal
function of X1, zero for negative values of X1 and equal to X12/(1 +X12) for nonnegative values of X1. S(X2) is to
be interpreted similarly. The precise choice of the sigmoid function does not influence the qualitative behavior of (3).
Line 1 of (3) specifies how X1 integrates the stimulus with its adaptation variable A1 and the subtractive cross-inhibition
S(X2). Lines 2 and 4 are dual to Lines 1 and 3.
In [9] the authors consider a 128 by 128 grid of points in a (Toff , Ton) space. For each point a simulation of (3) is done
with the stimulus alternatingly switched off during a time span Toff and on during a time span Ton. The eventual behavior
(after a transient) varies with the choice of Toff and Ton but also depends on the initial values of the state variables. It
includes repeating and alternating patterns and bistability. An important observation is that for fixed Ton the behavior can
be stabilized by increasing Toff , i.e. it leads to a situation where the percept is the same whenever the stimulus switches
on (but may still depend on the initial state at the very beginning.)

Modelling of the percept switching system in MATCONT

In MATCONT we approximate the on/off switching by a continuous system with a periodic forcing with period Toff+Ton.
This involves the inclusion of Toff and Ton as new parameters in the system and avoids the need of an enormous number
of time integrations, in each of which the resulting stable behaviour can depend upon the initial state values.
Instead we make numerical computations based on the theory of bifurcations of periodic orbits. Boundaries of behavior
regions in the (Toff , Ton)-plane are obtained as curves of codimension 1 bifurcations of periodic orbits which meet in
codimension 2 points. The periodic forcing is implemented with new independent state variables Y1, Y2. More precisely,
we consider the following system (in the notation of the MATCONT input field):

S1=(X1^2)/(1+X1^2)/(1+exp(-expp*X1))

S2=(X2^2)/(1+X2^2)/(1+exp(-expp*X2))

omega=2*pi/(Ton+Toff)

Stim=1/(1+exp(-expp*(Y1-cos(2*pi*Ton/2/(Ton+Toff)))))

X1’=(Stim-(1+A1)*X1+beta*A1-gamma*S2)/tau

X2’=(Stim-(1+A2)*X2+beta*A2-gamma*S1)/tau

A1’=-A1+alpha*S1

A2’=-A2+alpha*S2

Y1’=-omega*Y2+Y1*(1-Y1^2-Y2^2)

Y2’=omega*Y1+Y2*(1-Y1^2-Y2^2)
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Figure 6: Left: repeating orbit with period Toff+Ton. Middle: alternating orbit with period 2(Toff+Ton). Right: wedge of bistability.

with state variables X1, X2, A1, A2, Y1, Y2. The auxiliary variables S1,S2 approximate the sigmoid functions S(X1), S(X2),
respectively. They help to facilitate the implementation and increase the readability of the MATCONT input. We have also
introduced an additional parameter expp to the system, appearing in the equations for S1, S2 and Stim. By increasing
its value, the analytical functions for S1 and S2 in the MATCONT system converge to the non-analytical step sigmoid
functions that are used in (3). In our computations expp = 60. More details are given in [3].
The state variables Y1 and Y2 are decoupled from the other state variables. Their stable behaviour (after a transient) is
a periodic orbit of the form Y 1 = cos(ωt + P ), Y 2 = sin(ωt + P ) with a time shift P that depends only on the initial
values of Y1,Y2. The period of this orbit is Toff + Ton.
When Y1,Y2 evolve along the unit circle then from the fourth line in the MATCONT system it follows that Stim is
alternatingly close to one during a time span Ton and close to zero during a time span Toff . The stimulus term thus acts
as an on/off switch in a periodic forcing of (3).
Fig. 6 (left) shows the (X1,X2) projection of a stable periodic orbit computed by time integration for Toff = 0.6, Ton =
0.8 (after a transient, starting with values of (Y1,Y2) which are not both zero). The time evolution is repeating, i.e. after
each on/off cycle we see the same partial trajectory which corresponds to the percept X1 (for a different choice of the
initial values of the state variables it can be the percept X2). Fig. 6 (middle) shows the projection of a stable periodic orbit
computed by time integration for Toff = 0.2, Ton = 0.8. The time evolution is alternating, i.e. X1 and X2 dominate in
turns.
To study the stability regions of repeating and alternating periodic orbits we use the Select Cycle functionality of MAT-
CONT. We start the continuation of limit cycles from the stable limit cycles in Fig. 6 under variation of Toff . By
using the branch switching functionalities of MATCONT we then construct the bifurcation diagram and find that in
(Toff , Ton)–space the stability regions of repeating and alternating orbits overlap in the wedge shown in Fig. 6 (right).
The wedge is bounded at the right by a curve (green) of limit points of cycles of alternating periodic orbits. At the left,
the boundary consists partly of a curve (green) of limit points of cycles of repeating periodic orbits and a curve (blue)
of period-doubling points of repeating periodic orbits. The green and blue curves meet in a fold-flip bifurcation point of
cycles denoted by LPPD. The blue curve contains a generalized period-doubling point (GPD) of repeating periodic orbits.
The LPPD point is situated at (0.41416, 0.60659), the GPD point at (0.29837, 0.34146).

Conclusion
The MATCONT implementation greatly minimizes the computational work in the study of the perception problem. It
confirms and explains the stabilization effect observed in the numerical simulations and allows easy extensions to similar
studies with other models or other parameters.

References

[1] Dhooge, A. and Govaerts, W. and Kuznetsov, Yu. A. (2003) MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM
Trans. Math. Softw. 29(2) pp. 141-164. http://doi.acm.org/10.1145/779359.779362.

[2] Dhooge A., Govaerts W., Kuznetsov Yu. A., Meijer, H.G.E., and Sautois, B. (2008) New features of the software MatCont
for bifurcation analysis of dynamical systems. Mathematical and Computer Modelling of Dynamical Systems 14 (2), pp. 147-175.
https://doi.org/10.1080/13873950701742754

[3] Govaerts W., Kuznetsov Yu. A., Meijer, H.G.E., Neirynck, N. and van Wezel, R., Bistability and stabilization of human visual perception under
ambiguous stimulation, Nonlinear Dynamics, Psychology and Life Sciences, 25 (3) pp.297-307.

[4] Govaerts, W. and Kuznetsov, Yu.A. and Meijer, H.G.E. and Al-Hdaibat, B. and De Witte, V. and Dhooge, A. and Mestrom, W. and Neirynck, N.
and Riet, A.M. and Sautois, B. (2019) MATCONT:Continuation toolbox for ODEs in Matlab. http://sourceforge.net/projects/matcont/

[5] Gregson, R.A.M. (2004) Transitions between two pictorial attractors. Nonlinear Dynamics, Psychology and Life Sciences 8, 41-64.

[6] Khibnik, A.I. (1990) LINBLF: A program for continuation and bifurcation analysis of equilibria up to codimension three, in: Continuation and
Bifurcation: Numerical Techniques and Applications, vol. 313 of NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., Dordrecht (eds. Roose, D. and De
Dier, B. and Spence, A.) pp.283-296. ISBN = 978-1-4020-6355-8.

[7] Kuznetsov, Yu. A. and Levitin, V.V. (1997) CONTENT: Integrated Environment for analysis of dynamical systems, CWI, Amsterdam.

[8] Neirynck, N. (2019). Advances in numerical bifurcation software: MatCont. PhD thesis, Ghent University, Belgium.
https://biblio.ugent.be/publication/8615817

[9] Noest A. J., van Ee R., Nijs M. M., and van Wezel R. J. A. (2007) Percept-choice sequences driven by interrupted ambiguous stimuli: A low-level
neural model. Journal of Vision 7, pp. 1-14. https://doi.org/10.1167/7.8.10

[10] Roessler, O. (1979) Continuous chaos - four prototype equations, in: Bifurcation Theory and Applications in Scientific Disciplines (eds. Gurel, O.
and Roessler, O.), New York Acad. Sci., pp. 376-392.

ENOC 2022, July 17-22, 2022, Lyon, France

372



ENOC 2020, July 5-10, 2020, Lyon, France

Finding connecting orbits between saddle periodic orbits as
organising centres of complicated dynamics

Nelson Wong∗, Hinke M. Osinga∗ and Bernd Krauskopf∗
∗Department of Mathematics, University of Auckland, Auckland, New Zealand

Summary. We study heterodimensional cycles between two periodic orbits in a four-dimensional vector field. Such cycles are char-
acterised by a connecting orbit that lies in the intersection of two two-dimensional manifolds; the returning connection is given by a
family of connecting orbits in the generic two-dimensional intersection of two three-dimensional manifolds. Heterodimensional cycles
are known to organise highly complicated dynamics, which persist under C1-perturbations of the vector field. There are very few
explicit examples known from applications; we study one such example, namely, a vector field model for calcium dynamics in a cell.
We employ Lin’s method to compute heterodimensional cycles and associated nearby global bifurcations. We present a cycle that is
non-orientable and compute its locus in a two-parameter plane. In this way, we explore how it contributes to the organisation of the
overall bifurcation structure, which, in turn, elucidates mechanisms behind the generation of C1-robust chaotic dynamics.

A connecting cycle between two saddle periodic orbits is heterodimensional if the periodic orbits have unstable manifolds
of different dimensions. Heterodimensional cycles can only exist in vector fields of dimension at least four, and are known
to generate highly complicated dynamics [1, 2, 3, 5], including infinitely many periodic and/or homoclinic orbits. Further-
more, if a system has a codimension-one heterodimensional cycle, then every other system in a C1-neighbourhood about
the original system also has a heterodimensional cycle. We are interested in the mechanism behind such C1-robustness,
and study the existence and properties of heterodimensional cycles in an explicit four-dimensional vector field.

Heterodimensional cycles are primarily studied abstractly. In particular, there are very few known examples arising out
of applications. We study a model for intracellular calcium oscillations that is known to feature a heterodimensional
cycle [7]. The equations are given by





ċ = v,

Dc v̇ = s v −
(
α+

kf c
2

c2 + φ2
1

n

)(
γ (ct +Dc v − s c)

s
− c
)
+ ks c− δ (J − kp c),

ċt = δ (J − kp c),

s ṅ =
1

τ

(
φ2

φ2 + c
− n

)
.

(1)

Here, c represents the calcium concentration in the main part of the cell body (the cytosol) and ct the total calcium
concentration inside the cell (including that in an internal calcium store, known as the endoplasmic reticulum or ER); v
is the membrane potential; and n is a gating variable that represents the fraction of open channels through which calcium
enters the cytosol from the ER. System (1) is written in a moving-frame coordinate system and the differentiation is with
respect to the travelling-wave coordinate. We choose the same parameters as in [7] with s = 9.0 fixed, and we vary the
flux J of calcium entering from outside the cell as our bifurcation parameter; see Table 1.

α ks kf kp φ1 φ2 τ γ Dc δ s
0.05 20.0 20.0 20.0 2.0 1.0 2.0 5.0 25.0 0.2 9.0

Table 1: Parameter values for the intracellular calcium model (1).

With this explicit model, we can leverage advanced numerical methods to study heterodimensional cycles in a concrete
setting. To this end, we set up a two-point boundary value problem (2PBVP) based on Lin’s method that represents the
(non-robust) connecting orbit. More precisely, we define an orbit segment that starts near a saddle periodic orbit and ends
in a three-dimensional cross-section Σ, which we choose to be locally transverse to the flow [6]. We also define a second
orbit segment that starts in Σ and ends near another saddle periodic orbit. Here, we fix parameters as in Table 1 and start
with J = 2.957, which we estimate to be close to the actual bifurcation value. The two orbit segments are restricted
such that the difference between their end points in Σ lies in a prescribed Lin direction. This 2PBVP can be solved by
pseudo-arclength continuation techniques in AUTO [4]. As we vary J , we detect the connecting orbit as a zero of the
distance between the end points in Σ. Once the connecting orbit has been found, its locus can be computed by varying
two system parameters while keeping the distance at zero.

We find a heterodimensional cycle in system (1) for J ≈ 2.95748; this cycle is shown in Figure 1 in projection onto
(c, v, ct)-space. Specifically, we show the single connecting orbit ΩPD

1 (blue) from the saddle periodic orbit Γ1 (green) to
the saddle periodic orbit ΓPD (green), and the family S of orbits from ΓPD to Γ1 that forms a two-dimensional surface
(red).
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Γ1

ΓPD

ΩPD
1

S

ct

c

v

Figure 1: Three-dimensional projection onto (c, v, ct)-space of the non-orientable heterodimensional cycle in system (1) with J ≈
2.95748. Shown are saddle periodic orbits (green) Γ1 and ΓPD, the codimension-one connecting orbit ΩPD

1 (blue) from Γ1 to ΓPD,
and the returning surface S (red) of robust connections.

Importantly, the heterodimensional cycle in Figure 1 is different from the one found in [7]. Its distinguishing feature is
that Γ1 is non-orientable. As we decrease J from near the Hopf bifurcation that creates Γ1, this periodic orbit undergoes a
period-doubling bifurcation, so that it has one negative unstable, one negative stable, and one positive stable Floquet mul-
tiplier, with the positive one being associated with the strongest contracting direction. This period-doubling bifurcation
is subcritical, and gives rise to a period-doubled orbit that undergoes its own period-doubling bifurcation before merging
with ΓPD at a fold bifurcation. The periodic orbit ΓPD in Figure 1 has one negative stable, one negative unstable, and one
positive unstable Floquet multiplier. The closure of S is non-orientable since it is tangent to the weakly stable linear bun-
dle of Γ1, which is associated with the negative stable Floquet multiplier. The non-orientability complicates the geometry
of S: S accumulates onto Γ1 in a twisting fashion, since the weakly stable linear bundle of Γ1 locally forms a Möbius band.

Starting from the heterodimensional cycle for J ≈ 2.95748, we can compute the one-parameter family of this cycle in
a two-parameter plane. By studying the bifurcation structure of system (1) locally about this locus, we examine how the
parameter plane is organised to give rise to open regions where heterodimensional cycles are found robustly.

References

[1] Bonatti, C., Díaz, L. J., Viana, M. (2005) Dynamics beyond uniform hyperbolicity: a global geometric and probabilistic perspective. Springer
Verlag, Berlin-Heidelberg.

[2] Bonatti, C., Díaz, L. J. (2008) Robust heterodimensional cycles and C1-generic consequences. Journal of the Institute of Mathematics of Jussieu
7(3): 469–525.

[3] Díaz, L. J. (1995) Robust nonhyperbolic dynamics and heterodimensional cycles. Ergodic Theory & Dynamical Systems 15: 291–315.

[4] Doedel, E. J., Oldeman, B. E. (2007) AUTO-07P: Continuation and bifurcation software for ordinary differential equations. Department of
Computer Science, Concordia University, Montreal, Canada, with major contributions from Champneys, A. R., Dercole, F., Fairgrieve, T. F.,
Kuznetsov, Yu. A., Paffenroth, R. C., Sandstede, B., Wang, X. J., Zhang, C. H.; available at http://cmvl.cs.concordia.ca/auto.

[5] Kostelich, E. J., Kan, I., Grebogi, C., Ott, E., Yorke, J. A. (1997) Unstable dimension variability: a source of nonhyperbolicity in chaotic systems.
Physica D 109(1–2): 81–90.

[6] Krauskopf, B., Rieß, T. (2008) A Lin’s method approach to finding and continuing heteroclinic connections involving periodic orbits. Nonlinearity
21(8): 1655–1690.

[7] Zhang, W., Krauskopf, B., Kirk, V. (2012) How to find a codimension-one heteroclinic cycle between two periodic orbits. Discrete and Continuous
Dynamical Systems—Series A 32(8): 2825–2851.

ENOC 2022, July 17-22, 2022, Lyon, France

374



ENOC 2022, July 17-22, 2022, Lyon, France

	        
 

2022
ENOC

Tuesday, July 19, 2022
08:30 - 10:30

MS-15 Energy Transfer and Harvesting in Nonlinear Systems
Rhone 1

Chair: Alireza Ture Savadkoohi

08:30 - 08:50
Intense modal energy exchanges in a cantilever beam with a local geometrically nonlinear boundary condition: Simula-
tion and experiment
MOJAHED Alireza, LIU Yang, BERGMAN Lawrence∗, VAKAKIS Alexander
∗University of Illinois at Urbana-Champaign (Urbana, IL United States)

08:50 - 09:10
Intermodal targeted energy transfer in a blast-excited 2D linear system with an elliptical hole
VELTMAN Yuval∗, GZAL Majdi, GENDELMAN Oleg
∗Yuval Veltman (Haifa, Technion, 3200003 Israel)

09:10 - 09:30
Kapitza resistance in basic chain models with isolated defects
PAUL Jithu∗, GENDELMAN Oleg
∗PhD student (Faculty of Mechanical Engineering, Technion–Israel Institute of Technology Israel)

09:30 - 09:50
Modal interactions in a non-linear mass-in-mass periodic chain
FLOSI Jean∗, TURE Savadkoohi Alireza, LAMARQUE Claude-Henri
∗École Nationale des Travaux Publics de l’État (3, Rue Maurice Audin, 69518 Vaulx en Velin (CEDEX) France)

09:50 - 10:10
Nonlinear dynamics of a resiliently propped cantilevered beam with a tip mass
TALEBI Bidhendi M. Reza∗, PHANI A. Srikantha
∗Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada (Department of Mechanical
Engineering, 6250 Applied Science Lane, Vancouver, BC, V6T1Z4 Canada)

10:10 - 10:30
Passive control of galloping vibrations by means nonlinear energy sinks
IGNÁCIO Da Silva José Augusto∗, SANCHES Leonardo, MARQUES Flávio
∗School of Engineering of São Carlos (Av. Trab. São Carlense, 400 - Parque Arnold Schimidt, São Carlos - SP, 13566-590
Brazil)

375



 

ENOC 2020, July 5-10, 2020, Lyon, France 
 

Intense modal energy exchanges in a cantilever beam with a local geometrically 
nonlinear boundary condition: Simulation and experiment 

 
 Alireza Mojahed*, Liu Yang** , Lawrence A. Bergman*** , Alexander F. Vakakis* 

* Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, USA 
**  State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of 

Aeronautics and Astronautics, Nanjing, China 
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Summary. The aim of this research is to investigate and determine how a geometrically nonlinear boundary condition, i.e., a strong local 
nonlinearity, “redistributes” an input energy in the form of an impulsive load, among the modes of vibration of a cantilever beam, thereby 
increasing its efficacy of energy dissipation. The nonlinear boundary condition is created by grounding the free end of the cantilever beam 
through a linear spring-damper element at an angle relative to the neutral axis of the beam while at rest. By tracking the time-averaged energy 
and the effective instantaneous damping ratio of each mode of the beam, we numerically and experimentally show that there are sustained 
energy exchanges among the modes of vibration of the cantilever beam, the intensity of which depend on the degree of nonlinearity of the 
boundary condition. 

Experimental setup and reduced-order finite-element modeling via system identification 

Figures 1a and 1b depict the fully instrumented experimental apparatus consisting of the linear cantilever steel beam with 
Young’s modulus of 192 GPa, density of 7784 kg/m3, cross-sectional area of 8×44.6 mm2, length of 1.76 m, and the 
geometrically nonlinear boundary condition and its corresponding reduced-order model (ROM), respectively. Moreover, 
figure 1c shows a closeup of the geometrically nonlinear boundary condition, studied in [1], achieved by grounding the 
free end of the cantilever through a ¼ inch diameter steel rod whose bending stiffness and inherent damping provide the 
compliance and dissipation of the boundary condition. 

 

 

 
 

 
 

Figure1. Fully instrumented cantilever beam, grounded at its free end through a geometrically nonlinear boundary condition (a), the 
corresponding reduced-order model (ROM) (b), and zoomed-in view of the geometrically nonlinear boundary condition (c). 

 
In order to create an accurate ROM of the apparatus, we implemented a two-step system identification approach: 1) By 
applying the Multi-input Multi-output Frequency Domain Identification (MFDID) [2] technique to the response of the 
cantilever beam, excited by an impulse as shown in figure 1b, we identified the modal parameters, i.e., natural frequencies 
and modal damping ratios, of the cantilever beam, uncoupled from the nonlinear attachment. 2) Next, we attached the 
nonlinear element to the fully identified cantilever beam and configured it such that ϕ = ͻͲ°. Then, through time series 
optimization, we identified the unknown stiffness and damping parameters associated with the nonlinear attachment, ݇ 
and 𝑑, after which we were able to accurately reproduce the experimentally measured response of the beam by the ROM, 
the governing equation of which can be expressed as: 𝐌ܝሷ + 𝐂ܝሶ + 𝐊ܝ + 𝐟nl = 𝐅ሺܜሻ, ሺͲሻܝ = 𝟎, ሶܝ ሺͲሻ = 𝟎, (1) 
where ܝ = [𝑢ଵ, 𝑢ଶ, … , 𝑢N]T is the displacement vector corresponding to each node, 𝑥𝑖, 𝑖 = ͳ,ʹ, … , N (cf. figure 1b); 𝐌, 𝐊 
are mass and stiffness matrices of the finite element model of the Euler-Bernoulli beam, and 𝐂 is the proportional damping 
matrix of the beam, all obtained from the first step of the identification process. Moreover, 𝐟nl, denotes the nonlinear force 
vector whose elements, except the N-th, are uniformly zero in time. The N-th element of 𝐟nl, 𝑓, is expressed as 𝑓 = 𝑑 [ ሺ𝑥N + ݈ sinϕሻଶሺ݈ cosϕሻଶ + ሺ𝑥N + ݈ sinϕሻଶ] 𝑥ሶN + ݇ሺ𝑥N + ݈ sinϕሻ [ͳ − ݈√ሺ݈ cosϕሻଶ + ሺ𝑥N + ݈ sinϕሻଶ], (2) 

Geometrically nonlinear element 
(nonlinear boundary condition) 

¼ in diameter steel rod, 
acting as the parallel 
spring and damper 

PCB modal hammer 

PCB uniaxial accelerometer (a) 

(b) 

(c) 

ENOC 2022, July 17-22, 2022, Lyon, France

376



 

ENOC 2020, July 5-10, 2020, Lyon, France 
 

 
where ݈ is the natural length of the nonlinear attachment.  
It can be shown that the nonlinear force, (2), in the limit of 𝑥N ≪ ݈ (low energy levels) can be linearized as 𝑓|𝑥N≪𝑙0 = ሺ𝑑 sinଶ ϕሻ𝑥ሶN + ሺ݇ sinଶϕሻ𝑥N. (3) 
Combining (1)-(3) and assuming low energy, i.e., 𝑥N ≪ ݈, we can construct the eigenvalue problem  [−𝜔ଶ𝐌+ (𝐊 + 𝐈. 𝐟nl|𝑥N≪𝑙0)]ܝ = 𝟎, (4) 

where 𝐈 is the identity matrix, and consequently, find the so-called “linearized” modal basis of the system. 

Modal energy scattering due to nonlinear boundary conditions 

In order to compute the modal response of the nonlinear beam (both the experimental and computational models), we 
projected each measured response along the beam onto the linearized modal basis of the system. Following this we 
computed the time-averaged modal energies as described in [3]. By doing so, we can observe not only how much of the 
total energy of the beam is allocated to each mode, but also follow their variations with time and measure the maximum 
energy exchange among them for different angles of attachment, ϕ.  
Finally, we defined a measure of energy exchange among modes by computing and comparing the maximum fluctuation 
in the percentage of each of the instantaneous modal energies, which corresponds to the maximum percentage of energy 
being exchanged among the modes. Figure 2 shows the energy exchange measure for the first two modes, for both the 
experimental system and the ROM. 

 
Figure 2. Energy exchange measures of the first two modes as a function of ϕ, computed from the ROM (a) and the experiment (b), 

for a low intensity impulse; (c) and (d) show similar graphs for a high intensity impulse. 
 
Figure 2, especially the energy exchange measures computed from the experimental results, shows that, for a certain range 
of angle of inclination, ͅ° < ϕ < ͳʹ°, the percentage of energy exchanged between modes 1 and 2, is maximized. This 
effect is achieved not only due to energy tunability of the nonlinearity but also due mainly to the existence of the angle 
of inclination, ϕ, which can be tuned to directly affect the degree of nonlinearity of the boundary condition. 

Conclusions 

In this research we investigated the effects of a strong local geometric nonlinearity on the modal interactions that occurred in 
a cantilever beam whose free end was grounded through a geometrically nonlinear element, which consisted of a linear spring-
damper element at an angle, ϕ, relative to the neutral axis of the beam while at rest. After building an experimental apparatus, 
we created a reduced-order finite element model for the experiment and updated its parameters by implementing frequency 
domain and time domain system identification techniques. Next, we projected the response of the nonlinear beam onto the 
modal space obtained from the updated computational model, and calculated the amount of energy in each of the projected 
modes. We recorded the maximum energy exchange among the projected modes for different values of ϕ and showed that 
by tuning this parameter properly it is possible to achieve the maximum amount of energy exchange from the low-frequency 
modes to high-frequency modes, thereby increasing the dissipation capabilities of the system. 
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Intermodal targeted energy transfer in a blast-excited 2D linear system with an 
elliptical hole 

 
 Yuval Veltman, Majdi Gzal and Oleg V. Gendelman 

Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Haifa, Israel 

Summary. This work explores the implementation of the intermodal targeted energy transfer (IMTET) concept for passive mitigation of a 
2D linear oscillator subjected to blast excitation in its weak direction.  The considered model contains 3 degrees-of-freedom, namely,  two 
directions of translation (i.e., horizontal and transversal), and rotational direction. The passive mitigation here is achieved by inducing 
extreme, fast time scale energy transfers from weak structural mode (characterized by lower-frequency and large amplitude) which was 
initially excited by the blast excitation to strong structural modes  (i.e., higher-frequency ones with a small amplitudes). These targeted 
(directed) energy transfers are governed by a non-resonant nonlinear dynamical mechanism induced by vibro-impacts between the main 
structure and a rigid barrier which constrained the structure to move within an elliptical hole. By redistributing the blast energy from low- to 
high-frequency structural modes the amplitude of the overall structural response is reduced in an extremely fast time scale, and the intrinsic 
dissipative modal capacity of the structure itself is better utilized. Additional blast energy dissipation is achieved by inelastic vibro-impacts.  

Introduction 

Passive mitigation of engineering structures subjected to extreme loads is of considerable interest in real life applications 
for preventing structural damage and human loss. Several linear and nonlinear absorbers have been investigated in the 
literature for this purpose [1,2]. Recently, a new concept was introduced [3] for blast mitigation through intermodal 
targeted energy transfer (IMTET) mechanism which based on irreversible nonlinear non-resonance energy scattering that 
passively transfers a significant portion of the blast energy from low-frequency structural modes (in particular, the 
fundamental mode) to high-frequency modes of the structure. Such passive IMTET was achieved by introducing local 
strong nonlinearities, in the form of vibro-impacts. The IMTET concept was first implemented on a benchmark blast-
excited two-degree of freedom (DOF) linear system by introducing to the system a single impact clearance [3]. Then, an 
extension of IMTET mechanism in multi-DOF systems was conducted in [4], in which a computationally study to explore 
the concept of IMTET to mitigate the effect of blast loading on a nine-story steel structure was performed.  
Here in this study, the IMTET concept will be extended to two-dimensional structures, with the rationale of channeling 
energy from “weak” to “strong” direction, thus utilizing much more effectively the intrinsic dissipative capacity of the 
structure itself. 

Model description and governing equations 

Here we consider a 3DOF oscillator with two directions of translation (i.e., horizontal and transversal) and one of 
rotational direction. The oscillator consists of a mass 𝑚 with moment of inertia 𝐼 moving on both horizontal and vertical 
directions. The mass is connected to two linear dampers with coefficients ܿଵ  and ܿଶ,  and a torsional dumper with 
coefficient 𝛾.  Two linear springs with stiffness 𝑘ଵand 𝑘ଶ  and a torsional spring with stiffness 𝑘ଷ  are attached to the mass 
as well. The mass movement is constrained by a rigid element, in center of an elliptical hole going throw the mass, with 
width ʹ ܽ and height ʹܾ, and rotated by an angle 𝛼, as shown in Figure 1.  

 
Figure 1: Schematic of the considered system 

 
Let ݍଵ and ݍଶ denote the horizontal and the transversal displacements, respectively, the equations of motion between the 
impacts are given by: 
 

 
 𝑚 𝜕ଶݍଵ𝜕𝑡ଶ + ܿଵ ଵ𝜕𝑡ݍ�� + 𝑘ଵݍଵ = Ͳ  (1) 
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𝑚 𝜕ଶݍଶ𝜕𝑡ଶ + ܿଶ ଶ𝜕𝑡ݍ�� + 𝑘ଶݍଶ = Ͳ 𝐼 𝜕ଶߠ𝜕𝑡ଶ + 𝛾 𝑡��ߠ�� + 𝑘ଷߠ = Ͳ   
   

When the rigid element location satisfies the equation of the ellipse in respect to the center of mass, collision happens 
and the mass changes its velocity instantaneously according to the Newtonian impact law. The collision is defined using 
coefficient of restitution and coefficient of friction and take under consideration angular impulse. After numerically 
solving the equations of motion we can explore the efficiency of the mechanism. The simulation parameters are chosen 
with respect to a real steel beam with rectangular cross section. We have simulated the system for different coefficients 
of restitution, namely, ݎ = Ͳ.6,ͳ  and compared the results with the linear case, i.e., without the constraint, for an equal 
initial condition of impact. To explore the efficiency here we the normalized energy ߟ as the ratio between the 
instantaneous energy  𝐸ሺ𝑡ሻ and the initial energy  𝐸ሺͲሻ:  

ሺ𝑡ሻߟ  = 𝐸ሺ𝑡ሻ𝐸ሺͲሻ (2) 

 
 We define the characteristic damping time of the system 𝜏 as ln(ߟሺ𝜏ሻ) = −ͳ, in other words, it is the time in which the 
energy drops by a factor of 1/e of its initial value in a time inverse to the damping coefficient. 
 

Results 
As a preliminary results, the horizontal and transversal responses subject to initial conditions that excite only the 
horizontal direction are shown in Figure 2(left). It is clear that when the vibro-impacts occur, the modes interact 
immediately, and a substantial amount of energy is transferred from the horizontal to the transversal mode. The latter is 
characterized by a substantially higher modal dissipative capacity. Thus, an enhancement of the damping properties of 
the system is realized through utilization of the intrinsic modal structure and excitation of the higher-frequency transversal 
mode. Figure 2(right) shows the logarithm of the normalized energy as a function of time for the following three cases: 
linear, nonlinear with purely elastic impacts, and nonlinear with inelastic impacts. It can be seen that the presence of the 
impacts in the system leads to a significant decrease in the characteristic damping time, even when purely elastic impacts 
are considered. 

 
Figure 2:  The center of mass trajectory in the ݍଵݍଶ plane (left); The instantaneous energy of the system (right) 

Conclusions 

 
In this work, the non-resonance nonlinear mechanism for efficient and rapid low- to high-frequency energy scattering, which 
is referred to as intermodal targeted energy transfer—IMTET, is implemented for passive mitigation of a 2D linear oscillator 
subjected to blast excitation in its weak direction. The numerical exploration revealed that channeling the blast energy, within 
the modal space, from low- to high-frequency structural modes enables an extremely fast mitigation of the overall structural 
response, and a drastic reduction of the characteristic damping time in the benchmark system. 
Such observations open up an entirely new domain of research on constructive utilization of different directions for possible 
displacement of the structure, in particular channeling energy from “weak” to “strong” direction by means of the IMTET. 
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 Kapitza resistance in basic chain models with isolated defects  
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Summary. Kapitza resistance due to isolated defect is explored numerically in benchmark chain models (linear, 𝛽-FPU, rotator and Frenkel-
Kontorova). Kapitza resistance is found independent on chain length and temperature in linear model, but dependent on thermostat 
characteristics. In 𝛽-FPU model, the anomaly as in the heat conductivity continues, Kapitza resistance vanishes with the chain length and 
depend on temperature and thermostat. In Rotator and Frenkel-Kontorova models, which are characterized by normal heat conductivity, 
Kapitza resistance also shows convergence with chain length and independent on thermostat. Except for the linear model, the findings are 
similar to the heat conductivity characteristics in the respective models. 
 
Kapitza resistance/Interfacial thermal resistance is defined as the ratio of discontinuity in the temperature gradient at the 
material interface to the heat flux flowing across the interface. It was first observed by Kapitza, in the junction between liquid 
helium II and a solid, during his experiments on superfluidity. Although numerous theoretical works have been devoted to 
explain Kapitza resistance, the two widely known models are Acoustic Mismatch Model (AMM) which is defined for very 
low temperatures and Diffuse Mismatch Model (DMM) which is defined for very high temperatures. Majority of the 
analytical, numerical works were based on AMM. The heat management problem, especially in nanoscale devices, involves 
the bulk conduction as well as the interfacial heat conduction. In this regard, Kapitza resistance and heat conductivity are two 
sides of a coin. We have well-known results for one-dimensional heat conduction problem and the studies divide models based 
on convergence and divergence of heat conductivity in the thermodynamic limit. But the behavior of Kapitza resistance in 
these models is less understood. More than just a theoretical concept, the divergence of heat conductivity is already established 
by experimental studies [1] for quasi-one-dimensional systems. Since interfacial thermal resistance is also a crucial factor that 
deciding the heat transport, the current study can shed light into thermal management problems in nano-scale devices.  The 
present study conducted for Kapitza resistance behavior in basic benchmark models: linear,  𝛽-FPU, rotator and Frenkel-
Kontorova. We choose isolated defect (isotopic defect/coupling defect) to create the interfacial boundary and to avoid the 
complications of the non-reciprocity. 
We follow two numerical approaches: first, a semi-analytical method for linear model, which is based on the famous Rieder-
Lebowitz-Lieb (RLL) method [2]; second, molecular dynamics simulations. In all cases, the non-equilibrium heat transport is 
established by connecting the chain to Langevin thermostats at both ends. In RLL method, the basic idea is to numerically 
solve the necessary and sufficient condition for the stationary state of a harmonic crystal from the generalized Liouville 
equation. In molecular dynamics simulations, we follow numerically the time evolution of the Hamiltonian with discrete time 
interval. We use Verlet algorithm to solve the equations of motion using homemade FORTRAN-95 codes. The results obtained 
for linear, 𝛽-FPU, rotator and Frenkel-Kontorova models are very-briefly discussed below. 
It is well-known that in linear model, phonon does not exchange energy between modes and the phonon spectra is totally 
dependent on thermostat characteristics. We observed the heat flux and the temperature drop at the interface scales with the 
temperature and the Kapitza resistance is independent on chain length and temperature. We know heat conductivity was 
diverging with chain length in linear model. But we cannot say Kapitza resistance is normal for linear model because the 
Kapitza resistance is totally dependent on the thermostat since nothing in the chain can influence the phonons. Another 
observation for the linear model (more or less similar in other models also) is Kapitza resistance shows diverging behavior 
with the strength of the isolated defect when the strength goes to infinity. 
 

 
Figure 1: Power law decrease of the Kapitza resistance with the chain length for the chain with β-FPU interaction. 

 
Heat transport in 𝛽-FPU model is always a puzzling problem since the observation of absence of thermalization by Fermi-
Pasta-Ulam. Heat conductivity shows divergence with an exponent close to 1/3 [3]. The anomaly continues in the case of 
Kapitza resistance which demands normalization of heat flux. Although the exponent dependent on the defect strength, still it 
is closer to −1/3 (Figure 1). The Kapitza resistance decreases with increase in temperature, which shows the temperature 
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affects the phonon scattering process at the interface. As in the linear model, Kapitza resistance here also dependent on 
thermostat. 
 

 
Figure 2: Temperature dependence of the Kapitza resistance in the chain of rotators. 

 
Rotator model are well-known for momentum conserving models which obey convergence of thermal conductivity [4]. 
Kapitza resistance showed normal behavior here, that is, converges in the thermodynamic limit and independent thermostat 
characteristics at a temperature above the rotobreathers can get excited. The strong nonlinearity allows the system to forget 
about the thermostat characteristics and the phonon locking by the rotobreathers allows the normal diffusion. The activation 
of rotobreathers and its effect on the Kapitza resistance can be observed as a dip in the Kapitza resistance-temperature plot 
(Figure 2). 
 

 
Figure 3: Dependence of the Kapitza resistance on the chain average temperature in the Frenkel-Kontorova model. 

 
Coming to the Frenkel-Kontorova model, Kapitza resistance is normal and independent of thermostat characteristics at 
intermediate temperatures (Figure 3). We know the similar observation for heat conductivity since activation of topological 
kinks only happens at intermediate temperature range [5]. The linear characteristics at very low temperatures happens due to 
the weak nonlinearity and at high temperatures the chain detaches from the substrate. 
In conclusion, linear model showed Kapitza resistance that is independent of chain size (contrary to heat conductivity) and 
temperature, but dependent on thermostat. The addition of cubic linearity makes the Kapitza resistance anomalous, that is, 
dependent on thermostat and chain length in the thermodynamic limit (need of normalized heat flux). Rotator and Frenkel-
Kontorova models showed normal Kapitza resistance. In all the nonlinear models Kapitza resistance decreases, immediately 
after the very low temperature regime (linear regime) which needed to be investigated further. 
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Modal interactions in a non-linear mass-in-mass periodic chain

Jean Flosi†, Alireza Ture Savadkoohi† and Claude Henri Lamarque†
†Univ Lyon, ENTPE, CNRS UMR5513, LTDS, France

Summary. The multiple-scale dynamics of a forced periodic chain composed of 2 degree of freedom mass-in-mass cells with cubic
non-linearity is studied. A continuous approach leads to dispersion equations and allows to define the modal decomposition of contin-
uous physical coordinates of the system. Because of the system nonlinearity, a 1 : 3 internal resonance is considered. The continuous
model is projected on these two modes in order to study associated energy exchanges. Fast and slow dynamics leads to detection of
slows invariant manifolds (SIM) and frequency responses of the chain.

Considered model of the chain

Meta-materials are developed to present unusual non natural responses against external or internal actions. In the vibro-
acoustics domain, mass-in-mass systems are an example of meta-materials [1, 2]. We are considering the system presented
in Fig.1: a L-periodic chain composed of mass-in-mass cells linearly linked two by two. Each cell is composed of a
principal mass m1 linked non-linearly to its inner mass m2.
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Figure 1: Scheme of the L-periodic chain composed by cubic nonlinear mass-in-mass cells

Governing equations are:




m1
d2u1
dt2

+ k1(2u1 − uL − u2) + k3(u1 − v1)3 + c1(2
du1
dt
− duL

dt
− du2

dt
)

+c2(
du1
dt
− dv1

dt
) = F1 sin(Ωt)

m1
d2uj
dt2

+ k1(2uj − uj−1 − uj+1) + k3(uj − vj)3 + c1(2
duj
dt
− duj−1

dt
− duj+1

dt
)

+c2(
duj
dt
− dvj

dt
) = Fj sin(Ωt) for j ∈ [2, ..., L− 1]

m1
d2uL
dt2

+ k1(2uL − uL−1 − u1) + k3(uL − vL)3 + c1(2
duL
dt
− duL−1

dt
− du1

dt
)

+c2(
duL
dt
− dvL

dt
) = FL sin(Ωt)

m2
d2vj
dt2

+ k3(vj − uj)3 + c2(
dvj
dt
− duj

dt
) = 0 for j ∈ [1, ..., L]

(1)

The periodicity leads to following boundary conditions:
{

uj(t) = uL+j(t)
duj(t)

dt
=
duL+j(t)

dt

pour j ∈ [1, ..., L] (2)

Continuous approach

X is the initial spatial variable and the distance of two adjacent cells at rest is ∆x. We introduce the continuous normalized

space variable x =
X

∆x
and new continuous functions:

{
u(x, τ) = u(x = j − 1, τ), x ∈ [0, L], j = {1, ..., L+ 1}
v(x, τ) = v(x = j − 1, τ), x ∈ [0, L], j = {1, ..., L+ 1} (3)

We use the new continuous coordinates:
{
U(x, t) = u(x, t)
V (x, t) = u(x, t)− v(x, t) (4)
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and applying change of variables τ = ωt =

√
k1
m1

t, εΛ =
k3
k1

, εχ1 =
c1√
k1m1

, εχ2 =
c2√
k1m1

, εfj =
Fj
k1

and µ =
Ω

ω
,

continuous expression of system 1 is:




∂2U

∂τ2
(x, τ)− ∂2U

∂x2
(x, τ) + εΛV 3(x, τ)− εχ1

∂

∂τ

∂2

∂x2
U(x, τ) + εχ2

∂

∂τ
V (x, τ)

= εf(x) sin(µτ)

d2(U − V )

dτ2
(x, τ)− ΛV 3(x, τ)− χ2

∂V

∂τ
(x, τ) = 0

(5)

The study of the linearized system leads to the dispersion equation of the system. We consider a 1 : 3 internal resonance
and we define:

{
U(x, τ) = p1(τ) cos(ω1x+Θ1) + p3(τ) cos(ω3x+Θ3)
V (x, τ) = q1(τ) cos(ω1x+Θ1) + q3(τ) cos(ω3x+Θ3)

ωk =
2kπ

L
, k ∈ [1, . . . , L] (6)

Fast and slow dynamics study

In order to detect the different dynamics of the system, multiple scale method [3] is applied. Modal projection allows
to obtain different set of governing equations from the continuous Eq.5 and asymptotic responses of the system are
considered [4]. Detection of fast dynamics [5] leads to the determination of the two SIMs associated to projected system
on the first and third mode. Example of SIM obtain from projection on first mode is plotted in Fig.2 from two different
angles, where N1 stands for associated amplitude of the outer mass for first mode and M1 and M3 stand for associated
amplitudes of the inner mass for first and third modes respectively. Analytical SIM is plotted in blue while numerical
integration using Runge Kutta is plotted in red. Slow dynamics study at the order ε1 allows to determine singular and

Figure 2: Multiangle representation of the SIM obtained after projection on first mode for free system with initial deformation.

equilibrium points. These points lead to the prediction of periodic and quasi-periodic behaviors. Study can be generalized
for the 1 : k resonance.
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Nonlinear dynamics of a resiliently propped cantilevered beam with a tip mass

M. Reza Talebi Bidhendi∗, A. Srikantha Phani∗
∗Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada

Summary. A practical friction control application in railway industry lead us to consider a cantilever beam with a tip mass and a spring
support– a problem least studied in the literature from nonlinear dynamics perspective. We study the harmonically forced nonlinear
dynamic response of this prototypical system using a reduced two degree of freedom model and compare its bifurcation characteristics,
computed by AUTO, with that of the full system. The tip spring couples the first two flexural modes through a length dependent
kinematic nonlinearity and brings their frequency ratio to nearly 2:1. We find (a) the reduced order model is adequate to understand the
first bifurcation (pitchfork) and the subsequent Hopf bifurcation and (b) The threshold force for the nonlinear response grows with the
initial length of the spring.

Problem statement

Cantilevered beam with tip mass is a canonical problem extensively studied under the tip excitation and under the base
excitation [1]. Nonetheless, the present problem of an end excited cantilevered beam with a tip mass mounted on an
external elastic support has not received attention, and we are led to it through a friction control application in railways [2,
3]. Similar situations can arise in the vibration energy harvesting, vibration mitigation, and sensing mechanisms [4].
Restoring force due to the elastic support has been shown to produce nonlinear terms of kinematic origin in the governing
differential equations (DEs) [5, 6]. A similar situation arises in our problem, sketched in Fig.1(a). A long steel beam with
a diameter of 4 mm and length of 254 mm is loaded by an aluminum tip mass (70×50×20 mm3) and a rigid rod of
density of 7800 kg/m3 and diameter of 4 mm and length of 40 mm. The external support at tip (kext = 1000N/m) with
an initial length (L) imposes a two-to-one ratio between the first vertical (f1) and the lateral (f2) natural frequencies of
the structure, f1 ≈ 2f2. The linear modal parameters of the structure (damping ratio(ζ), stiffness(k), natural frequency
(f )) without the addition of the external support are obtained using a finite element model as k1 = 317.98 N/m, ζ1 =
0.097, f1 = 6.12 Hz, k2 = 362.58 N/m, ζ2 = 0.129, f2 = 6.59 Hz. Indices one and two refer to the vertical and
the lateral directions, respectively. After the attachment of the elastic support to the structure, the vertical linear natural
frequency becomes f1 = 12.46 Hz while the other linear modal parameters do not change. Using the linear modal
properties of the structure, a minimal model as shown in Fig.1(b) can be identified, with the governing equations:

¨̃y + 2ζ1ω1
˙̃y + ω2

1 ỹ +
kext(1 + ỹ)

m1
(1− 1√

(1 + ỹ)2 + x̃2
) =

F

m1L
cos(Ωt) (1)

¨̃x+ 2ζ2ω2
˙̃x+ ω2

2 x̃+
kextx̃

m2
(1− 1√

(1 + ỹ)2 + x̃2
) = 0 (2)

where ỹ = y/L, x̃ = x/L, ωi =
√
ki/mi; mi, i = 1, 2 are the masses; F is the excitation amplitude, and Ω is the

excitation frequency. The above equations are solved numerically for non-zero initial conditions, and compared with
the full-scale multi-body dynamics model in ADAMS software which accounts for all the modes of the structure, i.e, no
modal truncation.

(a) (b)
Measurement point 

(c)

𝑐𝑐2
𝑘𝑘2

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

𝑘𝑘1𝑐𝑐1 𝑐𝑐1 𝑘𝑘1𝑘𝑘2
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𝑥𝑥Axial axis (z) 

Vertical axis (y) 

1000 N/m 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = 

Figure 1: (a) Model of end excited cantilevered beam with tip mass mounted on the elastic support. (b) A minimal two-DOF model
of the structure: ci = 4πζimifi. (c) Deformed structure under the vertical excitation force. Note that the first vertical and lateral
modes have almost the same natural frequencies (f1 ≈ f2) without the external spring. The external support introduces kinematic
nonlinearities and imposes 2:1 internal resonance in the structure (f1 ≈ 2f2) . Note that x and y are the lateral and the vertical axis,
respectively.
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Results

Force-response curves are calculated by fixing the excitation frequency (Ω) and increasing the excitation amplitude (F ),
and vice versa [7]. When the excitation frequency is close to the first vertical natural frequency, Ω ≈ 2πf1, the first
lateral mode is excited through a 2:1 resonance (pitchfork bifurcation) as shown in Fig.2(a). The vertical displacement
decreases initially, in Fig.2(b), and then increases. A further increase in F will produce a Hopf bifurcation leading to
the aperiodic response of the structure, see the dotted line in Fig.2(a). Fixing the excitation amplitude and sweeping the
excitation frequency, Fig.2(d) and Fig.2(e), we can observe that there is a frequency interval over which the lateral mode
is activated. Internal resonance property is evident through the frequency splitting in Fig.2(f). The sensitivity of the force
threshold to the initial length of the external spring is shown in Fig.2(c), where we observe that the force amplitude divided
by the length remains constant, for the two lengths shown. Note that Fig.2(c) is a magnified version of Fig.2(a) near the
onset of first bifurcation. We note that while the reduced order model is adequate for L = 0.5 mm, discrepancies exist
for L = 2.5mm, indicating the limit of the reduced model.
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Figure 2: (a) Force-response curve of the lateral response with Ω = 2π×12Hz. (b) Force-response curve of the vertical response with
Ω = 2π × 12Hz. (c) Sensitivity of the force threshold to the initial length of the external spring. (d) Lateral response of the minimal
model due to the different excitation levels and frequencies. (e) Lateral response of the Adams model for the different excitation levels
and frequencies. (f) Vertical response of the minimal model due to the different excitation levels and frequencies.

Conclusions

The elastically propped cantilever beam with a tip mass, subjected to harmonic excitation, shows pitchfork and Hopf bifur-
cations when the forcing amplitude is increased at a fixed frequency, and vice versa. The 2:1 internal resonance between
two flexural modes with displacements in mutually orthogonal planes are superficially similar to Froude oscillations of a
ship, but without saturation since we retain all nonlinear terms here, albeit in the first two modes in our reduced model.
We find (a) the reduced order model is adequate to understand the first bifurcation (pitchfork) and the subsequent Hopf
bifurcation and (b) initial length of the spring acts as a design tuning parameter to activate the first lateral mode.
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Passive control of galloping vibrations by means nonlinear energy sinks
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Summary. The present paper aims to analyze the passive control of a structure subject to aeroelastic galloping by using nonlinear
energy sinks (NES). A lumped parameter model is adopted, and a steady approach to the aerodynamic loads is considered. A pure
cubic stiffness NES is placed inside the prismatic structure. A mathematical model is established, and the Method of Multiple Scales
(MMS) is used to build analytical solutions. Bifurcation diagrams can be drawn with these solutions, which allows characterizing the
suppression regimes induced by the absorber. The use of coupled NES seems reasonable to passively control the nonlinear aeroelastic
galloping.

Introduction

The galloping phenomenon comprises one of several engineering problems ruled by flow-induced vibrations. This phe-
nomenon is essentially nonlinear and characterized by a self-excited mechanism. Limit cycle oscillations (LCO) take
place from a particular flow speed, highlighting the galloping bifurcation. These motions can present very large ampli-
tude, leading to fatigue and failure of structural components [1]. In this way, the present paper aims to investigate the
application of NES to passive control galloping vibrations. NES consists of a dynamic vibration absorber with nonlin-
ear characteristics that works according with the Target Energy Transfer (TET) theory [2]. In particular to this work, a
pure cubic NES stiffness is considered and placed inside a prismatic body subjected to galloping excitation. A steady
and nonlinear approach to the aerodynamic loads is considered [1]. Asymptotic analysis is carried out using MMS. The
built analytical solutions allow accessing the amplitude and stability of the system’s motion with efficiency. Bifurcation
diagrams can be generated with these solutions, and the suppression regimes induced by NES can be characterized.

Mathematical Modeling and Asymptotic Analysis with MMS
The model assumes a rigid square prism with mass m, height h, and is supported by a suspension with linear stiffness k
and viscous damper coefficient c. An NES is embedded inside of the structure to promote a passive control effect, which
consists of an oscillator with a small massmn linked to the prism by a pure cubic spring (kn), and a linear viscous damper
(cn). The motion of prism and NES masses are accounted for by the y(t) and yn(t) degrees of freedom in the y-direction.
Figure 1 presents an illustration of a system immersed in airflow with velocity U aligned to the x-direction, promoting
the motion only in the y-direction.

Figure 1: Sprung prism coupled with NES to passive control of the galloping phenomenon.

The governing system’s equations of motion are given by:
{

(1− ϵµ̂n)η′′(τ) + η(τ) = ϵn̂
[
A1η

′(τ)−A3η
′ 3(τ)

]
− ϵλ̂nυ′(t)− ϵγ̂nυ3(τ)

ϵµ̂nυ
′′(τ) + λ̂nυ

′(τ) + ϵγ̂nυ
3(τ) = ϵµ̂nη

′′(τ)
. (1)

with τ = ωnt, ()′ = d()/dτ , ()′′ = d2()/dτ2, η(τ) = y(τ)/h, ωn =
√
k/m, υ(τ) = (y(τ) − yn(τ))/h, µn = mn/m,

γn = knh
2/(mω2

n), λn = cn/(mωn), n = ρh2/(2m), V = U/(ωnh),A1 = V Clf−2ζ/n,A3 = Ccf/V , ζ = c/(2mωn),
and (̂ ) = ( )/ǫ.
The MMS assumes the following expansion of the generalized coordinates, η(τ) = η0(τ0, τ1) + ǫη1(τ0, τ1) and υ(τ) =
υ0(τ0, τ1) + ǫυ1(τ0, τ1) [3]. Replacing this result in Eq. (1), and collecting the common terms with ǫ0 and ǫ, two set of
equations are obtained. The set ǫ0 comprises only the equivalent linear undamped motion of the prism, and its solution
can be written by η0(τ0, τ1) = C(τ1)e

jτ0 + [c.c.], where C(τ1) is the prism complex-slowly amplitude, j =
√
−1 is the

imaginary unity and [c.c.] refeers to the complex conjugate. Similarly, the NES motion is assumed to be υ0(τ0, τ1) =
B(τ1)e

jτ0 +[c.c.], with B(τ1) being the NES complex-slowly amplitude [3]. The ǫ-order problem can be solved by using
the previous expressions, and considering C = (1/2)aejα, B(τ1) = (1/2)bejβ . Thence, NES motion results in:

Xa = θ1Xb + θ2X
2
b + θ3X

3
b (2)

ENOC 2022, July 17-22, 2022, Lyon, France

386



ENOC 2020+2, July 17-22, 2022, Lyon, France

where Xa = a2, Xb = b2, θ1 = 1 + λ̂2n/µ̂
2
n, θ2 = − 3

2 (γ̂n/µ̂n), and θ3 = 9
16 (γ̂

2
n/µ̂

2
n). Equation (2) defines the Slow

Invariant Manifold (SIM) structure, two folding points can be characterized, and a maximum NES critical damping can
be defined by λncrit

= (
√
3/3)µn (i.e., λn ≤ λncrit

) [3]. Similarly, the equation that describes the prism motion can be
combined with Eq. (2), and for the steady state condition the equilibrium points can be calculated by solving the following
polynomial equation:

X5
b + Γ1X

4
b + Γ2X

3
b + Γ3X

2
b + Γ4Xb + Γ5 = 0, (3)

with Γ1 = 2θ2
θ3

, Γ2 = 2θ1
θ3

+
θ22
θ23

, Γ3 = 2θ1θ2
θ23

+ ψ1

ψ2θ3
, Γ4 =

θ21
θ23

+ θ2ψ1

θ23ψ2
, Γ5 = (θ1ψ1−1)

ψ2θ23
, ψ1 = n̂A1

λ̂n
and ψ2 = − 3n̂A3

4λ̂n
. Con-

sidering the airspeed with parameter, bifurcations diagrams can be draft based on the solutions of Eqs. (2), (3), allowing
to access both amplitude and stability of the motions. These diagrams are essential to characterize the suppression regime
responses induced by NES and yours boundaries.

Results and Discussions
The system under study was analyzed considering the following parameters: n = 4.3×10−4, ζ = 1.96×10−3,Clf = 2.69,
and Ccf = 168 [1]. To validate the analytical approach, time integration results were obtained using the fourth-order
Runge-Kutta method with a time step of a 10−2 seconds. For each simulated case, an arbitrary initial condition is used to
find the steady state motions.
Figure 2(a) compares analytical and numerical bifurcations (♦,×, ■) of the system considering µn = 0.05, γn = 1.5 and
λn = 0.03λncrit

, where a good agreement between the results is observed. Furthermore, a new bifurcation behavior is
induced in the structure by its dynamic interaction with the NES. Unstable branches take place, and news response regimes
are detected along the non-linear galloping boundary. The characterization of these suppression regimes is depicted in
Figure 2(b). The first one, referred to as CR, comprises a complete suppression of phenomenon. The second regime
(PS) occurs when partial suppression is observed through stable LCOs with small amplitudes. The third regime (SMR)
is distinguished by competing two different response regimes driven by the initial condition. When small perturbations
are imposed, the system exhibits strongly modulated responses (SMR) [2] with lower amplitudes. In contrast, for higher
levels, the system jumps to LCOs with larger amplitudes (WS), which results in a weak suppression performance. The
upper unstable branch depicts the basin of attraction that delimits these two different behaviors.
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Figure 2: (a) Validation of MMS-based bifurcation analysis of the system, (b) Characterization of suppression regimes.

Conclusions

The paper investigated the application of an NES with pure cubic stiffness to the passive control of the nonlinear aeroelastic
galloping. A benchmark lumped parameter model is used, and the aerodynamic loads are calculated through a nonlinear
steady approach. Analytical treatments are carried out based on the MMS, and the solutions are numerically validated.
Results comprise a study of the impact of the NES inclusion to the structure and the influence on the nonlinear response
in post-galloping with NES. Suppression regimes are characterized based on the bifurcation diagrams in the function of
responses induced by NES. To use this type of vibration absorber seems reasonable to control the galloping phenomenon.
Further investigation will comprehensively analyze the effect of NES parameters on the boundaries of suppression regimes
induced by it and establish the relationship between these regimes and the TET phenomenon.
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Summary. Nonlinear mechanical resonators combined with piezoelectric transducers are widely used in vibration energy harvesting
applications for their broadband behavior. Such nonlinear vibration energy harvesters may exhibit various orbits for a given excitation,
each of them being associated with a given harvested power. Thus, in order to optimize the harvested power, it is crucial to find ways to
jump from low power orbits to high power orbits, and to remain on them as long as possible. In this paper, we present a mathematical
framework to test and study how effective is a given orbit jump strategy. Starting from the analytical model of a Duffing-type nonlinear
mechanical energy harvester, we describe some of its dynamics, and we introduce a command function that can be used to impact
the dynamics of the harvester. Thereafter, we will test and evaluate a set of command functions based on sinusoidal current injection.

Introduction

Vibrations are ubiquitous in nature and their energy can be scavenged via vibration energy harvesters (VEH) to replace
batteries in low power electronic systems [1]. Nonlinear VEH have attracted the energy harvesting community because
of their frequency behaviors that allow to harvest a relatively large power even if the vibration frequency shifts away from
the harvester resonant frequency (for review, see e.g. [2]). However, such nonlinear VEH exhibit complex dynamical
behaviors. Indeed, for a given excitation, they can oscillate on several orbits, often very different [3]. It is then necessary
to find ways to stay in higher energy orbits to maximize the harvested power. For instance, [4] and [5] proposed to
dynamically modify the buckling level of the VEH. [6] and [7] proposed to implement such orbit jump with a perturbation
of the electrical load or with electrical impulses, respectively. While there are many existing orbit jump strategies in the
literature [4, 5, 6, 7], there is a lack of mathematical framework that would allow their comparison in a unified way. In
this paper, we introduce the nonlinear VEH model with an additional command function that allows to test and evaluate
electrically-induced orbit jump strategies. The proposed modeling framework will allow to evaluate orbit jump strategies
based on two major criteria: their potential for orbit jump and their energy consumption.

Electromechanical dynamics nonlinear vibration energy harvesters

A vibration energy harvester usually involves 3 sub-systems: a mechanical resonator, an electronic energy extraction
circuit and a storage unit. In this study, we focus on the Duffing-type resonator and the influence of the extraction circuit
on its dynamical behavior. A complete scheme of the system is given in Fig.1(a). The resonator consists of buckled
steel beams on which a proof mass M is fixed. A piezoelectric transducer is used for mechanical-to-electrical energy
conversion. It has a force factor α and a blocked capacitance Cp. The piezoelectric element is connected to the extraction
circuit drawing an electrical current i. The piezoelectric voltage is noted v. The harvested power corresponds to the one
collected in the electronic extraction circuit connected to the piezoelectric element.

(a) (b)

Figure 1: (a) Schematic of the vibration energy harvester (b). Experimental prototype of a Duffing-type VEH [8].

The electromechanical dynamics of this nonlinear VEH can be modeled as follows:




ẍ = −ω
2
0

2

(
x2

x20
− 1

)
x− ω0

Q
ẋ− 2

α

ML
xv +A sin(2πfdt)

v̇ = 2
α

LCp
xẋ− 1

Cp
i

(1)

where x is the position of the mass M . The resonator presents two stable positions at x = ±x0 (each corresponding to a
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local minimum of the elastic potential energy and associated with a potential well). From the linearized behavior obtained
from small oscillations around x ≈ x0, a natural angular frequency ω0 and a mechanical quality factor Q > 0 can be
found. The resonator is submitted to a sinusoidal ambient acceleration of amplitude A and frequency fd. The nonlinear
ordinary differential equations (1) were numerically solved for different vibration frequency values fd and from different
initial states XXX(0) =

(
x0 ẋ0 v0

)⊤
. Each simulation was performed until convergence to a periodic or a chaotic

regime. The orbits were deduced and classified by type (periodic or chaotic) and, when periodic, by their harmonic or
subharmonic order. These subharmonic orbits correspond to the case where the mass oscillates at a frequency which is
a submultiple of the vibration frequency. An orbit is high when the mass oscillates around the two stable equilibrium
positions. On the other hand, an orbit is low when the mass oscillates around one of the two stable equilibrium positions.
In this paper, we take the following notations: H1H (resp. H1L) for a first order high (resp. low) harmonic and SH5H
(resp. SH5L) for a fifth order high (resp. low) subharmonic. In the case where the electronic circuit is a simple resistor
R = 7.8 kΩ, the current is given by i = v/R. The average harvested power corresponds to the power dissipated in the
resistor and can be computed by calculating the mean value of v.i = v2/R.
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Figure 2: Basins of attraction for fd = 50 Hz with a grid of 400 000 starting points [9].

The basins of attraction of the bistable (for fd = 50 Hz) are shown in Fig.2. As seen in Fig.2, for a given vibration
frequency and for some initial conditions, one can start on a low energy orbit. For example, at fd = 50 Hz the system can
start on H1L, SH3L, SH5H, SH3H or H1H (best case), and when the system stabilizes on H1L it is interesting to perturb
the system by means of an orbit jump strategy in order to converge to a highest orbit (SH3L, SH5H, SH3H or H1H). In
Fig.3, we can observe that multiple orbits of various powers coexist for a given vibration frequency. The longer one stays
on highest power orbits, the better the performance. The goal of our study is to define a command function iu that enables
to jump from low power orbits to high power orbits. 1

Dynamics adjustment by current injection

One way to induce such orbit jump is to dynamically modify one of the state-variable of the electromechanical system
(i.e., x, ẋ or v). From a practical point of view, it is much easier to implement a change of v than a change of x or ẋ,
thanks to an adaptive electrical circuit. To modify the piezoelectric voltage v and to avoid any voltage discontinuities, we
add an injection current iu to the load current iL. In this case, the total current flowing in the piezoelectric material i is
given by i = iL − iu. We then end up with an optimal control problem where the output to control is the orbit and the
command function is the injected current iu : t 7→ R which is assumed to be a continuous piecewise function.

1In this analysis the jump from chaotic orbits (present around 25 Hz, see Fig.3) will not be discussed.

ENOC 2022, July 17-22, 2022, Lyon, France

390



ENOC 2020+2, July 17-22, 2022, Lyon, France

Figure 3: Simulated average harvested power as a function of the vibration frequency fd for the different existing orbits
[9].





ẍ = −ω
2
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(
x2

x20
− 1

)
x− ω0

Q
ẋ− 2

α

ML
xv +A sin(2πfdt)

v̇ = 2
α

LCp
xẋ− 1

Cp
iL +

1

Cp
iu

Ė =
2α

L
xẋv − Cpvv̇ = v.i = v.iL − v.iu

XXX(0) =
(
x0 ẋ0 v0

)⊤

(2)

Where E is the total harvested energy. The instantaneous harvested power Ė can be calculated from the power consump-
tion of the load v.iL ≥ 0 minus the injected power v.iu. If we control the injected current function iu, we can change the
trajectory t 7→XXX(t) by punctually modifying the piezoelectric voltage v. Starting from this mathematical framework, the
next section will present the analysis and evaluation of electrically-induced orbit jump strategies.

Results and discussion

We define a command function that consists in injecting a sinusoidal current at a certain time t0. This injected current
presents an amplitude Ie, a phase shift ψe with respect to the ambient excitation and an angular frequency ωe. Moreover,
the current is injected for a duration ∆t, such as the orbit jump stops at t0 + ∆t. Since the excitation of the system is
harmonic, we define dimensionless parameters kt0 and k∆t as follows: kt0 = t0/Td and k∆t = ∆t/Td. Therefore, there
are five influence orbit jump parameters (kt0 , k∆t, Ie, ψe, ωe) to study.

iu(t) =

{
Ie sin(ωet+ ψe), for t/Td ∈ [kt0 , kt0 + k∆t]

0, otherwise
(3)

To analyze the effectiveness of this orbit jump technique consisting in the injection of current (3), we start on a low energy
orbit. Thereafter, we simulate different combinations of (kt0 , k∆t, Ie, ψe, ωe) and analyze their influence on the dynamics
of the harvester. Figure 4 presents an example of the orbit jump strategy for fd = 50 Hz with arbitrary parameter values
(kt0 , k∆t, Ie, ψe, ωe) = (0.35, 2.5, 0.18, 1.6π, 2ωd). Figure 4(a) shows the corresponding injected current waveform (3)
during the first few periods and after 1 000 periods. At the beginning of the simulation, the system oscillates on the lowest
existing orbit (H1L) during 5 vibration periods Td. For t = (5 + kt0)Td = 5.35Td, the orbit jump strategy using the
injected current described in Fig.4(a) is applied for a duration of ∆t = 2.5Td. Fig.4(b,c) show that there is no transient
and the VEH converges almost directly to the H1H steady state (green and red curves). This convergence is similar to the
one obtained with a buckling level modification (see [4, 5]).
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Figure 4: (a) Sinusoidal injected current (3) as a function of time with parameter values (kt0 , k∆t, Ie, ψe, ωe) =
(0.35, 2.5, 0.18, 1.6π, 2ωd), (b) displacement as a function of time for fd = 50 Hz before (H1L in blue), during (in
orange) and after (in green and red) the orbit jump. (c) Trajectory in the dimensionless phase plane (x/x0, ẋ/x0ω0).

The invested energy during the orbit jump Einv (4) consists in the integral of the instantaneous harvested power subtracted
from the instantaneous injected power over the jump duration. (5) computes total injected energy during the orbit jump,
considering both the current flowing in the piezoelectric material and the current flowing in the load R.

Einv =

∫ t0+∆t

t0

[v(t).iu(t)− v(t).iL(t)] dt (4)

Einj =

∫ t0+∆t

t0

v(t).iu(t)dt = Einv +

∫ t0+∆t

t0

v(t).iL(t)dt (5)

Thereafter, an evolutionary algorithm inspired from natural selecting process [10, 11] is used for investigating opti-
mal orbit jump parameters (kt0 , k∆t, Ie, ψe, ωe) that belong to [0, 1] × [0, 50] × [0, 0.2] × [0, 2π] × [0, 4ω0] where
ω0 = 121 rad.s−1. Using the glossary of evolutionary strategies, the population is an orbit jump parameters (individ-
uals) collection, the fitness corresponds to the objective function value that is the total injected energy (5) under the
constraint that individuals have converged to the targeted orbit (of higher energy than the initial orbit). The best 10%
of individuals are selected for the next generation and the classic operations of crossing (single point crossover) and
mutation are applied. By means of evolutionary strategy, optimum orbit jump parameters values are obtained at 50 Hz:
(kopt
t0 , k

opt
∆t, I

opt
e , ψopt

e , ωopt
e ) = (0.80, 2.08, 0.04, 2.49, 415.34).

Running simulations with identical initial conditionXXX(0) that belongs to the basin of attraction of the H1L at 50 Hz and
taking (kt0 , k∆t, Ie, ψe, ωe) in {kopt

t0 } × {k
opt
∆t} × [0, 0.2] × [0, 2π] × {ωopt

e } gives Fig.5 scatter plot (ψe/2π, Ie). Note
that, if the injected current amplitude Ie is almost zero, the injection of current is too low and the system remains stuck
on the initial orbit H1L (light blue area in the bottom of Fig.5). To jump from H1L to SH3H (resp. H1H), it is necessary
to consider the parameter values that are associated with red (resp. dark blue) areas in Fig.5 (for example, area in the
upper right (resp. in the middle left)). Arrows in Fig.5 give examples of parameters combinations (materialized by stars)
assuring jump from H1L to H1H, SH3H and SH3L, respectively. Generally, the injected current amplitude increases with
the energy level of the targeted orbit. For example, in order to reach H1H when starting from H1L, the value of Ie needs
to be higher than those to reach SH3L or SH5H.
Figure 6 presents this optimal orbit jump solution parameters obtained by using the aforementioned algorithm. Figure
6(a) shows that the injected current is applied on a relatively short instant. Note that the injection of current is stopped
when the VEH is in the neighbourhood of the basin of attraction of H1H.
For each initial orbit, optimum orbit jump parameters that allow to reach the highest energy orbit are found by means
of aforementioned algorithm. Table 1 gives invested energy values associated with optimal orbit jump parameters for
jumping from a given initial orbit to a given targeted orbit for fd = 47 Hz. For example, invested energy required to
jump from H1L to H1H is 2.54 mJ. Table 1 underlines, for some frequencies, the interest of jumping in “k-times” (k > 1,
integer), i.e., in k low cost jumps. As a matter of example, for jumping from H1L to H1H, one might imagine jumping
from H1L to SH3L, to SH5H, to SH3H, then to H1H. The sum of the invested energies associated to each step is equal to
1.79 mJ, which is lower than the invested energy for jumping directly from H1L to H1H (2.54 mJ).
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Figure 5: Map (kopt
t0 , k

opt
∆t, Ie, ψe/2π, ω

opt
e ) starting from H1L for fd = 50 Hz. Arrows from left to right illustrate candidate

values for (ψe/2π, Ie) in order to jump from H1L to SH3L, from H1L to H1H or H1L to SH3H. The map has been
computed with 50 000 quintuplets (kopt

t0 , k
opt
∆t, Ie, ψe, ω

opt
e ) where (Ie, ψe) ∈ [0, 0.2]× [0, 2π].

Figure 6: (a) Sinusoidal injected current (3) as a function of time with optimal parameter values
(kopt
t0 , k

opt
∆t, I

opt
e , ψopt

e , ωopt
e ) = (0.80, 2.08, 0.04, 2.49, 415.34). (b) Displacement as a function of time for fd = 50 Hz

before (H1L in blue), during (in orange) and after (in green and red) the optimized orbit jump. (c) Trajectory in the
dimensionless phase plane (x/x0, ẋ/x0ω0).

Figure 7 shows the optimal invested energy required to jump from the lowest existing orbit to H1H (resp. SH3H) as a
function of the vibration frequency. Note that there are few values of the invested energy required for jumping on the two
targeted orbits (H1H and SH3H) for vibration frequencies below 25 Hz because there is almost only H1H in this vibration
frequency range. Figure 7 shows that the invested energy increases with the vibration frequency2. Moreover, this orbit
jump strategy makes it possible to reach H1H from the lowest existing orbit until its cutoff frequency at 67 Hz. Note that,
the optimal amplitude Iopt

e necessarily increases with the vibration frequency and the energy level of the targeted orbit.
2Indeed, the displacement of H1H becomes larger with the vibration frequency, which explains why the energy gap between H1H and H1L becomes

wider [9].

ENOC 2022, July 17-22, 2022, Lyon, France

393



ENOC 2020+2, July 17-22, 2022, Lyon, France

Initial orbit
Targeted orbit

SH3L SH5H SH3H H1H

H1L 5.10−3 1.10−2 3.7.10−2 2.54

SH3L 0 7.10−3 1.8.10−2 2.06

SH5H 0 3.10−2 2.08

SH3H 0 1.75

Table 1: Optimal invested energy (4) (mJ) required to jump from an initial orbit (left column) to a targeted orbit (top row)
for fd = 47 Hz. Invested energy values for jumping from H1L to H1H with 4 intermediates jumps are colored in red
while the invested energy for jumping from H1L to H1H in one time is colored in blue.

Very few coexisting

orbits with H1H

H1H no

longer exist

Figure 7: Evolution of the optimal invested energy required to jump from the lowest existing orbit to H1H (in blue) and
those to jump from the lowest existing orbit to SH3H (in red) as a function of the vibration frequency.

Conclusion

In the present paper, we proposed a mathematical framework in order to analyze and evaluate electrically-induced orbit
jump strategies. From this framework, we studied an orbit jump approach based on a sinudoidal injected current. By
means of an evolutionary algorithm, the optimal set of parameters of this orbit jump approach has been determined.
Among results of this analysis is that the optimal injection current that minimizes the injected energy is relatively short
and stopped when the VEH is in the neighbourhood of the basin of attraction of the targeted orbit. Another insights is
that, for some frequencies, the injected current consumes less energy to jump from a low energy orbit to a high energy
orbit with multiple small jumps instead of a single large jump. In the future, the proposed framework could be used to
find the optimal orbit jump strategy with a generic current waveform with many additional degrees of freedom.
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Degradation at transition zones in railway tracks: 1-D and 2-D model comparison 
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Summary. Transition zones in railway tracks are areas with considerable variation of track properties (i.e., foundation stiffness) 
encountered near structures such as bridges. Due to strong amplification of the railway track’s response, transition zones are prone to rapid 
degradation. To study this degradation, researchers and engineers have developed models ranging from simple 1-D models (e.g., beam on 
Winkler foundation) to complex 3-D models with accurate geometry and material behaviour. This study compares a 1-D model to a 2-D 
one with the aim of assessing if the degradation patterns predicted by the more simplistic model are accurate. We choose a very simple 
geometry for the 2-D model such that the comparison is restricted to (mainly) the influence of the soil layer (present in the 2-D model) on 
the predicted degradation at transition zones; incorporating the soil layer makes the response of the supporting structure frequency and 
wavenumber dependent as well as non-local, characteristics which are not usually incorporated in 1-D models. Preliminary results show 
that the degradation predicted by the 1-D model is significantly larger than the one in the 2-D model. 

Introduction 

Transition zones in railway tracks are areas with significant variation of track properties (e.g., stiffness, mass, etc.) 
encountered near man-made structures such as bridges, tunnels or culverts. These zones require more frequent 
maintenance than the regular parts of the railway track, leading to high costs and reduced availability of the track. A 
substantial part of the maintenance performed in transition zones is concerned with restoring the vertical position of the 
track, which changes over time due to soil and ballast settlement.  
 To understand the settlement mechanisms at transition zones, researchers have developed a multitude of 
computational models. They range from 1-D models (e.g., beam on Winkler foundation) to 3-D finite element models 
(FEM) models with accurate geometry of the real scenario. For predictive purposes, the models with more accurate 
geometry are preferred; these predictive models are important and show reasonable agreement to measurements, 
especially due to their accurate geometry representation and material behaviour. However, their complexity makes it 
difficult to investigate specific mechanisms due to the multitude of phenomena simultaneously at play. That is why, for 
research focusing on individual mechanisms, the simpler models (e.g., 1-D models) are preferred. Nonetheless, the 
simplistic models may overlook important features that can render their results incorrect.  

This study compares two such models, namely a 1-D and a 2-D model, in terms of degradation (after one load 
passage) with the purpose of judging if the results obtained with the simplified model are trustworthy. The 1-D model is 
composed of a beam on nonlinear and inhomogeneous Kelvin foundation and is described in [1] while the 2-D model 
consists of an infinite beam and a viscoelastic-continuum layer (i.e., soil) connected through a layer of nonlinear and 
inhomogeneous springs and dashpots (Figure 1). The layer of springs-dashpots represents the effective contribution of 
all components between the rail and soil (i.e., railpads, ballast and sub-ballast). In both models, the nonlinearity and 
inhomogeneity are located in the layer of springs-dashpots; the nonlinear behaviour of the springs models the 
compaction of ballast (Figure 1), while the inhomogeneity represents the transition zone. The 2-D model has a simple 
geometry such that the comparison is restricted to (mainly) the influence of the soil layer on the results; incorporating 
the soil layer makes the response of the supporting structure frequency and wavenumber dependent as well as non-local, 
characteristics which are not usually incorporated in 1-D models. 
 

Figure 1: Model schematics: an infinite beam and an elastic-continuum layer connected through a layer of nonlinear and 
inhomogeneous springs and dashpots, acted upon by a moving constant load (left panel); Piecewise-linear constitutive law of the 

ballast (right panel). 
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Tuning the 1-D model 

To compare the two models, the parameters of the 1-D model need to be tuned to the ones of the 2-D model. The tuning 
is performed for the steady-state response in each of the domains (open track and stiff zone) individually. Advanced 
algorithms have been developed to make the response of the 1-D model match well that of 2D/3D models (see [2]). 
However, this study aims to investigate if most of the models used in literature, which do not use a complex tuning 
technique, can predict a correct degradation pattern. Therefore, the tuning is done in a more standard manner. Firstly, 
the static track stiffness is matched in the two models. Secondly, the mass of the rail in the 1-D model is chosen such 
that the critical velocities are matched in the two models. Finally, the damping in the 1-D model is chosen based on 
engineering judgement; nonetheless, the damping in the 1-D model has been varied and for reasonable values it does 
not significantly affect the results. 

Preliminary results 

Figure 2 presents the degradation predicted by the two models after one load passage. For the 2-D model, there are two 
cases presented depending on how the nonlinear constitutive model is defined. Firstly, case A considers that the 
degradation is governed by the differential displacement between the beam and the top surface of the soil since the 
nonlinear constitutive model is only for ballast; this represents a realistic case. Secondly, case B assumes the 
degradation to be governed by the displacement of the beam only; this case is not representative of reality and is 
considered just for comparison reasons.  

Preliminary results show that the degradation in the 1-D model is significantly higher than in the 2-D model 
(case A). The main reason is that the degradation in the 1-D model is based on the displacement of the beam, while in 
the 2-D model the degradation is dictated by the differential displacement between the beam and the top surface of the 
soil. Since the soil is considerably softer than the ballast, the differential settlement between the beam and the top 
surface of soil is small, leading to reduced degradation. When imposing the degradation to be dictated by the 
displacement of the beam only (case B), the degradation predicted by the two models becomes comparable in 
magnitude, although still larger in the 1-D model. This shows that the large difference in degradation (1-D vs 2-D case 
A) is caused by the springs in the 1-D model being fixed at the bottom while in the 2-D model (case A) the springs lay 
on a compliant medium. 

Figure 2: Degradation predicted by the two models after 1 load passage for a load velocity of 85% the critical velocity; the location 
of the transition zone is marked by the yellow background. 

Conclusions 

This study compares two models (1-D and 2-D) representative of railway tracks at transition zones, in terms of the 
predicted ballast degradation with the purpose of judging if the results obtained with the simplified model are 
trustworthy. Preliminary results show that the degradation after one load passage predicted by the 1-D model is 
significantly larger than the one in the 2-D model. This is mainly caused by the springs in the 1-D model being fixed at 
the bottom while in the 2-D model the springs lay on a compliant medium. The shortcoming of the simplified model 
considered here could be overcome by adopting a model with two beams connected by the nonlinear and 
inhomogeneous springs (representative for ballast compaction) and resting on Kelvin foundation. Finally, simplified 
models (beam on elastic foundation) potentially overestimate the predicted degradation at transition zones. 
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Summary. Recently, the concept of metamaterials, initially studied for electromagnetic applications has gained interest within a civil 
engineering context [1, 3]. It has been shown that periodic arrangement of resonators, referred to as unit cells, can provide beneficial 
properties in vibration absorption, within a specific range of frequencies, the so-called bandgap. In order to take advantage of the full potential 
these unique structures can offer, a wider breadth of the bandgap is pursued, while additionally shifting the lower bound to lower frequencies 
renders metamaterials appealing for civil engineering applications. One promising solution to this requirement is the use of nonlinear 
resonators, which form part of the metamaterial configuration. In the current work, periodic structures consisting of impact damper resonators 
are investigated, thus introducing a highly nonlinear behaviour. The performance of a single impact damper has already been investigated 
[4] and its dynamic response has been proven to be advantageous for vibration attenuation. Further exploiting this phenomenon, the current 
study is extended to multiple degree of freedom (MDOF) systems, which are investigated both numerically and analytically. The MDOF 
systems occur as concatenation of a finite number of impact damper unit cells. Several characteristics of the proposed configuration are 
explored as variable parameters for optimization purposes. For the assessment of the system’s efficiency, different metrics are being studied, 
including the frequency response function and the total energy loss as a result of the metastructure contribution. The results confirm the 
potential of utilization of the metamaterial concept, building on impact phenomena, for vibration attenuation. 

Introduction 

A significant concern in large-scale civil structures lies in response under dynamic loading, e.g. earthquakes. For this 
reason, the research community has been constantly working on designing systems, which are able to ensure structural 
safety, by minimizing the effects of the excitation on the structure. Recently, a novel idea has begun to draw attention in 
civil engineering applications, building on the concept of metamaterials or metastructures. These are structures 
characterized by extraordinary filtering properties, attained as a result of diversified mechanisms, such as their 
microscopic geometry, periodic arrangement, etc [5]. When the frequency of the incoming excitation lies within the 
constructed filter limits, the propagation of motion is arrested, thus forming a “bandgap”. The challenge that arises, 
however, lies in the range of the bandgap as well as in the proper adjustment of the lower frequency threshold, which is 
essential in many engineering applications. In the current work, strong nonlinearities, in the form of impacts, are 
introduced, in order to address this challenge. Nonlinear attachments to the primary system are generally termed as 
nonlinear energy sinks (NES). There is extended research and literature in the field of NES, as for reference in the work 
of Vakakis et al. [4], which also investigates impact dampers as a nonlinear attachment from the non-smooth events point 
of view. Moreover, in the work of Ibrahim et al [2], analytical approximations of the dynamic behaviour of impacts are 
provided. Important is the contribution of Masri and colleagues on impact dampers, regarding their general motion [6], 
their stability analysis [7], as well as their dynamic response to random excitation [8]. Furthermore, the concept of impact 
dampers is closely associated with particle dampers. In fact, a lattice of several impact dampers can be considered to be 
a single particle damper. A detailed investigation on the latter, under random excitation, is provided in the work of Lu et 
al. [9]. 

Meta-impactor 

The idea of the meta-impactor is inspired by the beneficial effect that a single impact damper can have on a structure, 
under dynamic loading [4]. The attempt is to protect a specific mass with the metamaterial configuration. The concept of 
the current work is based on the consecutive arrangement of impact damper unit cells (Figure 1). The unit cells consist of 
a rigid container, containing a laterally unconstrained mass, free to impact on the respective bounds. Furthermore, the 
resonators are connected elastically to each other, as well as to the protected mass on one end, and to a fixed support on 
the other. In the current study, the response of the system is investigated under input of a harmonic force F. 
 
 

 
Figure 1: Metamaterial lattice configuration 
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Analysis 

The response of the system is studied both numerically and analytically. As for the first part, every impact is analyzed as 
a non-smooth event, while the equations of motion are affected by a discontinuity. This approach provides results, which 
are directly linked to the specified parameters of each system (mass, stiffness, damping, etc.) and are restricted to discrete 
combinations of those parameters. Multiple analyses with varying parameters are carried out for optimization purposes, 
an example of which is shown in Figure 2. In order to better assess the behaviour of the metamaterial, an analytic 
parametric approach is pursued. For this reason, the non-smooth interaction between the container and the inner mass is 
approximated by a continuous highly-nonlinear function. In this setting, the analysis can be carried out parametrically, 
taking into consideration the variability of the system’s characteristics. 
 

 
Figure 2: Percentage of energy absorption of the total input energy at 1 Hz for a  

2 unit cell lattice and varying masses/stiffness ratios 

Conclusions 

The purpose of this study is to evaluate the performance of metamaterial lattices, consisting of impact damper unit cells, 
for vibration mitigation. The assessment of the performance is determined, depending on the frequency response function 
of the system, as well as on the calculation of the total energy absorption. Furthermore, the results of the numerical and 
analytical procedures are compared, revealing consistency of the analytical approximation. This is particularly helpful for 
further simulations and subsequent analyses of the resulting dynamics. The concept of metamaterials is proven effective, 
given a proper design and optimization process, and is suited for shielding of structures from vibrations. 
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Summary. The current work considers a piecewise linear Mathieu equation with the point of asymmetry being non-zero. The considered 
oscillator is essentially nonlinear and the primary objective of this study is to explore the regions of instabilities as a function of the 
excitation amplitude, frequency and interestingly the initial energy imposed on the oscillator. In this study we invoke energy-angle 
variables and the method of averaging to analytically describe the interesting energy dependent instability zones. We explore the instability 
zones in the vicinity of     parametric resonance. We show that the derived analytical model provides a fairly good first order 
approximation to the unstable regions emerging in the vicinity of     resonances and it is expected that the analytical method described is 
applicable to higher order resonances as well.  

Introduction 

Many computational and analytical attempts have been devoted to understanding of the complex dynamics of a 
1DOF piecewise linear oscillator (PWLO) model subject to various types of excitations such as external and parametric 
forcing. Shaw and Holmes [1] have analysed semi-analytically the harmonically forced PWLO for the periodic orbits 
and their bifurcations. This study has been followed by Thompson et. al [2] who analysed numerically the subharmonic 
resonances, bifurcations and chaotic regimes of forced PWLO. Natsiavas [3] has considered the forced response of 
PWLO with bi-linear damping and successfully derived the relatively simple, semi-analytic solution for n-periodic 
orbits and analysed their stability. Using a similar approach, author has analysed the n-periodic response including 
stability analysis of PWLO incorporating the Van-der-Pol type damping [4]. Other works by Natsiavas et al. [5, 6] 
present the parametric excitation of piecewise linear oscillator as a typical model of gear backlash and asymmetric 
stiffness. A computational study by Chatterjee et al. [7] was performed on the model proposed by Natsiavas et al. [5] 
exploring the regions of instability. The current study dwells on the analytical description of these instability regions 
using asymptotic analysis. The resulting modulation equation provides a first order approximation of these instability 
boundaries in this class of systems and the approximations obtained by the considered method are found to be good in 
the case of sufficiently low excitation level. 
 

Model and Analysis 
 

Let us consider a piecewise linear (PWL) oscillator with a non-zero offset (   ) subject to a parametric excitation, 
                                                             
 

The above equation is scaled such that the stiffness coefficient is unity for    , whereas the corresponding coefficient 
is     for    . In what follows   will be referred to as the ‘asymmetry parameter’ and   as the ‘offset parameter’.  
In fact, Eq. (1) or its different variants have been previously considered in several theoretical works for the two 
important limiting cases. 

Unlike the linear Mathieu equation, its PWL counterpart with a non-zero offset, possesses the energy dependent 
parametric instability zones. To illustrate this fact, we plot the energy (    ) corresponding to Eq. (1) assuming the 
parametric excitation in the vicinity of     resonance with the fixed level of excitation amplitude ( ) and frequency for 
the two different initial energy levels (    ). As is clear from the results of Figure 1, formation of unbounded response 
strongly depends on initial energy. The main objective of the present study is to characterize analytically these energy 
dependent instability zones. This is done by reformulating the system in terms of the action ( ) - angle ( ) (A-A) 
variables (      ), transforming to energy ( )-angle variables (      ) and averaging in the vicinity of (   ) 
resonance. Subsequent analysis of the averaged equations reveals the formation of quite interesting, energy dependent 
instability regions for a general resonance condition (   ). We end up with the following averaged flow, 
                                                                           
 

Where      – stands for the averaged energy,   – resonance phase,        ,           are the real and imaginary 
part of the Fourier coefficient       corresponding to         and       are the corresponding derivatives with respect 
to energy. In Figure 3 (Left panel) we illustrate the phase plane of the averaged flow Eq. (2), while in Figure 3 (Right 
panel) we plot the transition curves on the force - energy plane corresponding to the saddle point of the averaged flow. 
 

ENOC 2022, July 17-22, 2022, Lyon, France

400



 

 

ENOC 2020, July 5-10, 2020, Lyon, France 
 

  
Figure 1: Energy as a function of time corresponding to     resonance for               (Left panel) initial energy lower 
than the threshold (                    ) (Right panel) initial energy higher than the threshold (                    ). 
(refer to the phase contour in the right panel of Figure 2) 
 

  
Figure 2: (Left panel) Transition force - energy curves (Right panel) Phase plane of the averaged flow corresponding to           both correspond to      
 

As is clear from the phase portrait of the averaged flow, the change in the initial phase will lead to a change in the 
critical value of initial energy above which the system will exhibit the unbounded response. This behavior is illustrated 
in Figure 2. One can observe a fixed point (saddle) corresponding to Eq. (2) and the phase plane is split into stable 
region (A) and unstable regions (B, C, D) delimited by the separatrix. If the initial conditions are picked in the region A, 
the oscillator will exhibit a bounded response. Whereas, the oscillator exhibits unbounded response for any initial 
excitation in the other three regions.  The correspondence between the analytical approximation and the true model is 
found to be extremely good for the lower values of the excitation amplitude. 

Conclusions 

The current analytical and numerical study is devoted to the analysis of the response of piecewise linear Mathieu 
equation with non-zero offset. To obtain some relatively simple analytical description of the instability zones of a PWL 
Mathieu equation, we introduce the action-angle variables and apply the method of averaging to deduce a slow-flow 
model corresponding to a specific resonance case. The study of the slow-flow model provides a clear description of the 
instability zones. As we have already shown above, these boundaries are not only dependent on the excitation amplitude 
but also on the initial conditions. The numerical simulations of the full model match extremely well with the deduced 
slow-flow model for the lower values of the amplitude of parametric excitation. However, the presented analytical 
model is not devoid of its drawbacks in the sense that it fails to predict the instability boundaries for the higher values of 
the forcing amplitude. As we have already noted above, in that case the mechanism which leads to unbounded response 
for essentially low values of energy, is strongly chaotic and cannot be described by the constructed averaged flow.  
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Summary. Understanding the happenings at the downhole is extremely important for developing a fully automated drilling system. Towards 
achieving the same, in this work, an adaptive model-based observer is developed for the real-time estimation of the downhole parameters 
along with the bit-rock interaction parameters. The bit-rock interaction parameters in real-time will help us in understanding any formation 
changes along with the occurrence of other unwanted dynamics at the bit-rock interface. In this work, the off-bottom field dynamics model 
is combined with the bit-rock interaction law and is validated against the field data for wells drilled in North America. The results obtained 
were satisfactory and highlight the adaptive nature of the soft sensor. 

Abstract 

Obtaining real-time estimates of the bit-rock interaction (BRI) parameters and real-time formation pose significant 
challenges in developing an automated closed-loop geo-steering system for drilling operations. A major challenge for the 
same is the prohibitively expensive high bitrate and low latency downhole telemetry systems. Drilling dynamics can be 
broadly divided into off-bottom and on-bottom dynamics. Recent results have successfully captured the significant 
dynamics for off-bottom dynamics and have been validated against the field data [1]. However, developing an on-bottom 
dynamics field validated model is faced with significant challenges in accurately estimating the bit-rock interaction 
parameters, which in turn aid in estimating formation detection in real-time. A simulation-validated on-bottom dynamics 
model was recently proposed by Auriol et al. [2]. The model was developed based on the understanding of bit-rock 
interaction as proposed by Detournay and Defourny [3]. The BRI law, proposed by Detournay and Defourny, is dependent 
on friction coefficient at the rock contact, bit constant, depth of cut, intrinsic specific energy of the rock, drilling strength, 
and weight-on-bit (WOB). Auriol et al. [2] modified the BRI law by simplifying the model whose BRI parameters are 
dependent on WOB and depth of cut. The variations in the BRI parameters give insights into the happenings of drilling 
at the interface of the drillstring. Any formation change is reflected in the form of changes in these parameters that give 
a clear understanding of the drilling environment. 
  
The off-bottom dynamics field validated model is based on the distributed drillstring model and uses only the surface 
parameters, RPM, and torque. In the proposed on-bottom dynamics model, the modified BRI law proposed by Auriol et 
al. is combined with the field-validated off-bottom dynamics model. Coupled with the surface RPM and surface torque, 
the proposed model uses additional surface measurements, weight-on-bit, differential pressure, flow rate to estimate the 
downhole RPM, downhole torque, and the BRI parameters. The proposed model assumes the torsional motion of the drill 
string to be the dominating dynamics behavior, a constant rate-of-penetration (ROP) and therefore a steady axial velocity 
of the bit, no distributed axial dynamics, and the friction coefficients along the drillstring are known. The proposed model 
is field validated against the field data obtained for an unconventional well drilled in North America. 
 
 

 

Figure 1: Schematic indicating the distributed drill string of 
length L lying in deviated borehole 
 
For brevity, the mathematical model used in this work is 
described here. The distributed model used in this work 
is based on the works of Aarsnes and van de Wouw [4], 
however, only torsional dynamics have been considered. 
Figure 1 shows the angular velocity (ω(t,x)) and torque 
(τ(t,x)) with time (0 < t < T) and length (0 ≤ x ≤ L), 
representing the angular motion of the drillstring of 
length L for a time T and torque obtained using the shear 
strain that is given as twist per unit length. With J and G 
as the polar moment of inertia and shear modulus, 
(τ(t,x)) as torque, and φ as the angular displacement in 
the string, the angular motion of the drillstring is given 

by 
డ𝜏ሺ𝑡,𝑥ሻడ𝑡 + 𝐽ܩ డఠሺ𝑡,𝑥ሻడ𝑥 = 0, 𝐽𝜌 డఠሺ𝑡,𝑥ሻడ𝑡 + 𝐽ܩ డ𝜏ሺ𝑡,𝑥ሻడ𝑥 =𝑆ሺ𝑡, 𝑥ሻ, with 𝜌 being the density.
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𝑆ሺ𝑡, 𝑥ሻ is the source term due to frictional contact with the borehole and is modeled as 𝑆ሺ𝑡, 𝑥ሻ =  −𝑘𝑡𝜌𝐽𝜔ሺ𝑡, 𝑥ሻ ,ሺ𝜔ܨ− 𝑡, 𝑥ሻ, with ܨሺ𝜔, 𝑡, 𝑥ሻ being the differential inclusion that represents the Coulomb friction between the drillstring and 
the borehole. This off-bottom dynamics model cannot estimate the bit torque. To calculate the bit-torque, the BRI law as 

given by Detournay and Defourny [3] is included to the off-bottom dynamics as 𝜏𝑏 = 𝑎ଵ ∗ 𝑊𝑂𝐵 + 𝑎ଶ ∗ 𝑅ை𝑅𝑀. The on-

bottom dynamics model is essentially developed by the inclusion of the BRI law to the off-bottom dynamics model. 
 
The soft sensor developed in this work is the extension of the same developed for the off-bottom dynamics field validated 
model that provides estimates for downhole torque and the BRI parameters along with the downhole RPM by using only 
the surface measurements. The model is initiated with the off-bottom dynamics and initially estimates the friction 
coefficients (static and kinetic), and the BRI is not activated. With initial guess values for the friction coefficients, the 
model is initiated and the same are obtained till the bit is fully engaged with the bottom, where the model switches from 
off-bottom dynamics to on-bottom dynamics. Before the model switches to on-bottom, the convergence criterion is 
enforced for the friction coefficients. For each depth, the values of friction coefficients are different and those values 
around which the friction coefficients remain stable for a minimum of 20 seconds are considered as the converged values. 
Once the bit tags the bottom with the onset of the axial motion, the estimation of the friction coefficients is stopped and 
the BRI parameters along with the downhole torque are estimated. The main reason behind adopting such an approach is 
that the observer used in the model cannot distinguish between friction coefficients and the bit-rock interaction 
parameters. By using such an approach, the friction coefficients and the BRI parameters are estimated separately, without 
the need for any further complex mathematical model. 
 
Figure 2 shows the normalized well profile of one of the wells for which the field data was used to validate the bit-rock 
interaction law implemented in the work along with the soft sensor. Figure 3 shows the profiles of the real and estimate 
of the surface torque along with the estimate for the downhole torque. The bit tags the bottom at 70 seconds and is fully 
engaged with the bottom at about 120 seconds, When the bit tags the bottom, the downhole torque is a combination of 
the surface torque and the motor torque. The downhole torque presented in figure 3 is the difference between the total 
torque available at the bit and the mud motor torque. The downhole torque shown in figure 3 is essentially the difference 
in the surface torque with the bit off-bottom and on-bottom. It should be noted here that the difference between the off-
bottom and on-bottom surface torque is very small, and the model has been able to capture the same. 
 

 

Figure 2: Normalized well profile 
 

Figure 3: Surface and downhole torques profiles 

The estimates provided by the proposed soft sensor were found to be robust to poor initial estimates. The vital feature of 
the observer is its ability of adaptive estimation. Convergence of the friction parameters is aided by the adaptive estimation 
nature of the soft sensor, which otherwise is computationally expensive using other techniques that include the industry-
standard friction tests where the pipe is raised and then lowered. The model used in this work is computationally efficient, 
which is a result of its simplistic nature. This makes the proposed model an appealing candidate for online, real-time 
sensing systems for drilling applications. 
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Analysis of an hydraulic switching converter with analog hysteresis feedback control
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Summary. Hydraulic switching converters control a hydraulic state, such as pressure or flow rate, by the frequent switching of on-
off valves in combination with some hydraulic inductance element and means to flatten pulsation due to switching. In nearly all
modern versions of such converters the switching is provoked by electrically actuated valves. The historically first of such converters,
Montgolfier’s hydraulic ram, used a hydraulic feedback mechanism, because of lacking electrically controlled valves in his time. To
make use of the significant cost advantage of pure hydraulic control, authors studied a concept for a buck converter for pressure control
based on a specific feedback mechanism. In a theoretical analysis it turned out that this system exhibits a clustering of switching
activities in certain operation domains which causes a bad pressure control performance. This paper analyses the essential inner
mechanisms responsible for the operational performance and shows how to efficiently calculate approximate stability bounds in state
space by using reduction methods.

Introduction

Fig. 1a shows the schematic of the hydraulically controlled buck converter as presented in [1]. An hydraulic inductance
pipe LH is actively switched to system pressure line pS by a hydraulically piloted 2-2 way on-off valve. During off-
phases a fast check valve opens due to oil inertia and the pipe is connected to pressure line pT . The hydraulic capacitance
CHC flattens pressure and flow pulsation at the convert’s output. The control principle employs feedback of a low-passed
filtered version of p1 via a feedback circuit (orifice QNoFN , capacitance CFB) which counteracts as force pFBAFB
against the control force pCAC. This mechanism targets controlling the time mean of pressure p1 at the pipe entrance
which is expected to approximate the mean system output pressure p2. In order to assure a fast switching, when pFB
exceeds or falls below the threshold values, a hysteretic force Fhyst is realized by a special element. A feasible hydraulic
design as well as the investigation of a detailed numerical model is presented in [1].
An impression of the converter’s control performance and dynamical properties for different operating conditions is given
by the diagrams in Fig. 1b. The response on the left hand side meets the main expectations and the desired output pressure
p2 = pC is reached after a rise time of approx. 0.1 seconds. The right hand side case with a low demanded pressure and
a small flow rate, however, show an unacceptable behavior in form of clustered switching which leads to a bad control
performance. The understanding of this behavior, i.e. of the essential inner mechanisms and the influence of the main
system parameters, is the objective of this paper. This is achieved by model reduction and using the averaging method.

Modelling

The study of the dynamical properties is based on a simple model which incorporates pressure build-up equations in
the hydraulic capacitances in node 1, FB and 2, oil inertia an the corresponding change in flow through the hydraulic
inductance pipe, as well as orifice equations through the 2-2 way valve, the check valve and the throttle in the feedback
circuit, resulting in a system of equations in nondimensionalized form

d

dt




ψFB

ψ1

ψ2

q1


 =




√
ψ1 − ψFB

aNV
[
qNTH(ψT − ψ1)

√
ψT − ψ1 + yV rel

√
1− ψ1 − q1

]

aHL(q1 − qL)
−rHq1 + 1

lH
(ψ1 − ψ2)


 . (1)
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(b) Stable and instable system behavior for different parameter sets.

Figure 1: Schematic of hydraulic buck converter and corresponding system behavior.
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Figure 2: Simulation results

The main valve and check valve dynamics are disregarded and infinite fast switching is assumed. This is already consid-
ered for the check valve in the orifice equation by introducing the heaviside functionH(·) in the pressure built-up equation
for ψ1. The discrete state dynamics of the main valve is modeled by the variable yV rel ∈ {0, 1} which changes infinitely
fast from 0→ 1 and from 1→ 0 when ψFB ≷ ψC ± ψhyst/2.
Eq. (1) describes a non-linear switched system with dynamics on two different time scales, one is the switching of the
valve which introduces high-frequency components and the other is the system’s internal dynamics. Interestingly, this
system is unstable for certain initial conditions, i.e. for a certain parameter set the locally stable system can get unstable
if the initial conditions are chosen badly. Solving system (1) for various different combinations of parameters and initial
conditions gets inefficient as one has to initialize the solver whenever the state of yV rel which depend on the fast time
scale changes. Therefore, a smooth approximation for the system was derived.
First, the size of the capacitance at node 1 which corresponds to the inverse of parameter aNV is assumed to be very
small. This results in a singular perturbed equation as 1/aNV ψ̇1 → 0, which gives a quadratic expression for ψ1 for
both states of yV rel. Secondly, the equation for the feedback pressure ψFB has approximately triangular waveform
and so the state-dependent duty cylce α = fTon and the state-dependent pulse-width modulation frequency f can be
calculated. The remaining two-dimensional system of equations can be further approximated by using the method of
averaging [2]. By introducing the time transformation t = ǫτ one obtains the two-dimensional system in standard form
ẋ = ǫf(x, t) + ǫ2f [2](x, ǫ) which can be approximated by a two-dimensional averaged system

d

dt

(
ψ̄2

q̄1

)
=

(
aHL(q̄1 − q̄L)

−rH q̄1 + 1
lH

(ψT − q̄1
2

q2NT
+ α(q̄1)(1− q̄12 − ψT + q̄1

2

q2NT
)− ψ̄2)

)
. (2)

with only four remaining parameters and a smooth right-hand side. This system is used to calculate approximate conver-
gent sets. A physical explanation for the system to get unstable is a oil flow from the output in the backwards direction.
Such a flow immediately increases the pressure ψ1 in node 1 as its capacitance is very small. This pressure is fed back
to the main valve demanding for the valve to close. Since only a positive oil flow q1 (which opens the check valve
to the tank) can decrease pressure ψ1 the controller does not exhibit the intended behavior. The backwards oil flow is
due to the system’s internal dynamics (long time scale) which is approximated by the reduced two dimensional system
reasonably well. For the complete system the condition for getting unstable is q1 < 0. To the averaged system q̄1 to
approximate the minimum of q1 an expression for the ripple must be subtracted. The first order approximation of the
ripple is ∆q = T1(1 − q̄1

2 − ψC)/lH . Fig. 2a shows a solution of the complete and the approximated system. The
diagrams in Fig. 2b show true and approximate bounds of a convergent set of initial conditions and the such a converging
set for different loading qL which was calculated by using the reduced system.

Conclusions

A hydraulic buck converter was modeled by a nonlinear switched system. It shows to have bounded regions in state
space which are locally stable. To efficiently compute the bounds for different parameters a reduced system with smooth
right-hand side was derived and approximations of the stable regions were calculated.
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A Reduced Order Model for Steady State Response of Joint Assemblies by
Hyper-Reduction and Model-Driven Sampling

Ahmed Morsy, Mariella Kast and Paolo Tiso
Institute for Mechanical Systems, ETH Zürich, Zürich, Switzerland

Summary. The dynamic behavior of jointed assemblies exhibiting friction nonlinearities features amplitude-dependent dissipation
and stiffness. To develop numerical simulations for predictive and design purposes, macro-scale High Fidelity Models (HFMs) of
the contact interfaces are required. However, the high computational cost of such HFMs impedes the feasibility and efficiency of the
simulations. To this end, we propose a model-driven method for constructing hyper-reduced order models of such assemblies. Focusing
on steady-state analysis, we use the Multi-Harmonic Balance Method (MHBM) to formulate the equations of motion in frequency
domain. Next, the reduction basis is constructed through solving a set of vibration problems corresponding to fictitious interface
conditions. Subsequently, a Galerkin projection reduces the order of the model. Nonetheless, the necessary fineness of the mesh of
nonlinear elements on contact interfaces represents a bottleneck for achieving high speedups. Thus, we implement an adapted Energy
Conserving Weighing and Sampling (ECSW) technique for Hyper Reduction (HR) for joint problems, thereby allowing significant
speedups for meshes of arbitrary fineness. This feature is particularly advantageous since analysts typically encounter a trade-off
between accuracy and computational cost when deciding on the mesh size, whose estimation is particularly challenging for problems
of this type. Finally, the accuracy and efficiency of the method are demonstrated through a case study.

Introduction

Friction along the interfaces of jointed assemblies, which are commonly found in mechanical and aerospace engineering
applications, results in a significant dissipation of energy under dynamic loading. One contact model used to model
friction contact in HFMs consists of a Jenkins element with a unilateral spring in the normal direction [1], assigned to
each mating node pair on the contact interface. This formulation is capable of reproducing states of sticking, slipping, and
separation, locally on the interface.
Projection-based ROM techniques reduce the size of the dynamical system by projecting it on a suitable low-dimensional
subspace, thus providing accurate and efficient solutions. Recently, Gastaldi et al. [2] presented the Jacobian-Projection
(JP) method, where the reduction basis is constructed in the frequency-domain in a multi-harmonic context, taking into
account the harmonic coupling induced by the nonlinear forces. Additionally, we augment the JP basis using vectors
representing forced responses of linear systems, which are essential for a high accuracy on forces. Since the evaluation
of the non-smooth nonlinear forces across the interface impedes significant speedups, we employ an energy-conserving
sampling and weighing (ECSW) hyper reduction strategy [3], adapted to the MHBM context of our problem, with training
that does not require any HF simulations.

Method

Problem Formulation
For a Finite Element (FE) discretization of the mechanical system, we assume the equation of motion to be written in the
form

M ü +C u̇+Ku+ f(u) = pext(t), pext(t) = p0 + pE(Ωt), (1)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, f (u) is the vector of nonlinear forces,
p0 is a vector representing the static loads (e.g. preclamp forces), and pE(Ωt) is the periodic force acting on the system
with a time period T = 2π/Ω. We use the Multi-Harmonic Balance Method (MHBM) to formulate our Ansatz of the
displacements steady-state response in the frequency domain as

uh(t) = U0 +
H∑

j=1

(
Uc

j cos(jΩt) +Us
j sin(jΩt)

)
(2)

where U0 collects the coefficients of the 0-th harmonic, while Uc/s
j represents the cosine/sine components of the j-th

harmonic.

Augmented JP Method
We extend the JP projection method proposed in [2] by not only considering the free vibration modes arising from
linearization at different fictitious contact forces, but also including the corresponding linearized forced response in the
basis. The fictitious contact forces (and related Jacobians) are obtained by imposing the linear steady-state solution at
different scaling factors. For each scaling factor, we thereby solve an eigenvalue problem, and a linear forced response
problem:

(Jk − λk
i M)φk

i = 0, ZkUk
lin = Pext (3)
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where Jk is the multi-harmonic stiffness of the structure incorporating the Jacobian of the nonlinear forces corresponding
to the k-th system, M is the multi-harmonic mass matrix, λk

i is an eigenvalue, φk
i is the corresponding eigenvector, Zk

is the dynamic stiffness matrix involving the multi-harmonic mass, damping, and stiffness matrices, and Uk
lin is the linear

dynamic response of the k-th system. After computing, and normalizing the vectors φ and Ulin, the harmonic components
of the vectors are partitioned. Finally, a Singular Value Decomposition (SVD) procedure is applied to the collected vectors
to form a well-conditioned basis for each harmonic component. The steady-state solution is thus approximated by

uh(t) = U0 +
H∑

j=1

(
Uc

j cos(jΩt) +Us
j sin (jΩt)

)
≈ V0Q0 +

H∑

j=1

(
V c

j Q
c
j cos(jΩt) + V s

j Q
s
j sin (jΩt)

)
. (4)

where V0, Q0 are the reduced basis and the reduced coordinates for the 0-th harmonic component, and V c/s
j , Qc/s

j are the
reduced basis and reduced coordinates of the cosine/sine components of the j-th harmonic, respectively. Next, we perform
a Galerkin-projection of the forces of the system to obtain the reduced system

Z̃Q+ F̃(WQ) = P̃ext, (5)

where Z̃ is the reduced dynamic stiffness matrix, Q is a vector collecting the reduced degrees of freedom of the system,
W is the block-diagonal reduction basis, F̃(WQ) is the projected nonlinear force vector, and P̃ext is the projected
external force vector.

ECSW Hyper Reduction
The idea of the ECSW method is to approximate the nonlinear force vector through attributing weights only to a subset of
the nonlinear elements of the mesh in such a way that it approximates an energy-like quantity within a specified tolerance

F̃ =

ne∑

e=1

W T
e Fe(WeQ) ≈

∑

e∈E
ξeW

T
e Fe(WeQ) = F̃HR (6)

where ne is the number of nonlinear elements, and E represents only a subset of elements for which the weights ξe are
computed such that the following inequality is satisfied with the least amount of non-zero elements:

‖Gξ − b‖2 ≤ τ‖b‖2, (7)

where G is a matrix that stores the element-wise contributions to the training snapshots, which in our case are snapshots
of the nonlinear forces readily available from the Alternating-Frequency Time (AFT) scheme involved in the construction
of the reduced basis. The entries of vector b represent the assembly of the energy-like quantity from all the elements for
the different training snapshots, and τ is set tolerance.

Numerical Results

We apply the proposed method to study the frequency response (FR) of a forced jointed beam. A sketch of the structure is
shown in the top left portion of Fig. 1. The Ansatz consists of 5 harmonics. The plot in Fig. 1 features the FR curves for
4 different amplitudes driving the structure at a frequency close to the first bending mode. As demonstrated in the figure,
the HR model reproduces the HF results with high accuracy.
The model whose response is shown Fig. 1 has a mesh of 121 nonlinear elements along the contact interface. This model
is denoted by Model (1). Table 1 shows that speedups for Model (1) ranging from 5.5 to 7, demonstrating the efficiency
of the method. Another model, Model (2), was created to test the convergence of the model with respect to the number
of nonlinear elements. This latter has a mesh of 241 nonlinear elements. The FR curves obtained were identical to those
shown in Fig.1. This made it possible to conclude that the coarser mesh was sufficient. The speedups of Model (2) are
also shown in table 1. They now range from 9.5 to 42.8. It can be noted that also that the HR wall-clock time for Model
(2) is only marginally higher than that of Model (1), thanks to the limited number of elements picked by ECSW. In other
words, the proposed procedure could alleviate tedious mesh convergence studies, as one could efficiently reduce larger
than optimal models.

Conclusion

We presented a hyper-reduced order modelling method for analyzing the steady-state frequency response of jointed struc-
tures. The accuracy of the method was shown to be satisfactory for the case studied, and the associated speedups have
been presented. A particularly advantageous feature of the proposed method is that the speedups improve as the HF mesh
increases in size, thanks to the sparsity of the hyper-reduction scheme.
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Figure 1: A sketch of the structure is shown in the top left. The plot shows the FR curves for F = 0.1N, 2N, 5N, 10N for the 1st bending
mode of the structure using 5 harmonics. The results of the HFM and the HR ROM are denoted by HF and HR, along with the relative
forcing. The properties of the structure are: E = 189 GPa, A = 6.25e-4 m2, L = 0.42 m, ρ = 7820 Kg/ m3, xF = 0.24 m, Lc = 0.12 m,
bolt load = 1.25 KN, µ = 0.4, kt = 7.5e9 N/m, kn = 10e10 N/m

Mesh (1) Mesh (2)
Force [N] HR [s] HF [s] Speedups HR [s] HF[s] Speedups Ratio of Speedups

0.1 N 29.5 206.4 7.0 57.7 550.7 9.5 1.4
2 N 68.7 404.2 5.9 100.9 1864 18.5 3.1
5 N 85.7 473.5 5.5 115.7 3217.6 27.8 5.0

10 N 95.1 520.4 5.5 129.7 5547.8 42.8 7.8

Table 1: Online computational cost of constructing the FRF curves and associated speedups. Model (1) and Model (2) refer to meshes
with 121 and 241 nonlinear elements at the contact interface, respectively. The costs of the bases constructions are respectively 28.4s
for Mesh (1) and 97.5s for Mesh(2). The total HR training time for each of the models is less than 1s.
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Summary. Burgers’ equation is a nonlinear scalar partial differential equation, commonly used as a testbed for many newly developed
model order reduction techniques and error estimates. Model order reduction of the parameterized Burgers’ equation is commonly done
by the Reduced Basis (RB) method. In this method, an error estimate plays a crucial rule in accelerating the offline phase (when the
reduced model is built) and also in quantifying the error induced after reduction in the online phase (when the reduced model is used
to find fast solutions). In this study, we introduce two new estimates for this reduction error. The first error estimate is based on the
Lur’e-type model formulation of the system obtained after the full-discretization of Burgers’ equation. The second error estimate is
built upon snapshots generated in the offline phase of the RB method. The second error estimate is applicable to a wider range of
systems compared to the first error estimate. Results reveal that when conditions for the error estimates are satisfied, the error estimates
are accurate and work efficiently in terms of computational effort.

Problem description

One of the simplest and yet fundamental nonlinear equations describing a conservative system is Burgers’ equation, which
is sometimes referred to as the scalar version of the Navier-Stokes equations [1]. This equation is defined in the infinite-
and finite- dimensional setting, obtained after Finite Volume (FV) discretization, as follows:

∂u

∂t
+

∂

∂x
(f(u)) = 0, t ∈ [0, T ], x ∈ [0, L]

FV−→ Σlin :





U
n+1 = LlinU

n +BUn0 − ∆t

4∆x
LnlU

n
nl +

∆t

2∆x
B(Un0 )

2,

yn = CyU
n,

zn = U
n,

Σnl : U
n
nl = g(zn) := (zn)2.

(1)

where u := u(t, x;µ) is the conservative variable of the system, Un is the vector of the conservative variables computed
at the grid cells at time index n, Un0 is the boundary input at time index n, yn is the output of interest specified by matrix
Cy , and finally f(u) := u2/2 is the flux function associated with Burgers’ equation. Here, t represents time and T is the
time horizon of the simulation. In addition, x denotes the spatial coordinate and L is the length of the spatial domain.
Finally, µ ∈ D is a vector of parameters used in (1) that varies in the multi-query analysis within the parameter domain
D ∈ RR, with R > 0 the number of varying parameters. We assume that the initial condition and the boundary condition
are represented by the varying parameters. For the initial condition, we assume u(0, x;µ) = µ1, which is constant over
the spatial domain. For the boundary condition at x = 0, we assume

u(t, 0;µ) =

{
µ1, t = 0,

µ2, t > 0.
(2)

Therefore, in this study, we have µ = [µ1, µ2].
The fully discretized system (Σlin,Σnl) as in (1) usually has a large dimension. Therefore, real-time simulations cannot
be achieved unless powerful computational resources are available. Moreover, control design for such a complex system
is generally infeasible. Hence, model order reduction should be applied.
We reduce the dimension of the full-order model (1) by using the RB method [2] and denote the RB solution obtained
by using N RB functions with Ûn

N (similarly ŷnN ). We are interested in the computation of reliable error estimates and
denote the difference between the FV and RB solution by en := Un − Ûn

N (similarly eny = yn − ŷnN ).

Error estimates for the reduced model

Following the idea introduced in [3] for linear systems and assuming Llin in Σlin being a Schur matrix, an error bound
on the ℓ2-norm of the error signal is constructed as follows:

‖ey‖ℓ2 ≤ γeyR‖R‖ℓ2 + γeyeUnl ‖eUnl
‖ℓ2 , (3)

where Rn := Ûn+1
N −

(
LlinÛ

n
N +BUn0 − ∆t

4∆xLnlÛ
n
nl +

∆t
2∆xB(Un0 )

2
)

is the residual obtained after reduction, eUnl

is the approximation error of the nonlinear term Unl, and ‖R‖ℓ2 :=

√
∞∑
n=0
‖Rn‖2 (similarly for ‖ey‖ℓ2 and ‖eUnl

‖ℓ2 ).
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Figure 1: (a) Maximum error in the discrete parameter domain during the offline phase, (b) Error evolution by increasing the number
of RB functions in the online phase.

Moreover, γeyR represents the ℓ2-norm of the dynamical error system (obtained after subtracting the lifted reduced-order
model from system (1)) from inputR to the output ey (similarly for γeyeUnl ). This ℓ2-norm is equal to theH∞-norm of
the linear part of the dynamical error system with respect to the same input and output, which is computed as described
in [3].
A second error estimate is defined following the idea presented by [4]. Assume that we have the reduced solution with two
different levels of accuracy, one using N RB functions, the other one with N ′(> N) RB functions and we are interested
in the error analysis for the case with N RB functions. We can relate the error of the two reduced models as follows:

‖y − ŷN′‖ℓ2 ≤ ηN
′

N ‖y − ŷN‖ℓ2 . (4)

Here, y is the actual output computed from (1) and ŷN is obtained from the reduced model with N RB functions. In
the so-called offline phase, N ′ is increased until the empirically obtained ηN

′

N becomes smaller than 1 for all parameters
whose corresponding full-solution is available. Therefore, for any N , we can find N ′ such that ηN

′

N < 1. This condition
bears similarities with the small-gain condition mentioned in [3]. Now, in the offline phase, corresponding to each N , the
value of N ′ and the value of ηN

′

N are known.
In the so-called online phase, two reduced solutions with N and N ′ RB functions should be solved. After obtaining these
two computationally cheap solutions, we have:

ζN
′

N = ‖ŷN′ − ŷN‖ℓ2
‖y − ŷN‖ℓ2 ≤ ‖y − ŷN′‖ℓ2 + ‖ŷN′ − ŷN‖ℓ2

}
(4)−→ ‖y − ŷN‖ℓ2 ≤ ζN

′

N

1− ηN
′

N

. (5)

The reason for having the empirical factor ηN
′

N < 1 shows itself here to have finite and positive error estimate.
The evolution of the error estimates and the actual error during the offline and online phase is shown in Figure 1. In
general, the ℓ2-gain estimate is sharper than the empirical one, but the latter one is faster with a larger applicability region.

Conclusions

In this work, a new error estimate based on the Lur’e type formulation of the nonlinear Burgers’ equation is defined. This
estimate is rigorous, accurate and effective, but has limited applicability. To circumvent this issue, hinged on the snapshots
generated in the offline phase, an empirical error estimate is introduced. Both error estimates work efficiently in terms of
computational effort and accuracy. However, the empirical error estimate is faster and also applicable on a wider range of
problems compared to the error estimate proposed on the basis of ℓ2-gain notion.
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Adaptive Modeling of Coupled Duffing Oscillators Using Machine Learning
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Summary. Tracking parameter variations in mechanical systems is a common and demanding challenge due to various reasons.
Conventional approaches leverage measurement of time series signals to remodel the mechanical system to mitigate the impact from
parameter variations. However, the effectiveness highly depends on the quality of the measured signals which are affected by the
modulation of signals and is prone to noise. Additionally, such methods can exhibit further degraded performance when multiple
parameters change simultaneously. With this motivation, we propose a novel adaptive modeling method in this paper. The proposed
method aims to explore the possibility of combining both the Science-based Modeling (SBM) and Data-based Modeling (DBM) to
develop a hybrid adaptive modeling framework to achieve a higher level of accuracy and broader adaptability. We use two coupled
Duffing oscillators as the target model and identify the coupling parameter when it varies. Firstly, the perturbation method is applied
to develop a science-based model and obtain the asymptotic solutions of the target system. Based on the asymptotic solutions, the
system is parametrized and a series of frequency response plots are obtained corresponding to various coupling parameters. Secondly,
the dynamical characteristics of the system like the jump phenomenon can be captured in the series of frequency response plots and
extracted as features. Finally, an Artificial Neural Network (ANN) is developed, trained and fine-tuned using the features to identify
the changing coupling parameter. The results compared with a baseline grey box model demonstrate the effectiveness of the proposed
method in increasing the accuracy and robustness of adaptive modeling.

Background Introduction

A model is a abstracted description of a real - often complex - dynamic system. The accuracy and adaptability of a model
is critical for understanding of observed phenomena, predictions of system behaviors as well as design, optimization,
diagnostics and control. We call the classical approach of modeling, Science Based Modeling (SBM), that used the
traditional mathematical models and the associated computer codes have certainly developed reasonable verisimilitude
with real behaviors. Generally, the SBM method uses physics or established rules, which are capable of capturing some
observed effects qualitatively and provide useful insights into the underlying causalities. However, the limitation of
SBM is derived from the fact that many of the practical physical systems are becoming increasingly more complex than
can be modeled accurately with the physics we know. On the other hand, due to accelerating development of machine
learning, sensor technology, computer hardware and big data, the uncertainties and variations of the systems are more
reflected in the collected data. Therefore, these inspire a novel approach of modeling physical systems, namely, Data
Based Modeling (DBM). Typically, the DBM method establishes a pattern from the observed data to predict the system
response for future inputs. DBM highly depends on the quality and quantity of collected data and the nature of the
system, so obtaining more effective data is key to enhance the performance of DBM method. However, the inherent
limitation of DBM comes from the fact that it cannot be easily parameterized, or extended to situations that the model
has not been exposed to. Any tiny changes of the system can compromise the validity of data-based modela such as
system degradation, environmental changes and operational condition alterations, all of which are inevitable in practice.
Therefore, it is of significant importance to develop adaptive modeling techniques that can adapt to changes and are
applicable to real complex systems [1].

Target system

In this paper, we develop an adaptive modeling method and demonstrate it by applying to a set of two coupled duffing
oscillators[2, 3], the governing equations of the system are shown in Eq. (1).

x′′ + k∗1x+ d∗1x
′ + k∗2x

3 + k∗3(x− y) = 0

y′′ + k∗1x+ d∗1y
′ + k∗2x

3 + k∗3(y − x) = 0
(1)

We select such a system because it is a low-order baseline system which is nevertheless complex from the point of view
of nonlinearity. Moreover, such a model is the candidate for description of various mechanical and electro-mechanical
systems. The coupling coefficient of real connected systems is one of the most variable and least predictable coefficients
particularly in higher order systems. Therefore, in our target system, it is set to be an unknown parameter and requires
identification under varying conditions to evaluate the effectiveness and generality of the proposed method. The analysis
is also conducted with different parameters set of damping and nonlinearity to verify the generality of the method. As the
external force can vary due to uncontrollable loads of the system, we randomly change the amplitude of excitation within
a fixed range.

Methodology

The overview of the hybrid adaptive modeling framework is shown in Fig. 1. Assuming the physical system is perfectly
modeled, the governing equations are obtained at time t1. At time t2, the coupling coefficient of the system may change
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Figure 1: Overview of proposed approach for predicting coupling coefficient

due to wear, fatigue or other operating conditions. Note that t1 and t2 are orders of magnitude larger than system dynamic
response times. To retain the accuracy of the model, it is necessary to track the variations of the coupling coefficient
to update the previous model. We use a perturbation method to analytically solve the governing equations and obtain
the frequency response by changing the frequency of excitation. Subsequently, the frequency response corresponding
to different coupling coefficients are considered. The nonlinear dynamical characteristics like jump phenomenon and
bifurcation points are extracted as appropriate features to describe the changes of frequency responses with the variations
of the coupling coefficient. In order to prevent the interference of other parameters like nonlinear stiffness and damping,
the mutual information [4] between features and other parameters are also determined. The features which are more
sensitive to the changes of the coupling coefficient and less sensitive to other parameters are chosen as an appropriate
feature set. Subsequently, an artificial neural network (ANN) with one hidden layer and twenty nodes is developed and
trained by selected features in which the architecture of the ANN is determined by grid search, and the performance
is optimized by regularization and cross validation. Finally, the frequency response of the real physical system at time
t2 is measured which is more noise-resistant than time series signals. The trained ANN takes the features of measured
frequency response signal as input to predict the changed coupling coefficient with 99.8% accuracy.

Conclusions

This paper proposes a hybrid adaptive modeling to identify the changing coupling coefficient in two coupled Duffing
oscillators. The features extracted from the Science Based Model are more efficient to capture the nonlinear dynamical
characteristics of the real system and help improve the prediction from the Data Based Model. The application of mutual
information and feature ranking improves the robustness of extracted features. The ANN developed and trained by the
optimal feature set demonstrates better ability to identify the changed coupling coefficient with much higher regression
than the classical grey box model.
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Summary. This abstract presents a model reduction approach for systems of hyperbolic partial differential equations (PDEs) with
nonlinear boundary conditions for drilling applications. These systems can be decomposed into a feedback interconnection of a linear
hyperbolic PDE subsystem and a static nonlinear mapping. We show that the linear PDE subsystem can effectively be approximated
by a cascaded system of continuous time difference equations (CTDEs) and ordinary differential equations (ODEs). The performance
of the proposed technique is investigated by application to a model for managed pressure drilling (MPD).

Introduction

Hyperbolic partial differential equations (PDEs) govern a variety of physical phenomena such as fluid mechanics. These
models have in recent years gained much attention in the design of model-based control systems [1]. However, the
complexity of these models currently handicaps the design of controllers that can meet advanced performance criteria.
To enable controller synthesis for such performance criteria, it is common practice to approximate the hyperbolic system
by finite-dimensional models in terms of ordinary differential equations (ODEs). However, this type of approximation
exhibits a low accuracy in capturing the wave propagation effect in hyperbolic systems. By contrast, it is known that
the boundary behaviour of hyperbolic systems without coupling source terms can exactly be described by low-order
continuous-time difference equations (CTDEs). These facts motivate us to investigate a combination of ODEs and CTDEs
for the approximating hyperbolic models.
In this study, we consider a special class of systems consisting of two sets of linear isothermal Euler equations with
coupling source terms and nonlinear boundary conditions. This particular class of hydraulic models is used in a variety
of engineering applications, such as in managed pressure drilling (MPD) automation [2]. We show that these models can
effectively be approximated by a series connection of low-order models in terms of CTDEs and ODEs. The CTDE part
is employed to embed the advective nature of the system and the ODE part is used to approximate in-domain coupling
effects between system variables due to source terms. Because the wave propagation effect is already captured through the
CTDE model, the ODE part no longer needs to be of high order. Finally, we apply the proposed model reduction technique
to single-phase flow MPD-controlled drilling systems, and present simulation results to illustrate the effectiveness of this
method for such MPD applications.

Problem statement
Consider a system of balance laws, consisting of two isothermal Euler equations

∂Q

∂t
+Ψc

∂Q

∂ξ
+ FcQ = 0, Ψc =

[
Ψ 0
0 Ψ

]
,Ψ =

[
0 1
c2 0

]
, Fc =

[
F1 0
0 F2

]
, (1)

where ξ ∈ [0, l] and t ≥ 0 are the spatial and temporal variables, Q(t, ξ) ∈ R4 is the vector of variables, and c [m/s] and
l [m] are the speed of sound and length of the spatial domain, respectively. Moreover, F1, F2 ∈ R2×2 characterise the
source terms. We assume a zero initial condition Q(0, ξ) = 0 and consider boundary conditions of the form

Π1

[
Q(t, 0)
Q(t, l)

]
−Π2ψ

(
Γ

[
Q(t, 0)
Q(t, l)

]
, u(t)

)
= 0, Π1 ∈ R4×8,Π2 ∈ R4×nl , Γ ∈ Rr×8, (2)

where u(t) ∈ Rp is the input vector and the nonlinear function ψ(·, ·) is due to nonlinearities in the boundary conditions.
Furthermore, we assume that the output is given by y(t) = HΓ[QT (t, 0), QT (t, l)]T , with H ∈ Rm×r.
Given the model in (1) and (2), the objective is to approximate the input-output behaviour of this system from the input u
to the output y with a model of lower complexity, which allows for faster yet accurate time-domain simulations. Moreover,
this model should possess a structure that potentially facilitates the design of high-performance controllers.
The system described by (1) and (2) can be cast into a feedback interconnection of an infinite-dimensional linear system
Σ and a static nonlinear mapping ψ(·, ·) of the following forms:

Σ :





∂Q

∂t
+Ψc

∂Q

∂ξ
+ FcQ = 0, Q(ξ, 0) = 0,

Π1

[
Q(t, 0)
Q(t, l)

]
= Π2v(t), w(t) = Γ

[
Q(t, 0)
Q(t, l)

]
, y(t) = Hw(t),

(3)

v(t) = ψ(w(t), u(t)), (4)
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where w(t) ∈ Rr is the output of Σ and v(t) ∈ Rnl is its input. This decomposition enables us to reduce the complexity
of this model by only reducing the complexity of the linear PDE part and leave the nonlinearities untouched.

Model reduction
In the absence of source terms, Σ can be modelled by a system of CTDEs, which represent the transport phenomenon
in the system. However, the source terms lead to distributed in-domain couplings among the travelling waves. Our
observations show that these interactions in particular affect the low-frequency behaviour of the system Σ. We can also
show that the transfer function of Σ converges to a periodic behaviour (in terms of the frequency variable) of a period
of 2πc/l at high frequencies. This periodic behaviour in the transfer function is a manifestation of the advective nature
of the system. Thus, we conclude that in the presence of these source terms, the system behaviour is composed of two
dominating aspects: 1) advection and 2) dynamics governing the shape of advective waves. As said before, the (advection-
induced) transport aspects can be modelled by CTDEs. This is the dominating aspect at high frequencies. Given that the
second aspect is mostly dominant at low frequencies, we compensate for that by a system of ODEs. This explanation
motivates us to consider for Σ̂, the approximate of Σ, a structure which consists of an interconnection of a CTDE model
Σc and an ODE model Σo. Here, we adapt a series interconnection between Σc and Σo, and refer to it as the cascaded
system. We propose the following realizations for Σc and Σo:

Σc :

{
E1x1(t) = −A1x1(t− τ) +B1v̂(t),

z(t) = C1x1(t),
, Σo :

{
E2ẋ2(t) = A2x2(t) +B2z(t),

ŵ(t) = C2x2(t) +D2z(t),
(5)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are the state vectors, v̂(t) and ŵ(t) are approximates of v(t) and w(t), respectively,
and z(t) ∈ Rm is the output of Σc and the input to Σo. Moreover, τ = l/c is the delay and E1, E2, A1, A2, C1, C2, B1,
B2 and D2 are system matrices of appropriate dimensions. To construct Σc and Σo, the data-based method in [3] is used.
Namely, Σc is designed such that its transfer function matches the transfer function of Σ at interpolation points chosen at
high frequencies. By contrast, the ODE part Σo is designed such that it compensates for the error between Σ and Σc at
interpolation points in the low-frequency range.

Simulations
In this section, we apply the presented model reduction technique to a model for MPD [2]. Fig. 1 shows the response of
the downhole pressure in the annulus to step changes in the input u, consisting of the choke opening and pump flow. As
can be observed, the nonlinear cascaded approximation yields an accurate approximation of the original system response,
obtained from a discretization, especially in capturing the staircase pressure profile induced by wave propagation effects
characteristic to the PDE model.

pump flow
choke opening

ξ = 0

ξ = l

drillstring

annulus

RCD

0 50 100 150

330

340

350

Figure 1: (Left) A simplified schematic of a drilling system with MPD equipment, (right) comparison between the time-domain
response of the reduced nonlinear model and the original model for the bottom-hole pressure (pressure in the annulus at ξ = 0).

Conclusions

This abstract presented a model reduction technique for systems of hyperbolic partial differential equations with nonlinear
boundary conditions. The reduction is achieved by, first, decomposing the model into a feedback interconnection of a
linear infinite-dimensional subsystem and a nonlinear mapping and, second, approximating the linear part by a series
connection of a system of delay difference equations and a system of ordinary differential equations. The high accuracy
of the approximation has been verified by application to a model for managed pressure drilling.
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Summary. In engineering dynamics, model updating is typically applied to minimize the mismatch between a physical system and
its digital twin. This paper proposes to use inverse mapping models, based on Gaussian Processes (GPs). The latter are trained offline
using simulated data, enabling fast online updating of physically interpretable parameter values in first-principles-based nonlinear
dynamics models. The GPs infer parameter values based on time-domain features measured on the real system. Additionally, GPs
enables uncertainty quantification of the inferred parameter values. A nonlinear multibody model is used to illustrate the capability of
this method to update parameter values, with high computational efficiency, and extract corresponding uncertainty measures.

Introduction

Digital twins allow engineers to optimize the design and performance of a (controlled) physical system, and monitor
systems in real-time. Since, a model (i.e., a digital twin) is, not an exact representation of the physical system, fruitful
employment of the digital twin is hindered. Model updating is therefore used to minimize the mismatch between the
model and the measured system. In this research, we focus on updating parameter values of first-principles models with
fixed model structures. To make model updating generally applicable in an online, digital twin context, the updating
method should be: 1) computationally fast , 2) applicable to nonlinear models, 3) physically interpretable, and 4) able to
quantify the uncertainty in the parameter estimates. The method introduced here uses inverse mapping models, based on
Gaussian Processes (GPs): a set of measured features is mapped to a set of corresponding parameter values. Additionally,
the GPs yield a quantification of the uncertainty in the estimated parameter values. Although this method has previously
been applied to linear systems [3], here, we extend its application to nonlinear systems by using time-domain features.

Methodology

Inverse models are used to, online, rapidly map a set of measured time-domain output features to a set of physically
interpretable parameter values of a first-principles (or forward) model, see Figure 1. Parameterizing the forward model
with the inferred parameter values, results in an updated model that, when used in a simulation, yields a set of output
features close in similarity to the original, measured features. In this research, the output features are defines as samples of
the output signals at equidistant moments in time. In contrast to earlier work of the authors [2], in which a neural network
is used to define the inverse mapping model, here, GPs are used. Due to the use of GPs, in addition to inferred parameter
values, a quantification of the uncertainty in each inferred parameter value is obtained in the form of a standard deviation.
For each updating parameter, a separate GP is trained offline using training data. These data are obtained by simulating
the forward model and extracting features from the simulated output signals for a number of distinct combinations of
updating parameter values, distributed in some admissible updating parameter space P. Note that the excitation signals
and initial conditions used to obtain the training data should be identical to those used for the real measurements as these
are implicitly learned by the GPs. Furthermore, the forward model structure is assumed sufficiently accurate.

GP-based inverse

mapping model

Forward model

Inverse model

First-principles

model

Simulated output

features

(time series data)

Actual parameter

values

(e.g., masses, stiffnesses)

Measured output

features

(time series data)

Inferred parameter

values

(e.g., masses, stiffnesses)

Excitation signals

(forces, torques)Initial conditions

Figure 1: Schematic representation of in- and outputs to first-principles models and inverse models for model updating.

Case study: a nonlinear multibody system

The GP-based updating method is applied to a two-degrees-of-freedom nonlinear multibody system consisting of two
connected rigid beams of mass m1 and m2, respectively, see Figure 2. The np = 4 updating parameters are: damping
constants dy , dθ, and spring constants ky , and kθ, where we assume that their values lie between the bounds of the
parameter set P ⊂ Rnp×1, specified in Table 1. The system is simulated for 5 seconds with the static equilibrium position
of the system, parameterized with parameter values in the center of P, as initial condition. For the output features, 100
equidistant time samples, of both the y(t) and θ(t) output signals, are used per sample. To mimic real measurements,
these output signals are contaminated by output noise (zero mean, σy = 5 × 10−5 m, σθ = 0.015 rad). The system is
excited by an impulse-like excitation force F (t) and moment M(t):

F (t) =

{
5 N if 0.2 ≤ t ≤ 0.25
0 N else

, (1) M(t) =

{
0.075 N ·m if 0.2 ≤ t ≤ 0.25
0 N ·m else

. (2)
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y

θ

Beam 2: m2, ICOM,2

Beam 1: m1

kθ ky

M
yCOM,2

zCOM,2

dθ

dy

g

Parameter Value
m1 2.163 kg
m2 0.13701 kg
g 9.81 m/s2

ICOM,2 2.981× 10−4 kg·m2

yCOM,2 3× 10−3 m
zCOM,2 4.6× 10−3 m

F

Figure 2: Demonstrator model with non-updating parameter values.
The location of the Center Of Mass (COM) is indicated by yCOM,2 and
zCOM,2. Furthermore, g represents the gravitational acceleration and
ICOM,2 the mass moment of inertia about the COM.
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Figure 3: Inferred standard deviation of parameter value esti-
mates for dy in the subspace of P spanned by ky and kθ .

Table 1: Updating parameters and their lower and upper bound of P, bias, standard deviation, and mean absolute relative error.

Parameter Lower bound Upper bound µϵ [%] σϵ [%] µ|ϵ| [%]

dy 0.9 N·s/m 1.1 N·s/m 0.1063 0.9374 0.7412
dθ 1.75× 10-4 N·m·s/rad 2.25× 10-4 N·m·s/rad -0.0991 1.3673 1.0880
ky 5 N/m 15 N/m -0.0004 0.3117 0.2128
kθ 0.027 N·m/rad 0.045 N·m/rad -0.0356 0.2581 0.2026

All np GPs are trained using the same 250 training samples, generated for as many combinations of updating parameter
values, sampled using a Latin hypercube from P. The squared exponential kernel is used in combination with a Gaussian
likelihood and a constant valued mean function, of which the hyperparameters are optimized by minimizing the negative
log marginal likelihood. For more information about these settings, the reader is referred to [1].
To demonstrate the proof of principle of the proposed method, output features of nt = 500 test samples are simulated
for distinct parameter values p(i) ∈ P (where i indicates the sample), using equivalent settings for the simulation as for
the training data generation. Here, all instances of p(i) are randomly distributed (uniformly) in P. Then, the trained GPs
are used to infer parameter values p̂(i) ∈ P from the simulated output features. To asses accuracy and precision of these
inferred parameter values, the relative estimation error is calculated:

ǫrel(i) =
(
p̂(i)− p(i)

)
⊘ p(i), (3)

and used to determine the bias and standard deviation of the relative error, and the mean absolute relative error:

µϵ =
1

nt

nt∑

i=1

ǫrel(i), σϵ =

√√√√ 1

nt − 1

nt∑

i=1

(ǫrel(i)− µϵ)⊗ (ǫrel(i)− µϵ), µ|ϵ| =
1

nt

nt∑

i=1

|ǫrel(i)| . (4)

In (3) and (4), ⊘ and ⊗ denote the entrywise division and multiplication operators, respectively. In Table 1, these error
metrics are listed for all updating parameters. As displayed by the low error metrics, these parameters are inferred
accurately (low bias) and precisely (low standard deviation). Furthermore, Figure 3 shows the inferred standard deviation
in dy , representing the quantification of the uncertainty in the estimated parameter values, as obtained by the GP, for all
test samples in the subspace of P spanned by ky and kθ. Note that the largest inferred standard deviations are located at
the edges of P (especially the edge where ky ≈ 5 N/m). The time required to infer all parameter values and their inferred
standard deviations is only 13 ms, enabling fast, credible parameter value updating.

Conclusions and future work

In this work, Gaussian Processes are used as inverse mapping models to efficiently update physically interpretable pa-
rameter values of a nonlinear multibody model using time-domain features. Additionally, inferred standard deviations,
provided by the GPs, provide a quantification of the uncertainty in the updated parameter values. However, costwise,
GPs scale poorly with an increasing number of training samples [1]. Consequently, applications to updating problems
with many updating parameters may become infeasible. Therefore, in future work, we will investigate Bayesian neural
networks as an alternative for inverse mapping models. Furthermore, to improve the sensitivity of the inverse mapping
model, optimal excitation design, feature extraction, and feature selection techniques should be explored further.
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Summary. The dynamics of many technical structures are characterized by both conservative and non-conservative nonlinear forces,
which are often challenging to model. Alternatively, a nonlinear model can be identified from experimental data, yielding amplitude-
dependent modal properties, which can also serve for model validation or model updating purposes. In this contribution, we present
a nonlinear modal testing approach that allows for extracting modal properties for systems with nonlinear damping caused by various
types of nonlinearities. Models based on these modal properties describe well the systems’ steady-state dynamics around an isolated
resonance.

Introduction

Technical structures are usually assembled by several parts, connected through joints. These joints are a common source
of nonlinear, dissipative forces due to dry friction. To accurately predict vibrations of such structures, the nonlinear force-
deflection relations have to be modeled. In particular, physical processes causing damping are in many cases inherently
nonlinear and are properly described only by nonlinear hysteresis models. Therefore, experiments are crucial in order
to estimate parameters for the purpose of model updating or to validate numerical models. To this end, experimental
methods are needed, which are suited for structures under the influence of conservative and non-conservative nonlinear
restoring forces. Different approaches for nonlinear system identification have been suggested in the last years [1]. One
approach is to employ the concept of nonlinear vibration modes. If nonlinear forces play a significant role, one set of
linear modal properties is of limited use, and nonlinear, i.e. amplitude-dependent, modal properties are needed. These
can, for example, be extracted by analyzing the freely decaying response. If the structure is subjected to high damping,
e.g. due to joints, the motion decays quickly, which is challenging from a signal analysis perspective. In such cases,
using force appropriation to excite steady-state motion is preferable because it allows for a fine frequency resolution
and straight-forward signal analysis. Force appropriation can be ensured using controlled excitation, for example with
a phase-locked loop [2, 3] or control-based continuation [4]. In this contribution, we successfully apply a nonlinear
modal testing method that utilizes steady-state force appropriation to experimentally extract amplitude-dependent modal
properties of structures with nonlinear dissipation. The proposed approach is robust against noise and time efficient, which
reduces the risk of damaging the specimen. Moreover, the method does not require any prior knowledge on the type or
location of the nonlinearity. Using controlled excitation or a control-free alternative, the method overcomes problems
related to stability loss of periodic responses, such as jumps, which often hamper the applicability of common frequency
response testing (frequency stepping or sweeping). Once the modal properties are identified, it is no longer necessary to
measure the frequency response around a resonance, since this can be accurately predicted by assuming that the vibration
energy is confined to a single nonlinear mode. The applicability of the nonlinear modal oscillator is, however, limited to
single-frequency, near-resonant forcing.

Nonlinear Modal Testing Method

The proposed nonlinear modal testing method is based on the extended periodic motion concept [5], which was introduced
to study periodic motion of damped systems, close to a primary resonance. A nonlinear mode according to this concept is a
periodic motion of an autonomous system. Periodicity is enforced by an artificial negative damping term that compensates
the dissipated energy over one cycle of vibration. In the absence of strong modal interactions, a single nonlinear mode
according to this definition accurately describes the steady-state forced response near resonance.
In an experiment, the negative damping term can be approximated by external forcing. We have shown that applying a
force at only one location is sufficient for many structures. The excitation force must be in local phase resonance with
respect to the fundamental harmonic of the response [6], which is ensured using a phase-locked loop controller, adapting
the excitation frequency until local phase resonance is achieved. Alternatively, the system’s velocity is scaled and fed
back as excitation signal [7]. Varying the excitation amplitude, the amplitude-dependent resonance frequency (i.e. the
backbone) is measured. From the Fourier transform of the measured steady-state time signals, the resonance frequency as
well as the deflection shapes are extracted, and the modal damping ratio is obtained with a power balance [6].

Experimental Nonlinear Modal Analysis of a Strongly Friction-Damped Beam

The proposed nonlinear modal testing method has been applied to specimens with different sources of nonlinear dis-
sipation such as bolted joints but also systems with nonlinear stiffness such as hardening behavior due to geometric
nonlinearities or opponent magnets. Another test case is a cantilevered beam called RubBeR, which is strongly damped
by dry friction [8]. This test rig is challenging due to the large increase in damping and frequency shift as well as a
significant local mode shape change. The friction is caused by relative motion between the beam and fixed steel plates.
The preload at the contact interface is set such that both full-stick and macro-slip is observed in the excitation range of
the used shaker. The first bending mode’s resonance frequency with full-stick contact is about 111.3 Hz, identified at
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Figure 1: (a) Amplitude-dependent resonance frequency and modal damping ratio and (b) predicted (solid lines) and
measured (dots) frequency responses of a friction-damped beam.

low excitation levels. The amplitude-dependent resonance frequencies and modal damping ratios are shown in Fig. 1a.
The resonance frequency is normalized with the full-stick frequency, and the deflection amplitude is the amplitude at the
beam’s tip normalized with the beam’s length. The well-known characteristics for friction-damped systems are observed:
For low amplitudes, the resonance frequency is constant, but decreases with increasing vibration amplitude, here for nor-
malized deflections above 2 · 10−5. At the same time, the modal damping ratio increases drastically and decreases again
for large amplitudes. For this specimen, the decrease in frequency is about 36 % and the modal damping ratio increases
from about 0.1 % to about 15 %. By measuring backbones several times (not modifying the setup), the deviation of the
modal properties due to the variance inherent to the test rig is assessed. The measurements are very well repeatable,
leading to only a small spread of the extracted modal properties (gray-shaded areas in Fig. 1a with the average plotted
with solid lines).
Assuming that the vibration energy is confined to a single nonlinear mode, the system behaves like a single degree-
of-freedom oscillator. To assess the usefulness of the extracted properties, the oscillator is set up with the identified
amplitude-dependent modal properties [6] and harmonically forced at four different excitation levels. The predicted
frequency responses are plotted with solid lines in Fig. 1b and the predictions’ spread based on the nonlinear modal
properties’ spread is indicated with the gray-shaded area. The reference frequency responses (black dots) were obtained
with controlled stepped sine measurements. The deviation between predictions and reference measurements is small in
comparison with the repeatability band. The very good agreement indicates that the nonlinear-modal oscillator with the
properties shown in Fig. 1a is capable of describing frequency responses close to an isolated resonance.

Conclusions

In the absence of strong modal interactions, the proposed nonlinear modal testing method allows for extracting amplitude-
dependent modal properties, i.e. resonance frequency, modal damping ratio and deflection shape, for systems with non-
linear dissipation. For all tested specimens, the single nonlinear-mode oscillator based on the identified modal properties
describes well the steady-state dynamics around an isolated resonance. Therefore, a simplified single-point excitation
mechanism with phase control of the fundamental harmonic or feeding back a scaled velocity signal is sufficient to extract
accurate modal properties of structures with nonlinear dissipation. The concept of local phase resonance is, however,
applicable only to structures with a diagonal dominant mass matrix (e.g. slender structures). Using single-point excitation
for velocity feedback can cause gyroscopic forces that deteriorate the mode isolation quality.
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Finite-time tracking control of a nonlinear string to reference dynamics

Marc Wijnand1, Thomas Hélie2 and David Roze2

S3AM team, STMS Lab (IRCAM – 2CNRS – 1Sorbonne Université), Paris, France
marc.wijnand@ircam.fr

Summary. This paper is concerned with the active control of a string. A nonlinear Kirchhoff-Carrier model of the transverse vibration
of a string is considered (presenting a pitch glide at high excitation levels), controlled by a force in its domain. A finite-time tracking
controller is designed for a point force, that controls one mode of the string to reference dynamics corresponding to a string with other
physical parameters. We illustrate in a simulation how the controller can be used to modify the damping, resonance frequency or the
presence of a pitch glide for the selected mode of vibration of the string.
A preliminary version of this work has appeared in [1, Ch. 8]. [1]

Introduction

Active vibration control
In a lot of engineering applications, vibration is unwanted as it leads to negative side-effects such as increased wear of
components or time and quality loss in production processes. Therefore, numerous active vibration control methods have
been developed [2, 3], that aim at reducing parasitic vibration.
If a system representation based on the vibration modes is considered, the term modal control is used.

Active control of musical instruments
Active control of musical instruments consists in adding a control loop to an existing acoustic musical instrument that is
being played by a musician. The terms augmented or hybrid musical instruments are also used. In some cases, communi-
cation to other devices is included, and the term smart instruments is used [4].
In terms of the actuator type, two classes of active vibration control are distinguished. In the case of acoustical active
control, the control acts on a fluid medium. An example is the use of a loudspeaker to create destructive interference in
order to cancel sound. In the case of structural acoustical control, the control acts on a solid. One can for example attach
an actuator to the soundboard of a violin.
In most cases of active control of musical instruments, the goal is not to reduce vibrations as much as possible, but to
change frequencies or damping coefficients of the instrument’s vibration, enabling the musician to enlarge his sound
palette while keeping the ergonomics of the original instrument. One can mention for instance applications to the (xylo-
phone) beam [5], (clarinet) tube [6], (Chinese gong) metal plate [7] and (tom) membrane [8].
Furthermore, active control of musical instruments can be invoked for the study of their dynamical behaviour [9], or for
the removal of unwanted phenomena such as the so-called wolf note of the cello [10], or the bad playability of certain
notes on the trombone when using a straight mute [11].

Active control of a string
There exists a considerable amount of results concerning the vibration suppression of the string, both in the linear case and
using models with different kinds of nonlinearities. The string can be actuated at its boundaries or in its domain, sometimes
taking into account ODE dynamics of systems coupled to the string. A broad variety of control design methods have been
used, that have been tested in simulation and experimentally.
In particular, tracking control has been used in [12, 13] where a boundary control to a string is designed that lets a mass
attached to it follow a reference position. In applications involving axially moving strings, axial velocity tracking has also
been used [14].

Active control of a musical string
In a musical context, the goal of active control is to influence the vibration of strings present in violins, pianos, guitars,
etc. and that are made of a variety of materials such as nylon and metal. Used string displacement sensors can be elec-
tromagnetic [15], piezoelectric [16] or optical (for example [17, 18]). As string actuator, one can use an electromagnetic
actuation (for example with the commercially available EBow [19] or the alternative [20] in the case of metal strings, or
the use of a magnet attached to a nonmagnetic string [17]), or a piezoelectric actuator [21].
Concerning the control of an isolated string, following results have been reported. In [22], the principles of a PID control
of a string are discussed, using a collocated sensor and actuator, and enabling to modify resonance frequency and damping.
Furthermore, several experimental setups for string control have been considered. In [23], a metal guitar string of length
24 cm tuned to 248 Hz was damped using an optical sensor and an electromagnetic actuator [20]. In [24], the first five
modes of a guitar string were damped using a feedback measuring string displacement with a laser, and an electromagnetic
actuation. In [21], the setup consisted of a metal guitar string of 50 cm tuned to 220 Hz, an optical string displacement
sensor and a piezoelectric actuator at one end of the string. Based on traveling wave control concepts, active damping is
achieved, and nonlinearities can be injected, leading to timbral effects.
Active control of other instrument parts coupled to the vibrating string is also possible, such as the violin bridge [25] and
the soundboard of a monochord, acoustical guitar and cello [26]. In [27], the construction of a piano with active control
is reported, with a piezoelectric sensor on the soundboard and electromagnets over the 88 sets of strings actuators. It is
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possible to generate infinite sustain, crescendo on a note and different timbral effects. Finally, an embedded control system
using multiple sensors and actuators can be found in some commercially available instruments such as the Sensus Smart
Guitar (MIND Music Labs, [4]) and the Smart Acoustic Guitar (HyVibe, [28]).

Aim and structure of the present paper
This contribution is concerned with the control of a selected mode of the nonlinear Kirchhoff-Carrier string model by a
point force for which a finite-time tracking control law is developed. First, the nonlinear string model is recalled, recast as
a Port-Hamiltonian System, and projected on the modes of the linearized system. Next, the finite-time tracking controller
for a chosen mode is developed, enabling to track a reference trajectory representing a mode with modified physical
parameters. Finally, the effect of the control law is illustrated by a simulation.

Nonlinear string model

The Kirchhoff-Carrier string model is recalled. This PDE is subsequently recast as a Port-Hamiltonian system, to which
an order reduction by modal projection and truncation is applied. Thus, each mode is represented by a coupled nonlinear
ODE.

PDE model
The nonlinear Kirchhoff-Carrier model for the transverse vibrations w(z, t) [m] of a string of length L [m] is considered
[29, 30]:

ρA∂ttw(z, t) + ρAµ∂tw(z, t)−
(
T0 +

EA

2L

∫

Ω

(∂zw(z, t))
2
dz

)
∂zzw(z, t) =

1

L
u(z, t), (1)

with ρ [kg/m3] the mass density, A [m2] the circular cross-section, µ [1/s] a positive coefficient representing viscous
damping (see [31, §5.3.2]), T0 [N] the tension,E [Pa] Young’s modulus of elasticity and u(z, t) [N] the distributed exciting
force defined on (z, t) ∈ Ω×R+, Ω = [0, L]. The nonlinearity is due to the variation of tension expressed by the integral
term EA

2L

∫
Ω
(∂zw(z, t))

2
dz (with EA ≫ T0, [32, Ch. 8]), leading to the pitch-glide phenomenon (illustrated in the

Simulation Section). The string is fixed at its ends (Dirichlet boundary condition) and initially at rest:

w(z = 0, t) = 0 w(z = L, t) = 0 ∀t ∈ R+

w(z, t = 0) = 0 w(z, t = 0) = 0 ∀z ∈ Ω.

This setup is depicted in Fig. 1.

z

w(z, t)

0 L

u(z, t)

Figure 1: Setup of the PDE model for a string that is initially at rest (w(z, t) = 0) and subjected to a distributed force
u(z, t)

Port-Hamiltonian system model
Components of an open physical system can (1) exchange energy inside the system; (2) dissipate energy; (3) exchange
energy with the exterior of the system through ports. The power balance of the system is satisfied at all time. This is taken
into account in the Port-Hamiltonian framework [33].
An infinite-dimensional Port-Hamiltonian system (PHS) can be defined as [34, 35]

{
∂tx = (J −R)δxH(x) + Gu
y = G⋆δxH(x),

where

• the state x belongs to the energy state space X;

• a scalar product 〈·, ·〉X and norm ‖·‖X are defined;

• the Hamiltonian function is defined asH(x) , 1
2‖x‖2X;

• the operator δx is the variational derivative [35];
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• the interconnection operator J is formally skew-symmetric and the dissipation operator R is non-negative sym-
metric, w.r.t. the scalar product;

• the product of the input u and its associated output y represents the power applied to the system via the ports;

• G∗ represents the adjoint operator of the operator G.

In the finite-dimensional case (x ∈ Rn), the operators become matrices and δx is replaced by the gradient ∇x [33]. We
refer the reader to [36, 37] where the example of a (non)linear mass-spring-damper system is treated.
Next to modeling physical systems, the PHS formalism provides a framework for the development of stable simulation
[38] and control [39] methods.

Port-Hamiltonian string model
As shown in [40], the nonlinear string (1) can be recast as an infinite-dimensional Port-Hamiltonian System with state
xT (z, t) ,

[
q(z, t) p(z, t)

]
,
[
∂zw(z, t) ∂tw(z, t)

]
, and nonquadratic Hamiltonian function [32, Ch. 8]

H(x(z, t)) = ρA

2

∫

Ω

p2(z, t) dz +
1

2

[
T0 +

EA

4L

∫

Ω

q2(z, t) dz

] ∫

Ω

q2(z, t) dz, (2)

leading to the following infinite-dimensional PHS formulation:




d

dt

[
q
p

]
=

([
0 1

ρA∂z
1
ρA∂z 0

]
−
[
0 0
0 1

ρAµ

])[
δqH
δpH

]
+

[
0
1

ρAL

]
u

y =
[
0 1

ρAL

] [δqH
δpH

]
,

(3)

with the variational derivative of the Hamiltonian function (2) equal to

δxH(x(z, t)) =
[
δqH(x(z, t))
δpH(x(z, t))

]
=

[(
T0 +

EA
2L

∫ L
0
q2(z, t) dz

)
q(z, t)

ρAp(z, t)

]
.

The input u(z, t) being the force applied to the string, and the output y(z, t) = (1/L)∂tw(z, t) with ∂tw(z, t) the trans-
verse velocity, the expression

∫
Ω
u(z, t)y(z, t) dz [W] represents the instantaneous external power transferred to the string.

Modal projection and order reduction
The infinite-dimensional PHS model (3) is projected on the N first eigenmodes of the linear string (Eq. (1) without the

term EA
2L

∫
Ω
(∂zw(z, t))

2 dz), that are given by en(z) =
√

2
L sin

(
nπ
L z
)
, n > 0 (Fig. 2):

w(z, t) ≈
N∑

n=1

en(z)Wn(t).

e1(z) e2(z) e3(z) e4(z) e5(z) e6(z)

Figure 2: First 6 eigenmodes en(z) of the linear string of length L. The nodes (stationary points) are indicated by dots.

Then, defining

x(z, t) =

[
d
dz e1(z) . . .

d
dz eN (z) O1×N

O1×N e1(z) . . . eN (z)

] [
W (t)
d
dtW (t)

]
= Φ⊺(z)X(t), (4)

the Hamiltonian functionH(x(z, t)) = 1
2

∫ 1

0
x⊺(z, t)M(z, t)x(z, t) dz (2) becomes

H(X(t)) =
1

2

∫ 1

0

X⊺(t)Φ(z)M(z, t)Φ⊺(z)X(t) dz =
1

2
X⊺(t)MN (t)X(t),

with

MN (t) =

[
D2
N

(
T0 +

EA
4L X⊺(t)NNX(t)

)
ON×N

ON×N ρAIN×N

]
, NN =

[
D2
N ON×N

ON×N ON×N

]
, D2

N =
π2

L2
diag(1, 22, . . . , N2).
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Next, premultiplying the first equation of the PHS (3) by Φ(z), integrating it w.r.t. z ∈ Ω, substituting (4) and using the
localized controller setup (7) that will be defined below, one obtains following finite-dimensional PHS:




d

dt
X(t) =

(
1

ρA

[
ON×N IN×N
−IN×N ON×N

]
− µ

ρA

[
ON×N ON×N
ON×N IN×N

])[
D2
N (T0 +

EA
2L X⊺(t)NNX(t)) ON×N
ON×N ρAIN×N

]
X(t)

+
1

ρAL




ON×1

ϕ1

...
ϕN


U(t)

y(z, t) =
[
0 1

L

]
Φ⊺(z)X(t),

(5)
with φn , en(ℓ), and ℓ and U(t) will be defined by (7).
The (N + n)th line of the dynamics for X(t) gives

Ẅn(t) = −
1

ρA
n2 π

2

L2

(
T0 +

EA

2L
Σ(t)

)
Wn(t)− µẆn(t) +

φn
ρAL

U(t), (6)

where

Σ(t) ,
N∑

n=1

n2
π2

L2
W 2
n(t).

Each mode n is a nonlinear oscillator with a coupling to the other modes due to the term Σ(t), and that is controlled by
U(t).

Finite-time tracking control

Hypotheses concerning the control layout are made and the control goal is stated. Then, an existing finite-time control
law is applied to obtain the tracking controller that will control one mode of the nonlinear string (5) to chosen reference
dynamics.

Controller setup
Following hypotheses are made.

1. (Point force) We use a single actuator that is able to deliver a localized force U(t) [N]:

u(z, t) , δ(z − ℓ)U(t), (7)

with δ(z − ℓ) the Dirac delta distribution that activates the control law U(t) at the position z = ℓ (cf. Fig. 3).

Furthermore, we suppose here that the application of a force at z = ℓ does not modify the eigenmodes en(z). Then,
one can write

u(z, t) =
N∑

n=1

〈u(z, t), en(z)〉 · en(z) =
N∑

n=1

en(ℓ)U(t) · en(z) ,
N∑

n=1

φnU(t) · en(z).

Because of this hypothesis, the force φnU(t) is applied to each mode n. Therefore, only one mode can be controlled
at a time.

z

w(z, t)

0 L

u(z, t)

ℓ

ẇ(z, 0)

l

Figure 3: String that is initially at rest, subjected to a point force at z = ℓ, and with an initial velocity applied at z = l (see
Simulation)

2. (Known state) It is supposed that the entire state X(t) of the projected PHS model (5) is known from the measured
system output1 ymeas(z, t), possibly after using an observer.

1In general, the measured output ymeas(z, t) differs from the PHS output y(z, t) defined as the conjugated variables with respect to the system input
variables u(z, t), in the sense that

∫

Ω u(z, t)y(z, t) dz represents the instantaneous power applied to the PHS.
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Control goal
A system {S} described by (5) represents the dynamics of the first N modes of the nonlinear string with physical pa-
rameters (ρ, T0, µ, E). Following Hypothesis 1, our goal is to construct a controller {C} that lets one mode of the real
system {S} track the dynamics of a virtual reference system {S∗} with desired physical parameters (ρ∗, T ∗

0 , µ
∗, E∗), for

an excitation by the same initial conditions (Fig. 4). To this means, a finite-time tracking controller will be designed.

S

C

i.c.
+

U(t)

(a) Closed loop system {S&C}

S∗i.c.

(b) Desired system dynamics {S∗}

Figure 4: Tracking control layout (i.c.: initial conditions). The dashed arrow represents the reference trajectory X∗(t)
corresponding to the reference system {S∗} that is in reality simulated inside the controller {C}.

Finite-time control
Finite-time control [41] is a nonlinear control method enabling to reach an equilibrium point in a finite time. This finite
settling time is a stronger property than in the case of asymptotic or exponential control. Finite-time control has useful
properties for time-constraint and robust control [42].
Finite-time stability of an ODE with state x(t) ∈ Rn is defined as follows.

Definition 1 (Finite-time stability [42]) Let ẋ = F (x) represent a closed-loop system, with F (x) continuous and
F (0) = 0. Let Ψt(x0) be the time evolution of the state for a given initial state x0.
The origin is a finite-time stable equilibrium if there exists an open neighborhood U ⊂ Rn of the origin, where following
statements hold:

1. Finite-time convergence. There exists a settling-time function T : U\{0} → R≥0 such that for each x0 ∈ U\{0},
the evolution Ψt(x0) is defined and unique on t ∈ [0, T (x0)[ and limt→T (x0) Ψ

t(x0) = 0.

2. Lyapunov stability. There exists a monotonically increasing function δ(·), δ(0) = 0, such that for each x0 ∈ U ,
‖Ψt(x0)‖ ≤ δ(‖x0‖) for each t ≥ 0.

Furthermore, if U = Rn, the origin is globally finite-time stable.

Several finite-time control laws have been designed for different kinds of ODE systems. They necessarily are non Lipschitz
continuous at the equilibrium point [41]. For ODE systems of dimension n = 2, following law can be used.

Lemma 1 (Finite-time stabilisation of the double integrator [43]) The origin of the double integrator

{
ż1(t) = z2(t)

ż2(t) = v(t)
(8)

is finite-time stable for the control law

v(t) = −κ1 ⌊z1(t)⌉
α

2−α − κ2 ⌊z2(t)⌉α ,

where κ1, κ2 > 0, α ∈ ]0, 1[ and ⌊z⌉α , sign(x)|x|α.

No explicit expression for the dependence of the settling-time on the control parameters (κ1, κ2, α) is known. Therefore,
these parameters have to be tuned numerically. We refer the reader to [37] for an application of this law to a (non)linear
mass-spring-damper system.

X∗(t)

Finite-time tracking control applied to the nonlinear string
A finite-time tracking controller is developed for a chosen mode M ∈ J1, . . . , NK by imposing the dynamics of (8) to the
error

e(t) ,WM (t)−W ∗
M (t)
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between the real modal displacement WM (t) and the reference modal displacement W ∗
M (t) of mode M . A finite-time

stabilization of
WM (t)→W ∗

M (t), ẆM (t)→ Ẇ ∗
M (t)

is thus obtained for the error dynamics

d

dt

[
e(t)
ė(t)

]
=

[
ė(t)

−κ1 ⌊e(t)⌉
α

2−α − κ2 ⌊ė(t)⌉α
]
. (9)

After substituting the expression (6) for the real (WM (t)) and desired (W ∗
M (t)) oscillators, one solves (9) for the control

law U(t), which corresponds to

U(t) =
1

φM

[
−ρAL

(
κ1 ⌊WM −W ∗

M⌉
α

2−α + κ2

⌊
ẆM − Ẇ ∗

M

⌉α)

+M2π
2

L

(
T0WM −

ρ

ρ∗
T ∗
0W

∗
M +

A

2L

(
EΣWM −

ρ

ρ∗
E∗Σ∗W ∗

M

))
+ ρAL

(
µẆM − µ∗Ẇ ∗

M

)]
. (10)

Applying this finite-time tracking control law to the system S will control its M th mode to the M th mode of the reference
system S⋆. As previously mentioned, because of Hypothesis 1, we do not have additional degrees of freedom to act on
the other modes n ̸=M .
The design of the control parameters (κ1, κ2 > 0, α ∈ ]0, 1[) present in the tracking controller has to ensure that it has
faster dynamics than the dynamics of the nonlinear string (by Tikhonov’s theorem, see for instance [44, Theorem A.11]).
Their values have to be assessed by a simulation, that is presented in the next session.

Simulation

A system {S} is considered, with physical parameters from [45, Table 1] representing a steel string with fundamental

frequency f = 1
2L

√
T0

ρA = 55Hz:

L = 1,8m, A = π · (1,5mm)2, ρ = 7800
kg
m3

, E = 2 · 1011 Pa, µ = 3
1

s
, T0 = 2161N.

The string is excited by an initial velocity localized at z = l (Fig. 3):

ẇ(z, 0) = V0

[m
s

]
· δ(z − l),

whose projection on mode en(z) yields the initial conditions Ẇn(0) = V0

√
2
L sin

(
nπ
L l
)
, n ∈ J1, . . . , NK.

The controlled system {S&C} using control law (10) is simulated for two cases:

1 a reference system {S∗} where the parameters (T0, ρ, µ) of the linearized string model are modified for the mode
M = 2, leading to a change in frequency and damping,

2 a reference system {S∗} where the parameter E of the nonlinear string model is modified for the mode M = 1,
leading to a modification of the pitch-glide effect.

The simulations are performed using the backwards Euler method [46] with time step δt = 10−5 s, using N = 10 modes
and initial conditions with V0 = 50 m

s . Excitation location l and control location ℓ will be set in function of the shape of
the chosen controlled mode M (cf. Fig. 2, and [22, §II.C]).

Example 1 : frequency and damping modification

Modifying the tension T0 and/or mass density ρ, one can change the frequency of the M th mode: f∗M = M
2L

√
T∗
0

ρ∗A ,
whereas modifying the damping coefficient µ enables to damp the string quicker (active damping) or less quick (infinite
sustain).
We consider the case where the string is excited at l = 1

4L and controlled at ℓ = 3
4L. The mode M = 2 is controlled to

a reference trajectory with T ∗
0 = 1.12T0 and ρ∗ = 0.88ρ (corresponding to f∗2 = 124 Hz > f2 = 110 Hz), µ∗ = 1.5µ

(increased damping), E∗ = E (no pitch-glide modification). Control parameters κi = 0.5 · 1011 and α = 0.95 were used.
A tracking of the reference signal W ∗

2 (t) is achieved by W2(t) under the action of the control law U(t) (Fig. 5). The
spectral content of the second mode (Fig. 7) confirms that its frequency was increased to f∗2 , and that the signal is damped
more quickly.
One can observe the effects of the control law U(t) on the other modes n ̸= 2, such as the appearance of low-amplitude
harmonics in the higher-order modes, that cannot be influenced in the current control setup. Furthermore, we note that the
4th mode is not excited by the initial conditions nor by the control law U(t), as both are located at a node of this mode
(Ẇ4(0) = 0, φ4 = 0; cf. Fig. 2).
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(a) Controlled mode 2
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Figure 5: Example 1 : controlled mode 2 and control law

Example 2 : pitch-glide attenuation
A pitch glide is the nonlinear phenomenon where the frequency increases with increasing amplitude of the transverse
vibration w(z, t) of the string, because of the tension modulation expressed by the term

EA

2L

∫

Ω

(∂zw(z, t))
2 dz

in (1). This phenomenon was visible in Example 1 (Fig. 7).
In this second example, we consider the case where the string is excited at l = 0.4L and controlled at ℓ = 0.5L. The mode
M = 1 is controlled to a reference trajectory with T ∗

0 = T0 and ρ∗ = ρ (no frequency modification), µ∗ = µ (no damping
modification) and E∗ = 0.3E (pitch-glide attenuation2). Control parameters κi = 1 · 1010 and α = 0.95 were used.
A tracking of the reference signal W ∗

1 (t) is achieved by W1(t) under the action of the control law U(t) (Fig. 6). The
spectral content of the first mode (Fig. 8) confirms that the pitch-glide phenomenon is attenuated.
Again, one can observe the effects of the control law U(t) on the other modes n ̸= 1, that cannot be influenced in the
current control setup. In particular, the pitch-glide effect is increased for the second mode (and higher modes, although
their amplitude is smaller), and harmonics appear in the higher-order modes.
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Figure 6: Example 2 : controlled mode 1 and control law

Conclusions and perspectives

A tracking controller was designed, that is able to modify physical model parameters of a chosen mode of a truncated
modal model of a nonlinear Kirchhoff-Carrier string taking into account the pitch-glide phenomenon. Two use cases were
illustrated in simulation, where frequency, damping and the pitch glide-phenomenon were modified, and the effect on the
other modes was observed.
Future works include the consideration of a more realistic sensor and actuator setup taking into account their placement
[22, §II.C] and the development of an observer in order to reconstruct the state. Furthermore, robustness of the controller
against measurement noise or bad parameter estimation can be assessed.

2A reference stiffness of E∗ = 0 would correspond to a pitch-glide removal, but requires unrealistic force levels of 30 kN for U(t). This control
goal was used in the preliminary simulation shown in [1, §8.4]. An analysis of the required control power as in [22, Appendix B] is not performed here.
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Figure 7: Example 1 : time evolution and spectral content of the first 6 modes. The FFT is calculated using a Hann window
and the same logarithmic color scale is used for the (un)controlled cases of a given mode. Red dashed lines indicate the
asymptotic values of the frequencies (corresponding to the linearized string model) for mode 2 in the (un)controlled cases.
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Figure 8: Example 2 : time evolution and spectral content of the first 6 modes. The FFT is calculated using a Hann
window and the same logarithmic color scale is used for the (un)controlled cases of a given mode. Red dashed lines
indicate the starting frequencies of the pitch glide for mode 1 in the (un)controlled cases.

ENOC 2022, July 17-22, 2022, Lyon, France

429



ENOC 2020+2, July 17-22, 2022, Lyon, France

Acknowledgments

The authors thank the support of ANR project Finite4SoS (ANR 15 CE23 0007) and ANR-DFG project Infidhem (ANR 16 CE92
0028).

References

[1] Wijnand, M. (2021). Contrôle en temps fini de systèmes vibratoires hybrides couplant équations aux dérivées partielles et équations aux dérivées
ordinaires : les cas du tom et du câble pesant. PhD thesis, Sorbonne Université, Paris, France.

[2] Elliott, S. J. and Nelson, P. A. (1993). Active noise control. IEEE signal processing magazine, 10(4):12–35.
[3] Fuller, C. C., Elliott, S., and Nelson, P. A. (1996). Active control of vibration. Academic Press.
[4] Turchet, L., McPherson, A., and Fischione, C. (2016). Smart instruments: towards an ecosystem of interoperable devices connecting performers

and audiences. In Proceedings of the Sound and Music Computing Conference, pages 498–505.
[5] Boutin, H., Besnainou, C., and Polack, J.-D. (2015). Modifying the resonances of a xylophone bar using active control. Acta Acustica united with

Acustica, 101(2):408–420.
[6] Meurisse, T., Mamou-Mani, A., Benacchio, S., Chomette, B., Finel, V., Sharp, D. B., and Caussé, R. (2015). Experimental Demonstration of

the Modification of the Resonances of a Simplified Self-Sustained Wind Instrument Through Modal Active Control. Acta Acustica united with
Acustica, 101(3):581–593.

[7] Jossic, M., Mamou-Mani, A., Chomette, B., Roze, D., Ollivier, F., and Josserand, C. (2017). Modal active control of Chinese gongs. The Journal
of the Acoustical Society of America, 141(6):4567–4578.

[8] Wijnand, M., d’Andréa-Novel, B., Hélie, T., and Roze, D. (2020). Active control of the axisymmetric vibration modes of a tom-tom drum using
a modal-based observer-regulator. In EAA e-Forum Acusticum.

[9] Benacchio, S., Mamou-Mani, A., Chomette, B., and Finel, V. (2016). Active control and sound synthesis–two different ways to investigate the
influence of the modal parameters of a guitar on its sound. The Journal of the Acoustical Society of America, 139(3):1411–1419.

[10] Neubauer, P., Tschesche, J., Bös, J., Melz, T., and Hanselka, H. (2018). An active-system approach for eliminating the wolf note on a cello. The
Journal of the Acoustical Society of America, 143(5):2965–2974.

[11] Meurisse, T., Mamou-Mani, A., Caussé, R., Sluchin, B., and Sharp, D. B. (2015). An active mute for the trombone. The Journal of the Acoustical
Society of America, 138(6):3539–3548.

[12] Mounier, H., Rudolph, J., Fliess, M., and Rouchon, P. (1998). Tracking control of a vibrating string with an interior mass viewed as delay system.
ESAIM: Control, Optimisation and Calculus of Variations, 3:315–321.

[13] Rudolph, J. and Woittennek, F. (2010). Flatness-based control without prediction: example of a vibrating string. PAMM, 10(1):629–630.
[14] Zhang, F., Nagarkatti, S. P., Costic, B., Dawson, D. M., and Rahn, C. D. (1999). Velocity Tracking Control of an Axially Accelerating String and

Actuator System. In Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No. 99CH36304), volume 5, pages 4325–4330.
IEEE.

[15] Paiva, R. C., Pakarinen, J., and Välimäki, V. (2012). Acoustics and modeling of pickups. Journal of the Audio Engineering Society, 60(10):768–
782.

[16] Freed, A. and Isvan, O. (2000). Musical Applications of New, Multi-axis Guitar String Sensors. In 26th International Computer Music Conference.
[17] Weinreich, G. and Caussé, R. (1986). Digital and analog bows: hybrid mechanical-electrical systems. In ICASSP’86. IEEE International Confer-

ence on Acoustics, Speech, and Signal Processing, volume 11, pages 1297–1299. IEEE.
[18] Leroy, N., Fléty, E., and Bevilacqua, F. (2006). Reflective Optical Pickup For Violin. In International Conference on New Interfaces for Musical

Expression (NIME06).
[19] Heet, G. S. (1978). String instrument vibration initiator and sustainer. US Patent 4,075,921.
[20] Berdahl, E., Backer, S., and Smith III, J. O. (2005). If I had a Hammer: Design and Theory of an Electromagnetically-prepared Piano. In

Proceedings of the International Computer Music Conference.
[21] Donovan, L. (2018). Travelling Wave Control of Stringed Musical Instruments. PhD thesis, Queen Mary University of London.
[22] Berdahl, E., Smith III, J. O., and Niemeyer, G. (2012). Feedback control of acoustic musical instruments: Collocated control using physical

analogs. The Journal of the Acoustical Society of America, 131(1):963–973.
[23] Berdahl, E., Smith III, J. O., and Freed, A. (2006). Active damping of a vibrating string. In 2006 International Symposium on Active Control of

Sound and Vibration.
[24] Cheekati, B. and Bhikkaji, B. (2013). A negative imaginary approach to the actuation of a guitar string. Mechatronics, 23(8):997–1004.
[25] Boutin, H. and Besnainou, C. (2008). Physical parameters of the violin bridge changed by active control. In Acoustics’08, Paris, pages 7247–7252.
[26] Benacchio, S. (2014). Contrôle actif modal appliqué aux instruments de musique à cordes. PhD thesis, Université Pierre et Marie Curie – Paris

VI.
[27] McPherson, A. (2010). The Magnetic Resonator Piano: Electronic Augmentation of an Acoustic Grand Piano. Journal of New Music Research,

39(3):189–202.
[28] HyVibe (2017). Smart Acoustic Guitar, Paris. https://www.hyvibeguitar.com/.
[29] Kirchhoff, G. (1876). Vorlesungen über mathematische Physik: Mechanik. B. G. Teubner, Leipzig.
[30] Carrier, G. F. (1945). On the non-linear vibration problem of the elastic string. Quarterly of applied mathematics, 3(2):157–165.
[31] Chaigne, A. and Kergomard, J. (2016). Acoustics of musical instruments. Springer.
[32] Bilbao, S. (2009). Numerical sound synthesis: finite difference schemes and simulation in musical acoustics. John Wiley & Sons.
[33] Maschke, B. M. and van der Schaft, A. J. (1992). Port-controlled Hamiltonian systems: modelling origins and systemtheoretic properties. IFAC

Proc. Volumes, 25(13):359–365.
[34] Curtain, R. F. and Zwart, H. (1995). An Introduction to Infinite-Dimensional Linear Systems Theory. Springer.
[35] Villegas, J. A. (2007). A Port-Hamiltonian Approach to Distributed Parameter Systems. PhD thesis, University of Twente.
[36] Lopes, N., Hélie, T., and Falaize, A. (2015). Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian

systems. IFAC-PapersOnLine, 48(13):223–228.
[37] Wijnand, M., d’Andréa-Novel, B., Hélie, T., and Roze, D. (2018). Contrôle des vibrations d’un oscillateur passif : stabilisation en temps fini et

par remodelage d’énergie. In Congrès Français d’Acoustique.
[38] Falaize, A. and Hélie, T. (2016). Passive Guaranteed Simulation of Analog Audio Circuits: A Port-Hamiltonian Approach. Applied Sciences,

6(10):273.
[39] Ortega, R., van der Schaft, A., Maschke, B., and Escobar, G. (2002). Interconnection and damping assignment passivity-based control of port-

controlled Hamiltonian systems. Automatica, 38(4):585–596.
[40] Hélie, T. and Roze, D. (2016). Corde non linéaire amortie : formulation hamiltonienne à ports, réduction d’ordre exacte et simulation à passivité

garantie. In 13ème Congrès Français d’Acoustique.
[41] Haimo, V. T. (1986). Finite time controllers. SIAM Journal on Control and Optimization, 24(4):760–770.
[42] Bhat, S. P. and Bernstein, D. S. (2000). Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization,

38(3):751–766.
[43] Bernuau, E., Perruquetti, W., Efimov, D., and Moulay, E. (2015). Robust finite-time output feedback stabilisation of the double integrator.

International Journal of Control, 88(3):451–460.
[44] Canudas de Wit, C., Siciliano, B., and Bastin, G. (1996). Theory of Robot Control. Springer-Verlag.
[45] Hélie, T. and Roze, D. (2008). Sound synthesis of a nonlinear string using Volterra series. Journal of Sound and Vibration, 314(1-2):275–306.
[46] Moré, J. J., Garbow, B. S., and Hillstrom, K. E. (1980). User guide for MINPACK-1. Technical report, Argonne National Laboratory.

ENOC 2022, July 17-22, 2022, Lyon, France

430



ENOC 2020, July 5-10, 2020, Lyon, France

Non-periodic dynamics in a delay model of flute-like musical instruments

Soizic Terrien∗, Christophe Vergez†, Benoît Fabre‡ and Patricio de la Cuadra⋆⋆
∗ Laboratoire d’Acoustique de l’Université du Mans, CNRS UMR 6613, Le Mans, France

† Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR7031, Marseille, France
‡ Sorbonne Université, UMR 7190, LAM-Institut d’Alembert, Paris, France

⋆⋆ Escuela de Ingeneria-Instituto de Musica, Pontificia Universidad Catolica de Chile, Santiago,
Chili

Summary. We investigate the emergence of quasiperiodic sound regimes in a model of flute-like musical instruments. The model itself
is a system of delay differential equations of neutral type (NDDEs). We employ advanced numerical continuation methods to compute
bifurcation diagrams in the space of relevant playing and making parameters. Our results show the role played by the detuning between
the instrument resonance frequencies in the emergence of quasiperiodic regimes.

Self-sustained musical instruments are complex nonlinear dynamical systems and show a wealth of dynamical regimes.
This includes equilibrium solutions where no sound is produced and periodic oscillations which most often correspond to
the notes produced by the instrument, but also non-periodic oscillation regimes [1]. The exisence and stability of these
different sound regimes depend sensitively on making parameters which are fixed by the instrument maker and on playing
parameters which are continuously tuned by experienced players. In the context of western classical music, non-periodic
sound regimes are most of the time avoided and can be considered as a defect of the musical instrument or as a lack of
control from the musician. On the other hand, some non periodic sounds, often referred to as multiphonics, are often
played on purpose in jazz, contemporary or traditional music. Flute-like instruments in particular, show a diversity of
non-periodic sound regimes (see Figure 1). This includes multiphonic sounds played on purpose in transverse flutes and
recorders, rolling notes which instrument makers try to avoid, modulated regimes due to wall vibrations [2], but also,
e.g., sonidos rajados, a highly-modulated sound produced by traditional pan-like flutes from Central Chile [3]. Here we
consider a model of flute-like musical instrument, and investigate the physical mechanism responsible for the emergence
of non-periodic regimes.
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Figure 1: Left: Non periodic sound played by a traditional chilean pan-like flute. Middle: Non periodic simulated sound obtained using
the NDDE model of a recorder. Right: Modulus of the input admittance of an alto recorder, for the fingering used to play the note B
flat. The admittance is modelled as a sum of 6 resonant modes.

In flute-like musical instruments such as transverse flutes, recorders, quenas and organ pipes, the sound production results
from the coupling between an intrinsically unstable air jet blown by the musician and an acoustic resonator which is com-
posed of the air column contained in the pipe of the instrument [4]. Depending on the instrument, the pipe can include
several tone holes: different fingerings, corresponding to different combinations of open and closed tone holes, are used
by the musician to change the properties of the acoustical resonator, including its resonance frequencies and damping
factors. More precisely, the air pressure in the musician mouth results in the emergence of an air jet at the output of a
channel which is a part of the instrument (for recorders) or formed by the musicians lips (in transverse flutes, pan-like
flutes ...). This air jet is intrinsically unstable and oscillates around a sharp edge called labium. This oscillation results
in an alternate flow injection inside and outside the instrument pipe, which constitutes a dipolar pressure source for the
acoustic resonator. The acoustic waves thus created propagate in the acoustic resonator and perturb back the air jet at
the channel exit. This perturbation is amplified while convected along the jet, and sustains the air jet oscillation and,
as such, the sound production. Importantly, the convection time of the perturbation along the air jet introduces a delay
τ in the system, whose value is directly related to the pressure Pm in the musician’s mouth, which is one of the main
control parameter. Overall, flute-like instruments are modelled by a system of 2n delay differential equations of neutral
type (NDDE), with n the number of acoustic modes taken into account to model the resonator, as shown in Figure 1 (right).

We focus here on the theoretical investigation of this model, and use advanced numerical methods to perform a bifurcation
analysis. Because delay differential equations (DDEs) have an infinite dimensional phase space, they are more compli-
cated to solve numerically than ordinary differential equations (ODEs). In particular, specific numerical methods have to
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Figure 2: Bifurcation diagram of the NDDE flute model, showing the frequency along branches of stable (solid lines) and unstable
(dotted lines) periodic solutions, with respect to the delay τ . Black dots correspond to torus bifurcation points T, where a periodic
solution changes stability, with two complex conjugate Floquet multipliers crossing the unit circle.

be considered for the calculation and continuation of their solutions. We use here the continuation toolbox DDE-Biftool
[5, 6]. This allows for the calculation and continuation of equilibrium solutions, periodic solutions and their respective bi-
furcations in system of DDEs. More precisely, a collocation method is used to compute periodic solutions. This is coupled
to a predictor-corrector algorithm to continue the branches of solutions with respect to a parameter of interest of the phys-
ical model. Here, these numerical methods have been adapted so that the same calculations are possible for NDDEs [7, 8].

The bifurcation analysis of the NDDE model of flute-like instruments shows that multiple branches of periodic solutions
emerge in Hopf bifurcations when the main control parameter Pm increases, which corresponds to a decreasing value
of the delay τ (see Figure 2). From a musical point of view, the different branches of periodic solutions correspond to
the different registers of the instruments, that is to say to periodic regimes associated with the different acoustic modes
of the resonator. These periodic regimes have oscillation (playing) frequencies close to the resonance frequencies of the
instrument, and can be interpreted as the different notes played by a musician for a given fingering. The stability analysis
of these periodic solution show that they destabilise through torus bifurcations when the mouth pressure Pm increases
further (i.e. when τ decreases). These bifurcations can lead to stable quasiperiodic oscillations. We investigate further
the emergence of quasiperiodic regimes by performing the numerical continuation of curves of torus bifurcation in the
(Pm, ξ)-plane. Here, ξ is an inharmonicity parameter, which models the detuning between the different acoustic resonant
modes. The obtained bifurcation set demonstrates the major role played by the resonator inharmonicity on the existence
and stability of quasiperiodic regimes.

Overall, our results provide a better understanding of the physical mechanism responsible for the emergence of non
periodic sound regimes in flute-like musical instruments. They strongly suggest that experimentally-observed modulated
sound regimes can be interpreted as quasiperiodic oscillations on a stable torus, resulting from the loss of stability of
one of the registers of the instrument. The bifurcation analysis unveils the major role played by the inharmonicity of
the acoustic resonator in this process. This paves the way towards a better experimental control of non-periodic sound
regimes, which instrument makers and musicians either try to avoid or to enhance depending on the musical and cultural
context.
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Summary. Application to morphing in sound synthesis with the mutation of damping material properties leads us to introduce a class
of nonlinear damping models operating on the momentum equation of the Hamiltonian formulation of a conservative mechanical PDE;
the modal decomposition of the original linear vibrating structure is useful to analyze the preserved geometric features.

Initial conservative mechanical problem

We consider linear conservative mechanical systems, the solutions of which admit an eigen-decomposition. Typically,
they can be finite-dimensional (mass-stiff) ODE systems, or infinite-dimensional continuous problems on a bounded space
domain with homogeneous boundary conditions, governed either by the PDE (1) or by Hamiltonian descriptions (2a-2b).

PDE description
The models under consideration have the form

M(z)ẅ(z, t) +K(z)w(z, t) = f(z, t) for all (z, t) ∈ Ω× R+, (1)

with zero initial conditions, where z and t denote the space and time variables, Ω a bounded space domain, w a displace-
ment, f an external force, M a mass matrix and K a structured differential stiffness operator. Technically, we assume that
M(z) is a symmetric uniformly positive definite matrix (M ∈ L∞(Ω, S+

n ), ε Id ≤ M(z) ≤ ‖M‖L∞ Id), that K(z) is a
symmetric positive differential operator such that M−1K defines a self-adjoint operator on a Hilbert space H. In practice,
K can be a spatial operator with classical (e.g. Dirichlet or Neumann) homogeneous boundary conditions (see example).

Hamiltonian description
We also assume that this model admits a Hamiltonian description (including the excitation). The mechanical state
X = [q, p]⊺ is composed of a configuration variable q(z, t) := Jqp(z)w(z, t) (that typically encodes a geometrical de-
formation) and the momentum p(z, t) :=M(z) ẇ(z, t). The Hamiltonian is H

(
X = [q, p]⊺

)
= 1

2

∫
Ω

(
p(z)⊺Lp(z)p(z)+

q(z)⊺Lq(z)q(z)
)
dz with Lp := M−1 and Lq symmetric and uniformly positive, so that its variational derivative is

δXH(X) = LX with L := diag(Lq, Lp). The governing equation is

∂tX = J δXH(X) +

[
0
1

]
f with J (z) =

[
0 Jqp(z)

−J ∗
qp(z) 0

]
, (2a)

v = [0, 1] δXH(X), (2b)

where J = −J ∗ is skew-symmetric (Jpq = −J ∗
qp). The observation equation (2b) produces the power-conjugated vari-

able v of excitation f , and this system is power-balanced: dH(X(·, t))/dt is the sum of the external power 〈f(·, t), v(·, t)〉
supplied in Ω and that incoming through boundaries (zero for the homogeneous conditions assumed in this paper) [2].
Equation (2a) relates the efforts e = [eq, ep]

⊺ := δXH = [Lq q, Lp p]
⊺) to the flows f = [fq, fp]

⊺ := ∂tX = [q̇, ṗ]⊺.
Note that its interpretation on the displacement variable reads

fq = Jqpep −→ (Jqp ẇ) = Jqp ẇ (kinematic concordance equation) (3)

fp = −J ∗
qpeq + f −→ (M ẅ) = −J ∗

qp LqJqpw + f (momentum balance) (4)

and v = ẇ (output), so that the momentum balance corresponds to (1) with the meaningful factorization K = J ∗
qp LqJqp.

Example of a rectangular membrane
Consider a 2D membrane (z = (x, y) ∈ Ω = (0, X)× (0, Y )) with transverse displacement w [m], surface mass density

M(z) = ρ(z) > 0 [Kg/m2], tension tensor T2×2(z) [N/m] and with fixed boundaries so thatK(z) = −div
(
T2×2(z) ~grad

)

is defined on D = {w ∈ H2(Ω) s.t. w|∂Ω = 0} in (1).
For a homogeneous membrane with constant parameters ρ(z) = ρ0 and T2×2(z) = T0I2, both operators K(z) = −T0∆
and M(z)−1K(z) = −(T0/ρ0)∆ involve the standard Laplacian ∆ := div ( ~grad) = ∂2x + ∂2y defined on domain D.
In this simple case, M−1K is a Riesz-spectral operator. Its point spectrum is composed of positive eigenvalues ω2

mn with

ωmn =
√

T0

ρ0

√
(mπX )2 + (nπY )2 for integers m,n ≥ 1. These eigenvalues ω2

mn are associated with the eigenfunctions

emn(x, y) =
2√
XY

sin(mπxX ) sin(nπyY ), which are orthonormal in H = L2(Ω). The dynamicswmn(t) := 〈w(·, t), emn〉H
carried by each modal space function emn is governed by (1) projected on emn (ẅmn + ω2

mnwmn = 〈f, emn〉H). Each
ODE is associated with two poles λ±mn = ±iωmn (roots of the characteristic polynomials Pmn(λ) = λ2 + ω2

mn).
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Figure 1: Spectrograms of signals produced for: (a,b) linear damping for two sets of parameters; (c) a nonlinear damping with behaviour
"a" at high energies and "b" at low energies.

A natural Hamiltonian description is obtained by introducing the strain1 q⃗ := ⃗gradw (meaning that Jqp := ⃗grad and
J ∗
qp = −div)), the surface momentum p := ρ0∂tw and the Hamiltonian weighted by Lp = 1/ρ0 and Lq = T0 I2. Matrix

J is then given by J (z) :=
[

0 Jqp(z)
−J ∗

qp(z) 0

]
=

[
0 ~grad
div 0

]
, and J δXH = JL =

[
0 1

ρ0
~grad

T0div 0

]
is a Riesz-

spectral operator with eigenvalues λ±mn = ±iωmn and eigenfunctions E±
mn := [~qmn := ~grad emn, p

±
mn := ρ0λ

±
mnemn]

⊺.
We now look for damping that preserves the kinematics (3) and the eigenstructure of the p-subspace (modes emn).

Structured damping class: linear and nonlinear models

Modifying the governing equation (2a) as ∂tX = (J −R) δXH + [0, 1]⊺f introduces some dissipation in the system if
R(z) = R(z)∗ is symmetric positive.
In this paper, inspired by [1] and following previous work in [3, 4], we first propose the linear damping class built on the
parameters and the structure of the initial conservative system thanks to a polynomial function P with positive coefficients:

LR = Σ P
(
(LJ )∗ (LJ )

)
with Σ =

[
0qq 0qp
0pq Ipp

]
. (5)

Theorem: equation (5) defines a damping class that : (i) preserves the kinematics concordance equation (3) of the original
problem, between ∂t~q and δpH; (ii) preserves the eigenstructure of the p-subspace.
The element of the proof are the positivity of operators (LJ )∗(LJ ) and of the coefficients of P for the dissipation, the
selection matrix Σ that operates property (i), and the powers of (LJ )∗(LJ ) generated by the polynomial P for (ii). ⋄

Secondly, we generalize the previous class from linear to nonlinear dynamics, by making the positive coefficients of the
polynomial P depend on the state X(t) and using the new damping operatorR

(
X(t)

)
instead ofR: indeed, passivity and

properties (i-ii) still stem from the genuine structure (5).

Simulation for the homogeneous membrane

Three simulations of a membrane (see spectrograms of ∂tw in figure 1a-c) are performed for three damping polynomials
Pa,b,c of the operator (LJ )∗(LJ ) = T0

ρ0
diag(− ~grad div,−∆): Pa of degree 0 (fluid damping) with constant coefficient;

(b) Pb of degree 1 (fluid and structural damping) with constant coefficients; (c) an interpolation Pc = f(e)Pa+(1−f(e))Pb
for e.g. the interpolation function f(e) = tanh

√
e/e0 driven by the energy signal e(t) = H(X(t)). As a result the

damping locally behaves like (a) for energies e ≫ e0, like (b) for e ≪ e0 (including the sound extinction), building a
physically-morphed sound in-between that can be interpreted as complex or mutating materials.

Conclusion

The port-Hamiltonian setting proves useful to analyze morphing strategies applied to sound synthesis, since the geometry
of the underlying physics can be fully preserved during the transformation involving nonlinear damping models, which
are easily parameterized using polynomials.
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1we use q⃗ to mark the 2D vector on the configuration variable.
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Normal form based nonlinear modes: identification, experimental continuation and
internal resonances applied to the acoustics of chinese gongs
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Summary. This article presents several topics related to the use of nonlinear modes and normal forms to analyse and model the
vibratory response of geometrically nonlinear structures. It is first shown that the normal form theory provides a mathematically
rigorous and clear framework to exhibit the mathematical form of very reduced order models. Then, this theory is applied to model the
nonlinear vibrations of chinese opera gongs, that exhibits particular frequency glides in normal playing conditions, under an impulse
forcing at center. It is shown that at low amplitude, a single Duffing like oscillator is sufficient to precisely explain this behaviour,
due to the hardening/softening behaviour of the fundamental axisymmetric vibration mode. At larger amplitude, mode coupling are
experimentally observed, well recovered by a reduced order model reduced to a few nonlinear modes involved in a 1:2:2 internal
resonance.
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Figure 1: (left) Photograph of a chinese opera gong and the coil magnet driving system used for experimental identification; (middle)
spectrogram of the acceleration signal after a mallet strike, measured by an accelerometer glued on the gong; (right) backbone curves
of the fundamental nonlinear mode obtained from the free vibration regime after a mallet strike and from an experimental continuation
with a phase locked loop.

Chinese opera gongs take the form of an axisymmetric thin shell, such the one shown in Fig. 1(left). When the gong
is hit with a mallet at its center, a very characteristic pitch glide can be heared. This can be related to a change of the
instantaneous frequency of vibrations, that can be seen on the vibration spectrogram of Fig. 1(middle) around the natural
frequency of the fundamental axisymmetric mode. Then, the same spectrogram also shows that the second harmonics of
the vibration signals mixes with a couple of higher modes with companion asymmetric mode shapes. In this article, we
show that those two features (the pitch glide and the mode interaction) can be quantitatively recovered by reduced order
models, that take the form of a few coupled nonlinear oscillators, justified by the normal form theory applied to a generic
nonlinear modal model of the system.

Nonlinear modes and normal form

We consider an elastic structure whose displacement w(x, t) at time t and position x is expanded on a family of N
eigenmodes of the linearized and undamped model:

w(x, t) =
N∑

k=1

Φk(x)qk(t), (1)

where (ωk,Φk(x)) are the k-th natural angular frequency and mode shape. In free undamped vibrations, the modal
coordinates qk(t) satisfy the following set of coupled nonlinear equations, for all k = 1, . . . N :

q̈k + ω2
kqk +

N∑

i,j=1

βkijqiqj +
N∑

i,j,l=1

γkijlqiqjqk = 0, (2)

where βkij and γkijl are nonlinear coefficients stemming from the geometrical nonlinearities. Using normal forms, as
introduced in [9], a nonlinear polynomial change of coordinate is introduced, leading to replace model (2) by a new one,
function of the new (normal) coordinates uk(t). This new dynamical system has an important property: it involves only
resonant nonlinear terms. This property enables a rigorous and straightforward truncation strategy, divided in two cases.
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If there are no internal resonance relation between the oscillations frequencies, the resonant terms are only of cubic order
and they do not break the invariance of the oscillators. Consequently, a motion on a single oscillator (the i-th.) is possible
and takes the form:

uk = 0 ∀k ̸= i, üi + ω2
i ui + Γ1u

3
i + Γ2uiu̇

2
i = 0, (3)

where (Γ1,Γ2) are two coefficients depending on the nonlinear coefficients βkij and γkijl, that take into account the in-
fluence of all linear modes. This particular motion, linked to its invariance property, defines a nonlinear mode, whose
dynamics is governed by the single oscillator (3). The values of Γ1 and Γ2 defines the hardening or softening feature of
the nonlinear mode [9, 8].
If there is an internal resonance between some modes, the corresponding oscillators have to be kept in the dynamics and
are coupled by particular nonlinear terms. There form can be easily deduced from the internal resonance relation. For
instance, in the case of a 1:2 internal resonance between modes 1 and 2, there natural frequencies verify the relation
ω2 ≃ 2ω1 and the normal form reduced order model is:

uk = 0, ∀k ̸= 1, 2,

{
ü1 + ω2

1u1 + α1u1u2 = 0,
ü2 + ω2

2u2 + α2u
2
1 = 0,

(4)

where (α1, α2) are the coefficients of the two quadratic resonant terms [6].
If the damping is small, it’s influence on the invariant manifolds geometry can be neglected and a modal viscous damping
terms of the form 2ξkωku̇k, with ξk ≪ 1, can be added in the above models with no loss of accuracy.

Identification

If an accurate model is at hand, the values of the coefficients of the normal forms (3), (4) can be obtained from the ones
of the modal model (2) using the formula of [9] or directly from a finite-element model [5]. Another strategy is to rely
on experiments to identify those coefficients. At low amplitude and without internal resonance, we can show that the
influence of coefficients (Γ1,Γ2) on the dynamics can be embedded into a single cubic coefficient, whose sign governs
the hardening / softening behaviour of the nonlinear mode. As shown in [1, 3], this coefficient can be efficiently estimated
with an experimental backbone curve, that can be measured by experimental continuation based on a Phase-Locked Loop
(PLL). As a consequence, it is here proven that an accurate reduced order model for this low amplitude single nonlinear
mode motion is a classical Duffing oscillator. This identification procedure can be extended to measure more complex
dynamics, such those involving 1:1 internal resonance [2]. In the case of the internal resonance of Eq. (4), coefficients
(α1, α2) can be estimated by experimental forced responses, as explained in [7, 4].

Acoustics of a chinese gong

The above method can be applied to chinese opera gongs, in order to investigate and explain their particular sound.
Considering first their pitch glide, it is possible to extract from a free response in normal playing conditions the relation
between the instantaneous frequency of oscillations as a function of the amplitude. It can be shown that it matches
exactly the experimental backbone curve (Fig. 1(right)), leading to the conclusion that the characteristic pitch glide of the
Chinese opera gongs is an acoustic manifestation of the hardening / softening behaviour of their fundamental nonlinear
mode, whose frequency changes as a function of the amplitude because of the geometrical nonlinearities. Then, using a
model of the form (4) with an additional cubic term, the 1:2:2 internal resonance of Fig. 1(middle) can also be recovered
by proper estimation of coefficients (α1, α2).
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Summary. Numerical continuation using the Asymptotic Numerical Method (ANM), together with he Harmonic Balance Method
(HBM), allows to follow the periodic solutions of non-linear dynamical systems such as physical models of wind instruments. This
has been successfully applied to practical problems such as the categorization of musical instruments from the calculated bifurcation
diagrams [2]. Nevertheless, one problem often encountered concerns the uncertainty on some parameters of the model, the values of
which are set arbitrarily because too difficult to measure experimentally. In this work we propose a novel approach where constraints
based on experimental measurements are added to the system, as well as the uncertain parameters of the model relaxed. This approach
allows the continuation of the periodic solution with constraints to be performed, together with the calculation of the variation of the
relaxed parameters along the solution branch. A successful application of this technique to a physical model of a trumpet is presented
in this paper.

Physical model of the {player-trumpet} system and continuation

We consider a one-dimensional lip model, coupled to the resonator impedance described by a series of complex modes
similar to what is proposed in [2]. The coupling between the mechanical oscillator and the acoustic resonator is achieved
by a stationary Bernoulli flow equation, considering turbulent mixing in the mouthpiece with no pressure recovery. The
mechanical and acoustic equations are given in system 1, where y is the vertical lip position (y0 is the lip position at rest),
ωl, Ql, µl and b the lip mechanical parameters, sk and Ck with k ∈ [1, N ] the modal parameters of the N resonances of
the acoustic impedance of the instrument, Zc the characteristic impedance, u the volume flow, p the downstream pressure
at the input of the instrument (in the mouthpiece), and p0 the upstream (mouth) static pressure.

{
ÿ(t) + ωl

Ql
ẏ(t) + ωl

2(y(t)− y0) = 1
µl
(p0 − p(t))

ṗk(t) = ZcCku(t) + skpk(t), ∀k ∈ [1, N ]
(1)

with p(t) = 2
∑N
k=1 ℜ(pk(t)) and u =

√
2|p0−p|

ρ b · sign(p0 − p) · θ(y), where θ(y) = |y|+y
2 , b is the lip width and ρ is

the air density.

The case of a negative opening of the lips is managed by introducing the function θ(y) which enforces u = 0 if y < 0.
The modal parameters of the N modes of the impedance are extracted from the measured input impedance using the high
resolution method ESPRIT [3]. In this model, the values of the lip parameters are critical but particularly difficult to set,
as it is extremely difficult to evaluate them experimentally.
We choose to work with the Asymptotic Numerical Method (ANM) implemented in the software MANLAB [4]. This
method is based on the expansion of the solutions under the form of truncated Taylor series, providing analytical formu-
lations of the branch of solution. Recently, this method has been associated to the Harmonic Balance Method (HBM) for
the search of periodic solutions of oscillating systems [5].
One requirement of MANLAB relies on the recast of nonlinearities of the model into, at most, quadratic nonlinearities.
The complete quadratic dimensionless model can be found in [2].

Continuation with constraints

Two constraints are introduced as follows:
‖p̃‖L2 = Sγ + I, (2)

where γ = p0/PM is the dimensionless mouth pressure with PM = µlωl
2y0, S and I are constant values, and

‖p̃‖L2 = 2
∥∥∥
∑N
k=1 ℜ(p̃k)

∥∥∥
L2

.

The second constraint simply writes as follows:
f0 = F, (3)

where F is a constant value.
Adding two equations to the system requires two parameters of the model to be relaxed, that is two unknowns to be

introduced. We choose to relax QL and ζ = Zcby0
√

2
ρPM

(ζ can be seen as an “embouchure” parameter). This requires

to recast the system of equations in order to preserve the quadratic property of the model.
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Results and conclusions

Figure 1 shows the result of continuation with constraints applied to the physical model described in previous section.
In the bottom plot, the evolution of ‖p̃‖L2 with respect to γ measured on a trumpet player during a slow crescendo-
decrescendo maneuver is represented in red. A linear fit of the red curve is applied, which gives S and I (Eq. 2) and
defines the constraint on ‖p̃‖L2. The constraint on f0 is such as it remains constant and equal to the value at the initial
calculation point (about the playing frequency of a Bb4).
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Figure 1: Results from continuation with constraints. Evolution of ζ, QL, f0 and ‖p̃‖L2 with respect to the dimensionless mouth
pressure γ. In red is the evolution of ‖p̃‖L2 with respect of γ measured on trumpet player during a slow crescendo-decrescendo
maneuver.

It can be seen that the two constraints are well respected: f0 is constant with respect to γ, and ‖p̃‖L2 evolves linearly
with respect to γ (the solution branches, in blue, are superimposed with the target constraint on Fig. 1 bottom plots). The
stability of the branch was computed and the branch was found stable across the whole range of γ. The variations of
ζ and QL are represented on the two top plots. Significant variations of these two variables are observed, showing the
importance of adapting these parameters in order to match the constraints.
These results highlight the ability of the ANM to calculate the evolution of some parameters of the model while applying
some mathematical constraints to the output of the continuation calculation. By defining these constraints from exper-
imental data, this approach can be seen as an inversion method, allowing to retrieve the parameter values of the model
necessary to achieve a given performance (playing a crescendo-decrescendo at completely constant playing frequency).
This method then shows great perspectives for the parametrisation of physical models of brass instruments, as well as for
objective comparison of brass instruments.
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Musical tonality and nonlinear dynamics

Eyal Buks∗
∗Andrew and Erna Viterbi Department of Electrical Engineering, Technion, Haifa 32000 Israel

Summary. The current study is motivated by some observations of highly nonlinear dynamical effects in biological auditory systems.
We examine the hypothesis that one of the underlying mechanisms responsible for the observed nonlinearity is self-excited oscillation
(SEO). According to this hypothesis the detection and processing of input audio signals by biological auditory systems is performed
by coupling the input signal with an internal element undergoing SEO. Under appropriate conditions such coupling may result in
synchronization between the input signal and the SEO. In this talk I will present some supporting evidence for this hypothesis by
showing that some well-known phenomena in musical tonality can be explained by the Hopf model of SEO and the Arnold model of
synchronization. Moreover, some mathematical properties of these models are employed as guidelines for the construction of some
modulations that can be applied to a given musical composition. The construction of some intriguing patterns of musical harmony is
demonstrated by applying these modulations to known musical pieces [1].
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Theoretical considerations of the mechanics of whisker sensors

Eugene L. Starostin∗†, Gert H. M. van der Heijden† and Victor G. A. Goss∗
∗School of Engineering, London South Bank University, 103 Borough Rd, London SE1 0AA, UK

†Department of Civil, Environmental and Geomatic Engineering, University College London, Gower
St, London WC1E 6BT, UK

Summary. Employing elastic rod theory we study the question which forces and moments measured at the base of a mammal’s whisker
(tactile sensor) allow for the prediction of the location in 3D space of the point at which the whisker makes contact with an object. We
show that, in the case of non-tip contact, the minimum number of independent forces or moments is three but that conserved quantities
of the rod equilibrium equations prevent certain triples from giving a unique solution. The existence of these conserved quantities
depends on the shape and material properties of the whisker. For tapered or intrinsically curved whiskers there is no obstruction to the
prediction of the contact point. Our results explain recent numerical observations in the literature and offer guidance for the design of
robotic tactile sensory devices.

Introduction

Mammal whiskers (vibrissae) allow terrestrial animals to obtain information about geometrical and mechanical properties
of the environment [1]. Animal whiskers are thin flexible rods grown out of follicles and consist of dead cells; there are no
sensors along the length of a whisker. Sensing therefore relies on the detection by mechanoreceptors at the whisker base of
forces and moments induced by contact with an external object and transmitted through the elastic medium. Knowledge
of how whiskers perform their sensory functions is of interest to engineers designing artificial tactile sensors [2]. To use
such artificial whiskers in robotics, it is essential to be able to determine the location, with respect to a reference frame,
of the point along the whisker shaft at which contact with an object occurs.
If three forces and three moments (in three independent spatial directions) are measured at the (fixed) whisker base,
then a suitable mechanical model of the whisker (e.g., a 1D continuum elastic rod or beam model [3]) allows the entire
configuration of the whisker, and hence the contact point, to be determined. These six measurements, however, require an
expensive six-axis load cell. It is natural, therefore, to ask whether fewer measurements would suffice to uniquely predict
the location of the contact point.
Past studies of this contact problem have mainly focussed on the planar case, where the contact point is specified by
two coordinates [4]. Whisker configurations, especially those with intrinsic curvature, may generally be non-planar. The
whisker contact problem was numerically studied in 3D in [5]. All 20 possible combinations of triples of base forces and
moments were analysed, however no theoretical explanation of the results was given.. Here we show that the difference
in the predictive ability of triples of forces and moments is mainly caused by the existence of conserved quantities, which
arise for whiskers with certain geometrical profiles (curvature, taper, etc.).

Boundary conditions and conserved quantities

The solution of an nth-order ODE, du/ds = f(u), u ∈ Rn, s ∈ [a, b], involves n integration constants. In physical
problems a unique solution is then usually obtained by imposing n boundary conditions at s = a and/or s = b to fix
those integration constants. For a linear ODE it is a rigorous result that a unique solution is obtained if the n boundary
conditions are linearly independent. For a nonlinear ODE (or nonlinear boundary conditions) the result is only true locally
(i.e., near a given solution) and only ‘generically’, i.e., away from branching points (bifurcations) for special values of
any parameters in the equations or values imposed at the boundary. (In the special case that all boundary conditions are
specified at one end, i.e., for an initial-value problem, a unique solution is guaranteed also for a nonlinear ODE.)
A conserved quantity (first integral) of the ODE is a function of the dependent variables ui (i = 1, ..., n) whose value
is constant along solutions of the equation. The presence of such quantities may put constraints on the specification of
boundary conditions [6]. For instance, in the simple case that one of the variables itself, say uk, is a conserved quantity
and we choose the boundary condition uk(a) = c, then uk(b) = d is not a proper boundary condition at the other end:
if c and d were unequal there would obviously be no solution, while if c and d were equal there might be infinitely
many solutions (depending on the other boundary conditions). In either case the BVP is said to be ill-posed. Another,
independent, boundary condition needs to be imposed instead to obtain a locally unique solution (i.e., a solution with no
infinitesimally close solutions). It is not always a priori clear that a given ODE has one or several conserved quantities
and well-posedness of a nonlinear BVP is generally not straightforward.
Conserved quantities can be viewed as continuous symmetry properties of the ODE. A more obvious example of contin-
uous symmetry is rotational symmetry of the equations, in which case for a well-posed BVP one has to impose boundary
conditions that break the symmetry, thereby picking out one of the continuous family of solutions. Besides continuous
symmetry a BVP may also have discrete symmetry, for instance, reflection symmetry, in which case the BVP has multiple
isolated solutions. Each of these will generally be locally unique and the BVP is considered well-posed, with the solution
being globally non-unique. ‘Modes’ (i.e., eigenfunctions) in eigenvalue problems, which also occur as isolated solutions,
are other examples of globally non-unique solutions. Conserved quantities do not necessarily distinguish between such
solutions.
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Equilibrium equations for an elastic whisker
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d2
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r(L)

Figure 1: Coordinate systems for a whisker in
point contact with an object at s = s∗. For fric-
tionless contact the contact force Fn is normal
to the whisker.

We model the whisker-object contact problem by formulating a two-point
boundary-value problem using Kirchhoff rod theory [3]. Let Oxyz be an
orthogonal laboratory frame fixed at the base of the whisker (Fig. 1). The
whisker is taken to be inextensible and unshearable and to have length L.
Its centreline is denoted by r(s) = (x(s), y(s), z(s)), where s ∈ [0, L] is
arclength along the whisker, s = 0 corresponding to the base O and s = L
corresponding to the tip. Under the above assumptions we can introduce an
orthonormal material frame {d1,d2,d3} with d1 tangent to the centreline r,
i.e., r′ = d1, and d2 and d3 directed along principal axes of the whisker’s
cross-section (here and in the following a prime denotes differentiation with
respect to s). By orthonormality of the material frame there exists a vector
Ω such that d′

i = Ω × di (i = 1, 2, 3). The components of this vector
in the material frame, (ω1, ω2, ω3) =: ω, ωi = Ω · di, are the strains of the
theory, i.e., the curvatures ω2 and ω3, about d2 and d3, and the twist ω1,
about d1 [3].
The force and moment balance equations for the whisker are

F′ + ω × F = 0, M′ + ω ×M+ i× F = 0, (1)

where F = (F1, F2, F3) and M = (M1,M2,M3) are triples of force and
moment components in the material frame and i = (1, 0, 0). We assume
the linear constitutive relations: M1 = C(s)ω1, M2 = B(s)ω2, M3 =
B(s)(ω3−ω30(s)). Here, B(s) and C(s) are the bending and torsional stiff-
nesses, resp. They are not constant in the particular case of a tapered rod.
The undeformed shape of the whisker is assumed planar but may be curved with intrinsic curvature ω30(s).
Eqs. (1) imply, respectively, that F · F and F ·M are constant. If ω30 ≡ 0, then M1 = const. The Hamiltonian
H = M2

1 /(2C) + (M2
2 +M2

3 )/(2B) +M3ω30 + F1 is conserved provided B, C and ω30 are constant, i.e. the rod is
translationally symmetric in the arclength s [6].

Table 1: Triples P of measurements that give
rise to an ill-posed BVP with non-isolated so-
lutions, for various intrinsic shapes of the rod
(* stands for any of the other quantities).

rod cylindrical tapered
(M1, ∗, ∗)

straight (α, β, ∗)
(ω30 = 0) (F1,M2,M3)

(F1,Mn, ∗)
curved - -

(ω30 ̸= 0)

We assume the whisker to be fixed in both position and orientation at the
base (s = 0). At the contact point (s = s⋆ ≤ L) a normal contact force will
act from the surface of the object onto the whisker for a frictionless single-
point contact. We therefore consider the following boundary conditions:
r(0) = 0,di(0) = di,0,P(0) = P0, F1(s

⋆) = 0,M(s⋆) = 0, where
P = (P1, P2, P3) is the vector of base measurements consisting of three
components chosen from the six force and moment components. We also
introduce polar representations of the force and moment in the whisker [5].
Thus we write F2 = Fn cosα, F3 = Fn sinα, M2 = Mn cosβ, M3 =
Mn sinβ. Here Fn =

√
F 2
2 + F 2

3 and Mn =
√
M2

2 +M2
3 are the magni-

tudes of the normal force and moment components, while α and β are the
angles these components make with the material axes.
We note that three base measurements are sufficient for the well-posedness
of the tactile sensing BVP. We analyse how this well-posedness depends on
the precise choice of measured components Pi.

Summary of results

The results of our analysis are summarised in Table 1, where those combinations of force/moment measurements are listed
that are not appropriate in the design of an effective set of sensors at the base of a robotic whisker. A tapered whisker
may here be interpreted as any whisker whose B or C is not constant.
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Influence of mass on horizontal forced oscillations in oscillatory model of a young tree 
with branches 

 

 Andjelka N. Hedrih* , Djordje Jovanovic*  

* Mathematical Institute of Serbian Academy of Sciences and Arts (MI SANU) Belgrade, Serbia 
  
Summary. In this paper we analysed the influence of mass on amplitudes of horizontal forced oscillations in previously 
developed model of complex oscillatory system that resembles corymb type of inflorescence. For describing oscillatory 
behavior of this system under external force influence deflection coefficients were used. The analysis was done for the 
case of single frequency external excitation for two different values of circular frequencies. For the value 10/s for the 
external force circular frequency we obtained nonlinear correlation between amplitudes and masses. 
 
Introduction 
Plants and trees oscillate under the influence of wind. This is particularly important for young seedlings that can be 
damaged before the plant is fully rooted in the ground. Oscillations of tree stem of living trees can be studied through 
different approaches [1, 2], where it is possible to measure the natural frequencies of trees [3]. Type and structure of wood 
structure (material properties of the system that could be considered as complex oscillatory system) and characteristics of 
wind (an external force) may contribute to the damage of a tree and cause it to crack or fall. Mechanical stability of trees 
is thus a very important problem [4]. Young tree seedlings are of particular interest in urban area exposed to the wind. 
Recently we developed the model of a complex oscillatory systems that was inspired by corymb type of inflorescence 
[5]. We use this model (Fig1) to study the influence of mass of tree branches on amplitudes of horizontal forced 
oscillations at the certain points of the tree stem. 
 
Description of the model 
The system could be assumed as ideally elastic system consisting of material particles on rigid massless rods with length 

i  with the angle i  to light elastic console with length. Length of the console corresponds to the tree stem, and length 

of the massless rods to the tree branches. Material particles at the end of the massless rods correspond to the mass of the 
branch. The approximations of this system are: connections between rigid massless rods and elastic console are rigid, 
oscillations of console and system are small, tilts of tangent to elastic axis of banded console are very small and negligible, 

tilts of console cross-section during console banding according to x and y axis of cross section are very small and 

negligible. Masses of material particles are equal. System oscillates in horizontal and vertical plane. Bending stiffness of 
the elastic console is equal in horizontal and vertical plane. For describing oscillatory behavior of this system influence 
coefficients of deflection were used. Displacement influence coefficients were determined on the basis of equations of 
elastic line of console load with unit force and unit momentum. Forced oscillations of the system can be described by two 
independent subsystems of ordinary differential equations in vertical and horizontal plane. Each subsystem of ordinary 
differential equations consists of four coupled ordinary differential equations of second order in the following form: 
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Figure 1. Complex oscillatory systems that can 
be used for studding oscillations of tree with 
branches. (Taken from ref [1]. 
 

 
For oscillations in horizontal plane: 
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Where ik  and ik  are influence coefficients of deflection on cross section '' i '' under unit force 1
k

F  and under unit 

Resonant 
values 
Ωy(1/s) 

1kg 1.3k
g 

1.6k
g 

1.9kg 2.2kg 2.5kg 2.8kg 

R1 5.924 5.19
6 

4.72
4 

4.325 4.028 3.771 3.556 

R2 3.435 3.01
3 

2.68
1 

2.427 2.301 2.158 1.559 

R3 8.074 7.04
9 

6.38
3 

5.837 5.425 5.113 4.837 

Table 1. Resonant values of oscillations of the console for different 
masses of single material points (branches) 
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momentum. 1
k

M   respectively, on section ‘ k ’. For calculating the influence coefficients of deflection the bending 

stiffness of the elastic console is needed and is equal to: 
4

4r
E

y
EI

x
EI

yx
 BB

 where 
4

4r
y

I
x

I 
 is the axial moment 

of inertia of the surface of the cross-sectional area for the corresponding central axis passing through the center of the 

circle. E  is Young’s module of elasticity, r is half a diameter of the console.  
We analyze influence of mass of tree branches on amplitudes of horizontal forced oscillations at the certain points of the 
tree stem. Numerical analysis was done for the following data: E=10,7x109Pa, r=0,015m,

2 3 0.55m  , 1.5m , 

2 / 4  3 / 6  ; 5/y s  and for 10 /y s  , for different masses (from 1-3kg with step 0.3). 

 
Results 

Dependences of amplitudes of masses of material particles on their ends (branches) for two values of circular frequency 
of external force are shown on Fig.2. Graphs were obtained by calculating all the values numerically using Python 
programming language. Library numpy was used for determinant calculation, while matplotlib was used for graph 
plotting. In the Table 1. tree resonant values are shown for each mass value for which characteristic local minimum and 
maximum of amplitudes in certain point of the complex oscillatory model are obtained when circular frequency of the 
external force is 10 /y s  . 

 
 A      B 

Figure 2. A. Amplitudes of oscillations of four different points for different masses of material particles for 𝛺𝑦 = ͳͲ/𝑠. 
B. Amplitudes of oscillations of four different points for different masses of material particles for 𝛺𝑦 = 5/𝑠.  
 

Conclusions 

We analysed influence of mass on amplitudes of horizontal oscillations of a complex oscillatory model of young three with 
branches under external force with circular frequency of 5/y s   and 10 /y s  . When circular frequency of the external 

force is 5/s, which is around resonant frequencies for most of the selected masses we obtained constantly increasing 
amplitudes of forced horizontal oscillations of our complex oscillator. For the case when circular frequency of the external 
force is 10/s, amplitudes of forced horizontal oscillations of our complex oscillator have nonlinear character showing 
local maximum and minimums. Maximum amplitude for the chosen data systems is for mass 1.6 kg per branch. Absolute 
minimum of the amplitude is for mass 2.8 kg per branch. Specific combination of the parameters of the system and circular 
frequency of the external force determine the maximum amplitude of forced oscillations and it has a nonlinear character. 
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Influence of vaccination and social distancing on epidemic prevention
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Paulo, Brazil.

‡Automation and Control Laboratory, São Paulo University, Control Engineering Departament, São
Paulo, Brazil.

Summary. To analyse the effect of vaccination strategies and the reinfection or temporary acquired immunity of individuals in a
population with virus presence as well the social distancing, a variation of the SIR (Susceptible-Infected-Removable) model is proposed.
The calculation of the equilibrium points for the stability analysis of the system is performed. Two equilibrium points were found, one
disease-free and the other endemic, for which the existence conditions are discussed. The stability of the points was analysed and the
results were verified through simulations varying the parameters of vaccination, reinfection and social distancing.

Introduction

Due to technological advances, which used to take time to get from one place to another, today it travels in a matter of
hours, facilitating the risk of the appearance of a new virus quickly turning into a pandemic. The interest in studying the
modeling of infectious diseases lies in understanding the mechanisms of transmission and thus being able to establish pre-
vention policies. Mathematical modelling is useful to show the dynamics of disease spread and indicate which parameters
are relevant to guide control strategies.
One of the ways to study the spread of a disease is to establish models composed of a set of formal mathematical symbols
to relate population groups, dividing them into compartments, giving rise to compartmental models [1, 2]. These models
are an approximation of the real relationships existing in the object of study [3, 4]. For this matter, differential equations
are used that establish dynamic relationships between their states depending on the rate of infection, social isolation,
mortality, recovery, and vaccination rate [5].
These models contributed to the study of Covid-19 [6]. A disease that quickly became a serious pandemic, claiming the
lives of millions of people around the world [7]. The present work aims to analyse the influence of the vaccination rate,
as well as the influence of its effectiveness in reducing the spread of the virus.
For this, it is proposed a modification in the Susceptible - Infected - Removed (SIR) compartment model proposed by
Kermack and McKendrick in 1927 [8, 9, 10]. In this new model, social distancing, the effect of the vaccine [11, 12],
and its effectiveness in coordinated actions are considered. We want to study the influence of varying the effectiveness of
vaccination on the endemic balance [13, 14, 15], as well as the effort needed to ensure its stability.
In addition, it is intended to evaluate the influence of the model parameters on the basic reproduction number of the
infection (R0). Which measures the infectivity of a pathogen in an environment in which no one has acquired immunity
to it. With this parameter indicate the effective reproduction number (Re), exposed to the real conditions of disease
evolution and relating to the influence of variations in efficacy on vaccination strategies. The objective of the article is
to study the effects of vaccination to prevent the spread of epidemics, to determine the minimum effort of the vaccine as
well as the effect of reinfection in the disease control process.

Models Descriptions

The proposed model is a modification of the original SIR model proposed by Kermack and Mckendrick [8, 9, 10]. In this
model, the susceptible population S is infected at a rate when it comes in contact with an infected individual from I . The
effect of social distancing measures in the susceptible individuals is introduced by the parameter θ, and the subject to the
condition 0 < θ < 1 and ω is the group to which vaccination is given.
The compartment I represents the infectious population in the incubation phase prior to the onset of symptoms and this
population can be asymptomatic or symptomatic. The total population is considered constant, the mortality rate is equal
for members of all classes, µ is the mortality and birth rate assumed to be equal, β is the recovery rate, and δ is the
reinfection rate, as shown in figure 1.
The model assumes the following hypotheses:

• Fixed population;

• The ways to stop being susceptible is if a person becomes infected, if he is immunized by vaccination or by the
mortality rate;

• When the person recovers, they receive permanent immunity;

• The probability of infection is not affected by age, sex or social status;
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Figure 1: SIR model with vaccine influence, social isolation and reinfection rate.

• The birth and death rate are part of the considerations;

• All births fall into the susceptible class;

• The mortality rate is the same for all compartments and mortality is assumed to be equal to the birth rate.

• The reinfection rate demonstrates the possibility that the individual will be susceptible again.

The model assumes the following notations:
S(t) Number of susceptible individuals at time (t); I(t) Number of infected individuals at time (t); R(t) Number of indi-
viduals recovered at time (t); α probability of a susceptible individual becoming infected; β: probability of an infected
recovering; θ: social isolation rate; ω vaccination rate of the susceptible; µmortality rate; δ reinfection rate; N the death is
equal for members of all three classes, and it is assumed that the birth and death rates are equal so that the total population
is stationary.

Equations
Considering these elements, the model can be described as:





Ṡ = µN − α(1−θ)S(t)I(t)
N − ωS(t)− µS(t) + δR(t);

İ = α(1−θ)S(t)I(t)
N − βI(t)− µI(t);

Ṙ = βI(t) + ωS(t)− µR(t)− δR(t).
(1)

With constant populations:

Ṡ + İ + Ṙ = 0. (2)

consequently:

S(t) + I(t) +R(t) = N. (3)

Taking into account the population density:

s =
S

N
; i =

I

N
; r =

R

N
. (4)

By substituting ( 4) in ( 1):




ṡ = µ− α(1− θ)si− ωs− µs+ δr;

i̇ = α(1− θ)si− βi− µi;
ṙ = βi+ ωs− µr − δr;

(5)

with the initial conditions s(0) ≥ 0, i(0) ≥ 0 and r(0) ≥ 0.
Here µ is the recruitment and natural death rate, α is the effective contact rate between susceptible and infected individuals,
ω is the rate of vaccination, θ is the social isolation and δ is the reinfection rate. All the parameters are positive and for θ
the restriction considered 0 < θ < 1.

Disease-free and endemic equilibrium points
To investigate the influence of the introduction of feedback from the recovered individuals with no immunity, the equilib-
rium points from ( 5) must be determined and their stability must be discussed.
For the proposed model, there are two equilibrium points: one endemic and the other free from infection.
Disease-free equilibrium point:

• P1 (s∗,i∗,r∗) = ( µ+δ
ω+µ+δ , 0,

ω
ω+µ+δ );

Endemic equilibrium point:
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• P2 (s∗,i∗,r∗) such as:

• s∗ = ( β+µ
α(1−θ) );

• i∗ =(µ(µ+δ)(α(1−θ))+δω(β+µ)−(β+µ)(ω+µ)(µ+δ)
(α(1−θ))µ(β+µ+δ) );

• r∗ = ( β
µ+δ i

∗ + ω(β+µ)
(µ+δ)(α(1−θ );

Consequently, the existence condition for the endemic equilibrium P2 is given by

µ(µ+ δ)(α(1− θ)) + δω(β + µ) > (β + µ)(ω + µ)(µ+ δ). (6)

and obtain:

ω < µ

(
α(1− θ)
(β + µ)

− 1

)
(7)

From the analysis of the endemic point, it can be seen that to guarantee its existence, it is necessary to respect the condition
7. Analyzing this point, the minimum vaccination effort necessary to reach the point free of infection can be concluded.

Stability analysis
In order to analyse the local stability of the system, the jacobian of the model is calculated at the equilibrium points.

J =



−α(1− θ)i∗ − ω − µ −α(1− θ)s∗ δ

α(1− θ)i∗ α(1− θ)s∗ − β − µ 0
ω β −δ − µ


 .

Analyzing the Jacobian at point P1:

JP1 =



−ω − µ −α(1− θ)s∗ 0

0 α(1− θ)s∗ − β − µ 0
ω β −µ


 .

Using the mathematical tool Matlab 2015, the eigenvalues of the resulting Jacobian matrix are calculated, in order to
analyze the stability of the equilibrium point.
Eigenvalues P1:
λ1 = −µ;
λ2 = −ω − µ− δ;
λ3 = α(1− θ)s∗ − β − µ.
The stability analysis for model figure 1 presents the disease free equilibrium point and, considering the existence condi-
tion, the eigenvalues are given by: λ1 =−µ, λ2 =−ω−µ−δ and λ3 = α(1−θ)s∗−β−µ. The third eigenvalue indicates
that if (s∗ < β+µ

α(1−θ) ) the system is asymptotically stable and if (s∗ > β+µ
α(1−θ) ) the system becomes unstable indicating a

bifurcation in the parameter space.
substituting the variable s∗ for the expression calculated at the disease-free equilibrium point, we obtain:

ω >
(µ+ δ)(α(1− θ))

β + µ
− µ− δ, (8)

from 8 we can conclude the minimum necessary effort of the vaccination strategy to eradicate the epidemic.

Numerical experiments

In order to clarify the stability results obtained analytically for points P1 and P2, a series of numerical experiments were
carried out.
From the analysis of point P1 the bifurcation condition 8 is obtained for which the system can behave in a stable or
unstable way. To show this behaviour, simulations were performed by varying the values of the system parameters.
Figure 2, figure 3 show that for any initial condition, point P1 it’s stable if ω > (µ+δ)(α(1−θ))

β+µ − µ− δ .

On the other hand, when the condition ω < (µ+δ)(α(1−θ))
β+µ −µ−δ is set, the system always reaches stability at the endemic

point P2 , behaviour that is shown in figures 5, 6 and 7.
Figure 4 shows that starting from an initial condition (S,I,R)=(0.9, 0.12, 0.08), close to the equilibrium point P1, and with
parameter values α = 0.6, β = 0.6, θ = 0.1, δ = 0.2, µ = 0.01 and ω = 0.3. guaranteeing the stability condition, the P1

point is reached.
Figure 5 shows that starting from an initial condition (S,I,R)=(0.3, 0.7, 0.0), far to the equilibrium point P1, and with
parameter values α = 0.6, β = 0.6, θ = 0.1, δ = 0.2, µ = 0.01 and ω = 0.3. guaranteeing the stability condition, the P1

point is reached.
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Figure 2: disease free point.
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Figure 3: disease free point.

Figure 4: disease free point phase.

In the figure 6 shows the phase diagram of the system with the combination of parameters so that the existence of a
disease-free equilibrium point is guaranteed. Each trajectory represents a possible initial condition of the system variables
(Susceptible and Infected) and their evolution over time until reaching the equilibrium point. The arrows indicate the
direction of movement of the trajectories.
Figure 7 shows that starting from an initial condition (S,I,R)=(0.3, 0.7, 0.0), close to the equilibrium point P2, and with
parameter values α = 0.9, β = 0.3, θ = 0.1, δ = 0.2, µ = 0.3 and ω = 0.1. guaranteeing the stability condition, the P2

point is reached.
Figure 8 shows that starting from an initial condition (S,I,R)=(0.8, 0.2, 0.0), far from the equilibrium point P2, and with
parameter values α = 0.9, β = 0.3, θ = 0.1, δ = 0.2, µ = 0.3 and ω = 0.1. guaranteeing the stability condition, the P2

point is reached.
In the figure 9 shows the phase diagram of the system with the combination of parameters so that the existence of a
endemic equilibrium point is guaranteed. Each trajectory represents a possible initial condition of the system variables
(Susceptible and Infected) and their evolution over time until reaching the equilibrium point. The arrows indicate the
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Figure 5: Endemic point
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direction of movement of the trajectories.
The proposed model is intended to show that in a population where the disease has a temporary immunity character, there
is a minimum vaccination effort necessary to eradicate the disease. This result can be verified through variations in the
change in the parameters of vaccination, reinfection and social distancing.
In order for the disease-free point to be reached, a minimum vaccination effort given by the equation 8. If the vaccination
strategy does not follow this regime, the disease will remain in the population indicating endemic characteristics.

Conclusion

This paper presented a modification of the Susceptible-Infected-Removed (SIR) compartmental model proposed by Ker-
mack and McKendrick in 1927. The social distance, the effect of the vaccine, and its effectiveness in coordinated actions
were considered. In addition, the influence of variation in vaccination efficacy on the endemic equilibrium, and the effort
required to ensure its stability, were studied.
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From the analytical and numerical results, it can be said that the model has two equilibrium points, one endemic and
the other disease-free, the existence of each being given by a bifurcation condition that depends on the probability of
infection, the social distance and the recovery and infection rates. From there it is possible to find the minimum effort
necessary to prevent the epidemic from occurring.
As shown above the existence of the endemic or disease-free point depends on the value of the existence condition. The
higher the vaccination and social distancing, the faster the disease-free point will be reached.
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Summary. In this work, we study the dynamics of a vibro-impact soft capsule self-propelling in the small intestine for capsule
endoscopy through finite element modelling. Soft coating by using the super-soft silicone rubber was used to reduce the potential
damage induced by the rigid capsule on the intestine. Our studies indicate that the dynamics of the capsule becomes complex due to the
capsule-intestine interaction, and the coating’s elastic modulus and thickness may affect the performance of the capsule significantly.
Therefore, a proper selection of these coating parameters is vital for capsule design.

Introduction

The small intestine, an anatomical site previously considered inaccessible to clinicians due to its small diameter and
lengthy size, is the part of the gastrointestinal tract between the stomach and the colon as illustrated in Fig. 1(a). Since
its introduction into clinical practice twenty years ago, capsule endoscopy [1] has become established as the primary
modality for examining the surface lining of the small intestine. However, its reliance on peristalsis for passage through
the intestine leads to significant limitations [2], in particular due to the unpredictable and variable locomotion speed.
Significant abnormalities, e.g., small-bowel bleeding, may be missed, due to intermittent high transit speeds that lead
to incomplete visualisation of the intestinal surface. Furthermore, each case produces up to 100,000 still images, from
which video footage is generated, taking 30-90 minutes for the clinician to examine in its entirety. The current procedure
is considered both time-consuming and burdensome for clinicians.

Figure 1: (a) Anatomy of the gastrointestinal tract, (b) external and internal views of the rigid capsule prototype [3] and (c) cross-
sectional view of the finite element model, where the coated capsule consists of an inner mass (T-shaped magnet) vibrating and impact-
ing with the primary and the secondary constraints under external magnetic excitation and the interaction of a helical spring.

Building a reliable propulsive mechanism in a capsule (with 26 mm in length and 11 mm diameter) for active endoscopy is
a challenging task. Different propulsion methods were proposed in the past few decades for small-intestine diagnosis. The
purpose of this work is to study the dynamics of a soft capsule self-propelled in the small intestine through finite element
(FE) modelling. The self-propelled capsule developed in the Applied Dynamics and Control Lab at the University of
Exeter [3] as shown in Fig. 1(b) can progress either forward or backward driven by its internal vibrations and impacts.
Previous FE investigation [4, 5] has focused on studying the capsule-intestine interaction by using a rigid capsule made
of polyethylene. However, to reduce the potential damage caused by the rigid shell on the intestine and optimise the
capsule’s movement, super-soft silicone rubber was used to coat the capsule shell. In this work, we explored the complex
dynamics of the coated capsule moving in the lumen of the small intestine as presented in Fig. 1(c) under different coating
parameters, such as the coating’s elastic modulus and thickness.

Finite element model

FE modelling of the capsule-intestine contact was carried out by using ANSYS WORKBENCH with the consideration
of material parameter configuration, geometry, contact settings, meshing, constraints and loads. As can be seen from
Fig. 1(c), the polyethylene capsule shell was costed by the super-soft silicone rubber uniformly, and the diameter of the
coated capsule was kept as 11 mm. The inner mass made by a T-shaped magnet can move forward and backward under
the excitation of an external square-wave magnetic field. The frequency, amplitude and duty cycle ratio of the magnetic
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field were the control parameters to be tested, and the capsule was driven within a small intestine with an inner diameter
of 10 mm. If the interaction force between the inner mass and the capsule is greater than the intestinal friction, the capsule
will move either forward or backward. In the present work, we studied the influence of capsule coating’s elastic modulus
and thickness on its dynamics and progression speed and compare them with the original capsule without any coating.

Numerical results

Capsule’s progression and phase trajectories under different elastic moduli of the coating obtained from the FE model are
presented in Fig. 2. Based on our simulation, the capsule has an average speed of 14 mm/s when the elastic modulus of
the coating is 8 psi, and the average speed is 21 mm/s when the coating is increased to 10 psi. As the elastic modulus
increases to 12, 14 and 16 psi, the capsule oscillates at its original position only without any progression. According to
our observation, this was due to the fact that the intestine moved together with the capsule, so no relative movement was
generated between the capsule and the intestine. When the capsule has no coating, the average speed of the capsule is 18
mm/s. As can be seen from the phase portraits in Fig. 2, the capsule has periodic motions for all the cases. However, the
capsule cannot repeat the exact periodic motion, which is due to the asymmetric capsule-intestine interaction.

Figure 2: Time histories of displacements of the capsule (black solid lines) and the inner mass (red dashed lines) and their corresponding
phase trajectories (relative displacement versus velocity between the inner mass and the capsule) obtained for the elastic moduli of the
coating at (a) 8 psi, (b) 10 psi, (c) 12 psi, (d) 14 psi, (e) 16 psi and (f) no coating. The inner mass was driven by a square-wave excitation
with the frequency of 30 Hz, the amplitude of 0.3 N and the duty cycle of 80%. Left and right vertical blue lines on the phase portraits
indicate the impact boundaries for the secondary and the primary constraints, respectively.

Conclusions

To conclude, the coating of the capsule has a significant influence on the nonlinear motion of the capsule. With a proper
selection of elastic modulus and thickness of the coating, an optimum progression of the capsule can be achieved. Our
further studies indicate that a harder coating may lead to a greater capsule-intestine contact pressure, while a thicker
coating can reduce the contact pressure which can minimise the damage induced by the capsule on the intestine.
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Extended abstract 

When studying the response of a structure to a dynamic excitation, the modelling of energy dissipation has always been 
a challenge to the engineers. Different methodologies were set up for different kinds of problems. These include the 
modelling of friction forces, hysteretic behavior and restitution coefficients for non-linear structures. For linear structures, 
modelled with finite elements, the general practice is to use either viscous equivalent modal damping or viscous 
proportional “Rayleigh” damping. 
 
Content overview 
The first part of the paper gives a quick overview of the most usual representations of energy dissipation in dynamic 
analyses, with a particular focus on the use of a proportional Rayleigh damping and its drawbacks when applied to a linear 
but not linearly supported structure. The second part describes the “ghost” damping methodology set in place to overcome 
those drawbacks. The third part presents tests case basis on which the “ghost” damping was checked, including simple 
examples representative of a handling crane, a fuel rack and a seismically isolated building. 
 
PART 1: Representation of energy dissipation in usual engineering practices 
 
Values for modal damping are found in numerous seismic design codes around the world and they constitute the energy 
dissipation modelling basis for most applications in the industry (see references [1], [2], [3],and [5]). It has become 
common practice to try to apply these modal damping values to dynamic problems that are not solved on a modal basis. 
To do so with a finite element model, the most widely applied method consists in building a viscous damping matrix [C] 
as a linear combination of the mass matrix [M] and the stiffness matrix [K], α and β being referred to as the Rayleigh 
coefficients. This method is referred to as the Rayleigh method, after the work of Baron Rayleigh in the 1870s (see [6] in 
the references). It is possible to create a [C] matrix that produces a required given modal damping value, although for 
only two structural modes at most. 
 
For the case of linear structures, with a non linear supporting system, which will be the main focus of this paper, an 
unwanted effect of using a Rayleigh damping, even only on the linear part of the model, is that it produces damping forces 
that will spuriously limit, and ultimately stop the motion of the structure relative to its support basis. Indeed, the α[M] 
part of the Rayleigh damping matrix is predominantly diagonal. These diagonal terms, when multiplied by the velocity 
vector, produce damping forces proportional to the velocity of each node relative to the calculation referential, as 
illustrated by equation (1) for a two mass system, with a single degree of freedom for each node (UX is the displacement 
of node X relative to the calculation referential, MX the mass attached to this node). 
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Any rigid body motion of this two mass system relative to the calculation referential gives rise to non intended resisting 
damping forces. This phenomenon will be referred to as the “spurious damping of rigid body motions” in this paper. 
 
On the other hand, the β[K] part of the Rayleigh damping produces forces that are only proportional to the relative 
velocities between nodes connected by an element. As an example, if a spring of stiffness K1 connects the two masses of 
the simple system described earlier, the resulting damping forces are illustrated by equation (2). 
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These forces do represent dissipation of energy because of structural deformation, which is generally the objective 
assigned to Rayleigh damping. 
 
The inadequacy of using the α[M] part of the Rayleigh damping is known and some references can be found in regulatory 
documentations such as [1] and [2]. As a consequence, cautious engineers will only use the β[K] part and therefore loose 
the ability to properly damp the lower frequency modes of the structures. Such approach invariably results in overly 
conservative estimations of the structural responses. 
 
PART 2: Description of the ‘GHOST” damping methodology  
 
The so-called “ghost” damping methodology has been specifically developed for the case of linear structures on a non 
linear support. Its objective is to overcome the two drawbacks of the Rayleigh proportional damping method identified in 
Part 1: controlled modal damping value on only two modes and spurious damping of rigid body motions. In the case of 
non linearly supported linear systems, the non linear support is generally explicitly modelled and is itself a source of 
energy dissipation, through friction coefficients (case of a handling crane) or modelling of a hysteretic material behaviour 
(case of a seismically isolated building). The linear part is modelled by linear stiffness and mass matrices, [K] and [M], 
which remain constant throughout the calculations.  
 
The “ghost” methodology aims at producing damping forces on the linear structure which are only proportional to the 
structure deformation velocities. This is what happens with the usual Rayleigh damping for purely linear systems. To 
achieve this goal, the rigid body motion of the linear part of the model is subtracted from its overall movement when 
constructing the damping forces vectors. The form of these desired damping forces is illustrated in equation (3) for the 
two-masses-one-stiffness system described earlier.  
 

 














 



)(

)(

222

111
_

g

g
damping

UUM

UUM
F




  and   















 



)(

)(

121

211
_

UUK

UUK
F damping




  (3) 

 
The β[K] part is of the same nature as the proportional Rayleigh damping β[K] matrix. The α [M] part results in forces 
proportional to the node velocity minus the rigid body motion velocity at the node location. In this equation, UgX represents 
the displacement of node X due only to the rigid body motion.  
 
PART 3: Tests cases basis for the “GHOST” damping methodology 
 
Tests cases will be developed in the full article. 
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Conclusions 

Two drawbacks of using a classic proportional Rayleigh damping methodology in the dynamic analysis of non-linearly 
supported linear structures were highlighted: spurious damping of rigid body motions and under-damping of some major 
modes located in between the first and the last mode frequencies of interest. These drawbacks are known and the cautious 
engineer will usually make conservative assumptions to avoid the first one. The present paper describes a methodology 
to suppress the spurious damping of rigid body motion by using a “ghost” structure within a FE model and generate 
damping forces proportional to the actual structure velocities relative to its “ghost”. At the same time, different Rayleigh 
coefficients are used for different directions, in order to bring the equivalent modal damping values of the linear part of 
the model closer to the targets in each direction, often defined in the codes.  
 
References 

 
[1] ASME, (2004), “Boiler & pressure vessel code”, Section III, Division I, Appendix N, USA 
[2] ASN Guide 2/01, (2006) “Considering the risk of an earthquake when designing civil engineering structures of nuclear installations, excluding long term 

storage of radioactive waste”, Appendix I, France 
[3] IAEA Safety reports series n°28, (2003), “Seismic evaluation of existing nuclear power plants”. 
[4] Moussallam, N., Vlaski,  V. (2011). “Respective role of the vertical and horizontal components of an earthquake excitation for the determination of floor 

response spectra of a base isolated nuclear structure – Application to Gen IV reactors.” Transactions, SMiRT 21, New Delhi, India.  
[5] RG 1.61, (1973), “Damping values for seismic design of nuclear power plants”, US NRC, USA. 
[6] Strutt, J. W., Baron Rayleigh, (1877), “The theory of sound”, Volume I, Chapter V, Cambridge, United Kingdom. 

ENOC 2022, July 17-22, 2022, Lyon, France

455



ENOC 2020, July 5-10, 2020, Lyon, France

Basins of attraction for the model of rotating hub with two pendulums

Zofia Szmit∗, Nemanja Andonovski†, Stefano Lenci† and Jerzy Warmiński∗
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Summary. The goal of this paper is to study nonlinear dynamics of the system consisting of two pendulums attached to a hub rotating in
the horizontal plane. Equations of motion are derived from Lagrange equations of the second kind. Next, the equations are transformed
to the system of six first-order ordinary differential equations. Based on the set of first-order differential equationsof motion basins of
attraction are calculated. Moreover, the synchronisationphenomenon is studied in case of symmetric and nonsymmetricpendulums.

Introduction

Rotating structures have many applications in mechanical and aerospace engineering, like for example arms of industrial
robots, wind turbines, helicopter rotors and jet engines. Additionally, pendulums are very well known as a dampers for
instance in high buildings and helicopter rotor dampers. There are many publications, which are concentrated on pendu-
lums, like a paper about a model consisting of chains of nonlinear coupled pendulums subjected to harmonic excitations
[1]. Authors studied nonlinear dynamics and synchronisation phenomenon for that theoretical model, they examined an
influence of initial conditions as well as an influence of horizontal excitation on motion of the chain system. Most of
the paper about dynamics of pendulums are focused on pendulums rotating only in a vertical plane, while a different
approach is presented in [2]. Authors presented numerical results for a model of a hub with pendulums rotating in the
horizontal plane, they proved that the model is strongly nonlinear and even chaotic motion may appear. Authors linearised
the problem and solved such equations analytically for small oscillations. Whereas, analysis of basin of attraction are very
useful, specially in case of strongly nonlinear systems. They consist regions of all the initial conditions that converge to
associated attractors forward in time. Analyzing the basins of attraction we can inspect the impact of initial conditions on
the global behaviour of a dynamical system [3].
The aim of this paper is to study the dynamics and synchronisation phenomenon in a system composed of a rotating hub
with two pendulums. Basins of attractions are calculated tostudy excited vibrations of the system. Additionally, the
synchronisation phenomenon in a case of symmetric and nonsymmetric system and bifurcation scenario is study as well.

Model and equations of motion

The analyzed model consists of the two pendulums attached toa rigid hub rotating in the horizontal plane. Mathematical
pendulums are connected to the hub by joints treated as a flapping hinge with nonlinear Duffing’s type spring and a linear
viscous damper.

Figure 1: Model of the hub with two pendulums rotating in the horizontal plane; top view

The hub is described by radiusR0 and mass moment of inertiaJ0, whilemj andlj are mass and length of the pendulums,
cj is a viscous damping coefficient andkj , k∗j , k andk∗ are the nonlinear spring coefficients, wherej = 1, 2. Two types
of nonlinear springs, first type in the hinges and second typespring connecting the hub with background are used in
the model. Additionally we assume that, the hub may oscillate or rotate in the horizontal plane, while pendulums may
oscillate and also rotate around the hinge in their relativemotion. The gravity force does not influence the dynamics of
the system, because of the hub rotation in a horizontal plane. Motion of the hub is represented by angle of rotationψ,
while variablesϕj are a coordinates of relative motion of the pendulum with respect to the hub.
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The differential equations of motion are derived on the basis of Lagrange equations of the second kind and written in the
dimensionless form as shown below:

(1 + γ1 + γ2) ψ̈ + ζhψ̇ + 2
γ1
δ1
δ̇1ψ̇ + 2

γ2
δ2
δ̇2ψ̇ +

γ1
δ1

cosβ1ϕ̈1 +
γ2
δ2

cosβ2ϕ̈2

+
γ1
δ21

cosβ1δ̇1ϕ̇1 +
γ2
δ22

cosβ2δ̇2ϕ̇2 +
γ1
δ1

d

dτ
(cosβ1) ϕ̇1 +

γ2
δ2

d

dτ
(cosβ2) ϕ̇2 + κhψ + κhψ

3 = µ

ϕ̈1 + δ1 cosβ1ψ̈ + δ1
d

dτ
(cosβ1) ψ̇ + cosβ1δ̇1ψ̇ − δ1

dδ1
dϕ1

ψ̇2

− cosβ1δ̇1ψ̇ − δ1
d

dτ
(cosβ1) ψ̇ + ζ1ϕ̇1 + ω2

01ϕ1 + κ1ω
2
01ϕ

3
1 = 0

ϕ̈2 + δ2 cosβ2ψ̈ + δ2
d

dτ
(cosβ2) ψ̇ + cosβ2δ̇2ψ̇ − δ2

dδ2
dϕ2

ψ̇2

− cosβ2δ̇2ψ̇ − δ2
d

dτ
(cosβ2) ψ̇ + ζ2ϕ̇2 + ω2

02ϕ2 + κ2ω
2
02ϕ

3
2 = 0,

(1)

whereµ is external harmonic torque supplied to the hub, defined as:µ = ρ cos(ωτ). The equations of motion (1) are
strongly nonlinear and coupled by inertia and nonlinear geometric terms. First equation describes the motion of the hub,
while two other equations represent the motion of each pendulum.

Results

The set of equations have been transformed to the system of six first-order ordinary differential equations and the following
relations have been introduced:ψ = yo, ψ̇ = y1, ϕ1 = y2, ϕ̇1 = y3, ϕ2 = y4 andϕ̇2 = y5. In the numerical calculation it
is assumed that the pendulum No. 1 is slightly shorter then second pendulum. Firstly, the resonance curves and trajectories
of the system attractors are computed. Next, basins of attraction are obtained, which is very time consuming numerical
procedure.

0 2

2

0

0

y1

0 2

2

0

0

y1

0 2

2

0

0

y1

Figure 2: Basin cross-section of the hub, segment withy2−5 = 0.075 for the excitation frequency a)ω = 1.4, b) ω = 1.5 and c)
ω = 1.6

In Fig. 2 we are able to see basin cross-section for the hub, where initial states of pendulums are close to zero. For the
frequencyω = 1.4 the gray basin takes most of the area, for higher values ofω the blue basin increases significantly.
Furthermore, results on Fig. 2 shows that the motion of the hub in most of the cases converge to gray and blue attractors,
while purple attractor has impact motion of pendulums. Blue, purple and gray attractors are corresponding to periodic
motion.

Final remarks

The strongly nonlinear model of the hub rotating in the horizontal plane with two pendulums is studied. The resonance
curves and trajectories of the system attractors are computed as well as basins of attraction. The obtained results giveus
more accurate understanding of the dynamics of the analyzedmodel.
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Abstract 

High speed rotor systems mounted on gas foil bearings present bifurcations which change the quality of stability, and 
may compromise the operability of rotating systems, or increase noise level when response amplitude drastically 
increases.  The paper identifies the dissipating work in the gas film to be the source of self-excited motions driving the 
rotor whirling close to bearing’s surface. The energy flow among the components of the system is evaluated for various 
design sets of bump foil properties, rotor stiffness and unbalance magnitude. The paper presents a methodology to retain 
the dissipating work at positive values during the periodic limit cycle motions caused by unbalance. An optimization 
technique is embedded in the pseudo arc length continuation of limit cycles, those evaluated (when exist) utilizing an 
orthogonal collocation method. The optimization scheme considers the bump foil stiffness and damping as the variables 
for which bifurcations do not appear in a certain speed range. It is found that Neimark-Sacker bifurcations, which 
trigger large limit cycle motions, do not exist in the unbalanced rotors when bump foil properties follow the 
optimization pattern. Period doubling bifurcations are possible to occur, without driving the rotor in high response 
amplitude. Different design sets of rotor stiffness and unbalance magnitude are investigated for the efficiency of the 
method to eliminate bifurcations. The quality of the optimization pattern allows optimization in real time, and bearing 
properties shift values during operation, eliminating bifurcations and allowing operation in higher speed margins. 

Introduction 

Gas Foil Bearings (GFBs) are part of a promising oil-free technology in modern high-speed rotating machinery, 
distinguished for their reliability, simplicity, and environmentally friendly characteristics. Relying on a thin gas film 
building up an aerodynamic, load-carrying lubrication wedge, such bearings are self-acting and do not require any 
external pressurization. Most notably, due to the absence of solid-to-solid contact between the airborne rotor journal and 
the bearing sleeve, excessively low wear and power loss can be achieved. Several types of GFBs have been introduced 
in the past, with the most common and efficient being the bump type foil bearing. The major difference detected in 
comparison with the conventional oil bearings is the presence of a thin gas film as a lubricant, which results to building 
up an aerodynamic, load-carrying lubrication wedge and eliminates the need for external pressurization [1-4].  

During the last few decades, the potential of GFBs has been widely confirmed by a great number of successful 
applications in air cycle machines of commercial aircraft [5]. Lately, in particular as a result of insurmountable speed, 
temperature, and weight limitations of conventional rolling-element bearings, novel concepts of oil-free turbochargers 
[6], oil-free rotorcraft propulsion engines [7], and micro gas turbines [8] are gaining increasing interest. Gas foil 
bearings have been successfully used in high-speed turbomachines, and they present a remarkable reliability. As the 
stiffness of the foils is much smaller than that of the fluid film, the foil bearings can adapt to various working conditions 
through foil deformations. Owing to these advantages, foil bearings are identified as a potential alternative for oil 
bearings. If properly designed and operated, foil bearings would incur very slight wear and have a long service life [7]. 

The design of a GFB is a multi-physical problem, and the research work on GFBs follows generically scientific 
objectives which have to couple each other at most times; these are mainly a) the material development (super alloys) 
for use in the GFB components [3], b) the fluid-structure interaction including the aerodynamic lubrication problem 
(compressible flow) and the structural problem predicting the bump foil structure dynamic properties and dynamic 
behaviour [9-12], c) the nonlinear dynamics of simple or complex rotors mounted on GFBs [13-19], d) the development 
of alternative GFB configurations including also adjustable configurations and control schemes [20].  

Nonlinear dynamics of rotor-GFB systems, and its study with tools like continuation methods, is relatively new object. 
Continuation methods have been applied on the nonlinear dynamics of rotor systems on oil bearings of several types 
[21,22], and recently in GFB rotor systems as well [23]. Bifurcations of Hopf type have been investigated at both 
bearing types (with oil and gas) [24]. The strongly nonlinear aerodynamic forces render a variety of motions and 
stability quality in the system, including periodic, quasi periodic and chaotic motions. Further to that, the system has the 
potential of totally different motions even at the same operating speed, according to initial conditions and operating 
parameters, such unbalance magnitude. Dynamic systems present stable and unstable solution branches and respective 
bifurcation sets, and this is the case in rotor-GFB systems too. Nonlinear dynamics of rotor-GFB systems were mostly 
used to correlate the quality of response of the system with advances in top/bump foil structure simulation, or 
alternative models in the aerodynamic simulation. 
Further to the aerodynamic modelling and, the bump type foil modelling has been investigated during the last decades 
as its properties are directly correlated to the aerodynamic performance of the bearing. Heshmat et al. [1] introduced the 
so-called simple elastic foundation model, consisting of linear elastic uncoupled springs. No viscous damping was taken 
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into account until Peng and Carpino [9] and Ku and Heshmat [26] took into consideration the top-to-bump foil and 
bump-to-housing Coulomb friction damping. Later on, Peng and Carpino [27] introduced a 2D foil model structure 
characterized by linear stiffness and damping coefficients, while considering the elastic behaviour of the bump foil. 
Alternative approaches have been published by Lez et al. [25] and other researchers [23], where the foil bumps and their 
interaction are modelled by multi-degree freedom systems. Baum et al. [12] introduced another foil structure, consisting 
of rigid, massless, beam-like elements with one finite dimension in axial direction and no coupling of the elements in 
the circumferential one, where each bump foil is modelled by a non-linear spring and a linear damper. 

This paper aims to the insight of the local instability mechanisms, which trigger bifurcations, and drive the response of 
the system far from its elastic response (self-excited vibrations), usually close to the bearing clearance in journal 
positions and the rotor-stator clearance along the rotor. In this paper, it is found that the dissipating energy in the gas 
film should be directly correlated to the first (at lower speed) bifurcation detected in such a system, this being a 
Neimark-Sacker bifurcation in the unbalanced system, at most cases, or a period-doubling (flip) bifurcation in some 
others. Specifically, this paper benefits from the well-known lemma that self-excited motions are triggered when 
negative damping is included in the system; similar notification was made in [28] for rotors on oil bearings, under linear 
harmonic analysis. The energy flow is evaluated in this system for various design sets and this is used to an 
optimization scheme to avoid bifurcations in a certain speed range. The paper is organized as follows: 
The dynamic system of consisting of an elastic Jeffcott rotor mounted on two GFBs is composed for the autonomous 
and the non-autonomous case. The composition of the system renders a set of ordinary differential equations of 1st order 
(ODE set). The aerodynamic lubrication model and the bump foil structural model follow existing literature [12,14]. 
The authors program the pseudo arc length continuation method [29-31] with embedded orthogonal collocation method 
to provide the potential periodic solutions of the ODE set with unbalance excitation. 

Moreover, the quality of motions developed in such system is discussed evaluating the bifurcation sets, the time-
frequency decomposition of the response and Floquet multipliers, for some design scenarios and at a certain speed 
range. The energy flow is evaluated in the system during the respective periodic motions, with primary interest on the 
dissipative work of gas forces. An optimization scheme of successive polls for the two GFB design variables is 
implemented from the literature [32] and retains the dissipative work in the gas film positive in the respective speed 
range; Neimark-Sacker bifurcations are found to be eliminated in the respective speed range. However, period doubling 
bifurcations still exist at some cases, without these to drive the response at high amplitudes though. Different rotor 
stiffness and unbalance magnitude are considered in the results. The paper concludes that maximizing the dissipative 
work in the gas film does not trigger self-excited motions of the system, in a certain operating speed range, 
approximately two times wider than the respective without optimization of the GFB properties. 

Modelling and Formulation of the Nonlinear Dynamic System 

The physical model of the flexible rotor and of the gas foil bearings is presented in Fig. 1 where the symmetric rotor 
model considers the well-known Jeffcott rotor. The analytical dynamic model includes 4 DoFs for the rotor (due to 

symmetry), and the unique parameter of rotor design included in the model is the rotor’s lateral stiffness sk . The gas foil 

bearing model [2] considers linear spring and damping properties in the bump foil in the radial direction, and the key 
parameters of the gas bearing design consider the bump foil compliancef , and the pump foil damping coefficientfc as 

a function of the loss factor .     

  
 (a)                          (b) 

Figure 1: a) representation of an elastic Jeffcott rotor model with two journal masses at its ends, mounted on two gas-foil bearings;  
b) representation of the gas foil bearing configuration  

Analytical model of the gas bearing 

The assumptions introduced in the elastoaerodynamic lubrication problem are: a) isothermal gas film, b) laminar flow 
of the gas, c) no-slip boundary conditions, d) continuum flow, e) negligible fluid inertia, f) ideal isothermal gas law 
( )constantp  = , g) negligible entrance and exit effects, and h) negligible curvature ( )rR R c + . The Reynolds 
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equation for compressible gas flow under these assumptions is given in Eq. (1) [12], and it is an implicit function of 
time and of journal and top foil kinematics. 

( ) ( )3 2 3 2
p p

ph ph ph ph
x x z z x




        + =  +           
   (1) 

Analytical solution for Eq. (1) cannot be defined; a common approach to evaluate the pressure distribution is the FDM. 
The pressure domain is converted into a grid of 1, , 1Xi N= +  and 1, , 1Zj N= +  points, where i  and j  are the 

indexes in the circumferential and axial direction respectively, see Fig. 3a. 

The Reynolds equation is first rewritten defining the first time derivative of the pressure in Eq. (2a) and after some math 
in Eq. (2b). Then, the discrete Reynolds equation is defined in the grid points expressing the partial derivatives with 
finite differences. 

( ) ( )
2

3 31

2 2 2

p p
ph ph ph ph

x x z z x



         = + −           

   (2a) 

( )
2

3 31

2 2 2

p p ph
p ph ph ph

x x z z xh h h h

        = + − −          
   (2b) 

   
Figure 2a: Finite difference grid 

x zN N  

used for the evaluation of pressure 
distribution 

Figure 2b: Definition of the mean 
pressure

mp applied over bearing length

bL , and of gas forcebF with respective 

indexes. 

Figure 2c: Representation of the physical 
model; bump foil is modelled by linear 

springs and dampers. 

The dimensionless parameters of gas pressure p , gas film thickness h , spatial coordinates (circumferential and axial 
respectively) and z , time , rotating speed , and ratio / bR L = are included in the elastoaerodynamic lubrication 
problem of Eq. (1). The gas film thickness function is defined in Eq. (3) for the continuous and the discrete pressure 
domain (finite difference grid) where ( )q q =  (or ( )i iq q = in the discrete pressure domain) is the foil deformation in 
radial direction, see also Fig. 2a and Fig. 3b.  

1 cos sin , 1 cos sinj j i j i j i ih x y q h x y q   = − − + = − − +    (3) 

Boundary and initial conditions of the problem are defined in continue. Ambient pressure is assumed at the starting and 
ending angle of the foil (periodic boundary condition) in Eq. (4), in the continuous and the discrete pressure domain 
respectively. 

( ) ( ) 1, 1,, , , 2 , 1, 1
X0 0 j N jp z p z p p     += + = = =                   (4) 

Taking into account the symmetry of the lubrication problem, instead of assuming the gas pressure equal to the ambient
op  at the axial ends, ( ) ( )0 1 1p z p z= = = = , the boundary condition can be written in Eq. (5) (for the continuous and 

the discrete pressure domain). In this way the lubrication problem is solved in the half domain, reducing the evaluation 
cost severely. 

, /2 , /2 1

1/2

0, 0Z Zi N i N

z

p pp

z z
−

=

−
= =

 
    (5) 

Last, the initial conditions for the dimensionless form of the problem are defined in Eq. (6) (in the continuous and the 
discrete pressure domain). 
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( )
0

,0, , 1, 1
t

i jp z p = = =  and ( )
0

0, 0, 0
t

iq q = = =    (6) 

After evaluating gas pressure p (as ,i jp ), the nonlinear gas forces are determined in Eq. (7), where Xx = 2 / N and 

Zz = 1 / N . 

( ) ( )( )
2 1

, ,
2 20 0

1 cos 1 cos
X ZN N

B X i j i
i j

F p dzd p x z


  
= =

= − − = − −                     (7a) 

( ) ( )( )
2 1

, ,
2 20 0

1 sin 1 sin
X ZN N

B Y i j i
i j

F p dzd p x z


  
= =

= − − = − −       (7b) 

In this way the aerodynamic problem renders X ZN N  ODEs of 1st order with respect to the time derivative of the point 
pressure in Eq. (8) 

  ( ), , , , ,i j Bp= =p f p x x q q                      (8) 

The vectors x and q may be perceived as  T

j j d dx y x y=x representing the journal motion (coupled to the disc 

motion through the rotor’s equations of motion) and  T

1 1 XNq q q=q representing the foil motion (coupled to 
the journal motion through the Reynolds equation due to the gas film thickness function). 
It is important to mention that it is quite common that sub-ambient pressure arises in GFBs. The sub-ambient pressure 
can cause the top foil to separate from the bumps into a position in which the pressure on both sides of the pad is 
equalized. Heshmat et al. [1] introduced a set of boundary conditions accounting for this separation effect. More 
specifically, a simple Gümbel boundary condition is imposed, meaning that sub-ambient pressures are discarded when 
integrating the pressure in Eq. (7) to obtain the bearing force components ,B XF , ,B YF  essentially leaving the sub-

ambient regions ineffective. In terms of numerical calculations, the assumption made by Heshmat [1] can be simply 
explained as following: in case fluid pressure p  is lower than the ambient 0p , then the former should be considered 
equal to 0p and the foil deformation at these points will be zero ( )0for 1i iq p=  . 

The simplified model for the bump foil structure is depicted at Fig. 2b. The structure consists of 2XN − linear massless 
elements of stiffness fk (compliance f fa = 1 / k ) and damping fc . The springs and dampers mount the corresponding 

1XN − top foil stripes of area bx L  (or dimensionless area 1x  ), see Fig. 3b. The top foil of the bearing is not 
covering a complete cylinder; a single gap can be found at 0 =  , see Fig. 2a, where the top foil is clamped to the 
bearing housing. Therefore, the moving top foil stripes are 1XN − , see Fig. 3b. The top foil stripes are assumed to 
remain parallel to the bearing longitudinal axis during their lateral motion, therefore no axial coordinate is required for 
the top foil motion. The geometry of the foil structure and its properties, shown in Figs. 2a and 3b, render the 
dimensionless compliance ( ) ( ) ( )3 2

0 0 02 / 1 /f b rp l t v s c E = −  [14]. The motion of each of the top foil stripe is excited by 

the mean gas pressure ,m ip  acting on the top of it, creating the gas force ( )BF i , see Figs. 2b and 3b. The mean gas 
pressure ,m ip  is defined in Eq. (9) (in the continuous and discrete pressure domain respectively), for dimensional and 
dimensionless form. 

( ) ( ) ( ) ( ) ( ), , , , ,0
2 2 2

1 1 1 1
, ,

1

Z Z Z
b

N N N
L

m m i i j m i i j i j
j j jb b Z

p p dz p p z p p z p
L L N

 
= = =

= =  =  =                     (9) 

The foil stiffness and damping coefficient are given as 1/f fk =  and f fc k= for foil motion synchronous to the 
excitation. The 1XN −  ODEs that describe the radial displacement iq of the stripe i  are defined in Eq. (10). 

, , 2,3,...,f i f i m i Xc q k q p i N+ = =                  (10) 

The ODEs in Eq. (10) may be written as in Eq. (11) to be used in continue. 

  ( ), , ,i Fq= =q f q p x x                      (11) 

Analytical model of the flexible rotor 
The equations of motion for the Jeffcott rotor shown in Fig. 1 are defined in Eq. (12) for the journal and the disc, in the 
two main directions, horizontal and vertical. 
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( ) ,2
d

j s d j B X
j

m
x k x x F

m
= − +  , ( ) ,2

d
j s d j B Y

j

m
y k y y F

m
 = − +  −                  (12a) 

( ) ,d s d j U Xx k x x F= − − + ,  ( ) ,d s d j U Yy k y y F = − − + −     (12b) 

The ODEs in Eq. (12) may be written in Eq. (13), in the state space representation, to be used in continue. 

( ), , , ,R=x f p x x q q                (13) 

In Eq. (12) sk is the dimensionless shaft stiffness coefficient, and  , are dimensionless parameters defined in Eq. (14). 
2 5

5
0

36
,

j r

LR

m p c

 =          
2 2

2 5
0

36

r

R g

p c

 =               (14) 

In addition, in Eq. (12), ,U XF and ,U YF  are the dimensionless unbalance forces defined in Eq. (15a) for constant rotating 

speed , and in Eq. (15b) for linearly varying rotating speed a  =  with constant acceleration a . 

2
, cosU X rF  =  , 2

, sinU Y rF  =  , r =                 (15a) 

( )2
, cos sinU X r rF a  =  + , ( )2

, sin cosU Y r rF a  =  − , 2 / 2r a =  (15b) 

Dimensionless unbalance eccentricity /u re c = follows in this paper the ISO unbalance grades (G-grades) for low, 
medium, and high unbalance as G1, G2.5 and G6.3 correspondingly. The unbalance located in the disc is of magnitude

( )2d j uu m m e= +  at each case, and the corresponding eccentricity ue is given by Eq. (16), where the service speed of the 

system is selected at 2500rad/sr = .  

[mm] , 1, 2.5, 6.3
[rad/s]u

r

G
e G= =


                 (16) 

Composition and solution of the dynamic system 
Eqs. (8), (11), and (13) compose a coupled ODE set which is composed by the discretized Reynolds equation in theBf

equations, the foil motion in Ff equations, and the rotor motion in Rf equations. The coupled nonlinear ODE set is 
defined in Eq. (17) expressing a non-autonomous dynamic system which will be studied with respect to the bifurcation 
parameter . The ODE set is characterized as non-autonomous due to the explicit time presence in the equations of 
unbalance forces, see Eq. (15). The state vector s and the respective functions f are defined in Eq. (18). 

( ), ,= s f s        (17) 

   T T
, B F R= =s p q x f f f f      (18) 

The total number of equations in Eq. (17) (size of vector function f ) is ( ) ( )1 8X Z XN N N N=  + − + with the first term 
coming from the pressure equations, the second term coming from the foil equations, and the third term from the rotor 
equations in state space.  
The ODE set in Eq. (17) renders the time response of the physical system when time integration is applied [32]. The 
system is numerically stiff and special algorithms are applied in time integration [32]. Furthermore, the Reynolds 
equation can be reduced in size applying an order reduction method [12], improving the computational cost. The time 
integration can handle both cases of unbalance equations, for constant rotating speed or for run-up, see Eq. (15). 

An orthogonal collocation method [30] is applied for the computation of limit cycle motions produced by the ODE set 
in Eq. (17) at a constant ; Eqs. (15a) apply for unbalance forces at this case. Numerical continuation of limit cycles 
has been programmed by the authors according to pseudo arc length continuation method [29,33] with embedded 
collocation scheme [30]. The formulation of the method is defined also in Appendix A1. As the collocation method 
cannot handle non-autonomous ODE systems, Eq. (17) has to be converted to autonomous. This is achieved by 
coupling the ODE set of Eq. (17) with a two DoF oscillator, see Eq. (19), whose unique solution is a harmonic motion 
of frequency , see Eq. (20) [30]. 

( )1
2 2

N+1 N N+1 N+2 N+1 N+1 N+2s f s s s s s+= = + −  +      (19a) 

( )2
2 2

N+2 N N+1 N+2 N+2 N+1 N+2s  f = s s s s s+= − + −  +     (19b) 
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( ) ( )cos , sinN+1 N+2s s  = =        (20) 

The size of the final autonomous ODE set is 2N +  and is defined in Eq. (21) with the unbalance forces to be defined at 
constant rotating speed, in Eq. (22). 

( ),= s f s       (21a) 

   T TT T
1 2 1 2,N N N Ns s f f+ + + += =s s f f     (21b) 
2

,U X N+1F s=  , 2
, 2U Y N+F s=       (22) 

Results and Discussion 

The dynamic system defined in Eq. (19) in autonomous and in Eq. (20) in non-autonomous version is investigated on its 
potential to develop a variety of bifurcation sets with respect to the key design parameters, namely rotor stiffness sk , 

foil compliance fa , foil loss factor  , and unbalance magnitude u . In this paper, the key design parameters are 

defined within specific intervals, composing the case studies which are presented in continue. The design parameters 
follow a variation of “low”, “reference”, and “high”. This is interpreted to the rotor stiffness values 0.3,1,3sk =  

(flexible to rigid rotor), foil compliance values 0.01,0.1,1fa =  (stiff to flexible foil), foil loss factor 0.005,0.05,0.5 =  

(low to high foil damping), and unbalance magnitude ( ) ( ) ( )1 , 2.5 , 6.3u G u G u G  (low to high unbalance). A reference 

system is defined with the design parameters to be 1sk = , 0.1fa = , 0.05 = , and ( )6.3u G .  

   
(a) (b) (c) 

Figure 3: Reference system of 1sk = , 0.1fa = , 0.05 = , and ( )6.3u G  a) Transient response and continuation of limit cycles 

during run-up b) STFT of the response time history c) Floquet multipliers of the corresponding limit cycles 

   

(a) (b) (c) 

Figure 4: System of  ,s sk k− + , 0.1fa = , 0.05 = , ( )6.3u G=  a) Continuation of limit cycles, b) STFT of the response time 

history sk + , c) Floquet multipliers of the corresponding limit cycles. 

In Fig. 3a the time history of the journal motion in the vertical plane is presented together with the maximum and 
minimum values of the limit cycle at each rotating speed. It has to be clarified that the rotating speed is retained 
constant when limit cycles are evaluated, and the unbalance forces are applied with different formulas in the ODE 
system in the transient run-up and in the ODE system for constant rotating speed. A reference bifurcation set is 
established in Fig. 3a with PD, SN, and NS bifurcations to be presented. The frequency content of the time history 
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obtained during the run-up is depicted in Fig. 3b where time-frequency decomposition is applied. The Floquet 
multipliers in Fig. 3c provide information regarding the quality of bifurcations mentioned above. In Fig. 4 considers 
systems of different rotor stiffness, and two cases are presented in Fig. 4a for 3sk + = and 0.3sk − = . One may notice the 

difference compared to the reference case. Period doubling bifurcation is not noticed in this case. 

   

(a) (b) (c) 

Figure 5: System of 1sk = , ,f fa a− + , 0.05 = , ( )6.3u G= . a) Continuation of limit cycles, b) STFT of the response time 

history for fa + , c) Floquet multipliers of the corresponding limit cycles. 

   

(a) (b) (c) 

Figure 6: System of 1sk = , 0.1fa = , , − + , ( )6.3u G . a) Continuation of limit cycles, b) STFT of the response time history for 

 + , c) Floquet multipliers of the corresponding limit cycles for  + . 

   

Figure 7: System of 1sk = , 0.1fa = , 0.05 = . a) Continuation of limit cycles, b) STFT of the response time history, c) trajectory, 

Poincare map, and FFT at 0.97 = , d) Floquet multipliers of the corresponding limit cycles. 

In Fig. 5, systems of different foil compliance are considered, and two cases are presented in Fig. 5a, for 1fa + =  

(flexible foil) and 0.01fa − = (rigid foil). One may notice the different bifurcation sets compared to the reference case, 

and the previous case. The type of bifurcations are same to this at the reference case, but the speed in which they appear 
is different. 
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In Fig. 6, systems of different foil damping are considered, and two cases are presented in Fig. 6a, for 0.5+ =  (high 

foil damping) and 0.005 − =  (low foil damping). The influence of foil damping in the bifurcation set is not severe, 

compared to the reference design (see Fig. 3). 

In Fig. 7, systems of different unbalance are considered. It is worth noticing that the autonomous system of( )0u G loses 

local stability of fixed point equilibria through an Andronov-Hopf bifurcation, at similar speed where the unbalanced 
systems lose local stability through NS bifurcations. Further to that, in the unbalanced systems, the higher the unbalance 
is, the lower the speed of NS bifurcations is. Stable limit cycles close to radial clearance occur with higher amplitude in 
the balanced system, than in the unbalanced systems. In the balanced system the limit cycles of amplitude close to radial 
clearance will lose stability through a NS bifurcation at high speeds. 

Energy flow and optimization for bifurcation elimination 
The work of the bearing forces is evaluated in Eq. (23a), the work of the bump foil forces is evaluated in Eq. (23b), and 
the work of unbalance forces in evaluated in Eq. (23c). 

( ) ( ) ( ) ( )( ), ,
1 0

2
tN

B B X j B Y j cb kb
i

W F i x i F i y i W W 
= =

=  +  = +     (23a) 

( ) ( )
1 1

0

2
t xN N

f f, j j cf kf
i j

W F i q i W W
= =

=

 
=  = + 

 
  ,   ( ) ( ) ( ) ( )( ), ,

1

tN

fu U X d U Y d
i

W F i x i F i y i 
=

=  +   (23b,c) 

  
(a) (b) 

  
(c) (d) 

Figure 8: Evaluation of energy flow at the respective limit cycles for a) 3sk = , 0.1fa = , 0.05 = , ( )6.3u G  b) 1sk = , 

0.01fa = , 0.05 = , ( )6.3u G ,  c) 1sk = , 0.1fa = , 0.5 = , ( )6.3u G , and d) 1sk = , 0.1fa = , 0.05 = , ( )2.5u G . 

In Figs. 8a-d, both stable and unstable limit cycles are considered with the respective notation. At all cases, it is found 
that Neimark-Sacker bifurcations are triggered simultaneously to the reverse (from positive values to negative) of the 
dissipating work in the gas film cbW , meaning that energy is not dissipated in the gas film (when 0cbW  ) and self-
excitation takes place. The respective limit cycles for the cases in Fig. 8 can be found in the previous Section. In Figs. 
8a-d, the arrows depict the path that would be followed during the run-up of the system (time integration). 
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(a) (b) (c) 
Figure 9: Dissipated energy in the gas film in one limit cycle for various values of foil compliance fa and foil loss factor , at          

a) 0.2 = , b) 0.4 = , c) 0.6 =  

   

(a) (b) (c) 

Figure 10: Optimization of the dissipated energy in the gas film of the reference system with 1sk = and ( )6.3u G with respect to the 

foil compliance fa and the foil loss factor , at a) 0.2 = , b) 0.4 = , c) 0.6 = . 

The optimization requires the minimization of an objective function OBJ , which is defined as the inverse of dissipated 
energy in the gas film, 1/ cbOBJ W= . Starting from random input values for foil compliancefa and foil loss factor , 

the optimization pattern renders after some iterations the values offa and that maximize cbW  at every speed . The 

limit cycle is plotted in Figs. 11 and 12 with the respective values fa and   at each speed, for various design cases. 

Different rotor stiffness is considered in Fig. 11, and different unbalance magnitude applies in Fig. 12; the efficiency of 
the methodology to suppress bifurcations at a desired speed range is depicted. The operating speed range is limited by 
the limit values for the foil compliance fa and the foil loss factor , here defined as 0.01 2fa  and0.0005 10  . 

These values may be considered differently according to the design limitations in each application of the rotating 
system. Considering the bifurcations sets evaluated in Section 3.2 for various designs, Figs. 15 and 16 depict 
elimination of bifurcations in approximately double speed range. It is also worth noticing that the bifurcation-free speed 
range is limited by a secondary Hopf (Neimark-Sacker) bifurcation at all cases of design. 

   

(a) (b) (c) 
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 (d) (e)  

Figure 11: Elimination of bifurcations at a speed range for the system of ( )2.5u G and 0.1sk = , 1sk = , 3sk = a) journal motion 

limit cycles and corresponding values for b) compliancefa ,c) loss factor ,d) Floquet multipliers e) dissipating work in the gas film 

   

(a) (b) (c) 
 

 
 

 

 (d) (e)  

Figure 12: Elimination of bifurcations at a speed range for the system of 1sk =  and ( )1u G , ( )2.5u G , ( )6.3u G a) journal motion 

limit cycles, and corresponding values for b) compliancefa c) loss factor ,d) Floquet multipliers e) dissipating work in the gas film 

   
(a) (b) (c) 
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 (d) (e)  

Figure 13: Elimination of bifurcations at a speed range for the system of ( )2.5u G and 0.1sk = , 1sk = , 3sk =  a) journal motion 

limit cycles, and corresponding values for b) compliancefa ,c) loss factor d) Floquet multipliers e) dissipating work in the gas film 

   

(a) (b) (c) 
 

  

 

 (d) (e)  

Figure 14: Elimination of bifurcations at a speed range for the system of 1sk =  and ( )1u G , ( )2.5u G , ( )6.3u G  a) journal motion 

limit cycles, corresponding values for b) compliancefa ,c) loss factor ,d) Floquet multipliers e) dissipating work in the gas film 

An alternative objective function was investigated, in Figs. 13 and 14, on the potential to extend the operating speed 

range without bifurcation, at higher speeds. At each limit cycle
i

s , the highest magnitude of the Floquet multipliers was 
defined as objective function, ( )max μ jOBJ = , neglecting the one existing always at the unity circle, point( )1,0+ . In 

this way, all Floquet multipliers are retained inside the unity circle, μ 1j  . The evaluation time of limit cycles was 
lower at this case, as the computation of dissipative work is not required. However, the applicability in a real system is 
questioned as it not of the authors’ knowledge whether Floquet multipliers can be evaluated in real time. However, 
different index for stability is investigated by the authors though operational modal analysis. 

Conclusions 

The bifurcation set of a rotating shaft on gas foil bearings is presented in this paper for various design cases of rotor 
stiffness and gas bearing properties, in a certain range of rotating speed which acts as the bifurcation parameter. The 
periodic limit cycle motions are evaluated applying a pseudo arc length continuation method with embedded orthogonal 
collocation. The work of the non-conservative and nonlinear damping force of the gas film is evaluated at each limit 
cycle motion, even when unstable, as the collocation method allows for this possibility. The dissipative work of the gas 
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film forces is found to be correlated to the self-exciting mechanism which triggers bifurcations of the solution branches 
for elastic unbalance response (stable motion). The loss of this local stability (through Neimark-Sacker bifurcation) 
occurs simultaneously with the reversal in the energy flow in the gas film, meaning that the dissipative work changes 
sign when the NS bifurcation takes place. At each limit cycle, an optimization pattern utilizing successive polls is 
applied to maximize the dissipated work in the gas film, defining the values for bump foil stiffness and damping, and 
thus avoid bifurcations according to the previous notation. The optimization pattern reveals that bifurcations are 
avoided when reducing the foil stiffness, doubling the operating speed range without bifurcations to take place. The 
procedure is repeated for several design scenarios of rotor stiffness and unbalance magnitude, and similar efficiency is 
noticed regarding bifurcation elimination. Research on design solutions to implement the change of foil damping and 
stiffness in a real system belongs to ongoing work. 
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Why does the tippedisk invert? Theory and experiments

Simon Sailer and Remco I. Leine
Institute for Nonlinear Mechanics, University of Stuttgart, Stuttgart, Germany

Summary. The Tippedisk is a mechanical-mathematical archetype for a peculiar friction-induced inversion phenomenon

that occurs when the disk is spun rapidly about an in-plane axis, with the center of gravity rising counterintuitively as

the orientation of the disk inverts. To qualitatively understand the dynamical behavior of the tippedisk, a nonlinear

analysis is performed leading to a singularly perturbed structure of the system equations. Application of singular

perturbation theory implies the study of the long-term behavior on a two-dimensional slow manifold, which finally allows

to qualitatively explain the non-intuitive inversion behavior. Due to the technical simplicity of the system, the pronounced

nonlinear behavior can be easily compared with real experiments.

Introduction

In the scientific research community, there are various gyroscopic systems which are interacting with a frictional
support, such as Euler’s disk [1], the rattleback [2], the tippetop [3], and the nonlinear dynamics of rolling
basketballs [4]. Because of their technical simplicity, these systems lead to low-dimensional system equations
that are ideally suited for the application of nonlinear dynamics theory. The tippetop [5, 6], as well as
the related dynamics of spinning eggs [7], correspond to a subclass of gyroscopic systems, which show a
counterintuitive rise of the center of gravity (COG), caused by friction-induced instability phenomena. This
behavior is counterintuitive since the potential energy increases with the height of the center of gravity, which
can be observed directly by eye. The decrease in kinetic energy, on the other hand, can not be detected
without measurement because the change in spinning speed is relatively small. The tippedisk, being basically a
rigid eccentric disk, was introduced in [9] as a new mechanical-mathematical archetype for a peculiar friction-
induced inversion phenomenon that exhibits inversion behavior when rotated rapidly about an in-plane axis, see
Fig. 1. The mechanical model derived in [9] forms the basis for the following analysis and was reduced in [10],
accompanied by a local stability analysis. We aim to conduct an in-depth stability analysis for the tippedisk

Figure 1: Tippedisk: stroboscopic sequence of the inversion phenomenon.

in order to qualitatively understand the global behavior. In an experimental setup, the qualitative dynamics of
the mathematical model can be compared with the dynamic behavior of the real system.

Mechanical model

In [10] a minimal mechanical model was derived, which is able to describe the inversion phenomenon of the
tippedisk. The mechanical system consists of an infinitely thin unbalanced disk, with mass m, radius r and
eccentricity e. The simplest way to design such a disk, where the COG and the geometric center G do not
coincide, is to take a homogeneous disk and to drill a hole (remove mass) at an arbitrary point, which does
not coincide with the geometric center G of the disk. As the tippedisk does not detach during inversion, the
unilateral constraint at the contact point C can be equivalently replaced by a bilateral one. In Figure 2, the
mechanical model is shown.
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The body-fixed B-frame is attached to the disk, such that
eB

z lies perpendicular to the surface of the disk. The eB
x -

vector is defined as the normalized vector of rGS , which
points from the geometric center G to the center of gravity
S. To describe the contact point C, we introduce the
grinding G-frame, in which rGC = −r eG

y holds. The
comparison with a quaternion based model implies that
Euler angles α, β and γ, in common z-x-z-convention, are
sufficient to describe the inversion phenomenon of the disk,
see [9]. The angle α corresponds to the spinning angle,
which describes the rotation around a vertical eI

z-axis. The
inclination of the disk is measured by the inclination angle
β, while γ describes the rolling angle of the disk.

Figure 2: Mechanical model: tippedisk

Dimensions

The dimensions of the considered specimen can be found in Fig. 3 and Table 1. In the previous works [9, 10, 11],
the inertial properties were approximated by an assumed density and simplified geometry. In order to ensure
better comparability between simulation and experiment, a more exact calculation of the mass and inertia
properties is performed here. Therefore, the mass m = 0.425 kg of the considered specimen was measured
directly on a calibrated scale.

Figure 3: Geometry of the tippedisk

Table 1: Dimensions of the tippedisk

Property Parameter Magnitude Unit

Disk radius r 0.045 m
Hole radius a 0.015 m
Distance b 0.02 m
Disk height h 0.01 m
Volume V 5.359 · 10−5 m3

Table 2: Mass properties of the tippedisk

Property Parameter Magnitude Unit

Mass m 0.425 kg
Density ρ 7930 kg/m3

Eccentricity e 2.64 · 10−3 m

BΘG(1, 1) A 0.233 · 10−3 kg m2

BΘG(2, 2) B 0.211 · 10−3 kg m2

BΘG(3, 3) C 0.437 · 10−3 kg m2

In Fig. 3 it is shown that the radius

R(z̄) = r − h

2
+

√


h

2

2

− z̄2 (1)

of the rounding depends on the z̄ coordinate. Under consideration of this rounded edge, the volume yields a
triple integral

V = πh(r2 − a2) −
2π∫

0

+ h

2∫

− h

2

r∫

R(z̄)

r̄ dr̄dzdϕ (2)

and, after a little algebra, the corresponding solution for the total volume V of the disk is given as

V = πh(r2 − a2) + π


h

2

2 
5

3
− π

2



h + (π − 4)r



= 5.359 · 10−5 m3. (3)
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Assuming a homogeneous material, the specific mass density is equal to the relation ρ = m
V

of weighed mass

m and calculated total volume V , yielding ρ = 7930 kg
m3 . With this density ρ and the dimensions of the

unbalanced disk, the inertia properties are calculated with sufficient accuracy using the commercial CAD
software ‘SolidWorks’ and are listed in Table 2.

Singularly perturbed equations of motion

In [10] a reduction of the full model equations was derived to reduce the dimension of the state-space. It turned
out that the horizontal position of the COG can be neglected during the inversion process. The spinning speed
Ω = α̇ changes only slightly and therefore can be set approximately constant, which allows to introduce the
spinning speed Ω as bifurcation parameter.
Defining the new minimal coordinates z = [β, γ]T and the scalar1 minimal velocity v = β̇, the dynamic behavior
under longitudinal rolling of the disk is completely described by the system of equations

ż = B(z)v + β(z)

M(z)v̇ − h(z, v) = −µmg

ε
wyγy,

(4)

with B(z) = [1, 0]T and β(z) = [0, −Ω cos β]T defining the kinematics. The mass matrix M and the vector of
gyroscopic and gravitational forces h are given as

M = A cos2 γ + B̄ sin2 γ + m(r + e sin γ)2 cos2 β, (5)

and
h = +(A cos2 γ + B̄ sin2 γ)Ω2 sin β cos β

− 2(A − B̄)Ωβ̇ cos β sin γ cos γ

+ m(r + e sin γ)2β̇2 sin β cos β

+ me(r + e sin γ)Ω2 sin β cos3 β sin γ

− me(r + e sin γ)(3 sin2 β − 2)Ωβ̇ cos β cos γ

− mg(r + e sin γ) cos β,

(6)

where the auxiliary variable B̄ := B − me2 has been used. The right-hand side contains the generalized force
direction

wy = (r + e sin γ) sin β, (7)

and the lateral sliding velocity

γy = (r + e sin γ)β̇ sin β − eΩ sin2 β cos γ. (8)

The friction and smoothing coefficients are assumed to be µ = 0.3 and ε = 0.1 m
s . A more detailed derivation of

the reduced equations of motion can be found in [10].

According to [11], the dynamics of the tippedisk must be considered on two different timescales, as Eq. 4 yields
a singularly perturbed structure. Introducing the slow variables x = [β, γ]T and the fast variable y = η = β̇,
we obtain the singularly perturbed dynamical system

ẋ = f(x, y)

ε ẏ = g(x, y; ε) = g0(x, y) + g1(x, y) ε,
(9)

with

f(x, y) =


η

−Ω cos β



∈ R2, (10)

g0(x, y) = −M−1µmg wy(x)γy(x, y) ∈ R, (11)

and
g1(x, y) = M−1h(x, y) ∈ R, (12)

by normalizing and pre-multiplying Eq. (4) with the ‘small’ smoothing coefficient ε > 0 of the friction law, cf.
[12]. The fast subsystem is then given as

ε ẏ = g(x, y; ε) = g0(x, y) + g1(x, y) ε. (13)

1Although the minimal velocity is scalar, we stick to vector notation and write v to keep the singularly perturbed equations of
motion in a general, mechanical structure.
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For ε = 0, the fast dynamics degenerates to the algebraic equation g0(x, y) = 0, which, according to Eq (11),
states that the relative velocity γy(x, y) vanishes, i.e., the contact point of the tippedisk is in a state of pure
rolling. Since the relative lateral sliding velocity γy(x, y) depends linearly on the fast variable η = β̇, the critical

manifold exists globally since the Jacobian ∂g0

∂y

∣
∣
x,y

is invertible. The corresponding critical manifold Mc is
given as

Mc :=

{

(x, y) ∈ R3♣ y = hc(x) =
e sin β cos γ

(r + e sin γ)
Ω , x ∈ R2

}

, (14)

being the zero order approximation of the slow manifold, which is given up to orders O(ε2) as

Ms :=

{

(x, y) ∈ R3♣ y =
e sin β cos γ

(r + e sin γ)
Ω + h1(x)ε + O(ε2) , x ∈ R2

}

, (15)

with

h1(x) =
∂g

∂y

∣
∣
∣
∣

−1

x,hc


∂hc

∂x

∣
∣
∣
∣
x

f(x, hc) − g1(x, hc)



. (16)

The stability of the slow manifold, characterized by the distance dynamics

d′ =
∂g0

∂y

∣
∣
∣
∣
x,hc

d, (17)

is asymptotically stable, since the Jacobian

∂g0

∂y

∣
∣
∣
∣
x,hc

= −M−1µmg (r + e sin γ)2 sin2 β (18)

is strictly negative for all β ∈ (0, +π), i.e., in a basin of attraction the orbits are attracted by the invariant
manifold Ms. Therefore, the asymptotic behavior of attracted solutions is governed by the reduced two-
dimensional system

hs(x) ≈ hc(x) + εh1(x)

ẋ = f (x, hs(x)) ,
(19)

neglecting orders O(ε2).

Qualitative dynamics of the tippedisk

According to the simplification of the systems equations, performed in [10], and the singularly perturbed
structure, discussed in [11], the qualitative dynamics of the tippedisk can be analyzed in the β-γ-space. Within
this representation, we must first characterize the stationary spinning states of the disk, namely ‘non-inverted’
and ‘inverted’ spinning. Figure. 4 shows the two possible stationary spinning solutions of the tippedisk.

With respect to the chosen parametrization of
the disk, the non-inverted stationary spinning
corresponds to the point (β = + π

2 , γ =
− π

2 ). Inverted spinning is characterized by
(β = + π

2 , γ = + π
2 ). Due to trigonometric

ambiguity, both stationary spinning solutions
occur with 2π periodicity in the rolling angle
γ, i.e., the point (β = π

2 , γ = + 3π
2 ) can

be also identified as non-inverted spinning
equilibrium. During the inversion, the disk
remains almost in a vertical plane, so the
inclination can be restricted to the interval
β ∈ [ π

3 , 3π
4 ].

Figure 4: Stationary spinning solutions of the tippedisk

According to the linear stability analysis of [10], the equilibrium corresponding to ‘non-inverted spinning’ is
unstable for any spinning speed Ω. The stability of ‘inverted spinning’ solutions is characterized by a supercritical
Hopf-bifurcation at the critical spinning speed Ωcrit, being approximately given in closed-form as

Ωcrit =

√

(r + e)2

r

mg

B − me2
= 30.21

rad

s
. (20)

At slow spinning speeds Ω < Ωcrit, the inverted spinning of the disk is unstable, and stable at supercritical
spinning velocities Ω > Ωcrit. Following [11], the dynamical behavior on the slow manifold Ms is shown in
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Figure 5: Qualitative dynamics in (β, γ)-plane: Solutions which are depicted in gray are initialized at the corresponding black
cross and are obtained by time integration over the time span ∆t = 10 s. Stable periodic solutions (red) originate from numerical
shooting.

Fig. 5, using the corrected mass and inertia properties from Table-2. To study the dynamical behavior, we
assume that the angular velocity α̇ = Ω is constant, which identifies the bifurcation parameter Ω and leads
to a foliation of the state-space. The evolution of solutions for different spinning speeds Ω are shown in β-γ-
space, Fig. 5. Two unstable ‘non-inverted spinning’ configurations correspond to the points (β = π

2 , γ = − π
2 )

and (β = π
2 , γ = 3π

2 ) and are shown in light blue. The inverted configuration is characterized by the dot
at (β = π

2 , γ = π
2 ). Unstable inverted spinning is indicated by a blue dot, stable inverted spinning by a red

dot. At time t0 = 0 s, two solutions are initialized at the black crosses at x1
0 = (β = π

2 , γ = − π
2 + 0.1) and

x2
0 = (β = π

2 , γ = π
2 + 0.4) for each subfigure. The resulting trajectories are shown as gray curves. For Ω < Ωh,

solutions are repelled by the inverted spinning equilibrium (Fig. 5a). At Ωh ≈ 29.3 rad
s , a periodic solution (with

period time T = ∞) arises connecting two non-inverted stationary spinning solutions (Fig. 5b). This connection
can be interpreted as two heteroclinic connections because two different equilibrium points (β = π

2 , γ = − π
2 ) and

(β = π
2 , γ = 3π

2 ) are connected. From a physical point of view, this connection can also be called a homoclinic,
since both connected points describe inverted spinning. If the spinning speed is increased but still subcritical,
i.e., Ωh < Ω < Ωcrit holds, solutions are attracted by a stable periodic orbit that shrinks with increasing spinning
velocity Ω (Figs. 5c-5e). Due to the supercritical Hopf-bifurcation, the periodic solution vanishes at Ωcrit. For
supercritical spinning speeds, i.e., Ω > Ωcrit, the inverted spinning equilibrium is stable (shown as red dot), so
that the solutions converge asymptotically to the inverted spinning configuration (Fig. 5f), which qualitatively
explains the inversion phenomenon.

Experiments

In order to verify the validity of the qualitative dynamics of the tippedisk, presented in [11], preliminary
experiments were performed. This was done with the help of an object tracking system that combines the
measurements of six high-speed cameras, each of which records the movement of the disk from a different
angle and at 500 frames per second. Figure 6a, shows a post-processed image of one high-speed camera with
different marker frames. In Figs. 6b and 6c, the spinning angle α and the projection of the state onto the
β-γ-plane are shown for four different runs, each starting with a different initial spinning velocity Ω∗

i and all
initialized near non-inverted spinning motion. With time, the spinning speed Ω, which is the time derivative
of the spinning angle α, gradually decreases due to dissipation caused by frictional forces. The black and the
dark gray trajectories belong to very fast spinning speeds and quickly settle near the inverted spinning motion.
The gray trajectory is at an intermediate initial spinning speed Ω∗

3 and is reminiscent of the periodic limit cycle
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Why does the tippedisk invert? Theory and experiments

Ω∗
1 ≈ 68 rad

s Ω∗
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s

(a) Example of one processed
high-speed video.
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(b) Experimental obtained evolution of
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(c) Experimental obtained dynamics
projected into the β-γ-space

Figure 6: Experiments of the tippedisk. All solutions are starting in the neighborhood of non-inverted stationary spinning at
different initial spinning speeds.

between heteroclinic and Hopf bifurcation. Finally, the light gray trajectory appears to be qualitatively close
to the heteroclinic connection. The measurements seem to agree with the qualitative behavior of the reduced
model derived in [11]. Comparing the spinning speeds, the initial rotational velocity Ω∗

i does not match the
magnitude of the bifurcation parameter Ω of the reduced model, with similar qualitative inversion behavior.
This discrepancy seems to be due to the decrease in angular velocity and needs to be analyzed in future research.

Conclusions

In this work, the dynamic analysis of the tippedisk was studied based on a minimal mechanical model that
contains the relevant effects and is able to describe the inversion phenomenon of the tippedisk. Consideration
of the singularly perturbed structure allows the dynamics to be reduced to a two-dimensional system, so that
the origin of the inversion phenomenon can be studied in the corresponding reduced system. An in-depth
analysis suggests a bifurcation scenario in which a heteroclinic bifurcation accompanied by the emergence of
an attractive periodic solution is followed by a supercritical Hopf bifurcation in which this periodic solution
disappears. Closed-form expressions approximately characterize the associated critical spinning velocity Ωcrit.
When the corresponding bifurcation point is crossed, the inverted configuration becomes stable and subsequently
attracts almost all solutions. Preliminary experiments shown in Fig. 6 support the results of the qualitative
analysis from [11] of the reduced model derived in [10]. By studying the mechanical system at all model
levels and in conjunction with experimental observations, the nonlinear behavior of the tippedisk can finally be
understood and the magic behind the phenomenon of inversion revealed.
Therefore, the tippedisk forms a wonderful archetype system for friction-induced instabilities, linking analytical
and nonlinear dynamics with applied mechanics and allowing the comparison of the qualitative behavior of a
mechanical model with experiments on a real specimen.
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 Effect of Nonlinear Electromechanical Coupling in Implanted Middle Ear  
 
 Rafal Rusinek*, Krzysztof Kecik*, Andrzej Mitura* 

*Department of Applied Mechanics, Lublin University of Technology, Poland 
  
Summary. The nonlinear electromechanical coupling between the middle ear structure and the implantable hearing device is analysed in 
order to explain combined dynamics of human middle ear, body of an implant and electric circuit that powers the implant. Numerical 
simulations of a lumped mass model shows harmonic, subharmonic and even chaotic vibrations for chosen range of excitation frequency. 
Keywords: middle ear implant; implantable middle ear hearing device; electromechanical coupling 

Introduction  

Probably more than one third of people over 65 years of age suffer from clinically significant hearing deficits. Only a 
mild to moderate hearing loss can be improved by conventional hearing aids. Patients with hearing loss of 
approximately 50 to 90 dB may receive greater benefit from other, more technologically advanced devices such as 
implantable middle ear hearing devices (IMEHDs shown in Figure 1a). IMEHDs can be used for both conductive and 
sensorineural hearing loss, therefore they are becoming more and more popular nowadays. A typical IMEHD consists 
of three parts: a microphone, a signal processor and a floating mass transducer (FMT) [1,2,3]. The literature of the 
subject usually reports clinical studies on the application of IMEHDs in various medical cases. The effect of mass 
loading the ossicles with a FMT, an influence of different coupler types and various techniques of FMT implantation 
are investigated. However, widespread clinical research does not go together with theoretical investigation. 
Undoubtedly, there is a lack of biomechanical model that could explain the behaviour of the human middle ear with an 
implant and especially an influence on mechanical part of the system on electrical circuit and vice versa. Therefore 
here, a nonlinear electromechanical coupling between the middle ear structure and the IMEHD is analysed. 
 

Results and Discussion 

The model of implanted middle ear (Figure 1b) consists of three masses that represent the malleus (mM), the incus (mI) 
and the stapes (mS). The masses are connected to each other and to the temporal bone by the joints (IMJ – the incudo-
malleal joint, ISJ – the incudostapedial joint) and ligaments (AML – the anterior malleal ligament, PIL – the posterior 
incudal ligament, AL – the annular ligament). Damping and stiffness properties of the elements are denoted as c and k, 
respectively, including the cochlea (cc and kc ), and the tympanic membrane (cTM, kTM). The stapes is excited by the 
FMT consisting of a magnet (Mm) suspended in a metal case (Mc) with dashpots (cm) and springs (km). The magnet is 
moved by electromagnetic field generated by an electrical circuit with resistance R and conductance L supplied by a 
voltage source U(t). EEM denotes the electromotive force that generates an electro dynamic force (P) acting in the 
mechanical subsystem. The FMT is fixed to the incus long process with a clip whose linear damping and stiffness 
coefficients are denoted as cCLIP, kCLIP. The electromechanical coupling is described as 𝛼𝛼. 
 
(a) 

 

(b) 

 
 

Figure 1: Schematic view of the middle ear with a floating mass transducer (a), lumped mass model of implanted middle ear (b). 
 
Then, the governing differential equations of the IME are as follows 
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Figure 2: Bifurcation diagrams of stapes motion (a),  magnet motion (b) with positive value of maximal Lyapunov exponent (blue). 
 
The results of numerical simulation are presented in Figure 2 as bifurcation diagrams, where Figure 2a presents stapes 
motion while Figure 2b – motion of the magnet. Both, the stapes and the magnet exhibit regular and chaotic vibrations 
depending on excitation frequency. 

Concluding Remarks 

Electromechanical coupling between the electrical circuit and the mechanical part of the implanted middle ear strongly 
influences system dynamics causing harmonic, subharmonic and even chaotic vibrations for chosen range of excitation 
frequency. 
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Multiplicative Road Models with Bounded Realizations  
Applied in Non-Linear Vehicle Road Dynamics 

 
 Walter V. Wedig*  

*KIT-Karlsruher Institut für Technologie, Karlsruhe, Germany  
  
Summary. Multiplicative road models generate stationary vehicle excitations which are distributed similar to Gaussian processes but 
bounded in any given range by means of suitable nonlinearities. For increasing multiplicative noise, the nonlinear process becomes 
uniformly distributed and change to sinusoidal distributions for growing noise intensities. Both, the multiplicative and sinusoidal roads, are 
applied to excite quarter car models with one degree of freedom in order to work out the dynamical behavior and stability of vehicle road 
systems and to discuss them in comparison with classical ground excitations by means of Gaussian models or harmonic wave roads.   
 

1. Introduction to vehicle road dynamics 

To introduce basics of vehicle road dynamics, Figure 1 shows the model of a quarter vehicle model [1-6] rolling with 
constant speed   on a wavy road with level   and frequency     measurable by means of wave length        . 
The wavy road defined in Eq. (2), initiates vertical vehicle vibrations   described by the equation (1) of motion                                                                                                                                                                                            
where   is the natural frequency of the vehicle and   denotes its damping, given by          and             
respectively. In Eq. (2),   is the road amplitude and s the longitudinal coordinate      when the vehicle drives with 
constant speed    In the stationary case, Eqs (1) and (2) lead to the amplitude ratio     of response and excitation 

                                                                                                                                                                   

In Figure 2, the amplitude ratio     is plotted versus the related frequency speed         for the two damping 
values        and      . Both curves are drawn in red color. They start in     with the ratio       and end in     with      . They become maximal near the resonance for      In Figure 2,   is the image variable of the 
vehicle velocity in the range       with two different scales:     in the left half and         in the right 
one. This scaling [6] has the advantage that the amplitude ratio can be drawn for all velocities        
 

                           
 
   Figure 1:  Quarter car model rolling with constant speed                         Figure. 2: Standard deviation (blue) and amplitude (red)                             

v on sinusoidal (orange) or random (cyan) wave roads                              ratio of response and excitation versus vehicle speed  
 

Stochastic road models [7-12] are assumed to be normally distributed with zero mean and standard deviation     They 
are modeled e.g. by means of the linear first order system under white noise                                                                                          
where     is the vehicle velocity and   denotes the intensity of noise realized by the Wiener increment      The 
application of the noise spectrum         and the Fourier transforms leads to the road spectrum                                                                 

                      
The road spectrum is integrated over all frequencies   to obtain the variance    , noted in Eq. (5). The same method can be 
applied to Eq. (1) to obtain the vehicle spectrum       which is integrated in order to get the associated standard deviation ratio 
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In Eq. (6), the time frequency     represents the corner frequency of the road spectrum       in Eq. (5). Now, it takes 
the role of the middle frequency of the wavy road surface in Eq. (2). In Figure 2, the standard deviation ratio of vehicle 
response and road excitation, calculated in Eq. (6), is plotted for the same two damping values, as before. Therewith, the 
result obtained in Eq. (6) can be directly compared with the amplitude ratio in Eq. (3). Obviously, resonance 
magnifications are much stronger in the harmonic case in comparison with random roads when the vehicle is driving 
near the resonance velocity      Outside of the resonant speed range, however, the magnification is inverted, 
completely   In the over-critical speed range, the amplification of the standard deviation ratio is more than double as big 
in comparison with the harmonic case when the vehicle is driving e.g. with       
 

2. Extensions to multiplicative road models 
 

The linear first order road model, determined by the spectrum (5), is extended to multiplicative road models of second order 
which are introduced by means of the two non-linear stochastic differential (Itô) equations [13, 14]                                                                                                                      

                                                                             

where     denotes the vehicle velocity and   gives the intensity of white noise       . The parameter   is the middle 
road frequency and   determines the bandwidth of the two processes    and    of the road level and slope, respectively. 
The non-linear process    introduces process limitations by the values    and    which are freely selectable. For 
infinitely growing values          Eqn. (7) and (8) become linear and their stationary solutions are normally 
distributed. For finite values               the stationary processes are limited by the ellipse                    
In the symmetric case that           the limitation is a circle. When the stationary solutions take vanishing values, 
multiplicative noise becomes additive with      and the system has the strongest possible driving. When the solutions 
are on the ellipse, noise is excluded by      and the system possesses the strongest possible decay behavior.      

 

                                               

   Figure 3:  Two-dimensional distribution of level and slope                       Figure. 4: Singular two-dimensional density of road level 
   with the limitation           and the exponent                           and slope for the same limitations and exponent        
        

The density distribution          of the road processes is determined by means of the Fokker-Planck equation [15]                                                                               
In the stationary case  the density        is independent on time and satisfies the stationary Fokker-Planck equation                                                                                          
Note that the velocity   is dropped out in Eq. (10) because of        ; i.e. the statistical configuration of the road is 
independent on velocity and can be applied for all speeds. In the symmetric case          .Eq. (10) is solved by                                                                                                   
where   is the integration constant of normalization. The two-dimensional density, noted in Eq. (11), can be integrated 
for       This coincides with the stability condition     of the linear oscillator for          For      the 
density        in Eq. (11) is uniformly distributed. For       it is parabolic. For      the density        possesses 
a forth order shape as shown in Figure 3 for the limitation          In this case, the two-dimensional density is zero on 
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the limitation circle with a vanishing gradient. The two-dimensional density in Eq. (11) becomes singular for        . In Figure 4, the density is plotted e.g. for          In this case,        coincides with the stationary density of the sinusoidal 
road surface, noted in Eq. (2).   

3. Vehicle dynamics with multiplicative road models  

The application of Itô’s calculus to the multiplicative road model of Eqn. (7) and (8), leads to the three increments                                                                                                                                                                                                                                     
in which the expectation operator can be applied to obtain the associated moment’s equations. In the stationary case, the first 
equation and the second one lead to           and              , respectively. Taking into account that          is 
vanishing and        follows from Eq. (7), the third equation gives the stationary square mean                                                                                             
The result in Eq. (12) coincides with the square means of the linear road model under white noise obtained for the limiting 
case         . Note that the above square mean equations are linear although the state equations (7) and (8) are non-
linear. Both is possible because of the specially adapted non-linearity in Eq. (7). 

 

                        
  Figure 5: Standard deviation ratio of response and excitation               Figure.6: Standard deviation of the vertical vibration velocity  
      for the road bandwidth     (Harm.) and     (Stoch.)                versus the related vehicle speed for the damping         
 

The multiplicative road model is applied to the quarter vehicle, shown in Figure 1. The introduction of the coordinate        of the vertical vibration velocity into equation (1) of motion leads to the associated first order system                                                                               
where the time derivative     is given by the increment            in Eq. (7). The stationary co-variances of all 
excitation processes       times all response processes       are calculable by means of the matrix equation  

                                                                    
                                                                                      

where the square means of the road excitation are already calculated in Eq. (12). Note that the co-variance matrix in Eq. 
(14) is skew-symmetric. Hence, the co-variance matrix is positive definite. Its determinant   is calculated to                                                                                            
Subsequently, the stationary moment’s equations of the vehicle processes are set up and solved, as follows:                                                                                                                                                            
In Figure 5 and 6, the square roots of the square mean ratios in Eq. (16) and (17) are plotted versus the related vehicle 
speed for the damping         and five different bandwidth values   of the road excitation. For vanishing bandwidth      the result in Eqn.(16) coincide with the amplitude ratio (3) of a vehicle rolling on wavy roads with harmonic 
contour surface. The same holds for Eq. (17). For growing bandwidth    the resonance peaks in both amplitude-velocity 
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diagrams are reduced in comparison with the harmonic case.  However, the standard deviations (blue) become bigger 
than the amplitude (red) ratios when the vehicle is driving sufficiently outside the resonance velocity. For higher vehicle 
speeds e.g.      the magnification by stochastic excitations becomes even stronger in comparison with the harmonic 
case. For very slow and very high speeds, the standard deviation ratios are independent on the bandwidth of the road 
frequencies and coincide with the results of harmonic road excitation. For the special case of white noise with infinitely 
increasing bandwidth, Eq. (16) gives          for all vehicle speeds      and          for      

4. Non-stationary models of vehicle speed fluctuations    

In Figure 1, the wavy road is modeled by the sinusoidal form     . This model is extended to its stochastic version                                                                                                         
where    is the time frequency given by the road frequency   times the vehicle velocity   which is perturbed by white 
noise      of intensity  , when speed fluctuations through driving moment and air resistance are measurable and taken 
into account in a purely kinematic modeling. The application of Itô’s calculus to the road process    leads to                                                                                                                        
The stochastic road model (18a,b) is applied to Eq. (1) of the vehicle road system in the slightly modified form                                                                                                   
where   is the amplitude of the road excitation. Note that sinusoidal excitations like            are non-stationary 
with the mean value          sin   which converge to the stationary zero value with linearly growing time    In 
order to eliminate this  non-stationary behavior, amplitudes              are introduced into Eq. (19) by means of Eqn. 
(20a) and (21a). The application of Itô’s calculus leads to the transformed equations, as follows:                                                                                                                                                              (21a,b)                                                                                                                                                                 
Numerical integrations of the transformed equations (20b), (21b), (22) and (23) are performed by means of the 
Maruyana scheme with the time step size              for         samples. The Wiener increments [16] are 
approximated by           where the numbers    are normally distributed with zero mean  and unit mean square           Associated parameters are chosen by                          In Figure 7, simulation results of 
the displacement means       and        as well as the density distributions               are plotted versus the 
related speed       .The density      is marked by blue colour and      is green. Both densities show the resonance 
effect when the vehicle drives with velocity    . For further growing speed, the densities of both displacement processes 
are concentrated around the zero axes. This represents the self-centering effect, already known in rotor dynamics. For      the density distributions      and      degenerate to delta needles around the means values       and      .  
 

                         
          Figure.7: Mean amplitudes and densities of     and                   Figure 8: Resonance diagram for growing noise intensity: 
          versus frequency speed related to natural car frequency             the resonance is first increased and then decreases again. 
 
The application of the expectation operator      to Eqn. (20b), (21b), (22) and (23) leads to the matrix equation   
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by which the stationary mean values of all amplitude processes are calculable. In Figure 8, the resultant mean amplitude                       of both displacement means                 is plotted versus the related velocity for 
vanishing noise (blue) and for growing noise intensity (red). The latter leads to stable mean amplitude with resonance 
magnifications up to a critical noise intensity where the resonance peak is reduced (green), again. In this case, the mean 
amplitude mean becomes unstable. This stability behavior follows from the diagonal term                   in 
Eq. (24) which is negative for weak noise intensities and become positive for growing noise. More details are obtained 
when the almost sure stability [17] of the amplitudes in Eqs. (20b), (21b). (22) and (23) is investigated. Stability in 
mean is investigated by means of the eigen-values [17] of the mean amplitudes matrix in Eq. (24).  

5. Resonance reduction and induction by means of filtered noise      

It is interesting how the resonance behavior of the amplitude processes is changing when the velocity perturbation by 
white noise      in Eq. (18b) is replaced by the more realistic perturbation of filtered noise     , as follows:                                                                                      

                                                                                     
The stationary filtered noise in Eq. (25c) is normally distributed with zero mean and mean square                The 
application of the amplitude processes (20a) and (21a) to the vehicle equations (25a) and (26) leads to                                                                                                       
where the vector                      of the four amplitudes are determined by the matrices         as follows: 

                               
                                         

       
                                                                   

                                                                                                                               .  
The vectors    and   , noted above, determine the inhomogeneous part in Eq. (26). Note that in Eq. (26) there is a non-
linear term in form of        with a product of state processes. The product possesses the increment                                                                                                             
which couples the system vector      to higher potencies of the perturbation     This coupling effect is approximately 
removed in the stationary moments equations of Eqn. (26, 27) by means of the Gaussian closure, as follows:                                                                                                                                                                                                                                              
In Eq. (29a),   denotes the unit matrix. Note that in Eq. (29a) the expectation of the product         is approximately 
replaced by the product of both mean values. Numerical evaluations of Eqn. (28a) and (29a) are shown in Figure 9 
where the mean amplitude    is plotted versus the vehicle velocity   for            and the noise intensities           (green) and       (blue). For       the green and blue lines coincide with the deterministic case of 
vanishing perturbations. For growing bandwidth of the perturbation, the resonance peak is reduced. The resonance 
reduction becomes stronger for increasing noise intensities   and for increasing low-pass frequency   . This effect is 
physically explainable by the fact that high frequencies are filtered out and only low frequencies are retained in the 
perturbation. However, low velocity frequencies    are not contributing to resonance effects.   

 

                       
       Figure.9: Resonance reduction in the mean amplitudes                   Figure 10: Resonance induction from blue to red line via  
        for growing noise intensity and perturbation bandwidth                growing noise intensity and perturbation bandwidth (green) 
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The resonance reduction is completely inverted when instead of low-pass noise one applies the high-pass perturbation                                                                                           
where white noise      in Eq. (18b) is now replaced by     in Eq. (30b). Consequently, perturbations with low 
frequencies are filtered out. High frequency parts are retained. The introduction of Eqn. (30) into Eq. (19) leads to                                                                                                                                                                                          
The application of the amplitude processes (20a) and (21a) to Eqn. (31) and (32) leads to the vector equation                                                                                                              
where the vector      contains the four amplitude processes. The matrix   and the vectors    are given by  

                             
        
                                                                               

              
                                                            .  

where   and    are already noted in the last section. The non-linear term        in Eq. (33) possesses the increment                                                                                                             
in which the system vector      is coupled to higher potencies of the perturbation     This coupling is approximately 
removed by means of the Gaussian closure, noted in Eq. (35b). In the stationary case, the insertion of the Gaussian 
closure condition into Eq. (34) leads to the linear moments equations                                                                                                                                                                                                                                                   
where   is the unit matrix. Numerical evaluations of Eqs. (35a) and (36a) are shown in Figure 10 where the mean 
amplitude    is plotted versus the related vehicle velocity   for       and       The blue line stands for      of  
vanishing noise perturbations. For            and            one obtains the red line overlaid by the green one in 
coincidence with the white noise case shown in Figure 8. For            and          of growing perturbation 
bandwidth, there is a further increasing of the resonance peak. This resonance induction is probably explained by the 
destabilizing effect of harmonic parameter excitations when for       the perturbation frequency coincides with the 
double eigen-frequency of the oscillator. 

6. Lyapunov exponents and rotation numbers in vehicle dynamics 

Vehicle vibrations which are described by rotating coordinates are physically existent if they are almost sure stable or 
asymptotically stable with probability one. In the unstable case, the separation into rotating processes is not possible and 
the vehicle equations must be retransformed back to their original equations in non-rotating coordinates. The stability in 
mean and the almost sure stability [17] of the vehicle vibrations in rotating coordinates is investigated by means of a 
projection on hyper-spheres and application of the multiplicative ergodic theorem of Osceledets [18]. For these purposes, 
Eqn. (20b), (21b), (22) and (23) are reduced with     to the homogenous form and transformed by means of the two-
dimensional system of polar coordinates                      which leads to the stability equations                                                                                                                                                                                                                                                                                                                                                               
The above equations project the displacements         and the velocities (       on two circles with radii         and  
angles    ,     A second application of polar coordinates by means of Eqs. (37a) and (38a) eliminates the two radii         and projects the entire motion on hyper-sphere with one radius    and three angles determined by                                                                                                                                                                                                                                                                                                                                                                                      
where difference and sum angle (       are additionally introduced by means of Eqn. (39a) and (40a). Eq. (37) is 
integrated by means of variable separation and leads to the top Lyapunov exponent                                                  

                                        
If the top Lyapunov exponent  is negative, the stationary solutions of Eqn. (20b), (21b), (22) and (23) are asymptotically 
stable with probability one or almost surely stable. For         the solutions are unstable and grow, exponentially.  
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        Fig. 11: Limit cycles of projection angles                       Fig. 12: Transient projection angles and their ending            
        around red centers for under-critical damping                 in singular fix-points for over-critical damping     

According to Eq. (41), the top Lyapunov exponent is determined by the noise intensity, the system damping and the 
time average of the cosine of the stability angle     which is coupled with the difference angle   . Both angles are 
determined by Eqn. (38b) and (39b) which are non-linear, noise-free and decoupled from the sum angle    in Eq.(40b) 
where additive noise is still active. In Figure 11 and 12, Eqn. (38b) and (39b) are numerically evaluated for the under- 
and overcritical damping        and        on the left and right side, respectively. The angle solutions are    periodic in    and   periodic with respect to  . For       Figure 11 shows stationary limit cycles of both 
angles (      . They are calculable without any transient time behavior for arbitrary initial values applying an Euler 
scheme e.g. with the scan rate                All limit cycles in Figure 11 are symmetric with respect to         Because of this symmetry the time average in Eq. (41) can also be obtained by the four stationary fix-points        and         which represent the center of the limit cycles marked by red circles. The insertion of these 
center values into Eq. (41) leads to one top Lyapunov exponent and two rotation numbers, as follows:                                                                                          
The rotation numbers are time averages of rotating angle processes, applied to the angles increments     and       They  
are calculated by the stationary values               and              . In Figure 12, Eqn. (38b) and (39b) 
are evaluated for the overcritical damping       where instead of limit cycles transient solutions are obtained. Start-
ing with any initial values, both angles (       move to the stationary fix-points                          The 
insertion of these stationary angle values leads to two Lyapunov exponents and one rotation number                                                                                  
where the fix-points solutions are inserted into the ergodic integrals of Lyapunov exponent and rotation number.  

In Figure 13, the rotation numbers are plotted versus the frequency speed     for the natural frequency       and 
three damping values. For      one obtains two straight lines with positive slopes marked by thick red color. For        both rotation numbers are drawn in green and coincide in yellow for    . Associated rotation numbers with 
negative slopes are obtained for negative speed frequencies. In Figure 14, the stability map is obtained by plotting the 
related critical noise intensity         versus the vehicle damping. With          the stability boundaries are                                                         ,                                          
In Figure 14, the stability region is marked by green color. Inside the green region, the stationary solutions of Eqn. 
(20b), (21b), (22) and (23) are asymptotically stable with probability one or almost surely stable. Over the green region, 
the solutions are unstable. Obviously, one needs linearly increasing to stabilize the system for growing noise. However, 
this effect holds up to    , only. Overcritical damping is less effective since growing damping stabilizes weak noise  
perturbations, only. For        vehicle and road are rigidly coupled. Hence, stabilization is no longer possible. For an 
extended stability investigation, the above polar coordinate system                     is applied to Eq.(24). For      
this leads to the same stability equations for the angles         and radii         except that    in the radii equations is 
replaced by      when because of          there is noise in Eq. (24). Therewith, the radius equation (37) reads as                                                                                                  
As already shown before, the Lypaunov exponents of the mean value solutions are calculated to                                                                                                                                                                                                                  
The rotation numbers of the mean value solutions remain unchanged. In Figure 12, the stability boundaries of the mean  
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value solutions are plotted in Figure 14, marked by blue lines. Note that stability and rotation behavior of the mean 
value solutions can also investigated by means of the four eigen-values of Eq. (24) where the real and imaginary parts 
take the role of Lyapunov exponents and rotation numbers, respectively. Correspondingly, one finds one real part and 
four imaginary parts for       In the overcritical case      the eigen-values of Eq. (24) lead to two real parts and 
two imaginary parts. According to [19], the stability behavior can also be investigated by means of the p-th mean 
behavior in order to get the almost sure stability for     and the stability in mean for       In [21], one finds 
approximations of stability boundaries of second order systems for all  exponents      
 

              
 
   Fig. 13:  Four rotation numbers depending on speed                    Fig. 14: Boundaries for almost sure stability and  
  frequency for the damping values                                   stability in mean plotted against system damping    
 

7. Conclusions 

There are two multiplicative road models which include the limiting case of deterministic harmonic roads. The first one 
is obtained by non-linear filter equations driven by white noise. Their stationary solutions are similar to Gaussian but 
bounded with vanishing mean and standard deviation which coincides with the deterministic behavior in the limiting 
case of vanishing excitation bandwidth      Because of specially adapted non-linearity, the mean square equations 
calculated by means of Itô’s calculus are linear. The second model applies sinusoidals where the excitation frequency is 
perturbed by white noise of intensity  . Inversely to the first model, standard deviations are zero and mean values 
coincide with the deterministic harmonic behavior passing to the limit case       of vanishing noise perturbation. 
New results are found for more realistic perturbations by means of filtered noise. For low-pass filtered perturbations, the 
resonance peak is reduced. However, it is increased applying white noise perturbations. This resonance induction is 
even stronger when instead of white noise high-pass filtered perturbations are applied.   
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Summary. We consider the stochastic FitzHugh-Nagumo equations, whose deterministic equivalent allows for fast and stable traveling-
pulse solutions. In this talk, we investigate the stability of fast pulses in case of additive noise and derive a multiscale decomposition
for small stochastic forcing. Our method is based on adapting the wave velocity by solving a stochastic ordinary differential equation
and tracking perturbations of the wave meeting a stochastic partial differential equation coupled to an ordinary differential equation.
Previous works have focused on applying this method to scalar equations, such as the stochastic Nagumo equation, which carry a
self-adjoint structure. This structure is lost in case of the FitzHugh-Nagumo system and the linearization does not generate an analytic
semigroup. We show that this problem can be overcome by making use of Riesz spectral projections in a certain way. This provides
a relevant generalization as our approach appears to be applicable also to general stochastic nerve-axon equations, the stochastic
periodically-forced NLS equation, or systems of stochastic reaction-diffusion equations with spectrum parallel to the imaginary axis.

The talk and the following presentation are based on and adapted from [4], respectively.

The stochastic FitzHugh-Nagumo equations

Consider the stochastic FitzHugh-Nagumo equations driven by additive noise

du(t, x) =
(
ν∂2xu(t, x) + f(u(t, x))− v(t, x)

)
dt+ σ dW (t, x) for (t, x) ∈ R+ × R, (1a)

dv(t, x) = ε (u(t, x)− γv(t, x)) dt for (t, x) ∈ R+ × R, (1b)

in which the electric potential u and the gating variable v are functions of time t and position x on a neural axon. Here,
ν∂2xu determines the spatial diffusion on the axon with ν > 0 and the reaction term f(u) is nonlinear and typically
reads f(u) = χ(u)u (1− u) (u− a) with 0 < a < 1 and a suitable cut off χ. The term σ dW is additive noise, with
W denoting an infinite-dimensional Wiener process taking values in a suitable Hilbert space H . The parameter ε > 0
determines the coupling strength of the electric potential u to the gating variable v and will be assumed to be sufficiently
small. The parameter γ > 0 is a decay constant of the gating variable v.

Traveling-pulse solutions and their stability

The deterministic variant of (1) with σ = 0 allows for traveling-pulse solutions of the form u(t, x) = û(ξ) and v(t, x) =

v̂(ξ), where ξ = x + st and s ∈ R is the pulse’s velocity. The vectorial function
(
û, dûdξ , v̂

)
is a nontrivial homoclinic

orbit of a three-dimensional continuous and autonomous dynamical system

dû
dξ = û′, dû′

dξ =
1

ν
(sû′ − f (û) + v̂) , dv̂

dξ =
ε

s
(û− γv̂) for ξ ∈ R. (2)

Existence of nontrivial pulses with (û, v̂)
t → (0, 0)t as ξ → ±∞ is ensured if γ ≥ 0 is sufficiently small [11]. Indeed, a

singular perturbation argument around ε = 0 and s = 0 yields existence of a slow pulse with wave speed s ≈ 0, which by
Sturm-Liouville theorey turns out to be unstable. Nonetheless, there is also a fast pulse, in what follows denoted by (û, v̂),
corresponding to much higher wave speeds s = s(f, ε), constructed in [1, 2] employing the method of isolating blocks
of the fast and slow subsystems [3]. Using an Evans function analysis, stability of the fast pulse in the space of bounded
uniformly continuous functions was first proved in [7]. Stability in L2(R;R2) and H1(R;R2) was proved in [5, 12, 13].

Our approach for computing the velocity correction

We investigate the following decomposition

u(t, x) = û (x+ st+ φ(t)) + uϕ(t, x), v(t, x) = v̂ (x+ st+ φ(t)) + vϕ(t, x) (3)

of solutions to (1), in which the function φ(t) is a random correction to the pulse’s position, and uϕ(t, x) and vϕ(t, x)
denote lower-order fluctuations that are uniquely defined through (3) for any φ = φ(t). Ideally, we would like to choose φ
to minimize the distance in the direction of the traveling wave between the solutionX := (u, v)t of the FitzHugh-Nagumo
SPDEs (1) and the suitably translated traveling wave X̂ = (û, v̂)t, i.e.,

φ(t) ∈ argminϕ∈R

∥∥∥Π0
st+ϕ

(
X(t, ·)− X̂(·+ st+ φ)

)∥∥∥
2

H
, with X :=

(
u
v

)
, X̂ :=

(
û
v̂

)
, (4)

ENOC 2022, July 17-22, 2022, Lyon, France

487



ENOC 2020, July 5-10, 2020, Lyon, France

where ‖·‖H is theH-norm in the spatial variable and Π0
st+ϕ is a suitable projection onto the pulse such that Π0

st+ϕ
dX̂
dξ (·+

st+ ϕ) = dX̂
dξ (·+ st+ ϕ). However, as problem (4) is not necessarily convex, uniqueness of a minimizer is not certain.

Following [8] and replacing (4) by the weaker condition for a critical point of finding ϕ = ϕ(t), we may impose

0 =
(
Π0
st+ϕ

(
X(t, ·)− X̂(·+ st+ φ)

)
, dX̂dξ (·+ st+ φ)

)
H
, (5)

where (·, ·)H is the inner product of H . This approach has been employed in [6] for more general classes of SPDE
systems, but the results only hold up to the first stopping time when the local minimum becomes a saddle point. Here, we
follow [8], i.e., φ(t) is approximated by a process φm(t) fulfilling the random ordinary differential equation

dϕm

dt (t) = m
(
Π0
st+ϕm(t)

(
X(t, ·)− X̂(·+ st+ φm(t))

)
, dX̂dξ (·+ st+ φm(t))

)
H

(6)

for given initial data and a sufficiently large relaxation parameter m > 0.

Results

We obtain the following results:

1. We establish existence and uniqueness of solutions to (1) using the variational approach for equations with locally
monotone coefficients [9, 10].

2. We give a short proof of deterministic stability in L2(R;R2) of the fast pulse X̂ = (û, v̂)
t, which simplifies the

presentations in [5, 12, 13].

3. We derive an SODE defining the correction of the wave’s velocity. The leading-order part of this SODE contains
a linear damping term due to the relaxation method of the frame and additive stochastic fluctuations obtained from
projecting the infinite-dimensional noise onto a translate of dX̂

dξ .

4. We prove a multiscale expansion

X(t, ·) = X̂(·+ st+ σφm0 (t)) + σXm
0 (t, ·) + o(σ), (7)

where (σφm0 , σX
m
0 ) solves the scaled linearized evolution of (φm, Xm).

5. We consider the limit m→∞ of immediate relaxation. Here, we prove that

• the multiscale expansion (7) remains satisfied as m→∞,

• as σ ց 0 the first exit time where the multiscale decomposition cannot be guaranteed to hold anymore
converges to the entire time interval,

• by employing deterministic stability, the second moment E ‖X∞
0 (t, ·)‖2H of fluctuations transverse to the

traveling pulse mode after correcting the wave velocity stays bounded,

• the second moment E
∥∥∥X(t, ·)− X̂(·+ st)

∥∥∥
2

H
of fluctuations transverse to the traveling wave mode without

correcting the wave velocity asymptotically can grow linearly in time.

We conclude by discussing generalizations of our work, such as the application to other (systems of) SPDEs with spectrum
parallel to the imaginary axis or the stability of more complicated patterns.

References

[1] G. A. Carpenter. Traveling-wave solutions of nerve impulse equations. ProQuest LLC, Ann Arbor, MI, 1974. Thesis (Ph.D.)–The University of
Wisconsin - Madison.

[2] C. C. Conley. On traveling wave solutions of nonlinear diffusion equations. In Dynamical systems, theory and applications (Rencontres, Battelle
Res. Inst., Seattle, Wash., 1974), pages 498–510. Lecture Notes in Phys., Vol. 38. Springer, Berlin, 1975.

[3] C. C. Conley and R. Easton. Isolated invariant sets and isolating blocks. Trans. Amer. Math. Soc., 158:35–61, 1971.
[4] K. Eichinger, M. V. Gnann, and C. Kuehn. Multiscale analysis for traveling-pulse solutions to the stochastic fitzhugh-nagumo equations.

arXiv:2002.07234 (to appear in Ann. Appl. Probab.), 2021.
[5] A. Ghazaryan, Y. Latushkin, and S. Schecter. Stability of traveling waves for degenerate systems of reaction diffusion equations. Indiana Uni.

Math. J., 60(2):443–471, 2011.
[6] J. Inglis and J. MacLaurin. A general framework for stochastic traveling waves and patterns, with application to neural field equations. SIAM J.

Appl. Dyn. Syst., 15(1):195–234, 2016.
[7] C. K. R. T. Jones. Stability of the travelling wave solution of the FitzHugh-Nagumo system. Trans. Amer. Math. Soc., 286(2):431–469, 1984.
[8] J. Krüger and W. Stannat. A multiscale-analysis of stochastic bistable reaction-diffusion equations. Nonlinear Anal., 162:197–223, 2017.
[9] W. Liu and M. Röckner. SPDE in Hilbert space with locally monotone coefficients. J. Funct. Anal., 259(11):2902–2922, 2010.

[10] W. Liu and M. Röckner. Stochastic partial differential equations: an introduction. Universitext. Springer, Cham, 2015.
[11] C. Rocsoreanu, A. Georgescu, and N. Giurgiteanu. The FitzHugh-Nagumo Model - Bifurcation and Dynamics. Kluwer, 2000.
[12] J. Rottmann-Matthes. Computation and Stability of Patterns in Hyperbolic-Parabolic Systems. PhD thesis, Bielefeld University, Bielefeld, Germany,

2010.
[13] V. Yurov. Stability estimates for semigroups and partly parabolic reaction diffusion equations. PhD thesis, University of Missouri, Columbia, USA,

2013.

ENOC 2022, July 17-22, 2022, Lyon, France

488



ENOC 2020, July 5-10, 2020, Lyon, France

Nonlinear and stochastic dynamics in a forced vibro-impact energy harvester
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Summary. Vibro-impact (VI) energy harvesting (EH) systems represent a class of highly nonlinear (non-smooth) systems with impact-
type component interactions. A recently proposed VI-EH device, comprises a main mass, subjected to an external excitation, and a
smaller mass within, traveling freely in a slot in between two dielectric elastomer (DE) membranes, deforming them at impact. As
a highly flexible polymer with high dielectric permittivity and nonlinear responses properties, DE has desirable properties given its
chemical composition, response to excitation, superior energy density and suitability for low frequency applications. In order to
predict the specific performance of the VI-EH device, we develop a new (semi)-analytical approach for analysis of nonlinear stochastic
dynamics in non-autonomous non-smooth impacting systems. This methodology relies on capturing the bifurcation structure and its
influence on output energy, providing insight into the role of dynamics in energy harvesting efficiency and in the optimal design of the
device. The analysis also reveals a generic mechanism and energy transfer phenomenon in nonlinear impacting systems.

Complex dynamics of the vibro-impact energy harvester (VI-EH)

The proposed VI-EH device is a vibro-impacting mechanical system, consisting of a cylinder of length s and mass M , an
inner ball with massm (M ≫ m) moving within the cylinder between impacts with dielectric elastomer (DE) membranes
at both ends of the cylinder. The system is inclined with an angle of β and forced with a harmonic excitation F (ωt+ φ)
along the direction of its axis. We neglect friction between the ball and the cylinder, and track the relative position
Z = X − x, for X the non-dimensionalized displacement of the cylinder center and x the location of the ball. The
equation of motion and impact condition for the kth impact at time t = tk are

Z̈ = f(t) + ḡ, f(t) = F (ωt+ φ), Ż+
k = −rŻ−

k , Zk = ±d
2
, Zk = Z(tk). (1)

Here ḡ = −Mg sinβ/‖F‖, where g is gravity, and ‖F‖ the norm of F . The impact condition is applied on the bottom
(top) ∂B (∂T ) membrane of the VI-EH device at (x − X) = ±d/2 for d = s

xc
, with Ż± the non-dimensionalised

relative velocity of the ball before (-) (after (+)) impact and r the restitution coefficient. The parameter d captures the

influence of length, amplitude of excitation, and frequency via the factor xc = ‖F̂‖π2

Mω2 . Integrating (1) between impacts
for t ∈ (tk−1, tk) yields

Ż(t) = −rŻ−
k−1 + ḡ(t− tk−1) + F1(t)− F1(tk−1), F1(t) =

∫
f(t)dt, (2)

and integrating (2) we get the analogous equation for Z(t). At the kth impact, the maps for Ż−
k and Z−

k are obtained by
taking t = tk in (2) and the similar equation for Z, with Zk = ±d/2 at impact. Combining these maps we get all possible
motions of the ball, P1 : ∂B 7→ ∂T, P2 : ∂T 7→ ∂B, P3 : ∂B 7→ ∂B, P4 : ∂T 7→ ∂T .
Using Pj together with the impact conditions and F periodic, we first study periodic motions of an inclined VI-EH,
such as those shown in the phase planes of Fig. 1 (Left). The nonlinear analysis provides the bifurcation and stability
conditions for different types of behavior within a non-dimensionalized framework, allowing us to capture the results in
terms of dependence on parameters d, r, and β, and excitation, also considered in [1] for β = 0. For an incline β ̸= 0,
gravity naturally contributes to the asymmetric state and different nonlinear behaviors. We find transitions and stability
for two families of periodic solutions. The first has a 1:1 ratio of impacts on ∂T to ∂B per excitation period, obtained by
alternating P1 and P2. The analysis shows that these 1:1 behaviors are characterized by the triples (Żk, φk,∆tk). Here
φk is the phase difference between the impact and a trough (or peak) of F , and ∆tk = tk+1 − tk. A second family has
a 1:n ratio of impacts on ∂T and ∂B. These follow from grazing bifurcations and are composed of P3, P1, P2. In Fig. 1
(Middle) we show these families in terms of Żk from numerics for a range of d. Analytical solutions reproduce these
branches in [2]. As shown in Fig. 1 (Left and Middle) for decreasing d, there are periodic doublings of the 1:1 family
(d > dgraz ≈ .2, dgraz corresponding to a grazing bifurcation), until the grazing bifurcation leads to the 1:2 ratio of
impacts (d < .2). Following an impact on δB, non-monotonic behavior of the relative velocity Ż appears as a loop in the
phase plane trajectory after Ż crosses 0 on the trajectory away from Z = ±d/2. For dgraz we have Żk+1 = Zk+1 = 0,
corresponding to a transition to P3 before P2, yielding a 1:2 solution.
Energy is harvested via impacts with the DE membranes, with U (i)

imp the voltage at the ith impact obtained from geomet-

rical parameters of the membrane and Żi [4]. The harvested voltage Uimp − Uin is shown in Fig. 1 (Middle), for Uin a
constant input voltage applied to the membranes, and d decreases with increasing amplitude of forcing ‖F‖. Note that
grazing bifurcations and 1:2 periodic solutions correspond to low velocity impacts, yielding an abrupt loss of average
energy output per impact.
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Figure 1: (Left). Limit cycles in the phase plane forZ,Ż with different sequences of impacts in the VI-EH model (1) for decreasing d; all
but lower right with 1:1 ratio per period of forcing, lower right is 2:1. Middle Upper: Impact velocity Żk vs. d; Lower: Corresponding
output voltage (black), red (blue) for average output per impact (unit time); Right: Average energy output per impact. Red circles for
small constant β and no feedback; Upper: blue for larger β, symmetrically distributed, green and black for asymmetric distribution of
β with small mean. Lower: blue and black for different levels of feedback.

Influence of randomness

The analytical results provided by the nonlinear maps reveal potential sensitivities to certain parameters for the different
states, indicating conditions under which stochastic effects influence transitions. For example, the dependency of grazing
bifurcations on φk suggests that stochastic fluctuations in the phase can benefit energy output by disrupting low velocity
impacts. We derive stochastic nonlinear maps describing probabilistic transitions between states, thus capturing both
detrimental and beneficial effects of random fluctuations on the energy output.
The stochastic variations of the maps Pj are derived from the physical model, depending on the stochastic source and
transition of interest. Such variations were found in [3], which considered stochastic versions of the Nordmark map for
compliant impacts near grazing. The phase plane analysis in [2] motivates a simple efficient formulation to study the
behavior near the underlying period doubling bifurcations, based on considering separately the stochastic versions of P1

and P2 to capture the dilation of trajectories in Żk on P2. A similar dilation of φk on P1 indicates a complementary
approach, that capitalizes on the sensitivity to φk ≪ 1, as already suggested from the nonlinear expressions of sinφk in
the triple (Żk, φk,∆tk) for the 1:1 families [2]. To capture the influence of parameter uncertainties, we break Pj into
submaps, between key points corresponding to Ż = 0, Z = ±d/2, and Z̈ = 0, all important features in the approach to
grazing shown in Fig 1 (Left).
We find that certain noise in φ, relaxing rapidly to fluctuations about its mean, yields an averaging effect that generates
an effective reduction in the forcing amplitude. Then the attracting 1:1 periodic behavior is sustained over a larger range
of d. Specifically, for smaller d, the 1:2 behavior is displaced, as is the corresponding lower average energy output per
impact.
Fig. 1 (Right) shows the influence of other noise and asymmetries on Uave vs. d. Certain random fluctuations in β advance
dgraz to larger values, even counter-intuitively for asymmetric distributions of β with a small average β ≪ 1. If there
is a non-negligible tail probability for β = O(1) (green and black markers in Fig. 1 (Right upper)), the average energy
output is closer to that obtained for random β = O(1) (blue diamonds) than for smaller deterministic β (red circles),
suggesting that even for short transient periods of β = O(1), the system remains in the 1:2 behavior over a longer time
period. Also, feedback of the capsule motion at a lagged time leads to an effective phase shift in the forcing, potentially
avoiding repeated ∂B impacts for φk ≪ 1 (blue and black markers in Fig. 1 Right lower) and shifting reduced Uave to
smaller d. There are a number of ways to model this effect, including randomness to capture lack of precise feedback.
The newly derived stochastic maps near the critical transitions related to 1:1 and 1:2 periodic solutions explain how noise
influences transitions between different levels of energy output.

Conclusions

Semi-analytical nonlinear analyses of a novel model for vibro-impact energy harvesting (VI-EH) captures parametric
and excitation dependencies of the output voltage. The results point to parameter ranges and scenarios where noise and
asymmetries can be either detrimental or beneficial for the energy output. Via novel stochastic analyses and computations,
we reveal the sensitivities of the system to random fluctuations and asymmetries. These indicate analysis-based design
features for the VI-EH device.
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Summary. A nonlinear vibration energy harvester for converting energy from the torsional oscillations of an automotive powertrain is 
considered under random engine running speeds. Engine data recorded form several real-life routes are used to describe the spectral 
properties of the powertrain vibrations, and particularly their frequency distribution in city and highway driving cycles. Joint response 
Probability Density Functions of the stochastic coupled electromechanical oscillator are calculated with a numerical Path Integration 
approach. The impact of noise on the mean power output is assessed by comparing the resulting random power output statistics with 
deterministic expressions based on the mean engine speed. 

Introduction 

Vibration energy harvesting is a recent concept that involves scavenging energy from ambient mechanical vibrations 
and converting it to useful electricity to power small electronic devices, such as sensors and wireless data transmitters 
[1]. These systems are designed such that mechanical power take-off is optimised, and this is usually achieved by 
establishing high-amplitude response to the exciting vibrations of the host system, such as resonant linear response or 
broadband high energy response in the case of nonlinear harvesters [2]. However, vibrations in structures and machines 
are usually the result of complex interactions between nonlinearly coupled components, exhibiting a diverse interaction 
with system modes and the inherent randomness of environmental forces. This is particularly pertinent to automotive 
vibrations whereby linear and torsional vibrations of the powertrain components are subject to a multi-factor 
dependence on environmental conditions, road surface conditions, driving behaviour, route and mode of driving 
(city/highway). As a result, harvesters are essentially required to capture energy from vibrations that cannot be 
adequately described by conventional deterministic approaches. 
Recently, a concept for harvesting energy from the torsional vibrations of a propulsion shaft has been introduced [3]. In 
this paper, a stochastic framework for calculating this device’s mean harvested power is presented. Randomness of the 
powertrain vibrations frequency is modelled by exploiting the direct link of the dominant vibration frequency to the 
engine speed and the engine architecture. Transient and steady-state driving scenarios are considered through a 
statistical analysis of engine speeds recorded in real-life driving scenarios. Expressions of the spectral distributions of 
the input vibrations are then used within an advanced computational framework to accurately calculate joint Probability 
Density Functions (PDF) of the harvester’s mechanical and electrical generalised variables. 

Problem Formulation 

Consider a rotational vibration energy harvester as the one shown in Figure 1(a). This concept has been recently 
introduced for harvesting energy from the torsional vibrations of propulsion shafts [3]. The system has been designed to 
harvest energy from torsional vibrations rather than the main shaft speed, thereby minimising the impact of the device 
on the main transmission of power with potentially favourable reduction of the shaft speed fluctuations. The reader is 
referred to [3] for a detailed description of the device and the ensuing analysis that leads to the following equations of 
motion: 
 

 

                                                   (1) 

 
where    denotes the shaft vibrations which act as base excitation to the rotational harvester with inertia  , mechanical 
damping    and potential energy                    . The electrical properties are denoted by   – inductance,       – load resistance,      – coil resistance and    – electromagnetic coupling. Dominant vibration frequencies in 
rotary applications are linked with orders of the main rotation speed. In 2-cylinder, 2-stroke IC engines for example, 
powertrain vibrations are dominated by the 2nd engine order. However, as it is shown in Figure 1(b), the engine speed 
that determines the dominant vibration frequency is a randomly varying quantity (see Figure 1(d)). This data has been 
recorded in a real driving cycle down the route shown in Figure 1(c). Therefore, the exciting base vibrations can take 
the following form to consider random modulations of the excitation’s phase: 
 

  

                      (2) 
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where      is a Gaussian delta-correlated white noise process with                      . Note that randomness is 
only considered in the phase of the vibrations since the vibration amplitude can be considered to be slow-varying. More 
explicit representation of the speed’s spectral properties can be used by colouring the white noise process with higher 
order linear filters. 

Path Integration 

The joint response PDF of the stochastic system described by Eqs (1) and (2) is computed by means of a numerical Path 
Integration (PI) technique. The response PDF contains probabilistic information for the harvester’s kinematic and 
electrical variables, allowing accurate calculation of the electrical power output probability distribution. This method is 
based on an iterative approach for calculating in short time steps the response PDF, which at time   can be expressed 
from the PDF at         exploiting the Markov property of the solution vector and the total probability law [4]: 

                                                        (3) 

where                   is the transition probability density function (TPD) and   is the system’s state vector. The short 
time propagation TPD is Gaussian distribution and thus, the TPD may be written as [4]: 
 

                                                                               (4) 

 
where   is the Dirac delta function and                         are 4th order Runge-Kutta increments of   and  . 
Iterative application of Eqs (3) and (4) lead to the computation of the joint response PDF, whereby standard rules are 
applied to compute the marginal PDF of the current and the electrical power.  

Discussion 

Preliminary calculations have shown that randomness has a significant impact on the mean power output compared with 
using the average engine speed in deterministic models. This is particularly important for vibrations in the frequency 
range in-between the deterministic saddle-node bifurcations, where multiple attractors co-exist. Early results indicate 
that randomness particularly affects the establishment of high energy solution branches as the solution approaches the 
jump-down bifurcations. This is due to the shrinking area of the deterministic basin of attraction which makes the high-
amplitude desired solution more sensitive to random fluctuations. Further analysis using the described procedure will 
reveal the full impact of randomness on the harvested electrical power. 
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Figure 1: (a) sketch of the rotational vibration energy harvester; (b) engine speed during mixed drive cycle; (c) route map of 
displayed data; (d) distribution of engine speed in mixed cycle. 
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 Simulation of Road Surfaces Profiles by a Stochastic Parametrical Model  
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Summary. Road irregularities have an important influence on the dynamic behavior of vehicles. Knowledge of their characteristics and 
magnitude is essential for the design of the vehicle. The problem of interest is the simulation of road surfaces profiles because modern test 
facilities and computer simulations of vehicle dynamics needs driving excitations. An import issue is the power spectral densities and the 
approximation by analytical formulas. In the paper a stochastic parametrical nonlinear model of first order with bounded amplitudes will 
be discussed. Some analytical and numerical results will be shown. 

Road Surface Profiles 

The road surface profiles are defined by ISO8608 Mechanical vibration – Road surface profiles – Reporting of 
measured data [1]. Figure 1 shows an example of a measured road. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: A quarter car (1 DOF) with road          
surface profile 𝑍𝑍𝑡𝑡 

Figure 1: Measured road surface profile [1]  

Stochastic Parametrical Model 

The stochastic parametrical nonlinear model of first order  
 

Żt = �1

2
𝜎𝜎2 − 𝜔𝜔0� 𝑍𝑍𝑡𝑡 + �𝑍𝑍02 − 𝑍𝑍𝑡𝑡2 𝜎𝜎Ẇt 

 
with 𝜎𝜎 intensity of white noise, 𝑍𝑍0 the maximum amplitude, 𝜔𝜔0 the corner frequency and 𝑊𝑊𝑡𝑡 the Wiener process with 
the mean value E{𝑑𝑑𝑊𝑊𝑡𝑡} = 0 and the variance  𝐸𝐸{𝑑𝑑𝑊𝑊𝑡𝑡2} = 𝑑𝑑𝑑𝑑. The stochastic differential equation (Ito) is 
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d𝑍𝑍𝑡𝑡 = −𝜔𝜔0𝑍𝑍𝑡𝑡dt +�𝑍𝑍02 − 𝑍𝑍𝑡𝑡2 𝜎𝜎𝑑𝑑𝑊𝑊t              |𝑍𝑍𝑡𝑡| ≤  𝑍𝑍0 
 
The Fokker Planck equation of the probability density function is 
 ∂p∂t

− 𝜔𝜔0 𝜕𝜕𝜕𝜕𝜕𝜕  [𝜕𝜕𝑧𝑧] − 𝜎𝜎2
2

 
𝜕𝜕2𝜕𝜕𝜕𝜕2  [(𝑍𝑍02 − 𝜕𝜕2)𝑧𝑧] = 0           

 
The stationary solution of the density function can be calculated to 
 

p(z) =  𝐶𝐶 (𝑍𝑍02 − 𝜕𝜕2)�−1+𝜔𝜔0/𝜎𝜎2�             𝜎𝜎2 < 𝜔𝜔0    
 

The constant 𝐶𝐶 fulfilled the normalization condition  ∫ 𝑧𝑧(𝜕𝜕)𝑑𝑑𝜕𝜕 = 1
+𝑍𝑍0−𝑍𝑍0 . The auto correlation function of the stationary 

process 𝑍𝑍𝑡𝑡 is 𝑅𝑅𝑧𝑧(τ) =  𝜎𝜎𝑧𝑧2 𝑒𝑒−𝜔𝜔0|𝜏𝜏| 
 

 
Figure 3: Stationary density distributions p(z)                        Figure 4: Auto correlation function 𝑅𝑅𝑧𝑧(τ) with  
                with 𝜔𝜔0 = 10,  𝑍𝑍0 = 1 and different 𝜎𝜎                                    𝜎𝜎𝑧𝑧 = 1 and different 𝜔𝜔0    
 
A numerical realization of the stationary process 𝑍𝑍𝑡𝑡 with the parameters 𝜔𝜔0 = 10,  𝑍𝑍0 = 1,𝜎𝜎 = 0.5  and  𝑁𝑁 = 106  time 
steps shows figure 3. 

Figure 3: Numerical realization of the stationary process 𝑍𝑍𝑡𝑡 (𝜔𝜔0 = 10,  𝑍𝑍0 = 1,𝜎𝜎 = 0.5,𝑁𝑁 = 106 ) 
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 Electrostatic Nonlinear Trimming of Ring -Based MEMS Coriolis Vibrating Gyroscopes   
 
 Davin J. Arifin, Stewart McWilliam 

Faculty of Engineering, University of Nottingham, UK 
  
Summary. The effects of electrostatic nonlinearity on rate measuring performance of a capacitive MEMS Coriolis Vibrating Gyroscope 
(CVG) with an imperfect sensing element are investigated. The electrostatic nonlinearity is a result of large amplitude vibration of the ring, 
which modifies the capacitive forcing and induces self-induced parametric amplification. A cubic-order nonlinear mathematical model is 
used to describe the electrostatic nonlinearity and expressions are developed for the scale factor and bias.  It is shown that parametric pumping 
induces an amplification range that enhances rate sensitivity and electrostatic non-linearity has potential to negate the effects of imperfection.  

Model Description 

For MEMS rate-measuring CVG’s having a ring resonator [1] the dominant source of nonlinearity is electrostatics due to 
capacitive actuation and sensing of ring displacements. The dynamics of the sense mode used to detect rate is significantly 
affected by self-induced parametric amplification [1, 2] when the vibration amplitude is large and the modal properties 
modulate at twice its vibration frequency. In the small amplitude regime imperfections degrade the scale factor and bias 
[3]. The potential for nonlinearity to negate or reverse these effects is presented here. 
 

 
Figure 1: (a) Schematic general layout; (b) voltage profile applied by individual electrodes 

 
Figures 1(a) and 1(b) show the ring element, capacitive electrodes and support structure for a typical device together with 
the voltages applied across electrode gaps.  Voltage 𝑉𝐴 drives the ring into its ʹ𝜃 flexural primary mode.  Voltage 𝑉 
is primarily responsible for electrostatic nonlinearity. A cubic-order nonlinear model is used to describe the dynamics of 
the primary (drive) and secondary (sense) modes. Assuming the applied angular rate is much smaller than the natural 
frequency, 𝑉𝐴 ≪ 𝑉, and the ring is thin and midsurface-inextensional, the equation of motion for the sense mode is: 
 ሷܻ + 𝜔0𝑄 ሶܻ + ܻ [𝜔02ሺͳ − 𝜇𝜔 cos Ͷ𝜃𝜔ሻ + 𝜅 ܺ2𝑔02] = − 8ͷ ሶܺΩ − 𝜔02𝜇𝜔 sin Ͷ𝜃𝜔 ܺ (1) 

  ܺ, ܻ are modal coordinates describing the drive and sense modes respectively; 𝜔0 is the undamped natural frequency and 
Q is the Q factor for the perfect ring. In practice, ܻ ≪ ܺ so nonlinear terms in ܻ have been neglected.  𝜅 is the nonlinear 
elastic coupling strength from the drive mode to the sense mode and results in amplitude-dependent resonance. 𝜇𝜔 is an 
imperfection parameter and Ω is the applied angular rate. The sense mode is subjected to: i) Coriolis forcing proportional 
to ܺ ሶ Ω; ii) imperfection-induced quadrature force proportional to 𝜇𝜔; and iii) parametric excitation arising from nonlinear 
elastic coupling 𝜅. The drive mode modulates the stiffness of the sense mode at approximately twice its effective vibration 
frequency. The amplitude and phase of the sense mode oscillation are obtained using the averaging method and the scale 
factor 𝑆 and bias Ω0 are found to be: 
 𝑆 = − 8ͷ 𝑥𝜔𝑋2 ቀ𝜔0𝑄 ቁ𝜔𝑋2 ቀ𝜔0𝑄 ቁ2 + (∆𝜔2 + 𝜉௬)(∆𝜔2 − 𝜉௬)         Ω0 = − 𝜔02𝜇𝜔 sin Ͷ𝜃𝜔 (∆𝜔2 + 𝜉௬)8ͷ 𝜔𝑋2 ቀ𝜔0𝑄 ቁ  (2,3) 

Here ∆𝜔2= ʹ𝜔02𝜇𝜔 cos Ͷ𝜃𝜔 + ௫24𝑔02 ሺ͵ߛ − ʹ𝜅ሻ is the frequency detuning parameter and 𝜉௬ = 𝜅 ௫24𝑔02 is the pumping 

strength, where ߛ is the modal Duffing coefficient and 𝑥 is the drive amplitude. 𝜅, ߛ < Ͳ characterize the nonlinear modal 
stiffnesses and |𝜅| ≤ |where |𝜅 ,|ߛ| = 𝜒ߜ when |ߛ| = Ͷͷ°. For small-amplitude operation, 𝜉௬ = Ͳ and ∆𝜔2∝ 𝜇𝜔. 

 ߜ 𝜒ߜ

Sense 
electrode 

Drive electrode 

Support beams 
Support hub 

𝑉 +𝑉𝐴 cos𝜔𝑡
 

𝑉 +𝑉𝐴 cos𝜔𝑡 

Ground 

𝑉 − 𝑉𝐴 cos 𝜔𝑡 

𝑉 − 𝑉𝐴 cos 𝜔𝑡 

𝑉 (a) (b) 
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Nonlinearity causes amplitude-dependent frequency detuning and parametric pumping and both interact with the 
imperfection to modify the scale factor and bias at large amplitude. 

Scale factor and bias 

The scale factor for an ideal, linear CVG behaves linearly with drive amplitude 𝑥 and inversely with bandwidth, so a high 
Q factor is desirable.  In (2) the (∆𝜔2 + 𝜉௬)(∆𝜔2 − 𝜉௬) term plays a key role in the nonlinear modification of the scale 
factor when the amplitude-dependent frequency detuning parameter and parametric pumping strength interact i.e.: 

i. (∆𝜔2 + 𝜉௬)(∆𝜔2 − 𝜉௬) > Ͳ - nonlinearity interacts constructively with imperfection, reducing the scale factor. 
ii.  (∆𝜔2 + 𝜉௬)(∆𝜔2 − 𝜉௬) = Ͳ  -nonlinearity negates imperfection effectively trimming the device. 
iii.  (∆𝜔2 + 𝜉௬)(∆𝜔2 − 𝜉௬) < Ͳ -nonlinear amplification occurs as the effective bandwidth is reduced. 

 

 
Figure 2:  Variation of (a) 𝑆  normalized relative to the trimmed, linear case for continuous ሺ𝜅 = |ሻ and discontinuous ሺ|𝜅ߛ <  ሻ|ߛ|

biasing electrodes, and (b) Ω0 with the gap-normalised drive amplitude 
 
When (∆𝜔2 + 𝜉௬)(∆𝜔2 − 𝜉௬) < Ͳ the result is a pure nonlinear effect, because without parametric pumping the 
imperfection always acts to reduce the scale factor.  Figure 2 shows that nonlinear amplification occurs for a range of 
drive amplitudes. A consequence of this is that the imperfect device has an enhanced scale factor compared to a linear, 
trimmed device. This amplification range is defined by −|𝜉௬| < ∆𝜔2< |𝜉௬| and the amplification increases as the 
pumping strength 𝜉௬ increases.  The upper bound of this range grows without bound when ߛ = 𝜅 because the variation 
of (∆𝜔2 + 𝜉௬)(∆𝜔2 − 𝜉௬) with drive amplitude is monotonic in this case, so nonlinear trimming only occurs at the lower 
bound when the parametric pumping negates the effects of frequency detuning, i.e. ∆𝜔2= −𝜉௬. In practice higher order 
nonlinearities play a role in limiting the vibration amplitude. On the other hand, if the difference between ߛ and 𝜅 is large 
such that |𝜅| ≪  which corresponds to the case when the biasing electrode span is small, the upper and lower bounds ,|ߛ|
approach each other and the amplification range reduces. The lower bound of this range when ∆𝜔2= −𝜉௬ also plays a 
role in nullifying the bias. Figure 2(b) indicates that the bias is increasingly sensitive to the operational drive amplitude 
as the amplitude increases.  The bias variation is monotonic, either increasing or decreasing, and nonlinear trimming of 
the device to nullify the bias is only possible if the amplitude dependent frequency detuning is negated by the parametric 
pumping, i.e. ∆𝜔2 and 𝜉௬ have opposite signs. As electrostatic nonlinearity is softening, this can only occur when the 
drive excitation is applied at an angular position close to the maximum frequency axis, i.e. 𝜇𝜔 cos Ͷ𝜃𝜔 > Ͳ. 

Conclusions 

Electrostatic nonlinearity in ring-based MEMS CVGs interacts with ring imperfections due to self-induced parametric 
pumping and amplitude-dependent frequency detuning of the modes. These nonlinear effects have potential to negate 
performance degradation caused by imperfection, effectively trimming the device, but can enhance sensitivity in 
particular drive amplitude ranges. The lower bound of the amplification range effectively nullifies the bias in the specific 
case where the frequency detuning is negated by parametric pumping. The performance enhancement offered by 
electrostatic nonlinearity for imperfect devices is most significant when the cubic-order modal stiffnesses are balanced.  
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Summary. Parametric amplifiers have been well known in the electronic industry as well as in micro electromechanical systems
(MEMS). However, they are typically confined to amplify the signals of these systems at primary or secondary resonance frequencies.
Parametric amplification can nonetheless be extended to be broadband under certain conditions and system parameters. To the best
of the authors’ knowledge, this is not yet applied in microsystems, although being highly promising especially for the industry of
micro sensors and transducers. On the other hand, in the industry of rate gyroscopes, the micro-ring gyroscope is being developed for
over a decade in order to reach the accuracy level of tactical or inertial grade gyroscopes, while maintaining relatively low production
costs of MEMS. For that sake, parametric amplification was studied for micro-ring gyroscopes with different excitation methods.
However, the idea of having "global" amplification was not yet applied. For this reason, this contribution aims at presenting a parametric
excitation method for nonlinearly modeled micro-ring gyroscopes which can provide "global" improvement in the amplification and
the performance for a broadband frequency spectrum.

Introduction

Parametric resonances have long benn studied since the 1831 by Faraday. They were up to this date in practice the only
useful phenomenon acquired through parametric excitation, i.e. through having a time-varying coefficient in the system’s
partial differential equation (PDE). The common practice, at least in the microsystems industry, did not make use so far
from an important observation by Cesari in 1939. He found in at least two degree-of-freedom (DOF) systems, that an
asynchronous parametric excitation can lead to "global" phenomena across the whole frequency spectrum [1]. This will
be explained in the next section.

On the other hand, researchers aim at improving micro gyroscopes to attain the tactical grade level (0.1 deg/h bias stabil-
ity), seeking the level of inertial grade (<0.01 deg/h) afterwards. For micro gyroscopes, nonlinear resonances were used in
the literature to overcome asymmetries due to fabrication, as they allow energy transfer between vibration modes [2], thus
improving sensitivity. Moreover, parametric resonances proved to "squeeze" mechanical and electrical noises [3], which
contribute in improving the Angle Random Walk (ARW) and bias stability. Also by operating in the nonlinear regime,
parametric excitations were found to provide much higher amplification, however, this was not adequately theoretically
investigated till recently [4]. To this end, this work aims at extending the authors’ investigation of the global effects
induced by phase-shifted parametric excitations in linearly modeled micro-ring gyroscopes [5] to the nonlinear case.

Global effects

The previously mentioned global effects are discussed here for a linear system. In the current practice of paramteric
excitation mechanisms, instability or amplification were exhibited at the primary resonance frequency equal to double the
natural frequency, i.e. Ω = 2ωi , or at the countably infinite secondary frequencies ωi±ωj

n , where i = 1, 2, j = 1, 2, n ǫN.
But by applying the theory of Cesari we could get an amplification and/or instability at every excitation frequency, hence,
that is named as a "global" effect. One such consequence can be driving the system in a state of "total instability",
i.e. at every frequency. Having said that, it may seem as bad news to engineering applications, however, for a system
that behaves nonlinearly this could be translated to having higher amplitude, gain or amplification at a non-trivial stable
stationary solution. This can be achieved by having phase-shifted off-diagonal time periodic functions in the parametric
excitation matrix C(t). This effect can be simply illustrated for a two DOF system

q̈ + (D +G)q̇ + (K +C(t))q = 0, (1)

where D,G,K and C(t) are the damping, gyroscopic, stiffness and parametric excitation matrices, respectively. The
resulting phenomenon can be illustrated in Fig.1. The figure shows a global destabilization of the system in absence of
other excitation mechanisms, explained by having a positive eigenvalue at all frequencies except for anti-resonances.

Modeling of the nonlinear micro ring gyroscope

As shown in Fig. 2, the micro ring gyroscope is modeled as an elastic inextensible ring totally surrounded by curved
electrodes, each at an angle θ̄k. The ring was found to exhibit two degenerate modes at the first vibration frequency, the
antinodes for the first mode and second modes are at angles θ̄k = (nπ2 ), (nπ2 + π

4 ) respectively. For modeling the ring’s
elastic dynamics we follow Natsiavas [7] by considering only flexural vibrations in thin rings. The elastic and electrostatic
potential energy, Ud and Ue respectively, are then found to be

Ud =
EI
2R3

∫ 2π

0

[
u+ ∂2u

∂θ2 + 1
2R

(
∂u
∂θ

)2]2
dθ, Ue ≃ −ϵ0bR

2d

∑4
n=0

∫ 2π

0
(VDC + VAC)

2 un

dn dθ,
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Figure 1: Global destabilization of a 2 DOF system

R

Figure 2: A sketch of the micro ring gyroscope

where R is the mean radius, u and v are the radial and circumferential displacements of a point on the centroidal axis
respectively (s. Fig. 2), ϵ0 is the electric constant, b, h are the ring’s thickness and width respectively, d is the initial gap
between each electrode and the ring’s body, and VDC , VAC are the direct and alternating voltages respectively applied on
the electrodes. On the other hand, the kinetic energy for the ring in a rotating frame will be

T = ρbh
2

∫ dπ
0

[u, v]T . [u, v]TRdθ.
Applying the ansatz proposed by Natsiavas but for only two vibration modes, u(θ, t) = A(t) cos(2θ) + B(t) sin(2θ) −
9

16R

[
A2(t) +B2(t)

]
, and considering the alternating voltage to be distributed approximately according to VAC(θ, t) =

VAC(t) cos(2θ), we get two nonlinear ordinary differential equations in A(t) and B(t) representing the system dynamics
for the drive (primary) and sense (secondary) modes respectively.

Normal form transformation

However, since the resulting equations of motions are highly nonlinear, an analytical method is required to develop a better
understanding of the gyroscope’s dynamics. Different perturbation methods are widely used to analyze those systems, but
we prefer here to use the normal form method, since it proved to have comparatively better accuracy for highly nonlinear
systems involving parametric excitation. An approximate analytical solution is therefore derived, through which the
highest eigenvalue could be calculated in terms of system’s and excitation parameters, this was used as an indication for
system stability. This can be seen in Fig. 1, in which the normal form method was used to simulate the eigenvalues of the
system in (1) for all but resonant frequencies, complying with the numerical results calculated by the Floquet method. Two
main findings are specially important; firstly the system is destabilized for approximately the whole frequency spectrum,
that is specially important in tuning the exciation frequency. Since this would overcome the problem of the loss of
sensitivity by mistuning. And secondly, this can give a new method of controlling the gyroscope’s response through
frequency control. This method will then be applied on the already derived equations of motion, and thereby the effect of
the parametric excitation on the nonlinear micro gyroscope will be illustrated, in a similar way to what is explained for
the linear system in (1).

Conclusions

This work contributes to understanding the observed nonlinear behavior of the micro-ring gyroscopes, since its nonlinear
model was not sufficiently discussed in the literature [4]. Moreover, we propose a novel excitation method in the field of
micro sensors, which offers an unprecedented flexibility in tuning as well as amplifying the micro ring gyroscope. This is
believed to contribute to the development of current MEMS gyroscopes towards achieving an inertial grade accuracy.
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 Chaos in a non-linear non-buckled microresonator  
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Summary. Chaos is a phenomenon describing the complex dynamics of many systems, from the evolution of the weather to the dynamics of 
cosmic entities. Since a few decades, generating chaos from a physical system has triggered a lot of research, especially in the optical domain. 
In the mechanical domain, chaos generation has been investigated mainly with buckled structures. These bistable systems enter in a chaotic 
regime upon the application of a strong enough alternative force. However, in the micromechanical domain, buckling a structure is 
demanding and typically requires a large voltage, incompatible with available technology. In this paper, we describe a new way of generating 

chaos from a Micro Electro-Mechanical System (MEMS) using the dynamical bistability of a nonlinear system, activated by a modulated 
signal within the resonance of the system. We measured the generated chaos experimentally with a microresonator, and characterized it with 
Poincaré sections and Lyapunov exponent measurements. In our case, the chaos generation does not need any specific requirement, and it is 
readily applicable in many structures, opening a new path for MEMS-based chaos generators. 

 

Introduction 
 
For half-a-century, chaos has triggered a lot of research around the world, both for fundamental and applied research. 

Chaos is characterized mainly by a non-periodic regime whose evolution is extremely sensitive to initial conditions. 

However, it is a deterministic system: an absolute knowledge of these initial conditions would enable to fully describe 

the system evolution, without the need to introduce any form of randomness. In practice, the knowledge of the initial 

conditions is limited by the precision of the measurement, such that the long-term prediction of the evolution of a chaotic 

system diverges, giving the illusion of a random system. This property is at the core of many researches, such as fluid 

mixing [1] or noiseless sensing [2]. 

Since the discovery of chaos synchronization [3], a tremendous amount of work has been dedicated to physical chaos 

generation, using either electronic [4] or optical [5] approaches. However, in the mechanical domain, chaos generation 

has mainly been limited to theoretical studies [6]–[8] since its experimental implementation is usually too complex, 

especially in micromechanical systems. Indeed, a common way to generate chaos consists in the realization of a bistable 

system, which is usually obtained by buckling the structure. However, the force required to perform the necessary 
buckling is typically generated through an electrostatic coupling, with an applied voltage ranging from a few tens to 

hundreds of volts [9], [10]. In this paper, we present an original way of generating chaos with a nonlinear non-buckled 

MEMS structure, requiring low voltages. 

 

Methodology and results 
 

We performed our experiment using a thin disk of radius of 400 µm and thickness of 10 µm. Using a piezoelectric 

transduction, the device is driven by applying a voltage between the bottom and the outer top electrode, and the 

mechanical displacement is then measured through the inner top electrode (Fig. 1 a). For small displacements, the device 
being in a linear regime, the amplitude varies proportionally with the driving force. The structure has a resonant frequency 

of 71.5 kHz and a quality factor of 1100 at low pressure (≈ 1 mbar). By increasing the driving force beyond the regime 

of small displacements, the MEMS will gradually enter in a nonlinear regime, mainly due to a cubic nonlinearity known 

as the Duffing nonlinearity. In this regime, for a positive nonlinearity, the shape of the resonance line bends towards 

higher frequencies, creating a hysteresis. In this frame, the resonator experiences a dynamical bistable regime similar to 

the one induced by buckling (Fig. 1 b).  

 

 
Figure 1: Dynamically bistable chaos. a) The microphotograph of the MEMS showing the outer and inner electrodes (the 

common bottom electrode covers the opposite side). b) At low amplitudes (grey), the MEMS response is linear, but as the drive 

amplitude increases, its resonance bends to form a hysteresis (black) with two available states (low and high amplitude) for a large 
frequency range. c) Applying a modulation on the driving signal, the system switches between the two states, and at a high enough 
modulation frequency the system’s response displays a chaotic pattern. Grey dashed lines highlight the periodicity of the applied 
modulation, demonstrating no correlated periodicity in the output signal. 

 

By driving the structure with an amplitude-modulated signal within its hysteresis, the system switches from one to the 

other state, namely high and low amplitude, and at a sufficiently high modulation frequency this switching becomes 
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erratic and the MEMS response exhibits a chaotic signal (Fig. 1 c). In our case, we used a modulation frequency of three 

times the bandwidth of the system, corresponding to 195 Hz. 

Because of both non-periodic and non-reproducible features, specific tools are used to study the chaotic regime. In order 

to characterize the complexity of a chaotic regime, a common approach consists in a stroboscopic analysis of the generated 

signal, called the Poincaré section. This is performed by sampling a temporal signal at regular intervals defined by the 

modulation frequency (grey dashed lines in Fig. 1 c) and plotting the results in the phase space (Fig. 2 a). The generated 

Poincaré section presents the structure of the non-periodic chaos, extracting order from the apparent noise of the signal. 

Although a chaotic signal is unique, its Poincaré section represents a reproducible signature testifying the complexity of 
the generated chaos. 

 

 
Figure 2: Poincaré section and Lyapunov exponent measurement. The chaotic signals are generated at a modulation 

frequency of 195 Hz with a driving voltage of 1 V. a) By sampling the chaotic signal every 1/195 second, a specific signature 
emerges from the chaos, forming a Poincaré section. b) In the chaotic regime, two measurements (orange and red) with extremely 

close initial conditions will tend to diverge in the chaotic regime (starting at the time 𝑡 = 0). c) From the difference between the 
two trajectories, the Lyapunov exponent is extracted using an exponential fit.    

 

Another interesting property of chaos lies in how sensitive to the initial conditions the system is. This property is 

characterized by the Lyapunov exponent, which describes how two initially close trajectories of the same system converge 

or diverge after some time. For a positive Lyapunov exponent, the trajectories diverge, which is the main property of 

chaotic systems, and its absolute value characterizes how fast the divergence is: it describes the memory of the system. 

The precision with which the Lyapunov exponent can be experimentally measured directly depends on how precisely the 

system can be set at similar initial conditions, ultimately limited by the noise of the system. In our case we were able to 

get initial conditions as close as 100 ppm, enabling to fit correctly the Lyapunov exponent, which we find to be 171 rad/s 

for our system (Fig. 2 b, c). 

Conclusion 

We demonstrated a new technique for MEMS-based chaos generation, using the dynamical bistability of the nonlinear 

system combined with an amplitude modulated driving force. We characterized the generated chaos with Poincaré 

sections and Lyapunov exponent measurements, giving information about the complexity and the memory of the system, 

essential to understand the behavior of the chaotic system. 
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Summary. In this paper the nonlinear free vibrations of a hanging cable are investigated. The analysis is carried out by applying
the method of multiple scales directly on the planar equations of motion for a cable with arbitrary sag and inclination. The only
simplification used is that the static strain is small. The methodology allows to obtain results regarding the corrections in modal shape
and variations of frequency as function of the initial amplitude. The obtained results show that the hard/softening behaviour that this
kind of structure can undergo is in qualitative agreement with previous works.

Introduction

The use of hanging cables as structural elements is commonly found in several engineering application. This type of use
can be found in transmission lines, bridges, offshore oil exploration activities, among others. These structures exhibit a
rich dynamics, being under extensive efforts in research practice. In order to better understand the dynamic behaviour of
these structures, the study of the free vibrations is a problem of interest. This study provides the behaviour of the natural
frequencies and modes depending on the structural properties, both from linear and nonlinear perspectives.
The linear modes for a horizontal hanging cable with small sag were deeply investigated in [1], making an analytical study
regarding modal properties and the cross-over phenomenon. Following, in [2], the linear modal properties are obtained
for inclined taut strings. The results show the mode hybridization and the veering phenomenon that occurs in the inclined
configuration. In [3], the linear modes for an arbitrarily sagged inclined cable are obtained. The latter considers an
inextensible cable causing modal hybridization to be missed, which can be an important drawback in some problems.
In [4] nonlinear modes are obtained for a vertical beam under tension, with the vertical cable as a particular case. The
nonlinear modal properties of a horizontal cable are investigated in [5], using the method of multiple scales (MMS) on a
discrete model obtained with the Galerkin method. In [6], the nonlinear modes for an inclined cable with small sag are
obtained directly from the partial differential equations (PDEs), disregarding the axial dynamics.
To the best of the authors’ knowledge, the investigation of the nonlinear free vibrations of an arbitrary inclined sagged
cable with a direct analytical approach on the PDEs is not reported in the literature. One important motivation for this
kind of investigation can be found in [7], were it is stated and shown with examples that model discretization using the
Galerkin method may furnish wrong qualitative behaviour for the system under study due to obtaining the wrong sign
in some coefficients. The major contribution of the present work is then the investigation of nonlinear free vibrations of
hanging cables with arbitrary sag and inclination using the MMS directly applied to the PDEs.

Mathematical model

The model herein considered is that of a hanging elastic cable, immersed in fluid, with axial stiffness EA, immersed
weight γs and axial and transversal masses per unit length m and mt respectively. The difference between directions is
kept in order to allow to include added mass effects. The cable is hanging between two fixed supports with an horizontal
distance d and a vertical distance h. It is also considered that the tension Te (s) and the angle with the horizontal direction
θ (s) in the static configuration are known, with s being the arclength in the static configuration. Being u and v the axial
and transversal displacements with respect to the static configuration, the equations of motion obtained from the balance
laws for a cable element (see [8] for example) are given as:

T ′
e (cos γ − 1)− Te (θ′ + γ′) sin γ + T ′

d cos γ − Td (θ′ + γ′) sin γ = mü (1)

T ′
e sin γ − Teθ′ + Te (θ

′ + γ′) cos γ + T ′
d sin γ + Td (θ

′ + γ′) cos γ = mtv̈ (2)

In the equations the static equilibrium is already substituted. Td stands for the dynamic tension variation, γ is the dynamic
variation of θ, u is the displacement in the tangential direction and v is the displacement in the transversal direction.
Primes denote differentiation with respect to s while dots represent differentiation with respect to time. Now, the hy-
pothesis of small static strain is used, which allows to write for the strain ε = εs + εd, with the subscripts denoting
the static and dynamic parts. With that, it is possible to simply write Td = EAεd. Finally, from differential geometry,
the compatibility conditions are obtained, namely sin γ = (uθ′ + v′) / (1 + εd), cos γ = (1 + u′ − v′θ′) / (1 + εd) and

εd =

√
1 + 2

(
u′ − vθ′ + uv′θ′ − u′vθ′ +

(
u′2 + v′2 + (uθ′)2 + (vθ′)2

)
/2
)
− 1. The MMS is then applied consider-

ing three terms in the expansion for u and v, alongside with three time scales. The development is not reported for the
sake of the size of the extended abstract.
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Application example

In order to show the functionality of the methodology, some backbone curves for three different cables are obtained. The
data for the material properties are obtained from a typical steel catenary riser. The common properties for the three cases
are EA = 2314MN, m = 108kg/m, mt = 141.24kg/m, γs = 727N/m and structural diameter D = 0.2032m. For the
horizontal cable, d = 1500m and h = 0m. For the almost vertical cable, d = 1m and h = 1800m. Finally for the inclined
cable, d = 1500m and h = 1800m. In all the cases the natural length of the cable was taken as the one obtained from an
inextensible catenary configuration. The horizontal component of the tension is Th = 680550N for the horizontal and the
inclined cable, while is taken as 680N for the vertical one. The backbone curves showing the vibration frequency ω with
respect to the natural linear frequency ω0 as a function of the amplitude A0 are presented in Fig. 1. It is possible to see

(a) (b) (c)
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Figure 1: (a) Backbone curves for three modes of the inclined cable; (b) Backbone curves for two modes of the almost vertical cable;
(c) Backbone curves for one mode of the horizontal cable. Motion amplitude made dimensionless by the structural diameter.

that both hardening and softening behaviours are obtained, as well as the more intense hardening when going from the
chosen inclined model to the almost vertical one. Further examples and analysis of the results are left to the full paper. For
the sake of comparison of the qualitative behaviour, the softening behaviour for the horizontal configuration is obtained
in [5] while the terms of the fourth order in the expansion are not noticeable. The almost vertical configuration can be
compared to the results in [6]. Finally, examples of hardening in inclined cables can be seen in [9].

Conclusions

From the nonlinear equations of motion for a hanging cable, with the small static strain as only simplification hypothesis,
nonlinear solutions for the free vibrations were obtained with the method of multiple scales applied directly to the PDEs
of motion. The results presented show that the methodology is capable of reproducing some known qualitative results for
the dependency of the frequency of vibration with the amplitude of vibration. Further results and comparisons are planned
for the full paper and the presentation.
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 The effect of temperature on thermo-elastic plate response: FE and reduced model  
 Simona Doneva*, ** , Jerzy Warminski * and Emil Manoach**  
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Summary. In the present work a thermo-elastic model of a circular plate is analyzed. Nonlinear oscillations of a heated plate subjected to 
dynamic loading are studied. A model of the plate is based on the geometrically nonlinear Mindlin plate theory. Two different approaches 
are used to study the problem: a pure numerical study by the finite element method (FEM) and an analytical study based on the harmonic 
balance method applied to the reduced model taking into account the first vibration mode. The influence of the loading and the elevated 
temperature on dynamic behaviour is studied for buckling and post buckling states. 

Introduction 

The plates are used in many technological areas. Being fundamental structural elements often the plates are subjected to 
mechanical and thermal loadings which lead to intensive large amplitude vibrations. The temperature can change the 
reaction of mechanical structures and in some cases, close to critical points, even a small temperature variation may give 
unexpected change in the system response. The case when the studied problem of thermally induced vibrations or 
vibrations produced by coupled mechanical and thermal loads is nonlinear  its detailed investigation is specially important. 
Detailed analysis of local and global nonlinear dynamics of plates for various thermal and mechanical loads are conducted 
in [1,2]. 
In this work we analyze the effect of thermal loading on the nonlinear vibrations of a circular plate according to the 
extended Mindlin plate theory taking into account the geometrically nonlinearities due to the large displacements. FEM 
is used to study the response of the plate in the time domain. A reduced model based on the Galerkin ortogonalization 
method is the second approach to study the problem. By harmonic balance method the response of the plate is studied in 
the frequency domain. The resonance curves are determined from the analytically obtained modulation equations. 
Stability of the solution is studied in details. 

Physical method 

A circular plate with radius R and thickness h vibrating asymmetrically due to a harmonic mechanical loading is taken 
into consideration. It is accepted that the plate gets an elevated temperature instantly and the temperature is distributed 
uniformly along the plate surface and thickness. Based on extended Mindlin plate theory, and accepting that the inertia 
term in mid-plane can be neglected, the equations of the plate vibration are: 
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Where u and w are in-plane and  transversal displacements, ȥ is the angular rotation, 𝑐ଵ and 𝑐ଶ  are damping 
coefficients, ρ is the density, υ is Poison’s ratio, E is the Young modulus, T is the temperature and 
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The boundary conditions for a clamped, in-plane fixed plate are: 

       0 0 0u t u R t w R t R t   , , , , ,
 

The model of the plate represented by PDE is reduced to the ODE by the Galerkin method based on the modes 
projection and taking into account excitation, distributed according to the first mode shape. For the first mode reduction 
we obtain just one nonlinear differential equation: 

2 3
1 1 1 1 1 1 1 1 1 1 12 sinNL NT NPq q q F q F Tq F t          

Here FNL1, FNT1 and FNP1 are constants obtained numerically, Ȧ1 is the first natural frequency and ξ1 is a damping 
coefficient. Applying harmonic balance method, after some algebraic manipulations we obtained a cubic algebraic 
equation: 

 −ͳ6𝑃ଶ + 9𝑧ଷߛଶ + 𝑧ଶሺʹͶ𝜆𝑇ߛ + ʹͶߛߙ − ʹͶߛ𝜔ଶሻ + 𝑧ሺͳ6𝜆ଶ𝑇ଶ + ͵ʹ𝜆𝑇ߙ + ͳ6ߙଶ −͵ʹ𝜆𝑇𝜔ଶ − 𝜔ଶߙʹ͵ + ͳ6ߚଶ𝜔ଶ + ͳ6𝜔ସሻ = Ͳ 
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which is solved analytically. 

FEM and numerical results 

Using the FE program ANSYS Mechanical APDL the plate is discretized by a quad mapped mesh with 2700 elements 
and 2884 nodes. Four nodes finite element SHELL 181 is used. The response of the plate is studied for different values 
of the loading, excitation frequencies and different temperatures. Generally, the elevated temperatures lead to enlarging 
of the amplitude of vibrations. At Fig. 1 we show time history diagrams of response of the plate centre for 4 different 
temperatures. It is clear seen that at ΔT=30 and ΔT=40 the plate buckles and continues to vibrate around a new equilibrium 
state.  

 
 
 

 

                                                                                                        Fig. 2: Resonance curves by HBM for ΔT = 20 (black),  
Fig. 1: Time history diagrams of the plate centre of the plate                    ΔT = 30 (red) and ΔT = 40 (blue).            
subjected to harmonic loading with p=1500 𝑁/𝑚ଶ and Ȧe=312.5 Hz.  
Black colour – ΔT=10; Blue colour –  ΔT= 20; 
Purple colour – ΔT= 30 , Red colour – ΔT=40. 

HBM solution 

 
The algebraic equation obtained by HBM is solved for different values of the loading parameters and the temperature. An 
example for such solutions are the resonance curves shown in Fig. 2. The hardening behaviour of the resonance curves 
are clearly expressed due to the large deflections. The elevated temperature increases the amplitudes and changes the 
resonance curve in the direction of lower frequencies. It is seen that multiple and unstable solutions can occur. 

Conclusions 

Geometrically nonlinear thermo-elastic vibration of a Mindlin circular plate is studied by two different methods. In the 
first approach by FEM is demonstrated that the elevated temperature can change dramatically the response of the plate 
and could provoke the plate to complex response, including buckling and bifurcations. The second approach allows to 
obtain easily the resonance curves and to study the influence of the loading parameters and the elevated temperature on 
the behaviour of the plate. The computations based on the first mode reduction show the stiffening effect of the resonance 
curve. 
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The effect of the fibre orientation on the geometrically non-linear vibrations of tow 
placed composite plates with real clamped boundaries 
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Summary. Curvilinear reinforcement fibres can, within limits, be used to tailor the stiffness of composite laminated plates so that they have 
specific dynamic properties. The dynamic response of a plate to external forces is strongly affected both by boundary conditions and by the 
stiffness of the plate near the boundaries. Using a combination of experimental and numerical analyses, this work intends to analyse how 
the stiffness of the boundaries and the stiffness of tow placed composite plates near the boundaries interact to influence the geometrically 
non-linear response to harmonic external forces. 

Introduction 

The application of curvilinear reinforcement fibres in laminated composite plates leads to a variation of the stiffness 
within the plate domain, allowing designers to tailor the plate so that it meets specific demands more efficiently. Hence, 
there has been a considerable amount of research on this type of laminated plates [1]. The stiffness of the plate near the 
boundaries and its relation with the boundary conditions themselves have a major influence on the dynamic response. 
Classical boundary conditions, i.e., combinations of free, hinged or clamped edges, are typically considered by 
researchers. However, in practice it is not possible to exactly implement classical boundary conditions, with the 
clamped edge case particularly difficult to approach [2]. A more realistic representation of “real clamps” is achieved by 
considering elastically restrained edges [3]. 
This work intends to analyse how the non-linear response is affected by changes of the fibre path near the plate’s edges, 
when the latter are elastically restrained. For that purpose, a physical/mathematical model, which considers that the 
edges are supported on translational and rotational springs, is developed. The values of the stiffness of the boundary 
springs are adjusted so that the theoretical linear modes of vibration approach experimentally identified ones [4].  

Mathematical model 

An equivalent single-layer type formulation, based on Kirchhoff’s hypothesis, but accounting for geometrical non-linear 
terms in the Von Kármán sense, is adopted. Components u, v and w (respectively in directions x, y and z) of the middle-
plane displacements are written as series with products of shape functions by generalized coordinates and the principle 
of virtual work is applied. Apart from new stiffness terms due to the elastically restrained edges, the equations of 
motion are similar to the ones given in [5]. 

 
(a) 

 
(b) 

Figure 1: Experimental set-up (a) and schematic representation of a plate supported by distributed springs (b); only some springs are 
depicted. 

 
In the laboratory, the plate is fixed only on two opposite edges using stiff steel blocks, as shown in Figure 1 (a). The 
corresponding model with translational and torsional distributed springs is shown in Figure 1 (b), where some 
distributed springs are drawn on the left-hand side and one on the right-hand side, for the sake of clarity. 

iuK  and 
iwK

represent the values of the stiffness per unit length of translational springs along the x and z axes, respectively; xi
K and 

yi
K  represent the torsional stiffness per unit length of springs that rotate, respectively, about the x and the y axes. Index 

i is equal to 1 if =-1 and equal to 2 if  =1. Displacement at the boundaries is small, so it is still reasonable to assume 
that these stiffness coefficients are constant, even though this work is in the geometrically non-linear regime. 

The virtual works done by the distributed forces and moments due to the various boundary springs are  
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The ordinary differential equations of motion are obtained by applying the principle of virtual work and have the 
following form [5] 
             

..

Mq Cq Kq K q q p   l&
w w n w w ww t t t t t t  (5) 

 

where M  is the mass matrix, C a matrix due to viscous damping, K  a constant stiffness matrix and K n(qw(t)) a stiffness 
matrix that represents non-linear effects. Most of the terms due to the elastic supports are explicitly given in [4], they 
alter stiffness matrix K ; the remaining matrices are given in [5]. Vector qw(t) contains the transverse generalised 
coordinates; pw(t) is the vector of generalised transverse external forces. Although we are accounting for in-plane 
displacements at the boundaries, these are still extremely small and so is the in-plane inertia. Hence, the latter is 
neglected and, consequently, the non-linearities of the set of equations of motion (5) are of the cubic type. 

Sample results and closure 

Several frequency response functions were measured (Figure 2) and employed to obtain natural modes of vibration in 
the linear regime [4]. With this data, the stiffnesses of the boundary springs were adjusted, resulting in models that 
provide modal data that is reasonably similar to the experimentally obtained results [4]. As an example, Table 1 shows 
that the linear natural frequencies of vibration computed by the model with elastic supports (Springs

i ) are much closer to 
the experimental ones (experimental

i ) than the frequencies computed using a model that adopts theoretical, exact, clamped 
boundary conditions (CFCF

i ). 

 
Figure 2: Frequency response functions from measurements on the plate represented on Figure 1 (a). 

 
Table 1. Experimental and theoretical natural frequencies (in Hz). 

Mode number 1 2 3 4 5 6 7 

experimental
i  95.13 117.6 165.0 258.0 275.8 307.3 361.6 

Springs
i  97.35 116.1 175.7 277.5 286.3 321.6 405.4 

CFCF
i  136.7 153.1 211.7 315.7 379.9 403.0 486.1 

Harmonic excitations are applied and the non-linear response is computed using the harmonic balance and continuation 
methods [5]. Simulations are carried out for diverse fibre paths. The dynamic response is analysed, with particular 
attention paid to the combined influence of the elasticity of the supports and of the plate’s stiffness near the boundaries. 
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The Effects of Screen Curvature On The Transient Dynamics Of Automotive
Windscreen Wipers

Bradley Graham∗, James Knowles∗ and Georgios Mavros∗
∗Aeronautical & Automotive Engineering Department Loughborough University, UK

Summary. In this paper we study the effects of automotive windscreen curvature on the transient dynamics of a wiper blade. To do
this we utilise a finite element (FE) model to obtain contact force distributions for multiple screen curvatures in a single axis. The
distributions obtained are directly integrated into a multiple connected mass-spring-damper (MSD) system to analyse the transient
dynamics.

Introduction

The primary function of windscreen wipers is to remove water and debris from the windscreen, ensuring the driver has
a clear view of the road ahead. The successful operation of windscreen wipers is therefore imperative for the vehicle
occupants’ safety. Predicting wiper performance at the design stage is important to ensure their safe operation: whilst
the purpose of windscreen wipers is simple, the non-linear contact and sliding mechanisms which govern the operation
are complex. Because of these complexities, a lot of preliminary design decisions are based on empirical data rather
than predictive models. This can present constraints of unknown necessity on other aspects of a vehicle’s design (e.g.
windscreen curvature). There is hence a need to develop physics-based models of wiper performance that can be used as
evaluative tools early in the design stage.

Approach

This work presents an analysis of the impact that the contact distribution has on the transient dynamics of a windscreen
wiper blade. We consider the curvature of the screen in a single axis, the y axis. For the purpose of our model we maintain
the geometry of the wiper blade used in the FE model. Initially we take a commercially available screen, of curvature G
for analysis. We subsequently establish a mathematical expression of the screen to adjust the curvature to 1

3G and 5
3G.

We utilise multiple connected mass spring damper systems to represent the full length of the blade, and to allow for direct
integration of the distributions computed via a finite element (FE) model. A continuously differentiable Stribeck curve[1]
which features six constants is used to capture the transient friction characteristics of the blade. The Stribeck curve is
modified to agree with a recognised range of fiction coefficients, 0.1 − 0.6, associated to wet friction[2]. Additionally,
we use experimental values for both the stiffness, K, and damping, C, which were presented by Shigeki Okura and Tohru
Sekiguchi[3]. For our study we consider a discretisation that corresponds to a real-life discretisation distance of 2mm on
a 600mm wiper blade, providing much greater resolution than currently offered by experimental measures.

Figure 1: Fourier Decomposition of Transient Dynamics Associated to Nominal Screen Curvature G and 1
3
G
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Figure 1 shows the Fourier decomposition of the transient dynamics data for a nominal curvature, G and 1
3G. In the

nominal case, we find a peak in the amplitude of frequency at 30Hz. Additionally, there are a number of underlying beats
with a greater frequency than the peak, but significantly lower amplitude. When considering the a reduced curvature case,
we find that the peak frequency remains constant at 30Hz, but has a much greater amplitude. The underlying beats that
were visible in the nominal case are also present in the reduced curvature case. As with the peak frequency, the amplitude
of the beat frequencies also increase. However, the increase in amplitude, decreases as we consider higher frequencies.
Additionally we find that a uniform distribution does not yield a more desirable dynamic response than the current contact
distributions that feature on flat style wiper blades, but in fact a screen of greater curvature can yield reduced amplitudes
of the frequencies observed. Throughout our study we observe a dominant peak frequency, 30Hz, such a frequency is
associated to a chatter response of wiper blades[4].

Conclusions

The non-linear complexities and current reliance on empirical data associated to windscreen wipers necessitate the de-
velopment of models and analyses such as presented above. The work presented shows how small design decisions such
as the curvature of a windscreen, can dramatically affect wiper system performance, and shows how some small design
changes can aid in the functional operation of windscreen wipers. These results show the importance of understanding the
effects that screen curvature has on not only the transient dynamics but also the frequency response of the blade, providing
insight into improving wiper quality.
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Using Spectral Submanifolds for Forced Response Prediction in Nonlinear Finite
Element Models: Direct and Nonintrusive methods

Shobhit Jain∗, Mattia Cenedese∗ and George Haller ∗

∗Institute for Mechanical Systems, ETH Zürich, Switzerland

Summary. Finite element models of realistic nonlinear structures are characterized by very high dimensionality that renders sim-
ulations of the full system infeasible. Exact model reduction aims to achieve a drastic reduction of the full system’s variables in a
mathematically justifiable fashion. Specifically, Spectral Submanifolds have recently been shown to result in exact reduced-order mod-
els for periodically and quasiperiodically forced, nonlinear mechanical systems. In this work, we demonstrate recent advances towards
the computation of SSMs that enable the treatment of realistic finite-element models using direct as well as non-intrusive/data-driven
methods.

Background

The prediction of a steady-state response to an externally applied dynamic load is of special significance in engineer-
ing applications. Mechanical structures are usually characterized by light damping which results in exceedingly long
integration times before a steady state is reached. Despite the broad availability of dedicated software packages [2, 3],
the computation and continuation of the steady-state in response to periodic forcing remains a serious computational
challenge for full-scale nonlinear finite element models.

Direct computation of SSMs

We consider finite-element discretized system of second-order ordinary differential equations for the generalized displace-
ment x(t) ∈ Rn given as

Mẍ+Cẋ+Kx+ f(x, ẋ) = ǫf ext(Ωt), (1)

where M,C,K ∈ Rn×n are the mass, stiffness and damping matrices; f(x, ẋ) ∈ Rn is the purely nonlinear internal
force; fext(Ωt) ∈ Rn denotes the external forcing, which is periodic in t with frequency Ω; and 0 < ǫ ≪ 1 is a scalar
forcing amplitude parameter.

The recent theory of Spectral Submanifolds (SSM) [1] has laid the foundation for a rigorous model reduction of such
nonlinear systems, leading to reliable steady-state response predictions within feasible computation times. Further de-
velopments [4] have enabled the computation of SSMs and their reduced dynamics by solving the associated invariance
equations directly in physical coordinates using only the eigenvectors associated to the master modal subspace. The soft-
ware implementation of the method has been available in an open-source package, SSMTool [5], making direct SSM
computations scalable to realistic, nonlinear finite-element models.

Figure 1: (a) The finite-element mesh of a geometrically nonlinear aircraft wing (illustrated after removing the skin panels) with
n =133,290 degrees of freedom. The wing is cantilevered at the z = 0 plane (see ref. [6] for model details.) (b) Poincaré section of the
non-autonomous SSM computed around the first mode for the near-resonant forcing frequency Ω = 29.8 rad/s. (c) Forced response
curves obtained using local SSM computations at O(3),O(5) and O(7) that converge towards a hardening response. (see ref. [4] for
computational details.)

In this contribution, we demonstrate applications of SSMs towards the extraction of forced response curves (FRC) directly
from finite element models. For instance, Figure 1a shows the finite element mesh of a geometrically nonlinear aircraft
wing structure containing 133,920 degrees of freedom. We extract the forced response of this model around its first
natural frequency by analyzing the reduced dynamics on the two-dimensional SSM associated to the first mode, as shown
in Figure 1b. The hyperbolic fixed points of the reduced dynamics on this SSM in polar-coordinates (ρ, θ) directly
provide us the stable (blue) and unstable (red) periodic orbits on the FRC for different values of forcing frequency Ω (see
Figure 1c.) We refer to ref. [4] for further details.
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Nonintrusive computation of SSMs

As commercial finite element software seldom provide intrusive access to the nonlinearity f of system (1), the direct SSM
computation procedure discussed above has limited applicability for the users of commercial codes. At the same time,
however, recent advances [7, 8] towards data-driven computation of SSMs and their reduced dynamics have paved the
way for nonintrusive applications of SSM theory.

To this end, we construct data-driven, nonlinear reduced-order models on SSMs using the open-source package SSMLearn [9].
We base this construction on unforced decaying trajectory data obtained from black-box finite-element simulations. We
also take advantage of the knowledge of the master modes associated to the underlying SSM, which is readily avail-
able from commercial finite element software and aids computations. Thanks to the rigorous theory backing SSMs,
our reduced-order models, which are trained on a minimal number of unforced simulation trajectories, are capable of
accurately predicting the forced response of the full nonlinear mechanical systems.

Figure 2: (a) The finite element mesh and the first mode shape of a shallow curved rectangular arch which is simply-supported on
opposite ends. (b) Decaying trajectory data of the unforced system (c) Forced response predictions obtain from the data-driven reduced-
order model trained on unforced trajectory data via SSMLearn agree with the analytic predictions based on direct SSM computations
via SSMTool.

As an illustration, we consider a finite element model of a geometrically nonlinear shell structure [4] with 1,320 degrees
of freedom, as shown in Figure 2b. Assuming linear viscous damping, we simulate two trajectories decaying from
initial deflections given to the structure in the shape of the first vibration mode scaled by two different magnitudes. We
use truncated simulation data from one of these trajectories to learn the slowest two-dimensional SSM and its nonlinear
reduced dynamics up to an a priori determined accuracy. The second trajectory, which is unseen for the training procedure,
is then used for testing the prediction of our data-driven model, as shown in Figure 2b.

Finally, we observe that our data-driven model is capable of predicting the forced response of the full system around the
first natural frequency as shown in Figure 2c. Here, we obtain agreement with the analytic predictions of the reduced-order
model on the same SSM when computed directly [4] via SSMTool.
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Nonlinear Dynamics of a Ring-based Vibratory Energy Harvester 
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Summary. This paper is concerned with nonlinear dynamic analysis and design of a novel ring-based Bi-stable energy harvesting device that 
is considered as an alternative to the beam and tube models used thus far. The Mathematical model for the ring structure to generate nonlinear 
harvester model as well as the nonlinear magnetic force that acts on the ring structure is formulated. The highly sensitive ring second flexural 
mode when combined with the nonlinear harvester model as well as nonlinear external magnetic force results in an ideal combination that 
yields increased frequency range. Numerical predictions of nonlinear dynamic response characteristics when the system is subjected to 
ambient harmonic excitation have been performed for the purposes of gaining an insight into the dynamics and power generation of this new 
class of harvesters. 

 Concept and Modeling 

In this paper, the nonlinear governing equations of flexural motion of vibrating thin circular rings are developed for the 
purposes of investigating the nonlinear dynamic behavior of ring harvester. Galerkin’s procedure is used to discretize the 
nonlinear equations for numerical response predictions. Gebrel et al [1] have presented the first study of a novel ring-
based mono-stable energy harvesting device employing a linear system model subjected to ambient as well as nonlinear 
magnetic forces. The geometry and parameters used in the present study have been described in detail in [1].The general 
equations of motion that govern the transverse and circumferential motions are derived via Hamilton’s principle, as 
described in [2]. In the present study, models using various configurations for the magnets are examined so that efficient 
bi-stable energy harvesting systems utilizing the sensitive second mode of a ring structure may be realized in practice. A 
schematic diagram of the magnetic configurations system is shown in Figure 1. In order to represent the oscillatory 
nonlinear magnetic force that acts on the ring structure, a novel design and analysis of a theoretical model formulation is 
employed. This analysis is restricted to mono-stable/bi-stable configurations that depend on the nonlinear terms. Magnets ܤ and ܥ are considered identical and their distance from magnet ܣ is designated as ݀ as shown in Figure 1. 
 

                    
                                                                     Figure 1: A schematic of ring and magnet configurations 
 
     The present study focuses on bi-stable energy-harvesting based on ring structure using the primary and secondary co-
ordinates. System equations (1) and (2) have been employed together with equation (3) that represents the output power 
generation. The final nonlinear equations of motion that govern the nonlinear dynamic behavior of ring harvester 
employing the second flexural mode with nonlinear magnetic force as well as harmonic ambient excitation are derived as 
ߨℎߩ]   + ߨℎߩʹ ቀ݊𝛾ʹݎቁଶ ଶܣ ] ሷܣ + ߨℎߩʹ ቀ݊𝛾ʹݎቁଶ ሷܤܤܣ + ʹ𝜁𝜔ܣሶ + [ 𝐸𝐼ܾݎସ ሺ݊ଶ − ͳሻ݊ଶ + 𝑘𝑟] ܣߨ + 

[ 𝐸𝑏𝑟2 + 𝑘𝑟] ቀ𝛾ଶ𝑟ቁଶ ଶܣ] + ܣߨ[ଶܤ + ߨℎߩʹ ቀ𝛾ଶ𝑟ቁଶ ሶଶܣ] + ܣ[ሶଶܤ − 𝛾ଵ𝐼 = �݂�ଵ ሺܣ, ܤ , 𝜃𝑖ሻ + ݂                                                             (1) 

ߨℎߩ] + ߨℎߩʹ ቀ𝛾ଶ𝑟ቁଶ [ଶܤ ሷܤ + ߨℎߩʹ ቀ𝛾ଶ𝑟ቁଶ ሷܣܤܣ +ʹ𝜁𝜔ܤሶ+[ 𝐸𝐼𝑏𝑟4 ሺ݊ଶ − ͳሻ݊ଶ + 𝑘𝑟] ܤߨ + 
     [ 𝐸𝑏𝑟2 + 𝑘𝑟] ቀ𝛾ଶ𝑟ቁଶ ଶܣ] + ܤߨ[ଶܤ + ߨℎߩʹ ቀ𝛾ଶ𝑟ቁଶ ሶଶܣ] + ܤ[ሶଶܤ = Ͳ                                                                                             (2) 

𝐼ሶܮ                                                                                    + �̌� 𝐼 + 𝛾ଵܣሶ = Ͳ .                                                                                          (3) 

The parameters ܣ and ܤ represent the displacement of the ring in the transverse primary and the secondary directions, 𝐸 is the Young’s modulus, 𝐼 denotes area moment of inertia for the ring cross-section ,  is the mass density, and  𝐸𝐼 ߩ
denotes flexural rigidity. The quantification of the nonlinear terms are governed by the parameter  𝛾 . Also, ܣ is the cross 
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sectional area of ring, ܾ the axial thickness of ring, ℎ the radial thickness, ݎ the mean radius of the ring,  𝜁  the mechanical 
damping ratio while  𝜔 and ݊  , respectively, represent the natural frequency and the number of modes. Oscillatory 
external nonlinear magnetic force magnitude is represented by �݂� ሺܣ, ܤ , 𝜃𝑖ሻ, while the area moment of inertia of the 
ring cross section about its neutral axis is expressed as 𝐼 = ܾℎଷ ͳʹ⁄ . The harmonic excitation to be received from the 
ambient vibratory energy sources is represented by ݂ =  ሻ, where 𝜔 is the excitation frequency, and ݂ is theݐሺ𝜔ݏ݂ܿ
excitation amplitude. The positions of magnets on the system correspond to  𝜃𝑖 , 𝑖 = ͳ,ʹ, 3,4. Induced electrical current 

is denoted by 𝐼,  ܮ is the inductance of the coil, and �̌� represents the load resistance, while 𝛾ଵ denotes the transducer 

constant [3]. The expressions for the nonlinear magnetic force that affects the system at four positions are derived in the 
primary co-ordinate  ܣ as 

�݂�ଵሺܣ, ܤ , 𝜃𝑖ሻ = 
𝜇0ଶ𝜋 𝑉𝑉ܯܯ ∑ ሺcos ሺ݊𝜃𝑖ሻସ𝑖=ଵ − 𝛾ଶ𝑟 ሻܣ ∗ [ ଷቀௗ−𝑛 c୭sሺ𝜃𝑖ሻ−𝑛 si୬ሺ𝜃𝑖ሻ+𝑛𝛾4𝑟[𝑛2 +𝑛2]ቁ4 − 

                                                                                                       
ଷቀௗ+𝑛 c୭sሺ𝜃𝑖ሻ+𝑛 si୬ሺ𝜃𝑖ሻ−𝑛𝛾4𝑟[𝑛2 +𝑛2]ቁ4]  ,                       (4) 

where ܯ, ܯ  are the magnetization, 𝑉, 𝑉 represent the volume of the source magnet, and ݀ is the distance between 
magnets. 
 

Results and Discussion 
In the present study, a nonlinear model which includes a complex nonlinear inertia/stiffness terms as well as a nonlinear 
magnetic force as depicted in equations (1) and (2) have been employed. For the purposes of predicting the nonlinear 
response characteristic of the bi-stable ring harvester, equations (1) and (2) have been solved numerically. The system 
parameters are chosen based on the available experimental set up that has been used to investigate the system natural 
frequency in the previous study [1]. The details regarding the electrical subsystem have been described in detail in ref [1].  
Figure 2(a) shows the phase-plane trajectory for bi-stable behavior depicted via two-well potential when the harvester is 
under ambient excitation and excitation frequency of 6Ͳ ݀ܽݎ ⁄ܿ݁ݏ . The nonlinearities seem to be evident from the plot, 
hence suggesting the behavior of the bi-stable configuration for the harvester due to nonlinearities of the system as well 
as nonlinear magnetic force. Furthermore, nonlinearity can be seen in the Poincare’ map results as shown in Figure 2(b), 
where the map appear as a cloud of unorganized points in the phase plane in Figure 2(a) due to the influence of nonlinear 
terms. Figure 2(c) shows the bifurcation diagram of the response current under various excitation levels. The excitation 
level ranging from Ͳ − ʹͲ ݉ ⁄ଶݏ  has been considered for this study.  It may be inferred from this Figure that the bi-stable 
harvester undergoes alternating periodic and chaotic responses with the increase of the excitation level, which 
demonstrates a strong nonlinear behavior.  

     
                                         (a)                                                             (b)                                                                  (c)                                                           

Figure 2: (a) Two well-potential bi-stable harvester, (b) Poincare’ map for bi-stable harvester, and (c) Bifurcation diagram of 
response versus excitation amplitude for bi-stable harvester. 

 
Conclusions 

     The main objective of this paper is to present the feasibility as well as nonlinear dynamic characteristics of a ring-
based vibratory bi-stable energy harvester. When compared with the corresponding mono-stable harvester, an increased 
frequency range have been demonstrated. The dynamics of this class of harvester has been examined via dynamic 
response, Poincare map as well as bifurcation plots. The results provide confidence in employing the inherent bi-stability 
behavior available in this class of energy harvesters for energy production, in practice. 
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Non-smooth nonlinearities as restoring forces in a mass-in-mass cell
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Summary. The energy exchanges between particles of a mass-in-mass cell with nonlinear restoring forcing function are studied. Two
types of non-smooth compound nonlinearities are considered as restoring forcing function acting on the inner mass. The governing
equations of the system are treated analytically with the time multiple scale method in order to find the slow invariant manifold (SIM)
as well as singular and equilibrium points of the system. Finally, quasi-analytical system responses are confronted with numerical ones
obtained by direct time integration. Interestingly, the SIM of the system possesses several unstable zones and the frequency response
curves exhibit isolated solutions.

m2

c1

k1

c2

F (α)

m1

P sin(Ωt)

u1

u2

Figure 1: Model of the mass-in-mass cell.
.

The studied system is represented in Fig. 1. It is composed of an outer mass, m1, grounded by a constant stiffness k1 and
a damping coefficient c1. The outer mass is coupled to an inner mass, m2, with a damping coefficient c2 and a nonlinear
restoring force F (α) which depends on the relative displacement of the two masses. The general governing equations of
a 2-dof meta-cell systems are similar to a main system coupled with an attached nonlinear absorber [1].

{
m1ü1 + k1u1 + c1u̇1 + F (u1 − u2) + c2(u̇1 − u̇2) = P sin(Ωt)
m2ü2 + F (u2 − u1) + c2(u̇2 − u̇1) = 0

(1)

Two types of non-smooth compound nonlinearities are considered for F (α), which are plotted in Fig. 2:

F( )

+-

(a)

F( )

+
A

-
A

-
B

+
B

(b)

Figure 2: Considered nonlinearities for the restoring force F (α): a) Pure cubic and linear; b) Piece-wise linear.

A nondimensionalized time τ =
√

k1
m1
t and the coordinates of relative displacement and the center of masses of two os-

cillators are introduced to the system variables. After this, the complex variables of Manevitch [2] are applied. A Galerkin
method based on truncated Fourier series, involving the first harmonics of the system, is employed and a time multiple
scales method [3] is carried out in order to find the SIM and the dynamical characteristic points of the system [1]. In more
details, the SIM is detected at fast time scale, while the equilibrium and singular points are detected at slow time scale,
leading to prediction of periodic and non-periodic regimes [4].

For a given set of system parameters, two SIMs of the system corresponding to the restoring forcing functions of Figs. 2a
and 2b are illustrated in Figs. 3a and 3b, respectively. In these plots, N1 and N2 represent the amplitudes of the center of
mass and of the relative displacement of the two oscillators, respectively. These figures are accompanied by free responses
obtained by direct numerical time integration of Eq. 1 without external excitation. In both figures, it is seen that, starting
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from the initial condition, the system follows the SIM and it bifurcates twice before going to the rest position (expected
position for free responses of the damped system).
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Figure 3: SIM and corresponding numerical free responses: a) System with the nonlinearity of Fig. 2a and initial
conditions (w, v, ẇ, v̇) = (7, 7, 0, 0); a) System with the nonlinearity of Fig. 2b and initial conditions (w, v, ẇ, v̇) =
(6, 25, 0, 0).

Furthermore, the equilibrium points can be determined for sweeping de-tuning parameter σ. This parameter represents a
sweep of the frequency of excitation around the frequency of the outer mass (the system is studied around a 1 : 1 reso-
nance). Thus, frequency responses curves can be obtained for a given forcing amplitude, which permits identifying the
position of all equilibrium points and predict the amplitude levels of the cell. As an exemple, Fig. 4 shows the frequency
response curve of the system corresponding to the nonlinearity of Fig. 2a for a given forcing amplitude. In this figure, the
equilibrium points located in the unstable zones of the SIM are in green colour.

Figure 4: Detected equilibrium points of the system with respect to the de-tuning parameter σ for the system with restoring
forcing function of Fig. 2a. σ is a de-tuning parameter representing a sweep of the frequency of excitation around the
frequency of the outer mass (the system is studied around a 1 : 1 resonance).

The developments presented here provide design tools for tuning the non-smooth nonlinearities of the inner mass in order
to control the system, which presents different leves of energy reduction, acting like a gearbox. As a perspective, these
theoretical results will be compared with a designed experimental test setup.
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Noise control via exploiting nonlinear interactions
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Summary. Nonlinear behaviours of acoustical resonators, such as Helmholtz resonators in nonlinear regimes [1] or electroacoustic
absorbers [2], are used to obtain targeted energy transfer [3] from an acoustical mode to the resonators. It is shown that the noise control
is carried out via nonlinear interactions between acoustical mode and the absorbers leading to periodic or modulated regimes.

Nonlinear noise control

Let us consider an acoustical resonator which is composed of a cavity (container of the air) and the orifice (the neck). If
the length of the neck is smaller than the wavelength, then the overall system can be modelled as a mass-spring oscillator
where the lumped mass is in fact the encased mass of the air in the orifice while the air inside the cavity acts as the spring.
With analogy of mechanical engineering, we are interested to create a nonlinear restoring forcing function which can
be coupled to an acoustical mode for creation of acoustical energy tunnelling between the mode and the resonator with
nonlinear responses.

Nonlinear behaviours of the acoustical resonator
Figure 1 depicts different geometries of the neck of the resonator: The classical straight neck (H1) of the acoustical
resonator is tailored in a linear (H2) and quadratic manner (H3). Table 1 summarises dimensions of each configuration
while the length of the cavity for all case is 25 mm. The resonators are coupled to the Kundt tube [4] and the system
is excited by different sinusoidal forces while the pressures inside the cavity during the resonance are measured. All
resonators show three regimes categorizing as linear, almost linear and nonlinear. Moreover, it is seen that tailoring the
geometry of the neck accelerates reaching to the nonlinear domain. The actual limitation of current study is that even
via tailoring the system, it reaches to the nonlinear domain at high sound pressure levels, around 125-130 dB. There are
ongoing works to reduce this pressure level so that the proposed system can be applied for buildings.

H1 H2 H3

l 8.5 8.5 8.5
r0 1.5 1.5 1.7
r1 1.5 2 3.25

Table 1: Characteristics of different configurations of necks (mm). l stands for the length of the neck.

H3

H1 H2

r0

r1

Figure 1: Considered geometries for the neck of the resonator.

The governing equation of the acoustical resonator can be represented by following equation (see for example [5]):

d2x
dt2

+ σ
dx
dt

∣∣∣∣
dx
dt

∣∣∣∣+ δ
dx
dt

+
(
x− αx2 + βx3

)
= −p (1)

Equation 1 shows that the system possesses linear and nonlinear damping terms together with the linear, quadratic and
cubic (until third order developments) restoring forcing function. This system has been studied in detail by Alamo Vargas
et al. [1] for different excitation terms p showing that it can present softening and hardening behaviours. The idea
is to couple this resonator with nonlinear responses (or other resonators such as electroacoustic absorbers with similar
behaviours) to an acoustical mode for nonlinear noise control. The next section discusses about noise control via proposed
system.
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Figure 2: Variations of resonant frequency versus pressure amplitude (Pa) and sound pressure level (dB) inside the cavity.
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Figure 3: Free vibration responses at the middle of the tube for different excitation amplitudes. These amplitudes create pressures of
144 dB, 150dB and 153.5dB at the bottom of the cavity of the resonator [6]. N1 stands for the amplitude of the acoustical mode.

Passive noise control: coupling an acoustical mode to the resonator with nonlinear response
The explained resonator in previous section is coupled to a tube via a coupling box [6]. The first acoustical mode of tube
with the frequency of 378.6Hz has been generated. For creation of the free vibration, several sinusoidal signals with the
frequency of 378.6Hz are sent, then stopped and measurements are registered. Experimental results are collected in Fig.
3. It is seen that the resonator is capable of controlling the acoustical mode. Moreover, the control process is carried out
in two global phases: the first part is via nonlinear interactions between oscillators and second part which is similar to the
energy reduction by classical damped systems. Analytical developments are also carried out showing that the system can
be attracted by periodic [7] or modulated [8] regimes. Results are collected in [6].

Conclusions

It is shown that via changing the geometry of the classical resonator, the emergence of the nonlinear behaviours of the
resonator will be accelerated. Moreover, via coupling this resonator to an acoustical mode, it is possible to create a noise
control via exploiting nonlinear interactions between oscillators. There is an ongoing work which deals with creation of
nonlinearities via electric circuits for acceleration of noise control.
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On the determination of high energy output operation ranges of a piezoelectric bistable 
energy harvesting system by parallel computing 

 
 Nils Gräbner*, Lukas Lentz* and Utz von Wagner* 

*Technische Universität Berlin, Chair of Mechatronics and Machine Dynamics 

  
Summary. Nonlinearities in energy harvesting (EH) systems are introduced by intention to broaden the range of operation parameters with 
high energy output. Nevertheless, as multiple solutions occur due to these nonlinearities, the determination of optimal operation conditions 
is a challenging task. A method based on parallel computing with numerical time integration is presented to determine these optimal 
operational parameters in the case of a bistable piezoelectric energy harvesting system under harmonic excitation, where excitation 
frequency and excitation amplitude are considered. Therefore the basins of attraction are taken into account to get a measure for the 
occurrence of multiple solutions. 

Introduction 
Bistable systems have the potential for efficient EH, due to their ability to undergo so called interwell solutions with large 
displacements around both stable equilibrium positions  and therefore high energy output in a wide range of excitation frequencies 
[1]. The challenge is that also intrawell solutions, i.e. solutions with small displacements around one stable equilibrium or chaotic 
solutions may coexist for the same parameter set. Which one of these solutions occurs is determined by the initial conditions which 
are in a real world EH application neither known nor controllable. To find parameter sets with likely high energy output, the 
probability of each solution is determined in the following. Therefore, the model of a bistable EH system first introduced by Erturk 
[2] in 2009 and extensively analyzed in [3] is used. It contains one mechanical degree of freedom with a cubic nonlinearity and a 
coupling with an electric circuit. It is given by the nondimensional equations 
 𝑥′′ሺ𝜏ሻ + ݀𝑥′ሺ𝜏ሻ + ͳʹ ሺ−𝑥ሺ𝜏ሻ + 𝑥ሺ𝜏ሻଷሻ + ଵ𝑈ሺ𝜏ሻߠ = 𝑓cosሺߟ𝜏ሻ, (1) 

− Θଶܿp 𝑥′ሺ𝜏ሻ + 𝑈′ሺ𝜏ሻ + ͳ𝑅ܿp 𝑈ሺ𝜏ሻ = Ͳ, (2) 

 
where 𝑓 (normalized excitation amplitude) and ߟ (normalized excitation frequency) are considered as the operational parameters in 
the following. The state variable 𝑥, depending on the normalized time 𝜏, is proportional to the displacement of a beam, which is 
discretized in space by the first eigenfunction. 𝑈 characterizes the voltage at the piezos. The numeric values for the dimensionless 
parameters are given by ݀ = Ͳ.Ͳͳ, Θଵ = Ͳ.ͳ͵, Θଶ ܿp⁄ = Ͳ.ʹͶ, ͳ 𝑅ܿp⁄ = Ͳ.ͷͷ and 𝑅 = ͳ. For more detailed information see [3]. The 
goal is to determine harmonic excitations given by ߟ and 𝑓, for wich the system has a high probabilty to undergo interwell solutions. 

General behavior of the bistable magnetoelastic energy harvesting system 
Figure 1a shows the steady state solutions and their basins of attraction of the EH system in the case 𝑓 = Ͳ.ͳ and  ߟ = Ͳ.ͷ. The 
results are computed by numerical time integration using the standard Runge-Kutta method (RK4). 
 

 
Figure 1a: Phase trajectories of intrawell solution around 
negative equilibrium position (blue), intrawell around 
positive equilibrium position (red) and interwell solution 
(black). The red, blue and black areas indicate initial 
conditions resulting in the respective solution, i.e. basins of 
attraction. 
 

Figure 1b: Maximal and minimal values of the displacement 
for each stationary solution as funtion of the normalized 
excitation frequency ߟ for 𝑓 = Ͳ.ͳ. 
 

The type of the solution is classified by its color, where black indicates an interwell solution and blue and red describe intrawell 
solutions around negative and positive equilibrium positions respectivly. In figure 1b all stationary solutions for a fixed excitation 
amplitude of 𝑓 = Ͳ.ͳ are shown with respect to the normalized excitation frequency ߟ between 0.2 and 1.8. Each solution is 
represented by its maximum and minimum value of the state variable 𝑥. The same color code as before is applied with the addition 
that the gray areas indicate that there also chaotic solutions occur. It is noticeable, that for every ߟ, where an interwell solution exists, 
also intrawell or chaotic solutions coexist. At this point it is so far unknown which of the coexisting solutions is most likely to occur 
in a real world application and therefore it is difficult to determine an operational parameter range were the energy output of the EH 
system is high. 
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Determination of high energy output operational parameter ranges  
 

To identify operation ranges with high energy output it must be considered that each solution occurs with a different probability 
depending on the probability of the corresponding initial conditions, if multiple asymptotically stable solutions coexist. Therefore the 
coresponding basin of attraction must be taken into account. When the basin of attraction is known, it is possible to predict which 
solution will occur for each set of initial conditions. However, in a real world EH application the initial conditions are unknown. In 
this paper the probability density function 𝑝ሺ𝑥, 𝑥′ ሻ of the initial conditions is assumed as the addition of two normal distributions 
around both equilibrium position with a standard deviation of 0.3. If 𝑝ሺ𝑥, 𝑥′ ሻ is known, the probability 𝑃 of a specific solution is 𝑃 = ∫ ∫ 𝑝ሺ𝑥, 𝑥′ ሻ∞

−∞
∞

−∞ ܾሺ𝑥, 𝑥′ ሻd𝑥d𝑥′ , 
where ܾ ሺ𝑥, 𝑥′ ሻ is an indicator function which is 1 if the specific initial conditions ሺ𝑥, 𝑥′ ሻ are in the basin of attraction of the 
considered solution and 0 otherwise. To determine ܾ ሺ𝑥, 𝑥′ ሻ using numerical integration the investigated area is limited and 
discretized. In our case 𝑥 is considered between -2.0 and 2.0 and 𝑥′  between -1.0 and 1.0. The step size in both directions is ݀ = Ͳ.ͲͲ8. To compute a discretized version of the function  ܾሺ𝑥, 𝑥′ ሻ a numerical time integration with every possible combination 
of 𝑥𝑖 and 𝑥′ 𝑘  must be performed. The integration time for each integration must be long enough that the steady state solution is 

reached. By comparing each steady state solution with the specific one, ܾ (𝑥𝑖 , 𝑥′ 𝑘) can be set for all investigated initial conditions. 
Finally the probability of the specific solution can be determined by  

𝑃 = ∑ ∑ 𝑝(𝑥𝑖 , 𝑥′ 𝑘)ଶ5
𝑘=ଵ

5
𝑖=ଵ ܾ(𝑥𝑖 , 𝑥′ 𝑘)݀ଶ. 

The results are shown in Figure 2a which is an extension of figure 1b since it additionally contains the information about the 
probability of each solution. The probability is visualized by the intensity of each color. For instance the interwell solution is 
visualized by different gray shades where white indicates a probability of 0.0 and black a probability of 1.0. It can be seen that for ߟ 
in a range from 0.6 to 0.7 (green box) the probability that the system shows a high energy interwell solution is large. Hence this 
indicates that for a given f, ߟ should preferably be in this area for high energy output. To achieve these results it is necessary to carry 
out a large number of numerical time integrations, since for each considered ߟ (160 different values) it is required to compute the 
individual basin of attraction, which is generally time consuming (ͷͲͲ ∙ ʹͷͲ ∙ ͳͲ = ʹͲ,ͲͲͲ,ͲͲͲ integrations). This can only be 
done by using a computing technique on a graphics processing unit. Therefore the time integration method (RK4) is implemented as 
a CUDA kernal by using the PYTHON package NUMBA. By reducing the resolution of the computed basins of attraction from ݀ = Ͳ.ͲͲ8 to ݀ = Ͳ.Ͳ8 this approach also enables to consider further parameter variations, for example different excitation 
amplitudes. A corresponding result is shown in Figure 2b where the probability of the interwell solution is visualized over the 
normalized excitation frequency and the normalized excitation amplitude. The information in this Figure clearly demonstrates the 
optimal operational range of the parameters ߟ and 𝑓 for which the probability is large, that we have a high energy output.  
 
 

Figure 2a: Absolute maximal and absolute minimal value of 𝑥 
for each stationary solution with respect to ߟ for 𝑓 = Ͳ.ͳ. The 
opacity of each color indicates the probability of each specific 
solution. 

Figure 2b: Apperance probability of the interwell solution 
with respect to ߟ and 𝑓. Dark black indicates a high 
probability for the interwell solution. Therefore dark areas 
indicate beneficial operation values for ߟ and 𝑓. 
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Targeted energy transfer between a linear oscillator and a time-dependent nonlinear
systems

Aurélie Labetoulle∗, Emmanuel Gourdon∗ and Alireza Ture Savadkoohi∗
∗Univ Lyon, ENTPE, CNRS UMR5513, LTDS, France

Summary. Targeted energy transfer between two weakly and linearly coupled oscillators is studied. One of oscillators possesses time-
dependent damping and nonlinear restoring forcing terms. Thanks to the detection of different system dynamics, its phase-dependent
characteristics are clarified leading to having finer vision about energy channelling between such oscillators. The developments prepare
design tools for tuning parameters of the time-dependent oscillator leading to the design of energy channelling between two oscillators.

We would like to design the targeted energy transfer [1] between a linear and a time-dependent nonlinear oscillator. Our
considered system is composed by a linear oscillator weakly coupled to an absorber with a time-dependent cubic rigidity
[2] and damping (see Fig. 1). The considered system can correspond to an acoustical mode which is linearly coupled to
an adaptative acoustical resonator in nonlinear domains.The studying of such resonators with fixed parameters have been
already articulated in [3, 4, 5] for membrane and Helmholtz resonators and has been programed for a loudspeaker in [6].

k1

c1

γ

F (t)

u1

u2

k2(t)

c2(t)

M m

Figure 1: System with time-dependent cubic rigidity and damping

To study the behaviour of this system around a 1 : 1 resonance, we consider the nondimensioned governing equations.
Then, to have the envelope of the response of the system we introduce the complex variables of Manevitch [7]. To detect
the different dynamics of the system, the multiple scales method [8] is used. Hence, we introduce fast and slow time
scales. We keep only the first harmonics of the system via truncating other harmonics.

From the study of the fast dynamics of the system we can define the equation of the slow invariant manifold (SIM) which
corresponds to the energy of the first linear oscillator (N1) as functions of that of the absorber (N2) and also the phase
(δ2). Moreover, we can detect the local extrema of the SIM. Introducing the perturbation in the complex variables of
Manevitch, the unstable zone of the SIM can be clarified.

From the study of the slow dynamics of the system, we are able to define the equilibrium, singular points and the back-
bone curve of the system. These developments permit to predict different possible periodic or non-periodic regimes as
functions of excitation amplitude and frequency.

For the system with time dependent rigidity and damping, we represent in Fig. 2 the SIM with its unstable zone accom-
panied by results obtained from direct numerical integration of the governing equations of the system without external
excitation but under initial conditions. We notice that the SIM depends on three parameters: the energy of the linear
oscillator (N1), the energy of the nonlinear oscillator (N2) and its phase (δ2) contrary to the case with constant parameters
where the SIM only depends on N1 and N2. Moreover we can observe in the Fig. 2b that the numerical integration
follows the SIM and therefore the analytical predictions. The Fig. 3 represents different views of the equilibrium points
of this system and the unstable zone of the SIM. We observe that, there are two branches: a main branch (i) and an isola (ii).

Depending of progress of the work, some experimental results will be probably presented.
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(a) (b)

Figure 2: The SIM of the system with its unstable zone (green line) and numerical results (blue line). a) Three-dimensional
view (δ2, N2, N1); b) Two-dimensional view (N2,N1).

(a) (b)

Figure 3: Different views of collected equilibrium points. σ is the de-tuning of the frequency of excitation for analyzing
system behaviours around a 1 : 1 resonance. a) (σ,N2, N1); b) (σ,N2). The equilibrium points located in unstable zone
of the SIM are represented in green.
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Learning-based Model Matching for Fault Detection and Isolation of Nonlinear
Systems

Farhad Ghanipoor∗, Carlos Murguia∗, Peyman Mohajerin Esfahani†, and Nathan van de Wouw∗

∗ Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The
Netherlands

†Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

Summary. This abstract presents a method for fault detection and isolation (FDI) in nonlinear uncertain systems. The proposed
method has two stages: first, an offline training of a static map to capture the unstructured uncertainty; second, an online fault detection,
isolation, and estimation scheme. A nonlinear mechanical benchmark system is used to illustrate the performance of the scheme.

Introduction

The reliable functioning of high-tech systems can only be achieved through predictive maintenance, for which techniques
for fault detection (is a fault occurring?) and fault isolation (what is the fault source?) are essential prerequisites [1]. We
aim to develop a hybrid (physics-learning) fault detection and isolation (FDI) scheme that provides superior monitoring
performance by leveraging cutting-edge machine learning (ML) algorithms and first-principles physics-based models.
This abstract is organized as follows. First, the problem formulation is elaborated. Then, the proposed methodology is
briefly presented. Next, the proposed method is evaluated by a benchmark FDI problem using simulation results. Finally,
concluding remarks are discussed.

Problem Formulation

Consider a nonlinear dynamical system of the form:
{
ẋ(t) = g(x(t), u(t)) + η(x(t), u(t)) + ω(t) + φ(x(t), u(t), t),

y(t) = x(t) + ν(t),
(1)

where t ∈ R+, x ∈ Rnx , y ∈ Rnx , u ∈ Rnu are time, state, measured output, and known input vectors, respectively, and
nx, nu ∈ N. Function g : Rnx ×Rnu 7→ Rnx is a known nonlinear function. Function η : Rnx ×Rnu 7→ Rnx represents
unknown model uncertainty. Functions ω, ν : R+ 7→ Rnx are unknown disturbances, and function φ : Rnx×Rnu×R+ 7→
Rnx is the unknown process fault.

Methodology

The proposed methodology has two stages: 1. offline uncertainty learning, and 2. online FDI scheme (see Fig. 1). First,
in the offline learning stage, a static map for unstructured uncertainty is trained on the basis of the healthy system input
and output data (i.e., for the system with φ = 0). We use a supervised method (i.e., linear regression in this abstract)
to find the static map from system input and output to uncertainty in the training phase. Labeled data for the supervised
learning of the model uncertainty is obtained using the known part of the system dynamics and healthy system input and
output historical data. Then, in the online stage, we estimate the fault by matching the faulty model and the approximately
known model of the healthy system (which is constituted by a physics-based model and the trained uncertainty model).
Based on the estimated fault signal, the fault can be detected and isolated using the CUSUM-based procedure [3] as a
change detection method.

Figure 1: Offline uncertainty learning and online FDI scheme block diagrams.
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Figure 2: The nonlinear benchmark schematic.
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Figure 3: The CUSUM sequences and the thresholds.

Simulation Results

In what follows, the methodology is applied to a nonlinear benchmark system (a single-link robotic arm with a revolute
elastic joint, see schematic in Fig. 2) [2]. This system has the structure introduced in (1) and four states, x(t) =
[x1(t), x2(t), x3(t), x4(t)]

T . In the simulation, a fault is induced in the third equation of the right-hand side of (1). The
fault, which reduces the link mass, occurs abruptly at 225 seconds. The CUSUM-based thresholds and sequences for each
state are depicted in Fig. 3. The CUSUM sequence is a cumulative sum of the estimated fault, which is compared to the
CUSUM threshold for fault detection. It is clear from the left-down plot of the figure that the fault can be detected by the
proposed method since the CUSUM sequence exceeds the threshold after the fault occurrence. Furthermore, to indicate
the capability of the proposed method, it is compared with a linear conventional observer-based FDI method to detect a
small fault (Fig. 4). This small fault is the same as the previous fault. However, its magnitude is one-fifth of the previous
one. It can be seen in the figure, unlike the proposed method, the linear method cannot detect the fault due to ignoring the
nonlinearity and uncertainty.

Conclusions

The proposed methodology for FDI of nonlinear systems has improved fault detectability compared to conventional
methods in the presence of nonlinearity and uncertainty for the benchmark system.
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(a) The proposed method.
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(b) The linear observer.

Figure 4: The CUSUM sequence for the small fault and the thresholds.
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Subcritical Hopf bifurcation in the dynamics of a pressure relief valve
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Summary. The direct spring operated pressure relief valves are prone to harmful vibrations, which endanger the protected system
under pressure. The studied mathematical model describes a system consisting of a vessel and of a pressure relief valve mounted on the
vessel. The mathematical model with the state variables of valve lift, valve disk velocity and vessel pressure shows strong asymmetric
nonlinearities. Our adapted numerical simulation is appropriate to produce bifurcation diagrams with the bifurcation parameter of the
inlet flow rate, and also to draw the phase portrait. At the certain range of parameter combinations the equilibrium state loses the
stability through subcritical Hopf bifurcation. In the case of dense parameter sweep in the phase space an unstable limit cycle appears
between the trajectories. This unstable limit cycle can be calculated analytically by executing the Hopf bifurcation calculation. In
comparison with the numerical unstable limit cycle, we studied the effect of the asymmetry of the nonlinearties on the analytically
calculated unstable limit cycle. Global bifurcation diagram is constructed to trace the dynamical behaviour of the system ’outside’ the
unstable limit cycle, which includes impacts with the valve seat.

Introduction

The mathematical model of the direct spring operated pressure relief valve (see Fig. 1a) can be derived from the Newtonian
equation of the valve disk and from the mass balance equation of the vessel [1]:

y′1 = y2 , (1)

y′2 = −κy2 − (y1 + δ) + y3 , (2)

y′3 = β (q −√y3y1) , (3)

where the dimensionless coordinates y1,2,3 represent the valve lift, the valve disk velocity and the overpressure in the
vessel, respectively. The dimensionless parameters are the inlet flow rate q, the damping coefficient κ, the opening
pressure δ, and stiffness β of the fluid, which are obtained from the physical parameters in Fig. 1a according to the
following formulas:

q =
Qin

Ap0
k DπCd

√
2p0
ρ

, κ =
b

m

√
m

k
, δ =

kx0
Ap0

=
popen
p0

, β =

√
m

k

E

V

ADπ

k

√
2p0
ρ
.

During operation, only the flow rate q can change, which is chosen as bifurcation parameter. The volume V of the vessel
is inversely proportional to the β, and it has an essential influence on the stability of the equilibrium state and also on the
type of stability loss. Figure 2a shows a stability diagram of the equilibrium in the plane of the parameters q and β. It
can be seen that the system is stable for small and large β values. We study the loss of stability at β = 10, which belongs
to the small vessel volume. For this data the bifurcation diagram is shown in Figure 2b. The analytically calculated and
numerically checked critical flow rate value at the Hopf bifurcation is qcr = 5.930.

(a) Mechanical model (b) Stability chart for κ = 0.7 , δ = 3 (c) Bifurcation diagram for β = 10

Figure 1: Modelling, stability and bifurcations of the pressure relief valve
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Nonlinear analysis

The 3rd degree approximation of the system (1-3) around the equilibrium y10, y20, y30 has the form:



ξ′1
ξ′2
ξ′3


 =




0 1 0
−1 −κ 1

−β√y30 0 −β y10
2
√
y30
,





ξ1
ξ2
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+




0
0
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(
− 1

2
√
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ξ1ξ3 +

y10

8
√
y330
ξ23 + 1

8
√
y330
ξ1ξ

2
3 − y10

16
√
y530
ξ33

)


 (4)

At the bifurcation point, the linear part has the eigenvalues λ1,2 = ±iω, λ3 := λ ∈ ℜ−. Since the nonlinearity is
strongly asymmetric, there are 2nd degree terms in Eq. (4). Consequently, the system has to be reduced to the centre
manifold that is approximated by 2nd degree terms, too. The centre manifold can be calculated in the eigenbasis of
coordinates (u1, u2, u3), and it is tangent to the plane spanned by the complex conjugate eigenvectors. The lengthy
algebraic calculation involves also the Near Identity transformation:

[
u1
u2

]
= I

[
v1
v2

]
+

[∑
j+k={2,3} φjk(µ)v

j
1v
k
2∑

j+k={2,3} ψjk(µ)v
j
1v
k
2

]
, (5)

which leads to the 3rd order normal form for (v1, v2). This way, we obtain the Poincare-Lyapunov constant ∆ = 0.028 > 0,
which refers to subcritical Hopf bifurcation. The emerging unstable limit cycle has the amplitude:

r =

√

−
Reλ′1,2

∣∣
q=qcr

∆
(q − qcr) , (6)

where the root tendency Reλ′1,2 = −0.046 < 0 can be calculated from the characteristic equation by implicit derivation
with respect to the bifurcation parameter q. Through a polar coordinate transformation v1 = r cos(ωτ), v2 = r sin(ωτ).
Transforming back only the linear part of Eq. (5) to the original phase space makes the calculation easier, and has a
sufficient result for symmetric systems [2], but Fig. 2b shows with dashed red line how this treatment effects the location
of the limit cycle for this strongly asymmetric case. The limit cycle can fit better to the numeric unstable limit cycle
when the 2nd degree terms are transformed back, too. After the polar coordinate transformation, the second degree terms
result in constant and sin(2ωτ), cos(2ωτ) terms multiplied by r2. If the linear system is shifted with this constant only,
then the unstable limit cycle is shown by red continuous line in Fig. 2b. The trace of the unstable limit cycle fits best by
transforming back also the 2nd degree terms, which is represented with red dots in Fig. 2b.

(a) Centre manifold (yellow), tangent plane (green), two numerical
trajectories (black), analytical limit cycle (red)

(b) A stable and an unstable numerical trajectories (black) embrac-
ing the unstable limit cycle (white) and analytical limit cycles with
3 different approximations (red)

Figure 2: Numerical and analytical results presented in the phase space of pressure relief valve

The global dynamics of the system ’outside’ the unstable limit cycle is determined by the impacts of the valve disk and
the seat. This is characterized by the numerical bifurcation diagram in Fig. 1c, which fits perfectly to the analytically
predicted unstable limit cycle.
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Multi-mode approximation of VIVs in vertical and horizontal flexible risers
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Summary. In this study, oscillations of a vertical flexible structure with pinned-pinned ends in uniform flow are modelled and compared
with the responses of a horizontal structure. Wake oscillator approach is adopted to simulate vortex-induced forces in the in-line and
cross-flow directions and multi-mode approximation of the structural response is developed. Differences in the observed multi-mode
lock-in behaviour and hysteretic responses for vertical and horizontal configurations are discussed for the case previously considered
in experiments [1].

Introduction

Wake oscillator method allows simplifying calculations of the fluid forces acting on the slender structure vibrating in the
fluid flow so that complex phenomenon of vortex-induced vibrations (VIVs) for a variety of structures and case parameters
could be investigated with limited computational efforts. In the current study, analysis of vertical pipe vibrations is
performed based on the previous investigations of a flexible structure in 1D [2] for the wake oscillators presented in [3].

Flexible riser model

Initially in straight configuration, flexible structure with pinned-pinned ends is considered vibrating in uniform current
in 2 dimensions, accounting for the in-line and cross-flow displacements that varies along the length, L. The pipe is
modelled as an Euler–Bernoulli beam whereas external fluid forces are described using nonlinear wake oscillator equa-
tions. Here, the Krenk-Nielsen oscillator [4] with the frequency doubling coefficients is selected to predict the drag force
fluctuations based on the study [3] where the effect of phenomenological oscillators on the performance of the flexible
riser model for the horizontal configuration were considered. The obtained coupled system of nonlinear partial differen-
tial equations is simplified employing Galerkin–type discretisation to create reduced order model. The resulting ordinary
differential equations are solved numerically providing multi-mode approximations of the structure displacements and
non-dimensional fluid force coefficients. The obtained model is applicable for both horizontal and vertical configurations
and can be written in non-dimensional form for ith mode as:
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where Xi and Yi are in-line and cross-flow displacements multipliers, wi and qi are wake coefficients multipliers, ΩR
is vortex shedding frequency, St is Strouhal number, εx1, εx2, εx3, εy are dimensionless wake oscillator damping coeffi-
cients, Ax, Ay are empirical coupling coefficients, Φni, Πnmi and Ψnmli are dimensionless coefficients obtained during
the discretisation procedure due to the mode interaction, a, b, c are dimensionless coefficients depending on the initial
drag, fluctuating drag and lift coefficients respectively, N is total number of modes considered, ωni is the ith natural
frequency, ω0 is reference frequency, m∗ is mass per unit length (including structural mass and fluid added mass), Ww is
weight of structure per unit length. Then the displacements and wake coefficients are calculated as

X(ζ, τ) =
N∑

n=1

Xn(τ)X̃n(ζ); Y (ζ, τ) =
N∑

n=1

Yn(τ)Ỹn(ζ); w(ζ, τ) =
N∑

n=1

wn(τ)w̃n(ζ); q(ζ, τ) =
N∑

n=1

qn(τ)q̃n(ζ).

where τ is non-dimensional time and the sinusoidal functions X̃n(ζ), Ỹn(ζ), w̃n(ζ), q̃n(ζ) depending on the location
along the beam ζ = z

L are used. Here, z is the longitudinal coordinate, and z = 0 indicates the bottom for the vertical
configuration.
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For our analysis, the configuration of the riser was selected to match the case experimentally investigated in [1] where a
flexible tube with internal fluid with the weight of 2.97 N/m, length of 2.92 m, diameter of 0.018 m, and applied tension
of 147 N was considered in the Reynolds number range from around 1780 to 14800. The other relevant parameters were
the mass ratio of 1.17 and damping ratio of 0.025.

Results

Comparison of the lock-in curves calculated for in-line and cross-flow displacement amplitudes for the independent ve-
locity points and under decreasing and increasing flow velocity is performed in this study for the horizontal and vertical
risers, as illustrated in Figs 1a and 1b. Hysteretic behaviour is observed in the valleys between the lock-in peaks. The
co-existing solutions obtained with decreasing and increasing velocities indicate significant differences in the displace-
ment magnitudes. Figures 1c and 1d demonstrate displacement amplitudes of three co-existing solutions along the riser
length for a chosen value of the reduced velocity of UR = 10.48. Analysis of the obtained responses reveal a different
number of modes observed in the in-line and cross-flow directions. An apparent asymmetry towards higher amplitudes in
the response of the vertical structure is noticeable below ζ = 0.50.

0 20 40

Reduced velocity, U
R

0

0.035

0.07

In
-li

ne
 d

is
pl

ac
em

en
t a

m
pl

itu
de

, 
x/

D

0 20 40

Reduced velocity, U
R

0

0.35

0.7

C
ro

ss
-f

lo
w

 d
is

pl
ac

em
en

t a
m

pl
itu

de
, 

y/
DVertical, independent points

Vertical, velocity increase
Vertical, velocity decrease
Horizontal, independent points
Horizontal, velocity increase
Horizontal, velocity decrease

(a) (b)

0 0.5 1

Location, 

0

0.035

0.07

In
-li

ne
 d

is
pl

ac
em

en
t a

m
pl

itu
de

, 
x/

D

0 0.5 1

Location, 

0

0.25

0.5

C
ro

ss
-f

lo
w

 d
is

pl
ac

em
en

t a
m

pl
itu

de
, 

y/
DVertical, independent points

Vertical, velocity increase
Vertical, velocity decrease
Horizontal, independent points
Horizontal, velocity increase
Horizontal, velocity decrease

(c) (d)

Figure 1: Dynamics of a vertical and horizontal flexible riser for the range of reduced velocity predicted by the 3 mode approximation:
(a) in-line and (b) cross-flow displacement multi-mode lock-in at ζ = 0.25; (c) in-line and (d) cross-flow displacement amplitude
variation along the riser length at the reduced velocity of UR = 10.48.

Conclusions

This study investigates the differences in the predicted behaviour of a flexible structure in uniform flow for vertical and
horizontal configurations under increasing and decreasing flow velocity, and also in the limited case, when the structure
starts oscillating from zero initial conditions for each flow velocity. Vertical model shows the higher amplitudes of
displacement from the initial position than the horizontal structure in general. Vertical structure also demonstrates a large
asymmetry of the response, a more notable contribution of the nearby modes at the nodal points and a slight delay in the
peak occurrence in the reduced velocity range, compared to the horizontally positioned one.

References

[1] Sanaati B., Kato N. (2012) A study on the effects of axial stiffness and pre-tension on VIV dynamics of a flexible cylinder in uniform cross-flow.
Applied Ocean Research 37:198-210.

[2] Pavlovskaia E., Keber M., Postnikov A., Reddington K., Wiercigroch M. (2016) Multi-modes approach to modelling of vortex-induced vibration.
International Journal of Non-Linear Mechanics 80: 40-51.

[3] Kurushina V., Pavlovskaia E., Wiercigroch M. (2020) Modelling of flexible structure VIV in a uniform flow. International Journal of Engineering
Science 150: 103211.

[4] Krenk S., Nielsen, S.R.K. (1999) Energy balanced double oscillator model for vortex-induced vibrations. Journal of Engineering Mechanics
125(3):263-271.

ENOC 2022, July 17-22, 2022, Lyon, France

531



 

ENOC 2020, July 5-10, 2020, Lyon, France 
 

Nonlinear Dynamic Analysis of a Nonlocal Nanobeam Resting on Fractional Visco-
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Summary. This paper investigates the dynamic behaviour of a geometrically nonlinear nanobeam resting on the fractional visco-Pasternak 
foundation and subjected to dynamic axial and transverse loads. The fractional-order governing equation of the system is derived and then 
discretized by using the single-mode Galerkin discretization. Corresponding forced Mathieu-Duffing equation is solved by using the 
incremental harmonic balance (IHB) method for the strong nonlinear case. Methodology and results are validated against the solution via 
multiple scales method for the weakly nonlinear case. A parametric study is performed for order two and three superharmonic resonance 
conditions and for primary resonance case. The results demonstrated a significant influence of fractional-order and damping parameter of 
the visco-Pasternak foundation as well as the nonlocal parameter and external excitation load on frequency response of the system.  

Introduction 

A special class of beam models is so-called nonlocal beams, where the nonlocal elasticity constitutive equation is 
employed to consider the small-scale effects [1]. Such nonlocal beams are usually referred to in the literature as 
nanobeams due to the nano-scale dimensions of structures. The incremental harmonic balance method is used to study 
nonlinear dynamic behaviour of beam structures by many authors, e.g. see [2]. The main advantage of harmonic balance 
techniques is that they can be employed to find the periodic solutions of strongly nonlinear systems without introducing 
a small parameter like in perturbation techniques [3]. Shen et al. [4] investigated the Mathieu-Duffing oscillator by the 
incremental harmonic balance (IHB) method and determined the stability of the periodic solution using the Floquet 
theory. Later, this method was extended to study the nonlinear Duffing [5] and forced Mathieu-Duffing type [6] 
fractional-order differential equations, where the fractional derivative term was approximated through the Galerkin 
procedure. This study aims to employ the incremental harmonic balance techniques to study the frequency response of a 
nanobeam system resting on the fractional visco-Pasternak type foundation. Pasternak elastic foundation model is 
usually used for materials which besides normal deflection contain shearing distortion. It should be noted that, under 
certain assumptions, a nonlocal beam model could represent nanostructures such as carbon nanotubes. In that case, 
boundary conditions to analyze the free or forced vibration of a nanobeam structure can be prescribed based on the end 
conditions in a carbon nanotube i.e. a number of layers of fixed atoms in the lattice (e.g. see [7]). If only one layer of 
atoms is fixed at both ends of carbon nanotube, we can use simply supported (S-S) boundary conditions in the 
mechanical model, and if several layers of atoms are fixed, we can use boundary conditions of clamped-clamped (C-C) 
nanobeam. The single-mode Galerkin method is used to discretize the governing equation and obtain the nonlinear 
response for the fractional-order forced Mathieu-Duffing equation. The results are verified by the comparison of 
amplitude-frequency curves from the multiple scales and incremental harmonic balance methods obtained for the 
superharmonic resonance conditions of order two and three and a primary resonance case. 

Problem definition 

The governing equation for the forced vibration of a nanobeam resting on the fractional visco-Pasternak foundation is 
derived based on the model presented in Fig.1. Following parameters are used: L is the length of the nanobeam, ρ is the 
density, A is the cross-sectional area of homogenous nanobeam,    and     are the coefficients of the fractional visco-
Pasternak foundation,    is the operator of the Caputo fractional-order derivative,     is the amplitude of static load 
while     is the amplitude of the dynamic force of the frequency   .  
 

 
Figure 1: Nanobeam on fractional visco-Pasternak foundation a) physical and b) mechanical model 

 
Based on the Euler-Bernoulli beam theory and von Kármán nonlinear deformation, nonlocal constitutive equation and 
the Newton’s second law for the elementary part of the nanobeam, the following nonlinear fractional-order partial 
differential equation of motion of the nanobeam resting on the fractional visco-Pasternak foundation can be derived 
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Solution procedures 

The partial differential equation (1) is nondimensionalized and after introducing a new time scale        and we 

assume the solution of nondimensional version of Eq.(1) as                   , nonlinear fractional-order forced 
Mathieu-Duffing equation is obtained in the following form                                                                                                   
For some initial guess    of the steady-state modal amplitude, a neighbouring state of motion can be expressed in the 
form        ,           , where    and    can be represented as sums of trigonometric functions and 
corresponding weighting coefficients. Based on Galerkin procedure as described in papers [5, 6], Eq. (2) is discretised 
and Newton-Rapson method is applied to solve for increments of amplitude when      . 

Numerical results 

Here, we show the numerical results obtained by the presented incremental harmonic balance (IHB) method for finding 
the frequency response of the system. We verify the results by comparing the steady-state frequency responses for the 
superharmonic resonance case         obtained by the IHB and the multiple scales method (MS), as given in Fig. 2a. 
Influence of the fractional-order derivative parameter for weak nonlinearity and the nonlocal parameter for strong 
nonlinearity on the amplitude-frequency responses are given in Fig. 2b and Fig. 2c, respectively.  
 

                 
Figure 2: Frequency response for the superharmonic resonance case        : a) weak nonlinearity, changes of nonlocal parameter, 

IHB vs MS, b) weak nonlinearity, changes of order of fractional derivative, c) strong nonlinearity, changes of nonlocal parameter. 

Conclusions 

From the validation study, it is revealed that the incremental harmonic balance method is in good agreement with the 
multiple scales analysis for the weakly nonlinear case. The advantage of the incremental harmonic balance method lies 
in the fact that it does not require the introduction of small parameter and thus strong nonlinearity cases can be 
observed. It has been demonstrated that introduction of the incremental harmonic balance method in the analysis of 
nonlocal structures can possibly lead to more reliable analysis of strongly nonlinear nano-scale systems. 
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Summary. A nonlinear mathematical model of axially moving long slender continua coupled with discrete inertia elements deployed in a 

tall structure is developed. In engineering applications such a system represents a vertical transportation system (high-rise lift/elevator). 

The longitudinal motion of the discrete masses that represent the car, counterweight and compensating sheave assembly are constrained by 

a a nonlinear damping device. Numerical simulation techniques are then used to predict a range of complex dynamic interactions and 

resonance phenomena which in turn informs the development of vibration control strategies. 

Introduction 

Tall buildings and structures are subjected to sway motions of large amplitude and low frequency due to resonance 

conditions induced by wind loads and long-period seismic excitations [1,2]. These sources of excitation affect the 

performance of vertical transportation systems (VTS; high-rise lift/elevator systems) deployed in buildings [3]. The 

fundamental natural frequencies of tall buildings fall within the frequency range of the wind and seismic excitations and 

the sway motions form a base motion excitation mechanism which acts upon the components of VTS [4]. Particularly 

affected are long slender continua (LSC) such as suspension ropes, compensating and travelling cables. The lengths of 

these elements vary when the VTS moves vertically within the host structure. The lateral motions of the LSC are 

coupled with the vertical motions of discrete masess installed in the hoisway, such as the car, counterweight of the 

compensating sheave assembly (CSA).  

Complex resonance interactions arise in the system when the frequency of the base excitation is tuned to one (or more) 

natural frequencies of the system.Substantial research efforts has been devoted to the issue of mitigating the effects of 

the dynamic responses that might occur. In the first instance the masses and geometry of the system can be adjusted to 

change the resonance frequencies to shift the resonance regions. However, in most cases the structural constraints and 

design limitations do not leave much space for the changes to be effective. Active vibration control strateges involving 

boundary lateral motions and/or longitudinal motions (such as active stiffness control [4]) can be considered to mitigate 

the effects of resonances. However, these approaches involve the application of expensive and sophisticated actuator 

control algorithms and often passive methods are preferred to be used. For example, the industrial practice to mitigate 

the effects of dynamic interactions in a high-rise elevator system involves the application of a hydraulic tie-down device 

attached at the CSA. The damping force is then a nonlinear function of the CSA’s velocity. The aim of this study is to 

develop a numerical simulation model to predict and to analyse the nonlinear vibrational interactions in the system 

under resonance conditions. The characteristics of the damping device can then be optimised and adjusted to minimize 

the effects of adverse dynamic responses of the system. 

Nonlinear dynamics model 

Figure 1 shows a VTS system mounted within a vertical cantilever host structure subject to ground motions sr(t), 

1 2r ,  in the in-plane and out-of-plane directions, respectively. The structure undergoes bending elastic deformations 

with the in-plane and out-of-plane displacements at the top end (z = z0) denoted as wr0(t), respectively. The fundamental 

modal responses of the structure can be defined by the following equation 
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W t W t W t m z  z dz

m
       

    (1) 

where 1 2r , and Wr represent the modal coordinates. The natural frequencies of the structure are denoted as r , r  

represent the modal damping ratios,  r z  are the eigenfunctions (mode shape functions) of the structure. In this 

formulation 00 z z  ,  sm z  is the linear mass density of the structure and    
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r s rm m z z dz  . The deflections 

at the top of the structure are then be determined as    0 0r r rw Z W t , 1 2r , . The equations of motion of the LSC 

treated as continua with small bending stiffness are given as 
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The response of discrete masses are desribed by following equations  
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Figure 1: Greatest figure of all time 

 

where    i i i iv x ,t ,w x ,t , i = 1,2,…, 4, represent the dynamic displacements of the LSC, v w
i iF ,F  are the excitation 

terms, E1, A1, J1, m1 and E2, A2, J2, m2 are the modulus elasticity, cross-sectional effective area, second moment of area, 

and mass per unit length of the compensating ropes and the suspension ropes, respectively. The compensating ropes are 

of length L1 at the car side and the suspension ropes are of length L2 at the counterweight side, respectively. The length 

of the suspension rope at the car side and the compensating rope at the counterweight side are denoted as L3 and L4, 

respectively. The lengths of suspension ropes and compensating cables are time-varying so that   ,  1, ,4i iL L t i   . 

The masses and dynamic displacements of the car, counterweight and the compensating sheave assembly are 

represented by M1, M2 and M3, q1, q2 and q3, respectively. The speed and acceleration/ deceleration of the car are 

denoted by V and a, respectively, and Ti, denote the rope quasi-static tensions. In this model the quantities ei are the 

quasi-static axial strains in the LSC system. The kinematic constraint equation to be used in equations (2-3) is expressed 

as    3 1 1 4 42q u L ,t u L ,t 0     . 

Results and conclusions 

The model is solved numerically and the results demonstrate the resonance behaviour of the system. The resonance 

frequencies of the LSC componets can be shifted / changed by the use of different masses of the CSA. The frequencies 

of the suspension ropes depend on the mass of the car (and the corresponding mass of the counterweight) as well as on 

the car loading conditions. The characteristics of the hydraulic tie-down / damping device can be optimised and 

adjusted to minimize the effects of adverse dynamic interactions taking place in the system. It should be noted that the 

nature of the dynamic conditions present in high-rise building systems is such that small changes of the natural 

frequencies of the structure might result in large changes of the resonance conditions that arise in the installation. 
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On reduced-order models for resonant nonlinear dynamics: Galerkin truncation, 
nonlinear normal mode, and dominant spectrum decomposition 

 
 Tieding Guo*, Giuseppe Rega **  

*College of Civil Engineering, Hunan University, Changsha, China 
** Dipartimento di Ingegneria Strutturale e Geotecnica, Sapienza University of Rome, Rome, Italy 

 
 

Summary. It is well-known that perturbation analysis of reduced-order models (ROMs) of nonlinear structures produced by classical 
Galerkin truncation (using single or finite linear modes) might lead to erroneous results. At least three different approaches were proposed 
for resolving this issue in the literature, besides increasing retained modes (thus obtaining not a minimal ROM), namely, perturbation by 
directly attacking the continuous partial differential equations (PDEs), rectified Galerkin truncation, and nonlinear normal modes. The 
latter two give their ROMs but the first does not, although all the three lead to notably improved nonlinear responses. The three should be 
equivalent to each other in the sense of improved characterization of structure’s nonlinearity, although at first glance they are quite 
different in their formulations. Our key observation is that the underlying essential similarity of the three resolutions is that the structure’s 
dominant nonlinearity effects are always well captured before mode truncations (in distinct and subtle manners). Inspired by this similarity, 
we propose a new reduced-order modelling approach based upon dominant spectrum decomposition idea, with also comparisons of the 
above three existing methods being discussed. Explicitly, the key dominant dynamic patterns/features (indicated by their associated 
spectrum) inherent with nonlinear structures are captured before mode truncation. These dynamic patterns include not only the directly 
excited structural modes (always retained in classical Galerkin truncation), but also those dominant passive patterns which are slaved to the 
quadratic nonlinearity, sub-(super) harmonic excitations, or hard non-zero boundary conditions. 

Basic formulation 

Three typical one-dimensional scenarios in weakly nonlinear dynamics are discussed [1, 2], explicitly 
(a) Hard sub-(super) harmonic excitation problem denoted by 
        3, cos 2      w x t L w F x t N w w   (1) 

with boundary conditions    0, 1, 0 w t w t . Here    3, L N are the structure’s linear and geometric cubic-

nonlinear operators,  1 , 3    mF O  are the amplitude and frequency of a hard sub-harmonic external 
excitation, with  being a small parameter for proper perturbation analysis, and   a detuning parameter. 

(b) Quadratic (and cubic) nonlinearity problem governed by  
        2 3, cos 2      w x t L w N w N w F t w   (2) 

with    0, 1, 0 w t w t . Here    , w x t O  is the structure’s displacement, and L[], N2[], and N3[] are the 

linear, quadratic and cubic (spatial) operators, respectively.  3F O  is the excitation, with 2    m . 

(c) Hard sub-(super) harmonic moving boundary problem represented by  
          3 0, [ ] , 2 , 0, 0, 1, cos        w x t L w N w t w w t w t s t S t   (3) 

where the boundary motion 0( ) cos s t S t  is a hard sub-harmonic kinematic excitation with  0 1S O , 
3   m . Here S0,  are amplitude and frequency of boundary motion, respectively. 

For the three problems above we point out that, essentially, one single structural mode, i.e., the m-th mode  , m m , is 
directly excited and will thus survive in the corresponding ROMs in the absence of internal resonance, meaning that it is 
possible to use a single-mode Galerkin truncation like    ,  m mw x t q t for Eqs. (1) and (2) and 

       0,   m mw x t q t x s t  for Eq.(3), where a shape function  0 x  is introduced for satisfying the non-zero 

boundary motion s(t), with    0 00 0, 1 1   . However, it turns out that the induced perturbation results do not 
agree with the direct perturbation outcomes (regarded as the most accurate), indicating that the single-mode truncation 
is incorrect and that more structural modes should be retained in the Galerkin truncation. 
 
Error source analysis 
Our observation is that, although only the m-th structural mode is directly excited, there are possibly other passive 
dominant dynamic patterns which should be captured. For example, if only the m-th mode is retained in the low-order 
Galerkin-reduced model, all the following response components, i.e., , jq j m , will be completely neglected [1, 2] 

 1 0 0 2 0 0 0 0i i i i i i
1 1 1 2 2 2ˆ ˆ ˆ., ., .,             iT T T T T T

j j jq B e c e cc q B e c e cc q B e c e cc   (4) 

The key subtle point is that, although the free structural modal amplitudes 0, jB j m  will vanish eventually (not 

being directly or indirectly excited), certain forced components 0iˆ .,  T
j jp c e cc j m  might be non-trivial (say, be 
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of comparable amount with respect to the retained components andm mq p ). These non-trivial forced components 
0iˆ . T

j jp c e cc  are exactly what we meant by dominant passive dynamic patterns besides the retained  , m m , 
which could be caused by hard secondary excitations, quadratic nonlinearity and hard boundary motion. Explicitly, 
      2 2

2 0 0cos for Eq.(1), , for Eq.(2), cos for Eq.(3)      m m mF t N q I L x S t   (5) 
are the (non-secular) sources inducing non-trivial passive dynamic patterns, and should be fully captured. If single-
mode truncation is used, only the m-th projected component of the terms in Eq.(5) will be considered. This is the error 
source ensuing from the perturbation analysis when using single-mode based ROMs. 
 
Dominant spectrum decomposition and minimal ROMs [2] 
We propose the following single-mode truncation corrected by the dominant spectral decomposition, i.e.,  
          ,        i im mw x t x q t x p t   (6) 

where  i,   m t
m mq e  is the directly excited structural mode, and  i, 

   i

i i

tp e  are the i-th forced components 

or passive dynamic patterns due to various sources denoted by Eq.(5) above, with  1 2, ,    being the set of 
frequencies of these dynamic patterns, entering explicitly the low-order equation of motion as 
      2 2 source terms in Eq.(5)       i i

t L x p t   (7) 
Therefore, using Eqs. (6) and (7), we derive the new ROMs of the nonlinear structure denoted by 
     

source terms in Eq.(5) eliminated

2 2 RT , , , N0 ST            i im m m mt L q t q p   (8) 

Perturbation analysis using ROMs in Eq.(8) agrees with the direct perturbations, as illustrated in Fig.1 below for the 
moving boundary problem in Eq.(3), where S2 is one key parameter of the modulation equations. Here RT and NST are 
short for resonant and non-secular terms, respectively. Note that discrete-1 uses        0,   m mw x t q t x s t , with 

partially projected passive dynamic pattern captured, while discrete-2 uses          0,      m mw x t q t s t x p t  

with passive dynamic patterns fully captured, where      0 1, ,         Bs t p t g x  and g  is the steady 
Green’s function [1,2]. Results will also be discussed by comparing with those based upon rectified Galerkin method [3] 
and nonlinear normal modes (NNMs) [4]. 
Note that the dominant spectrum decomposition technique above can be essentially used for reduced-order modelling of 
more general (strong/weak) nonlinear systems, if passive dynamic patterns can be explicitly obtained (numerical 
simulations might be employed for detections), although in this presentation we focus on approximate analytical passive 
patterns which can be derived in a perturbation formulation. 

 
Fig.1 Convergence of modulation parameters in the modulation equations for the moving boundary problem [1] 
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Summary. This paper deals with cyclic systems, such as for instance turboengines, in the presence of random mistuning

and geometrical nonlinearities. A new methodology based on cyclic components is proposed to create a nonlinear

reduced-order model. It is applied on a simplified bladed-disk with a cubic nonlinearity for both tuned and mistuned

cases. Internal resonances in which several modes of a system exchange energy are recovered. A comparison of the

amplification factor due to mistuning between the linear and nonlinear structures is given.

1 Introduction

This paper studies the dynamics of cyclic structures such as turboengines. For perfectly tuned linear systems,
Valid and Ohayon [1] proved that their model could be written in terms of cyclic components. As underlined
in [2, 3], the full system of equations, controlling the dynamics of the structure, can thus be split into multiples
much smaller cyclic systems. The modes associated with these cyclic components, also called nodal diameters,
form a modal basis of the equations of motion. The thorough review given by Mitra and Epureanu [4] presents
the properties of cyclic structures and underlines two ongoing problematics for such systems: the nonlinear and
the mistuning effects.
In this paper, geometrical nonlinearities are investigated. As the bypath ratio of turboengines is getting larger,
effects due to large deformation are getting more pronounced in recent practical applications. Such nonlinearities
couple the different nodal diameters of the system. Consequently the size of the cyclic system becomes equal to
the onde of the full system and applying cyclic symmetric properties loses its advantages. However combining
the specific cyclic geometry of the structure and nonlinear effects reveals some interesting complex phenomena.
These have been widely studied by the scientific community. Vakakis [5] studied the nonlinear characteristics
(similar modes, localization, energy transfer) of a simplified tuned cyclic structure and compared his result with
experimental ones [6]. Georgiades et al. [7] studied modal interactions occuring in cyclic structures. Sarrouy
et al. [8] proposed a methodology to determine the multiple periodic solutions of a tuned cyclic structure.
Internal resonances [9], transfer of energy from one mode to another, were investigated in these papers. More
recently Grolet et al. [10] and Fontanela et al. [11] studied the phenomenon of dark solitons in cyclic structures.
All of these papers solved the full system of equation which is time-consuming. Recently, we propose in [12]
a methodology to determine which nodal diameter gets coupled in a tuned cyclic structure. This allows to
decrease significantly the size of the problem and to express the nonlinearity in the cyclic domain. With this
strategy, employing the cyclic symmetry property gets again more computationally interesting.
Random mistuning corresponds to the presence of small imperfection in the cyclic structure, due to manufactur-
ing tolerances for instance. This theoretically breaks the cyclic symmetry property and the entire system must
be solved to capture exactly the whole dynamics. In terms of modal properties, the mistuning leads to a split
of frequencies of the degenerated modes as explained in [4, 5]. Methodologies [13, 14] that use cyclic symmetric
properties have been developed to reduce the size of the linear system of equations. They assume that the
motion of the system is mostly controlled by the tuned modes. In a series of papers, Bladh et al. [15, 16, 17]
proposed a new methodology to create a reduced-order model (ROM) in order to perform many simulations for
multiple random mistuning patterns. This probability study has provided an amplification factor curve with
respect to the level of mistuning. This amplification factor is defined as the ratio of the maximal displacement
of the mistuned structure over the tuned one. Such analysis is time-consuming, even for linear problems, but
the concept of amplification factor is extremely interesting for engines manufacturers. Studies [18] have shown
that intentional mistuning patterns (large and controlled difference between the sectors) reduce the impact of
random mistuning on the response amplitude and thus allow a better prediction of the system dynamics.
In this paper, both random mistuning and geometrical nonlinearity are considered. The objective is to present
a new methodology to create non-linear ROMs that can be used to predict amplification factor of nonlinear
mistuned structures. Section 2 presents how mistuning and nonlinearities can be taken into account in a cyclic
formulation. Section 3 details the new ROM methodology that is based on these cyclic components. The
simplified bladed-disk (blisk) used as test-case will be presented in Section 4. Finally, a probability approach
will then be conducted in Section 5 to determine the amplification factor for the linear and nonlinear blisk
systems.

1
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2 Cyclic symmetry formulation

This section first recalls the cyclic symmetric properties of a linear system before introducing nonlinearities and
mistuning.

2.1 Linear cyclic symmetric systems

Let consider a cyclic structure composed of N identical sectors (tuned system), such as the one illustrated in
Figure 1. The dynamics of the entire structure is described with the equation:

Mü +Cu̇ +Ku = fext, (1)

where M, C and K represent the mass, damping and stiffness matrices. The vectors u and fext denote the
displacement and the external forces associated with the entire structure. As detailed in [3, 12] the cyclic
symmetry property only requires to model a single sector (whose mass, damping and stiffness matrices will be
noted M0, C0 and K0). Applying the spectral Fourier matrix F (normalized by a factor

√
N) and the matrix

(Bk)k∈J0,KK (where K = N
2 if N is even and N−1

2 otherwise) which relates to a phase change function of the
nodal diameter considered between the left and right boundaries of a sector, one obtains the following decoupled
equation of motion in the cyclic domain for each nodal diameter k,

M̃k
¨̃uk + C̃k

˙̃uk + K̃kũk = f̃k, (2)

where M̃k = B̄T
k F̄M0FBk and similarly for the damping and stiffness matrices. The operators .T and .̄ denote

respectively the tranpose of a vector or matrix and the complex conjugate. The vectors ũk and f̃k represent the
cyclic component of the displacement and the external forces associated with the nodal diameter k. The initial
problem (Equation (1)) contains N ×Ndof unknowns (with Ndof the number of degrees of freedom of one sector).
It is transformed into N independent problems with Ndof unknowns each (corresponding to Equation (2) applied
∀k ∈ J0,KK).
In turboengines application, one stage of blisk usually gets excited by another stage. This creates an excitation
force with specific properties: in most cases the excitation either follows a traveling or a standing wave pattern.
The associated wave number of the excitation force will be noted hex [19]. As a consequence, Equation (2)
needs only to be solved for this specific nodal diameter hex as the remaining nodal diameters are not excited
and therefore do not respond.

Figure 1: General cyclic structure. The cyclic symmetry property requires to model only a single sector such
as the one illustrated in grey color.

2.2 Nonlinear cyclic symmetric systems

In the presence of internal nonlinearities (the cyclic boundaries are assumed to be free of nonlinear forces), the
system (2) gets coupled from the nonlinear terms and needs to be solved for all k simultaneously. The equation
of motion in the cyclic domain becomes:

M̃k
¨̃uk + C̃k

˙̃uk + K̃kũk + f̃nl,k (ũ) = f̃k, ∀k ∈ J0,KK, (3)

where f̃nl,k (ũ) are the cyclic nonlinear forces for the k−th nodal diameter. Those are function of the displacement

written here in terms of cyclic components such that ũ =
[
ũT

0 , ..., ũT
K

]T
. The components ũk for the degenerated

diameters (k ∈ J1,K −1K if N is even and k ∈ J1,KK if N is odd) are complex values. The nonlinear terms couple
a priori all nodal diameters. Therefore the system (3) has the same size as (1).

2

ENOC 2022, July 17-22, 2022, Lyon, France

540



In some of our recent work [12], we showed how to identify which nodal diameter get coupled for a given excitation
when the structure exhibits polynomial nonlinearities. Applying this methodology reduces the system (3) to
the following

M̃k
¨̃uk + C̃k

˙̃uk + K̃kũk + f̃nl,k (ũ) = f̃k, ∀k ∈ (km) , (4)

where km is a reduced set of the interacting nodal diameters found by the methodology explained in [12]. In
practice the nonlinear term f̃nl,k can be either obtained by calculating the nonlinear forces in the physical domain
(function of the displacement and using Fourier transforms back and forth) or by computing them directly in
the cyclic domain (see the method proposed in [12]).

2.3 Nonlinear mistuned cyclic symmetric systems

Only random mistuning (small variations between sectors) is considered in this work. Stiffness variations are
assumed but the method can be easily extended for mass or damping mistuning. Consider the cyclic system
illustrated in Figure 1 and assume that each sector shows a slight variation in its stiffness matrix such that, for
a sector j, its stiffness is defined with

Kj = K0 +∆Kj , (5)

where ∆Kj denotes the mistuned part of sector j. In order to get the general equation of motion in the cyclic
domain, one applies the same cyclic symmetric procedure (the same projections) as explained above despite the
fact that the sectors are not necessarily all identical. The system of equations becomes

M̃k
¨̃uk + C̃k

˙̃uk + K̃kũk +∆K̃k,aũ +∆K̃k,b
¯̃u + f̃nl,k (ũ) = f̃ext,k, ∀k ∈ J0,KK, (6)

When applying the Fourier matrix, the physical mistuned matrix gets split into ∆K̃a and ∆K̃b. They are
respectively multiplied by ũ and its complex conjugate.. In (6), ∆K̃k,a and ∆K̃k,b represent these mistuned
parts impacting the k−th nodal diameter. The construction of these matrices follows standard linear algebra
from the cyclic symmetric properties and are not detailed here for brevity. As highlightened in (6), the mistuning
effect also creates coupling between the cyclic components (the whole ũ vector is present) and thus the system
must be solved for all nodal diameters simultaneously.
For better readibility, the different equations (6) for all k are concatenated using block diagonal matrices and
it gives

M̃¨̃u + C̃ ˙̃u + K̃ũ +∆K̃aũ +∆K̃b
¯̃u + f̃nl (ũ) = f̃ext (7)

The purpose of the new methodology presented in this study is to compute a nonlinear reduced-order model
(ROM) of system (7).

3 Methodology to create a nonlinear ROM

The following methodology is based on the theory of normal nonlinear mode (NNM) developed by Rosenberg [21]
and the synthesis procedure of Szemplinsky [22].

3.1 Evaluation of the NNMs

The first step of the proposed ROM creation is to compute the NNMs associated with the k−th cyclic component
of the underlying perfect cyclic symmetric system. They are defined as the solutions of the following autonomous
and conservative system associated with (4) in which only the nodal diameter k is taken into account in the
nonlinear term (the system is thus decoupled),

M̃k
¨̃uk + K̃kũk + f̃nl,k (ũk) = 0. (8)

The NNMs are computed with the Harmonic Balance Method (HBM) with a pseudo arc-length procedure [20].
The solution of (8) is supposed periodic of fundamental frequency ω and sought as

ũk =

Nh∑

n=−Nh

c̃k,neinωt. (9)

where Nh is the maximum number of harmonics retained and c̃k,n are the harmonics coefficients of the k−nodal
diameter. For a degenerated diameter, each harmonic coefficient is independent as ũk is a complex vector;
however for non-degenerated diameters, one has c̃n,k = ¯̃cn,−k and thus a real vector is obtained. Substituting (9)
in (8) and projecting the system on the exponential basis with the scalar product,

〈f,g〉 =
1

T

∫ T

0
f (t) ḡ (t)dt, (10)

3
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one retrieves the HBM system of equations to solve with c̃k,n and ω as unknowns. The nonlinear forces are
evaluated with the Alternating Frequency Time (AFT) procedure [23]. In practice, for an intialization on
mode i, we only retrieve for each nodal diameter the harmonics coefficients −1 and 1: c̃i,k,±1. These are then
normalized by a control coordinate and are used to form the vector denoted later φnl

i,±1, which provides the
shape of the displacement for all DOFs parametrized by the control coordinate.

3.2 Synthesis procedure

The second step is to build a nonlinear reduction basis. The solution of (7) is sought after in the form of (11) for
each nodal diameter (index k). The cyclic displacement of each of these nodal diameters is defined with multiple
nonlinear modes (index i up to I) whose calculation is explained in Section 3.1, supplemented by multiple linear
modes (index m up to M).

ũk =

I∑

i=1



φnl
i,1

(∣
∣
∣αnl

i,n>0

∣
∣
∣

)





Nh∑

n=1

αnl
i,neinωt



+φnl
i,−1

(∣
∣
∣αnl

i,n<0

∣
∣
∣

)





−Nh∑

n=−1

αnl
i,neinωt









+
M∑

m=1

[

φlin
m

(

αlin
m,1eiωt +αlin

m,−1e−iωt
)]

∀k ∈ J0,KK.

(11)

The generalized coordinates associated with the NNMs are approximated with a Fourier expansion (of order
Nh) whose coefficients are αnl

i,n. As explained in [21], φnl
i,±1

(∣
∣αnl

i

∣
∣
)

depends on the amplitude of the generalized
coordinates and is thus evaluated via an interpolation process at every solver iteration. Linear modes can also
be added to the synthesis procedure if necessary and those are represented by mode shapes φlin

m and generalized
coordinates αlin

m,1 and αlin
m,−1. Equation (11) is the synthesis associated with a degenerated nodal diameter:

each NNM is split into two parts (the positive and negative harmonic coefficients) to respect the eigenvalue
multiplicity. For a non-degenerated diameter, the cyclic component is only controlled with its positive harmonic
(its negative counterpart is its complex conjugate). Mathematically the reduction (11) can also be written as

ũk =

Nh∑

n=−Nh

c̃k,neinωt, ∀k ∈ J0,KK, (12)

where the harmonic coefficients are sought after as











c̃−Nh

...
c̃n

...
c̃Nh











=
(
φnl

(∣
∣αnl

∣
∣
)

φlin
)

︸ ︷︷ ︸

Φ





αnl

αlin
1

αlin
−1





︸ ︷︷ ︸
α

, (13)

where c̃n = [c̃0,n, ..., c̃K,n]T gathers the n−th harmonic coefficients of all nodal diameters and αnl is the con-

catenation of
(

αnl
i,n

)

(i,n)∈J1,IK×J−Nh,NhK
. Similarly, the unknowns αlin

±1 contains the generalized coordinates

for the different linear modes. The matrix Φ is created by combining appropriately the different basis: the
NNMs and the linear modes. The solution (12) is substituted in (7) and the system is then projected in the
exponential basis (see Equation (10)). This gives:






Z̃−Nh
· · · 0

...
. . .

...
0 · · · Z̃Nh











c̃−Nh

...
c̃Nh




+






0 · · · ∆K̃b

... ...
...

∆K̃b · · · 0











¯̃c−Nh

...
¯̃cNh




+






c̃fnl,−Nh

...
c̃fnl,Nh




 =






c̃fext,−Nh

...
c̃fext,Nh




 (14)

where Z̃n = (inω)M̃ + (inω)C̃ + K̃ + ∆K̃a is the dynamical rigidity matrix associated with the harmonic n ∈
J−Nh,NhK. The vectors c̃fnl,n

and c̃fext,n
gather the n−th harmonic coefficients of all nodal diameters for the

nonlinear and external forces. The nonlinear forces are evaluated with the same procedure as the one explained
in Section 3.1. The harmonic coefficients in (14) are then substituted by (13). Finally, the last stage of the
ROM creation is premultiplying this equation by ΦT ,

(

Φ̄T Z̃Φ
)

α+
(

Φ̄T
(
J1+2Nh

⊗∆K̃b

)
Φ̄

)

ᾱ+ Φ̄T c̃fnl
= Φ̄T c̃fext

, (15)

where Z̃ is a block diagonal matrix containing
(
Z̃n

)

n∈J−Nh,NhK
. The vectors α, c̃fnl

and c̃fext
are vertically

concatenated. The matrix J1+2Nh
is the exchange matrix (J1+2Nh,i,j = δ2Nh+2−i,j).

To couple the different modes, the nonlinear forces (term c̃fnl
) are evaluated with the AFT procedure while

solving (15).
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Even though the notation suggests that the same expansion is performed for each nodal diameter, the new
methodology can be adjusted and each nodal diameter written with different modal basis and harmonic expan-
sion.
This formulation is different from the synthesis proposed by Krack et al. [24] for the following reasons: the
reduced Equation (15) uses cyclic components, a multi-harmonic expansion and a reevaluation of the nonlinear
forces (once with the NNM evaluation and once with the synthesis stage).
In practice, the unknowns of system (15), α, are solved with a Newton-Raphson solver. For better efficiency,
the semi-analytical jacobian of this system is provided to the solver. The work of Joannin et al. [25] provides
insights on how to compute the jacobian in a similar problem.

3.3 Choice of nodal diameters and modes

The methodology proposed is efficient if the user chooses wisely the NNMs to compute, the linear modes and
the HBM expansion order. As explained in Section 2, turboengines are usually excited by a specific excitation
force with a given wave number hex. Moreover only random mistuning is accounted in this paper which induces
an assumed slight variation around the tuned response of the system.
As a consequence, only NNMs of the nodal diameters that interact in the tuned system (see [12]) are evaluated.
In the case of a mistuned structure, corrections are made possible by taking into account the linear modes of
the remaining nodal diameters.
The selection of which modes to compute depends on the probability of the appearance of internal resonances
and thus on the spectral repartition of the natural frequencies of the system.

4 Application for a tuned and a mistuned blisks

The purpose of this Section is to validate the methodology explained in Section 3. The reference solution used
for validation is the HBM employed on the full system with Nh = 3 harmonics. Comparison of computation
time between the reference solution and the ROM procedure is provided in Section 4.4.

4.1 Simplified model and ROM creation

The proposed methodology is tested on a simplified blisk composed of N = 24 sectors, one of which is illustrated
in Figure 2. A cubic nonlinearity is applied at the tip of the blade to model symmetric large displacement. This
test case was already used in [12] to study a perfectly tuned structure. The mass, damping and stiffness values
can be found in Tables 1 and 2 of the aforementioned article. Figure 3 represents the natural frequencies of the
underlying linear tuned system. In the remaining of the article, an external force with hex = 3 is applied and is
set to excite the first mode of the nodal diameter 3 of the system. Based on [12], we know that the third and
ninth nodal diameters will be coupled. Moreover, Figure 3 allows to see that the first and third modes of the
nodal diameter 3 are almost commensurable, and similarly for the first and second modes of the ninth nodal
diameter. As a consequence 1:3 internal resonances may occur. The NNMs computed will therefore be those
associated with these 4 natural frequencies (depicted by red circles in Figure 3). In the rest of this section, the
reduction basis used is composed of these 4 NNMs, expanded with the HBM up to Nh = 3, associated with
more or less linear modes depending on the situation.

m1

k1

k3

fext,0 (t)

knl

Figure 2: Description of the simplified blisk.
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Figure 3: Natural frequencies for each nodal diameter.
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The tuned system is first studied in Section 4.2. Section 4.3 focuses on mistuning and a random mistuning
pattern is introduced on top of the spring stiffness values k1 and k3, see Figure 2. The new stiffnesses are
defined as

km,i = ki (1+εξi) , i ∈ {1,3} (16)

where km,i is the mistuned stiffness value used instead of ki (i = 1 ou 3). The parameters ε and ξi are the
mistuning parameters: ε controls the level of mistuning (ε ∈ [0,1]) and ξi is a random value taken from an
uniform law in [−0.1,0.1]. Table 1 provides the random mistuning pattern used in this section.

Sectors S1 S2 S3 S4 S5 S6 S7 S8

ξ1 (in%) 0.0094 −8.8 −9.2 0.43 6.4 4.4 3.2 9.5
ξ3 (in%) −0.583 3.6 −8.6 −8 6.4 −7 0.37 3

S9 S10 S11 S12 S13 S14 S15 S16

6 −1.4 −8.3 −6.5 6.6 −8.8 0.54 3.1
−0.92 6.5 −7.3 −2.2 6.1 −2 −1.7 2.6

S17 S18 S19 S20 S21 S22 S23 S24

−4.2 −9.7 −6.7 −2.6 −0.21 −9 −8.9 −4.6
−1.4 9.7 −7.9 −6 −3.2 8.4 4.8 −1.5

Table 1: Numerical values used for ξ.

For each simulation, a bifurcation analysis [26] and branch switching algorithms [27] are performed. Solving (15)
provides the generalized coordinates which can then be employed to recover the displacement of the entire
structure. In the following section, the results illustrated are the displacement amplitude of the mass m1 for
the third and ninth nodal diameters. Those are noted respectively ũ3 and ũ9.

4.2 Results for the tuned structure

First the ROM procedure is validated for the tuned model. The external force is applied on mass m1, and is
defined as:

f̃ext,3 = 25
(
e−iωt +eiωt

)
. (17)

This high amplitude force was chosen to exhibit multiple nonlinear phenomena for the tuned case and thus to
verify the accuracy of the ROM for these complex situations.
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ũ

3
(t
)|
)
(m

)

1

2

3

215 220 225 230
0

1

2

3 ×10−3

Frequency (Hz)

m
ax

(|
ũ
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Figure 4: Frequency forced response for the tuned system. ( ): reference solution; ( ): ROM solution for the
stable main branch; ( ): ROM solution for the unstable main branch; ( ): ROM solution for the bifurcated
branch; ( ): bifurcation points.

The results obtained with the ROM procedure and the reference solution are provided in Figure 4. Two
branches are represented: the main branch of solution and a bifurcated branch initiated from a symmetry-
breaking bifurcation (only the stable part of this branch is represented in Figure 4). The ROM solution
perfectly matches the reference solution with a huge computational time saving as detailed in Table 2. Multiple
internal resonances are obtained in Figure 4. They are highlightened by arrows and number and the harmonics
coefficients of the response at these points are represented in Figure 5. For the peak numbered 1, on the main
branch, ũ3 mainly responds with its first harmonic (see Figure 5a); however ũ9 responds both on its first and
third harmonics. It shows that a 1:1 and 1:3 internal resonances have taken place. For the peak numbered 2,
still located on the main branch, the amplitude of ũ9 is higher than ũ3 (see Figure 5b) and is mainly due to
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its first harmonic. An 1:1 internal resonance is occuring. Notice that for both of these peaks, the solution has
a standing wave form similar to the external force (because c̃k,n = −¯̃ck,−n). For the peak numbered 3 located
on the bifurcated branch, the solution has a forward traveling wave shape (because c̃k,n<0 6= 0 and c̃k,n>0 = 0).
Moreover Figure 5c shows a 1:3 internal resonance.
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(a) Peak 1 (main branch).
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(b) Peak 2 (main branch).
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(c) Peak 3 (bifurcated branch).

Figure 5: Amplitude of the harmonics coefficients of the response at the three peaks mentioned in Figure 4.
( ): c̃3,n; ( ): c̃9,n. The second harmonic is not represented as it is exactly equal to 0.

The same model was used in [12] with a different reduction procedure and similar results were obtained. Overall,
this example has shown that the proposed ROM is perfectly able to recover complex phenomena such as internal
resonances and branch switching for a tuned system.

4.3 Results for the mistuned structure

The random mistuning pattern given in Table 1 is now introduced in the system. Three values of ε are studied:
0.01, 0.1 and 1, corresponding respectively to a deviation of 0.1%, 1% and 10% between the tuned and mistuned
systems. A traveling wave excitation is applied on m1 such that

f̃ext,3 = 2.5e−iωt. (18)

This force is 10 times smaller than the standing wave force used for the tuned case and its amplitude is more
typical of turboengines applications.
For ε = 0.01 and ε = 0.1, the nonlinear basis is supplemented with all the linear modes below the threshold 1 of
Figure 3 (represented by the dashed green line T1) that are used to take into account the other nodal diameters.
For ε = 1, the system is largely mistuned (10% deviation) and the first three modes of each nodal diameter
are included in the reduction basis (represented by the dashed green line T2 in Figure 3). For this system, all
nodal diameters are coupled and respond; however only the third and ninth nodal diameters will be represented
as they control the main dynamics. The stability of the response was not studied as the main purpose of the
article is to validate the accuracy of the ROM with respect to the reference solution.
Figure 6 represents the forced response for the three values of ε. For these different configurations, no bifurcated
branch was obtained. As ε increases, the amplitude of ũ3 and ũ9 decreases. The energy initially contained in
these two nodal diameters is gradually transfered to the rest of the nodal diameters due to the mistuning effect.
Moreover, we can observe the appearance of multiple linear resonances for the third and ninth nodal diameters.
This is expected as frequency splitting occurs [28]. The new methodology perfectly matches the result of the
reference solution.
In mistuned systems, detecting internal resonances is an arduous task as all nodal diameters are expected to
respond. Figure 7 represents the harmonic coefficients of ũ3 and ũ9 for the peaks represented in Figure 6. For
peak 1 of Figure 6a (ε = 0.01), the solution shows a traveling shape and the third harmonic of ũ9 is dominant. It
gives evidence to a 1:3 internal resonance (see Figures 7a). Similar results are obtained for peak 3 of Figure 6b
(ε = 0.1) as shown in Figures 7b. The peaks 2 and 4 for the ε = 0.01 and ε = 0.1 are associated with a standing
wave solution as depicted in Figures 7d and 7e for instance. For both peaks of Figure 6c (ε = 1), the solution
has a standing wave shape and only the first harmonic responds for ũ3 and ũ9.
Obtaining a standing wave solution, even though the excitation is defined with a traveling form, was expected
for mistuned system [28]. However Figure 7 presents an interesting trend: as ε increases, the internal resonances
progressively disappear. Studying succesively Figure 7a, 7b and 7c (increase of ε), one can observe that the
amplitude of the third harmonic of ũ9 diminishes in aid of the first harmonic. As a consequence, it is expected
that large mistuning would remove internal resonances. In order to make a definitive statement, further studies
should be conducted but these are beyond the scope of this paper
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(b) ε = 0.1.
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(c) ε = 1

Figure 6: Frequency response function for different levels of mistuning. ( ): linear response; the rest of the
legend matches the one of Figure 4.
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(a) Peak 1 of 6a (ε = 0.01).
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(b) Peak 3 of 6b (ε = 0.1).

−3 −1 1 3
0

0.5

1

1.5

2

2.5 ×10−3

Harmonic number n

∣ ∣

c̃ k
,
n

∣ ∣

(c) Peak 5 of 6c (ε = 1).
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(d) Peak 2 of 6a (ε = 0.01).
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(e) Peak 4 of 6b (ε = 0.1).
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(f) peak 6 of 6c (ε = 1).

Figure 7: Harmonics content for the response on the six peaks of Figure 6. The legend matches the one of
Figure 5.
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4.4 Computation time comparison

For both tuned and mistuned systems, the proposed ROM has shown great accuracy and enables to recover
complex nonlinear phenomena. Table 2 compares the computation time between the ROM and the reference
solutions.

Test case Method Number of unknowns Computation time (min)

Tuned system
Reference 720 24

ROM 48 3

Mistuned system (ε = 0.01)
Reference 720 59

ROM 108 24

Mistuned system (ε = 0.1)
Reference 720 145

ROM 108 43

Mistuned system (ε = 1)
Reference 720 202

ROM 186 81

Table 2: Computation time for the different test cases and methodologies. The simulations were run on a
standard computer with Intel Core i7 2.30GHz 8Go.

The computation time of the new methodology is greatly reduced compared to the reference solution (2 to 8
times faster). The computation time of the NNMs is not taken into account in Table 2 as it is negligible (below
20s and needs to be computed only once for all simulations).

5 Amplification factor

When considering mistuned systems, turboengineers are used to study the maximal amplitude of the (physical)
displacement obtained over all sectors. The amplification factor (AF) is defined as the ratio between this
maximum amplitude and the amplitude of the (single) peak obtained in a perfectly tuned system. This is
illustrated in Figure 8 for the linear case. We propose a similar definition in the presence of nonlinearity, see
Figure 9. Both of these Figures are obtained on the test case of Figure 2 with a 2.5N traveling wave excitation
and hex = 3. The mistuning pattern is the one presented in Table 1 with ε = 0.1.
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Figure 8: Tuned ( ) and mistuned ( ) linear fre-
quency forced responses.
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Figure 9: Tuned ( ) (respectively ( )) and mistuned
( ) (respectively ( )) nonlinear frequency forced re-
sponses obtained with the ROM (respectively the ref-
erence solution).

The amplification factor relates to the amplification of the response due to the mistuning. In practice, one must
generate a large number of random mistuning patterns to determine the overall behaviour of the AF. Extended
studies have performed such tasks [17, 29] for linear systems. For instance, to determine accurately the 95th

AF threshold (corresponding to 95% of mistuned blisks below this AF), one way is to launch a Monte Carlo
simulation with a large number of samples. The simulation consists in randomly picking a large number of
mistuning patterns (for a given law), and sweep the excitation frequency for each of them to determine the
associated maximal amplitude. If one wants to reach a given accuracy, then the larger the AF-threshold, the
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more simulations must be run. These calculations are time-consuming but it was shown, for instance in [17], that
the distribution of the AF law was a three-parameter Weibull law, and this allows to reduce greatly the number
of simulations needed. In the following, we have used a Weibull law reconstructed with only 50 simulations.
We have run these simulations for a 2.5N traveling force and hex = 3. The mistuning definition follows Equa-
tion (16) with ε = 1 and ξ is taken within an uniform law with 15 different standard deviations (from 1% to 15%
with a step of 1%). Figure 10a represents the AF with respect to the standard deviation for the linear system.
Figure 10b provides the same information for the nonlinear system. For both of these Figures, the 95th, 50th

and 5th percentiles (percentage of systems below the threshold) are represented. The maximum AF is obtained
for εmax ≈ 3% for the linear system and εmax ≈ 9% for the nonlinear one. The value of the maximum AF is
close to 1.9 for the linear system and 1.8 for the nonlinear one. Beyond this value of εmax, the AF decreases.
This behaviour has already been observed, in [29] for instance. The ROM solution matches well the reference
solution with a significant computational time saving: the trend is correctly captured and errors are below 7%
for a high level of mistuning.
Notice that the results were obtained with a specific excitation force. While Figure 10a remains valid for other
levels of excitation (at hex fixed), the nonlinear results of Figure 10b are expected to vary. For a complete map
of the influence of the mistuning, one must run these computations for all values of hex as well as for different
force amplitudes.
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(a) Linear Solution.
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(b) Nonlinear solution for the ROM/reference procedures.

Figure 10: Amplification factor with respect to the deviation of the random mistuned pattern. ( ):95th

percentile; ( ): 50th percentile; ( ): 5th percentile. The blue, red and green colors denote respectively the
linear case, the ROM and the reference solutions for the nonlinear case.

6 Conclusion

This paper presented a new reduced-order model methodology based on the computation of cyclic normal
nonlinear modes. It is able to handle randomly mistuned cyclic structures while exhibiting complex nonlinear
behaviour such as internal resonances. The method has been validated for a simplified blisk and has shown
great accuracy while reducing significantly the computation time.
A probabilist study was conducted to study the impact of both the nonlinearity and the mistuning on the
amplification factor of the system. For both linear and nonlinear systems, mistuning may lead to an amplification
of 90% in the response. This maximum is however reached for different values of standard deviation. For both
systems a plateau is reached after a relatively large value of standard deviation.
This new methodology is expected to be applicable and efficient for finite-element models of engineered struc-
tures. It thus offers probabilist opportunities which, at this date, could not be achieved. However, applying the
same procedure to intentional mistuned structures (large discrepancies between the blades) is expected to be
less efficient because the system is no longer close to its tuned counterpart.
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Summary. Projection-based Model Order Reduction (MOR) aims at reducing the computational cost associated with the solution of
large-scale dynamical systems to be used in many-query settings such as optimization and control. For nonlinear systems, significant
cost reduction is only possible through an additional approximation of the nonlinear terms to reduce the computational effort of the
Reduced-Order Model (ROM). These hyper-reduction techniques often lead to instability when the nonlinear terms are not approx-
imated with a high accuracy. Increasing the accuracy of the nonlinearity approximation increases the complexity of the ROM and
will question the original motivation behind MOR to obtain a faster simulator and a system with lower number of states for controller
design. In this study, a non-intrusive (data-based without the need for the physical model) Reduced Basis (RB) method is proposed
for a highly nonlinear model, called the Drift Flux Model (DFM), to simulate multi-phase flow inside a pipe. A set of RB functions
are extracted from a collection of high-fidelity solutions by changing the input signals of the system via a Proper Orthogonal Decom-
position (POD). The solution of the ROM is obtained through a linear combination of these RB functions with coefficients obtained
by a Residual Recurrent Neural Network (RRNN). The RRNN approximates the map between the input signals and the increment of
projection coefficients of the high-fidelity solution onto the reduced space. The generation of the RB functions and the training of the
RRNN are performed during the offline phase, while the RB solution of a new input signal can be recovered via the outputs of the
RRNN in the online phase. The proposed method decouples the offline and the online phases, and provides fast and reliable solutions
of the original DFM.

Problem description

One of the widely accepted models to simulate multi-phase flow is the DFM [1], a highly nonlinear set of conservation
laws described as below:





∂

∂t
(αlρl) +

∂

∂x
(αlρlvl) = 0,

∂

∂t
(αgρg) +

∂

∂x
(αgρgvg) = 0,

∂

∂t
(αlρlvl + αgρgvg) +

∂

∂x
(αlρlv

2
l + αgρgv

2
g + p) = F +G,

t ∈ [0, T ], x ∈ [0, L],





1 = αl + αg,

vg = K(αlvl + αgvg) + S,

p = (ρ− ρ0)c
2
l + p0,

p = ρgc
2
g,

(1)

where αi(t, x), ρi(t, x), vi(t, x), p(t, x) represent volume fraction, density and velocity of phase i and the common pres-
sure, respectively. The subscript i ∈ {l, g} denotes the liquid and gas phase with ci the sound velocity in the medium of
phase i, K and S two constants implying the flow regime and p0 and ρ0 the reference pressure and density. Here, t rep-
resents time and T is the time horizon of the simulation. In addition, x denotes the spatial coordinate and L is the length
of the spatial domain. Finally, F (t, x) and G(t, x), respectively, denote the frictional and gravitational terms, which add
extra nonlinearity to (1).
Highly nonlinear finite-volume schemes are developed to solve (1) [1], rendering the discretized system of equations
even more complex. Therefore, real-time simulations cannot be achieved unless powerful computational resources are
available. Moreover, control design for such a complex system is generally infeasible. Hence, MOR should be applied.

Reduced-order model

Intrusive (projection-based) MOR of (1) leads to an unstable system unless the nonlinear parts are approximated with
a high accuracy. To circumvent this issue, a non-intrusive (data-based) MOR is applied in this study, which in addition
resolves the need to access the physical model and enables the use of highly nonlinear and accurate finite-volume schemes.
The algorithm introduced in [3] is used here together with an RRNN structure as shown in Figure 1. The variables W and
b are, respectively, the weight coefficients and the bias values of each node in the hidden layer, to be specified during the
training. It is well-known that recurrent neural networks trained on the residual values (variation of states over each time
step) have a higher capability in approximating dynamical systems [4].
The RRNN structure takes the input signals of the system and gives the temporal variation of the coefficients of the RB
functions as an output. Since we are dealing with a dynamical system, the coefficients of the RB functions in the previous
time step are also fed as an input to the RRNN.

Results

In the simulations for the RRNN, we have used one hidden layer consisting of 20 nodes with one time-step delay (0 : 1 in
the delay layer means both u(t) and u(t − 1) are considered as the training inputs). The delay in the recurrent structure
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Figure 1: The nonlinear autoregressive network with exogenous inputs combined with RRNN.
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Figure 2: Comparison of the approximation of αg(0, t) and p(L, t).

is also set to one. The inputs to the system (u(t) in Figure 1) are liquid and gas mass flow rates at the left boundary and
the valve opening at the right boundary (3 inputs in total, u(t) ∈ R3). We have considered three independent variables
αg, vl and p in (1) and assigned 5 RB functions for each (15 outputs in total, y(t) ∈ R15). To train the RRNN, five
different samples of inputs u(t) are fed into the structure and the coefficients of the hidden layer (W and b) are regulated
to minimize the mean-squared error between the RRNN outputs and the temporal variations of the coefficients of the RB
functions obtained after applying POD to the snapshots.
To test the RRNN generalization, a new input is provided for the network and the comparison of the state variables has
been performed. The evolution of the state variables αg at the inlet of the computational domain and the pressure p at the
outlet of the computational domain is shown in Figure 2 for the actual solution, the intrusive and the non-intrusive ROMs.
The intrusive method gives unbounded and unstable solution over time although the nonlinear terms are approximated by
10 collateral basis functions using the Empirical Interpolation Method [5]; two times more accurate than the linear terms.
On the other hand, the non-intrusive one gives reasonably accurate results and is much faster than the full-order model.
The speedup (obtained by dividing the CPU time of solving the full-order model to the CPU time of solving the ROM)
for the non-intrusive method is 71.1 while for the intrusive one is only 2.05. To increase the accuracy in approximating
the gas volume fraction, the number of the RB functions should be increased; however, as the approximation of pressure
is of higher importance, we are satisfied with the performance of the non-intrusive ROM.

Conclusions

In this work, a non-intrusive MOR is applied to the DFM to reduce its corresponding computational time. Contrary to
the projection-based MOR that develops an unstable system, the non-intrusive method provides an accurate and a stable
reduced-order system, which is solved much faster compared to the original model.
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Reduced-order Modeling from Experimental Data via Spectral Submanifolds
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Summary. Reduced-order modeling is among the leading theoretical and computational challenges for data concerning nonlinear
systems in mechanics, ranging from structures and fluid flows, to their interaction and other multi-physics problems. Data-driven model
reduction methods are well-established for linear dynamical systems, while available approaches for nonlinear systems often reveal to
be sensitive in the identified parameters, and to be limited in prediction capabilities. With this contribution, we present an approach
based on the theory of spectral submanifolds, which captures explicit nonlinear models from data. Without specific assumptions on
the type of observables or the kind of measurements, our method identifies nonlinear models that exhibit the footprint of geometric
nonlinearities or nonlinear damping in the observed dynamics. Our reduced-order models, which are trained on decaying vibrations
data, are also capable to accurately predict forced-responses of the nonlinear dynamical system. We show the performances of our
algorithm on measurement data of oscillations in structural or fluid dynamics.

Introduction

In the context of data-driven reduced order modeling, the most common approaches in the literature are Principal Or-
thogonal Decompositions (POD) followed by Galerkin projections [1] or Dynamic Mode Decomposition (DMD) [2].
The former method, however, needs the knowledge of the governing equations of motion to retrieve the reduced dynam-
ics, while DMD is purely data-driven, but it cannot capture essentially nonlinear (or non-linearizable) dynamics [3], as,
for example, transitions between equilibrium states or nonlinear frequency responses of structural vibrations. Available
approaches from machine learning tend to not be robust or easy to handle for extrapolation or prediction [4]. In this
contribution, we present an approach based on the recent theory of spectral submanifolds (SSMs) [5] that can extract
reduced-order models from generic observables capitalizing on normal forms.

Results and discussion

Our method is a two-step procedure, whose details are described in [7]. After having embedded the data in a suitable
observable space (either by using Whitney or Takens-type embedding, depending on available measurements), we perform
data-driven dimensionality reduction by modeling the SSM geometry. Our reduced coordinates are the projection to the
modal subspace tangent to the SSM at the equilibrium, and the nonlinearities are described via polynomials. From these
arbitrary coordinates, we then seek the reduced dynamics in normal form by minimizing the conjugacy error among data,
and, for oscillatory problems, the general normal form related to m linearized modes of the system reads

ρ̇j = −αj(ρ,θ)ρj ,
θ̇j = ωj(ρ,θ),

j = 1, 2, ...,m, m ≥ 1, ρ = (ρ1, ρ2, ...ρm), θ = (θ1, θ2, ...θm). (1)

The maps αj and ωj are the nonlinear continuations of linearized frequency and damping, identifying how dissipation and
frequency change with respect to the normal form modal amplitudes ρ and eventually phases θ, whose latter dependence
is only showing up in internally resonant systems. We also remark that our modeling approach when related to multiple
non-resonant modes do not assume the modes to be uncoupled. We use (1) to study the dynamics and make predictions
for eventual forced responses, and afterwards, using the SSM geometry, we can trace back normal form amplitudes to
physical observed quantities. To show the performance of our method in capturing the nonlinear behavior in systems with
different physics, we consider an example in fluid-structure interaction and one featuring structural vibrations.
We first consider the liquid sloshing example from [6, 7] depicted in Fig. 1(a), where measurements are carried out via
a laser system and the excitation is provided by moving the platform onto which the tank sits. We set our observable to
be horizontal position of the water center of mass and we focus on the slowest system mode. We train our SSM-based
model from the resonance decay data shown in Fig. 1(b) using cubic nonlinearities, showing already good accuracy in
reconstructing test trajectories. The model identifies the nonlinear backbone curves, characterizing damping α(ρ) and
frequency ω(ρ), and is then used to compute frequency responses, which follows the reduced dynamics

ρ̇ = −α0ρ− βρ3 + f sin(ψ), ψ̇ = ω0 + γρ2 − Ω+
f

ρ
cos(ψ), (2)

where Ω is the forcing frequency, f the forcing amplitude and ψ = θ − Ωt the phase lag. Forced periodic solutions can
be sought in closed form from eq. (2). In Fig. 1(c), we show these forced responses, where the dots are experimental
measurements for different forcing frequency and forcing amplitude values, while solid lines are predictions from (2),
after proper calibration for finding the normal form forcing amplitude f . Even tough our model has been trained only on
unforced data, it exhibits great accuracy in predicting forced responses (thanks to our detailed modeling of softening and
of nonlinear damping), also for amplitudes being higher with respect to those of training data.
Another example is the two-beam system of Fig. 1(d). The first two modes of this assembly feature a 1 : 2 internal
resonance and system nonlinearities are due to weak frictional contact happening at the joint between the inner beam and
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Figure 1: (a) Photo of measurements of liquid sloshing in a tank. (b) Decaying oscillations released from resonant quadrature forcing
with model predictions. The amplitude is the horizontal displacement of the center of mass of the water inside the tank, expressed in
percentage after normalization with respect to the tank width. (c) Analytical Forced Response Curves (FRCs), the damped backbone
curve (blue solid line) and experimental measurements for different forcing amplitudes and frequencies. (d) Picture of the resonant
tester structure. (e) Decaying resonant oscillations excited via hammer impact of the inner beam along with model predictions. The
amplitude is the velocity of the inner beam tip. (f) Nonlinear damping trends for the slow α1 and fast α2 modes along some decaying
trajectories.

the external one, which is clamped to the ground on the other side. Decaying vibrations are excited using hammer impacts
on different locations of the inner beam and our observable is the inner tip velocity measured via laser scanner vibrometry.
Due to internal resonance, transients show two dominant frequencies, cf. Fig. 1(e), as they very quickly converge to the
slow four-dimensional SSM, i.e., related to the two slow system modes. In this case, our method automatically detects the
internal resonance from data and it identifies a cubic order model with the specific form

ρ̇1 =− α0,1ρ1 − β11ρ31 − β12ρ22ρ1 − ρ1ρ2 (σ11 cosψ − σ12 sinψ) ,
ρ̇2 =− α0,2ρ2 − β21ρ21ρ2 − β22ρ32 − ρ21 (σ21 cosψ + σ22 sinψ) ,

ρ1θ̇1 =+ ω0,1ρ1 + γ11ρ
3
1 + γ12ρ

2
2ρ1 + ρ1ρ2 (σ11 sinψ + σ12 cosψ) ,

ρ2θ̇2 =+ ω0,2 + γ21ρ
2
1ρ2 + γ22ρ

3
2 + ρ21 (σ22 cosψ − σ21 sinψ) ,

(3)

where ψ = θ2 − 2θ1 is the internal phase shift. Our data-driven model is able to reconstruct trajectories test with an
average 1.2 % error, as in the example of Fig. 1(e). In particular, the damping of the fast mode undergoes consistent
variation as shown in Fig. 1(f), becoming also negative for some times, since the fast mode tries to absorb energy from
the slow mode. Additional details of this example are reported in [8].
Our data-driven approach is implemented on the open-source MATLAB® package SSMLearn, which is to be released
soon. Other than the source code, the repository contains the data sets discussed in this contribution and the live-scripts
with their analysis, and also additional worked examples.
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Summary. This abstract proposes an approach for parametric system identification for a class of continuous-time Lur’e-type systems.
To overcome the computational drawbacks of numerical forward integration, the Mixed-Time-Frequency (MTF) algorithm is used to
compute model responses in a fast way. These model responses are required to evaluate the cost function, which quantifies the mismatch
between the measured and simulated steady-state output response. Furthermore, we show that the gradient of the cost function with
respect to the model parameters can also be computed using the MTF algorithm. Hence, the MTF algorithm facilitates efficient use of
global and local optimization methods to minimize the cost function, which yields the identified parameter set. Finally, by enforcing
the identified model to be inside the set of convergent models, we certify a stability property of the identified model, which allows for
safe generalization to other inputs than those used to train the model. The proposed approach is successfully applied in mechanical
ventilation, where parameters of a first-principle model are identified. This case study highlights the benefits of the proposed approach.

Identification Problem

A practically relevant class of nonlinear systems is the class of Lur’e-type systems, see Figure 1. In such systems, the linear
time-invariant (LTI) dynamics are captured in an LTI block and all the nonlinearities are captured in a static nonlinear
block placed in the feedback loop. We consider the problem of parametric identification of so-called continuous-time
convergent Lur’e-type systems. Convergent systems are systems that, for any bounded input, have a unique, globally
asymptotically stable (GAS) steady-state solution that is bounded on the whole time axis [3]. For the class of Lur’e-type
system, sufficient conditions for exponential convergence exist [5]. Our goal is to find parameters of the Lur’e type system
that ensures the closest fit between the steady-state model response and the measured steady-state output response, while
also ensuring that the identified model is convergent. We consider the case where both the input w(t) and output z(t) are
scalar. The feedback signals y(t) and u(t) are considered not measured.
A property of convergent systems is that for T -periodic input w(t), the steady-state output z(t) is also T -periodic, fa-
cilitating the use of only steady-state data for the purpose of identification. The considered cost function, measuring the
squared identification error, is given by

J(θ) =
1

N

N−1∑

k=0

ϵ(tk, θ)
2 :=

1

N

N−1∑

k=0

(zsimulated(tk, θ)− zmeasured(tk))2 (1)

with θ being the model parameter vector, parameterizing the LTI system matrices and the nonlinearity in Figure 1, N
the number of samples in one period, tk the sampling times (uniformly spaced) and zsimulated(t, θ), zmeasured(t), the
simulated and measured steady-state response, respectively. Next, we define Θ as the set of parameters θ which renders
the considered Lur’e-type model convergent. The objective is to minimize J(θ) in (1) while ensuring convergence by
guaranteeing θ ∈ Θ. We consider the state dimension to be known and the model parametrization to be given by the user.
The identification problem can now be formulated as follows:

θ̂ = argmin
θ∈Θ

J(θ). (2)

Cost Function Minimization

The constrained optimization problem (2) is solved in a two-step fashion. In the first step, initial parameter estimates are
obtained. If the model is derived from first-principle modeling, then the user could provide initial parameter estimates
based on physical insights. Otherwise, the best linear approximation [4] can be used, which yields a linear initial model
in a fast way. Alternatively, any global parameter search algorithm [1] can be used, which results in a full nonlinear initial
model, however, at the expense of computational time.
In the second step, a gradient-based search is used to optimize all parameters of the full nonlinear model. In order
to evaluate the cost function (1), computation of the model response is required. Doing this using numerical forward

ẋ = Ax+Bu+ Lw

y = Cx+Dw

z = Fx+Gu+Hw

φ(y)

yu

w z

Figure 1: Considered Lur’e-type system.
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Figure 2: Experimental setup of mechanical ventilation.
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Figure 3: Realistic breathing pattern. Figure 4: Measured response and remaining errors as defined in (1).

integration is a computationally expensive task. Therefore, for the class of convergent Lur’e-type systems, [3] developed
the so-called Mixed-Time-Frequency (MTF) algorithm. This algorithm computes iteratively the response of the LTI block
in frequency-domain and the response of the static nonlinearity in time-domain, which are both computationally efficient
steps. It can be shown that for convergent Lur’e-type systems, this iterative computational approach is guaranteed to
converge, ensuring the accurate and fast computation of the ‘true’ steady-state model response.
Besides the steady-state model response, also the gradient of the cost function (1) with respect to the model parameters is
required in any gradient-based optimization approach to minimize the cost function in (1). One of our main contributions
of this work is to show that this gradient can be obtained by simulation of a parameter sensitivity system, which is again
a convergent Lur’e-type system. Hence, again the MTF algorithm can be used as a means of fast and accurate computa-
tion of the output response of this sensitivity system to obtain the gradient of the cost function. Using well-established
optimization routines [2], the constrained optimization problem (2) can then be solved in a fast way by exploiting the
computational benefits of the MTF algorithm.

Experimental Case Study in Mechanical Ventilation

The proposed approach is applied to find the parameters of a first-principles model of the mechanical ventilation setup
schematically depicted in Figure 2. Mechanical ventilation is used in intensive care units to assist or stimulate respiration
of patients who are unable to breathe on their own. The blower realizes the pressure pblower by an internal control-loop
which tracks the target breathing cycle ptarget, both depicted in Figure 3. The measured pressure pblower is considered
as the input of the system. Air flows through a hose into the lungs of the patient, where at the patient-side of the hose the
airway pressure pairway is measured and considered as the output of the system. Also an intentional leakage component
with known characteristics is present in order to refresh the air to the patient. Using first-principles modeling, a Lur’e-
type model characterized by five parameters can be derived. The static nonlinearity in the model stems from the nonlinear
pressure-flow characteristic of the hose, being characterized by a linear and quadratic resistance. Rather than using humans
in these experiments, the ASL5000 breathing simulator is used, which simulates the lung behavior of patients, being
characterized by a resistance and compliance parameter. The fifth parameter is the resistance of the leakage component,
which is known by means of calibration. The case where the patient is fully sedated is considered, which implies no
breathing activity from the patient.
A one minute experiment is performed where 15 periods of the 4 seconds periodic input depicted in Figure 3 are applied
to the system. The average of the last 12 periods of pblower and pairway are used as steady-state input and output data,
respectively, for the purpose of identification. Such a short experiment time is of crucial importance in this application
as time is extremely costly in such medical settings. Parameters of an ‘average’ patient model are used to initialize a
gradient-based exterior-point optimization algorithm to minimize the cost function in (1).
The measured steady-state output pairway is depicted in Figure 4, together with the error obtained by the initial model
ϵInitial (this is a model with average patient-hose parameters) and the model obtained after the gradient-based search
ϵFinal. For comparison, also the error of an identified linear model (using subspace techniques) is plotted in Figure 4. In
this figure, the benefits of identifying a nonlinear model are clearly visible as it yields a much smaller error than the initial
and linear model. This is also confirmed by the yielded cost (1), which is 2.55 for the initial model, 2.40 for the linear
model and 0.17 for the final model. Furthermore, as we performed parametric system identification, the parameters of
the model represent physical quantities that reveal important medical information on the patient and medical ventilation
equipment, which are useful for medical personnel. To illustrate the computationally efficiency, a total of 1530 model
responses were computed in only 13 seconds in the gradient-based search. The obtained model is guaranteed to exhibit the
convergence property, which is highly instrumental for prediction purposes in controller design in mechanical ventilation.
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Summary. Dry friction laws like the Coulomb law and many of its extensions predict forces that are discontinuous functions of slip
velocity. In state space, this discontinuity occurs along discontinuity manifolds corresponding to sticking of the physical contacts.
Previous works studied the dynamics induced by these models when the discontinuity manifold is codimension-one (Coulomb law in 2
dimensions) or codimension-two (Coulomb friction in 3 dimensions). Here we investigate the dynamics in more general contact models,
which leads to higher codimension discontinuity manifolds. In particular, we analyse in details the Coulomb-Contensou friction model
describing the friction forces and torques at a finite-sized contact area. Among others we show that the direction of slip velocity as well
as the ratio between the spinning angular velocity and the slip velocity have predictable values at each transition between slip and stick.

Dynamics induced by discontinuous friction models

If completely rigid bodies are assumed with a single-point contact, the Coulomb friction law describes the friction force
as a nonsmooth function of slip velocity. Namely,

λ⃗f = −µλn
s⃗

|s⃗| , (1)

where λn > 0 is the normal force between the surfaces, ~λf is the tangential (friction) force, ~s is the relative velocity
between the surfaces at the contact point, and µ is the friction coefficient. This model involves a discontinuity when
|~s| = 0. In the case of planar (two-dimensional) friction problems with Coulomb friction, the discontinuity occurs along
a codimension-1 manifold in phase space [1]. Such systems belong to the class of Filippov systems, for which a well-
established theory describes when and how systems converge to discontinuity manifold and how they continue to evolve
after that point.
When a planar model involves several point contacts, each of them induces a codimension-1 disconinuity manifold. These
manifolds may intersect giving rise to secondary discontinuity manifolds of higher codimension, and a hierarchical system
of discontinuities. The theory of Filippov systems was extended to such systems in [2] and [3].
A qualitatively different scenario occurs in the case of spatial (three-dimensional) friction problems. In that case, the
Coulomb law gives rise to a discontinuity along an isolated codimension-2 manifold where both components of the slip
velocity ~s vanish simultaneously. This lead to the recent introduction of the concept of extended Filippov systems, and the
development of theory describing how systems behave in the neighbourhood of such discontinuities [4]. Among others,
special features of slip-stick transitions, and the conditions of persistent stick motion were developed.
The Coulomb friction law requires refinement and extension where the stiffness of the contacting bodies is not large
enough. Then, the local normal deformations have to be considered which creates a finite contact area. The Coulomb
friction can be applied locally between the tangential and normal force distributions. By integration over the contact area,
the resultant friction force ~λf and the friction torque τf can be computed with respect to a reference point of the contact
area. This calculation can be found in the literature by using appropriate series expansion and closed form analytical
approximations [5, 6]. It was found that the relative slipping velocity ~s and the spinning angular velocity ω are coupled in
the tangential force ~λf and the drilling torque τf . According to those result in the literature, a simple phenomenological
approximation of the friction law can be given as

~λf = −µλλn
~s√

|~s|2 + (cωω)2
, (2)

τf = −µτλn
cωω√

|~s|2 + (cωω)2
. (3)

In (2)-(3), µλ, µτ are dimensionless coefficients proportional to the friction coefficient µ, and the model parameter cω
characterises the interaction between the translational and rotational friction effects. As a limit case for very large local
stiffness of the bodies, the contact area becomes a contact point, and these parameters are assumed to tend to µλ → µ,
µτ → 0 and cω → 0. In this limit case, (2) leads to the Coulomb friction law (1) with a codimension-2 discontinuity.
However, for a finite contact stiffness, the model has a discontinuity when |~s| = 0 and ω = 0 at the same time. It
means a codimension-3 discontinuity, but friction models including coupling between rolling and slipping (see e.g. [7])
are expected to initiate discontinuity manifolds up to the codimension-5 case. Currently there is no theory describing this
class of non-smooth dynamical systems.
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Figure 1: A projection of the 2-sphere with an example of the vector field representing fast dynamics of a slipping contact in the
presence of the friction model (2)-(3). The curves represent nullclines of the dynamics. The field has 6 fixed points at the intersections
of the nullclines.

Vector fields with higher codimension discontinuities

The recent theory of extended Filippov systems [4] addresses dynamics of a system with state variables x⃗ in the neighbor-
hood of a codimension-2 discontinuity manifold of state space that occurs at u⃗(x⃗) = 0 for some u⃗(x⃗) ∈ R2. The theory
is based on the observation, that the variable u⃗ can be replaced by polar variables r = |u⃗|, and φ = arg(u⃗) (i.e. the angle
of u⃗). Then, for r << 1, φ evolves on a faster time-scale than r. The theory of smooth slow-fast dynamical systems
offers an efficient tool to analyze the emerging dynamics. In most cases, φ rapidly converges to fixed points, and the slow
dynamics of r is evaluated at those points.
Here, we apply the same technique to systems where a codimension n discontinuity occurs at u⃗ = 0, u⃗ ∈ Rn. We again
decompose u⃗ to a slow variable r ∈ R and fast variables φ⃗ ∈ Sn−1 over the n−1 sphere. In many cases, the fast dynamics
converges to fixed points, where the one-dimensional slow dynamics can be analyzed easily.

Application to the dynamics of finite-sized contacts

Consider a rigid multi-body system with smooth behavior except for one single finite-sized contact area with dry friction.
The state variable x⃗ consists of the generalized coordinates q⃗ and their time derivatives ˙⃗q. The equations of motion and
kinematic constraints enable one to develop equations for the dynamics of the slip velocity s⃗ and angular velocity of slip
ω in the following form:

˙⃗u :=

[
˙⃗s
ω̇

]
= M−1(q)

[
λ⃗f
τf

]
+ b⃗(q, q̇) (4)

Here~b is the acceleration in the absence of frictional forces and M is a ’local mass matrix’ associated with the reference
point of the contact region. One can combine this equation with a friction model like (2)-(3). Then, replacement of ~u by
the variables r and ~φ as described above uncovers intriguing fast dynamics over the 2-sphere when r << 1 (Fig. 1). It
appears that the limit sets of the fast dynamics are two to six fixed points. The slow dynamics is either convergence to
or divergence from r = 0 (i.e. stick) at each of the fixed points. This observation implies that slip-stick and stick-slip
transitions always occur through non-trivial combinations of rotational and translational motion at the contact surface.
The analysis also hints at the possibility of ambiguous cases where persistence of stick is undecidable within the scope of
rigid body theory.
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Summary. A scheme for the nonsmooth modal analysis of a rectangular plate in frictionless unilateral contact with a rigid foundation
is demonstrated. Application of nonsmooth modal analysis requires finding periodic solutions to the Signorini problem. To this end, the
nodal boundary method in the framework of the finite element method is used. It allows to approximate the solution through a system
of nonsmooth ordinary differential equations in the internal displacements of the plate. The resulting system exhibits chattering-free
periodic solutions numerically found via the harmonic balance method. Sequential continuation is used for detection of nonsmooth
modes.

Introduction

Nonsmooth modal analysis (NMA) refers to the application of nonlinear modal analysis on structures for which the
dynamics is governed by nonsmooth equations [7]. In the present work, the subject of analysis is a rectangular plate,
with in-plane displacements, in unilateral contact with a rigid obstacle expressed via the usual Signorini complementarity
conditions [1]. In essence, NMA requires the detection of families of periodic motions to the autonomous system [5, 7, 9].
Generally, NMA requires use of numerical techniques since closed-form solutions to the Signorini problem do not generally
exist [7, 9]. In [9], the wave finite element method (WFEM) was used for NMA of the bar and has proven to provide
accurate result for the case of the uniform-area bar. However, extension of this methodology to two-dimensional systems
has failed due to high numerical energy dissipation effectively annihilating periodic solutions [9]. The finite element
method (FEM) has also been commonly used to solve the Signorini problem numerically [3]. In the FEM framework, there
exist several numerical schemes for treatment of the Signorini conditions. However, those were not used for NMA for
various reasons. For example, schemes utilizing a fully elastic Newtonian impact law exhibit non-physical chattering [3, 7]
while the penalty [3] and Nitsche [2] methods do not exactly enforce impenetrability with the obstacle in the discrete
setting. The mass redistribution method (MRM) [4], while allowing for energy conservation and elimination of chattering,
requires solving a constrained optimization problem in many variables to form the reduced mass matrix. However, the
Nodal Boundary Method (NBM) eliminates chattering by reducing the mass and stiffness matrices via a series of linear
operations on the mass matrix’s rows and columns [8]. The ordinary differential equations (ODEs) resulting from NBM
exhibit periodic solutions which can be found via the harmonic balance method (HBM) [8]. Continuous families of periodic
solutions are then found via sequential continuation along different periods of the motion [5].

Boundary Value Problem for Periodic Motions with Unilateral Contact

Within the framework of two-dimensional in-plane elasticity, we investigate the problem of a thin and isotropic plate prone
to unilateral contact with a rigid foundation. The equation governing the motion of the plate reads

ρūtt(x, t)− div(σ(ū(x, t))) = 0, (x, t) ∈ Ω× [0,∞) (1)

where ū(x, t) : R2×R+ → R and ρ describe the displacement field and density, respectively. The stress tensor σ(ū(x, t))
is related to the displacements via a classical plane-stress assumption. Other than the classic Neumann and Dirichlet
boundary conditions, a portion ΓC of the plate’s boundary is prone to the unilateral contact conditions

0 ≤ g0 − ū(x, t) · n, σn ≤ 0, (g0 − ū(x, t) · n)σn(ū(x, t)) = 0, x ∈ ΓC (2)

where g0 defines the distance between the non-deformed boundary and the rigid obstacle. The contact pressure is captured
by σn(ū(x, t)) = n⊤σ(ū(x, t))n where n is the outward normal to the contact boundary. For NMA, we search for
solutions of period T such that ū(x, 0) = ū(x, T ) and ūt(x, 0) = ūt(x, T ).

Nodal Boundary Method

The NBM applies on the FEM formulation of the Signorini problem, stated in Equations (1) and (2), which takes the form

Mü(t) +Ku(t) = G⊤λ(t) (3)

λ(t) +max(0, g1− uC(t)− λ(t)) = 0 (4)

where u(t) ∈ RN constitute the N nodal displacements approximating the displacement field ū(x, t) ≈ P(x)u(t) with
P(x) denoting piecewise-Lagrangian shape functions. In the NBM, we distinguish between nodal displacements uC(t)
on ΓC and the remainder of the nodal displacements uO(t) such that u(t) = (uO(t) uC(t))

⊤. It is well known that
formulation (3) and (4) form an ill-posed problem due to the existence of infinitely many values for λ at the moment of
contact [1]. In the NBM, we attempt to resolve this ill-posedness by assigning λ a relationship with u(t) via the FEM
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approximation of the boundary integral on ΓC:

GTλ←
∫

ΓC

P⊤(x)σn(P(x)u(t))dx = G⊤(NCuC(t) +NOuO(t)) (5)

where NC and NO are constant matrices. Substitution of (5) into (4) results in an LCP in uC(t) admitting a unique solution
for given uO(t) and g. This unique solution consists of piecewise constant matrix A(uO(t), g) and vector d(uO(t), g) such
that uC(t) = A(uO(t), g)uO(t) + gd(uO(t), g). The values of A and d can be found numerically by solving the LCP.
From this expression, we construct the NBM approximation of the displacement which always satisfies (4) and (5) along
with the FEM approximation of the Signorini conditions

ū(x, t) ≈ P(x)(A∗(uO, g)uO(t) + d∗(uO, g)), A∗(uO, g) =

[
I

A(uO, g)

]
, d∗(uO, g) =

[
0

d(uO, g)

]
. (6)

In the FEM framework, substitution of approximation (6) into (3) yields the system of ODEs

(A∗(uO, g))
⊤(MA∗(uO, g)üO(t) +KA∗(uO, g)uO(t) +Kd∗(uO, g)) = 0 (7)

which are nonsmooth ODEs (due to A∗ and d∗) in uO(t). Periodic solutions of the ODE can be found via the HBM [8].
Then, sequential continuation is used to determine families of periodic solutions of the plate in unilateral contact, in a
similar fashion to [5].
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Figure 1: Forced response of the plate for various damping
coefficients ξ and backbone curves generated via NBM-HBM
with varying number of harmonics Nh.

Figure 2: Solution at point A in Figure 1 at different times fractions
of the period T = 2π/1.87. Color gradient represents ||u(x, t)||2

Conclusions

Under the NBM’s formulation of the Signorini problem, NMA of the plate was conducted successfully. Indeed, this
formulation may apply to more intricate structures prone to unilateral contact. Therefore, future work shall include
expanding the NBM formulation to practical engineering cases. Also, comparison of NBM against Nitsche method for
purposes of NMA is considered. While Nitsche applies the Signorini conditions in a weak sense, the NBM does so in a
strong sense and it is of interest to compare the rates of convergence of both methods to the true solution.
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Summary. In this work, we will discuss the various approaches to simulate hybrid differential algebraic equations (hybrid DAEs),
i.e., dynamical systems with some algebraic constraints switching with respect to the state variables. Then, we will present our recent
work on the simulation of such hybrid DAE through a reformulation as DAEs with non-smooth constraints. Finally, we show on some
examples that numerical methods for non-smooth dynamical systems can be extended for the simulation of these non-smooth DAEs.

Hybrid DAEs are an increasing share of the simulated hybrid systems. They can be found in a large panel of engineering
domains such as, but not limited to, chemical process engineering [15], electronics [1], for a long time in mechanical
systems [4], and in numerous cyber-physical systems. In most of these domains, engineers rely on model-based design
language such as Modelica [8] to define their dynamics in a piecewise manner using conditional statements. The resulting
dynamical systems are of the form: 




ẋ(t) = f(x(t), z(t))

0 = gi(x(t), z(t))

, ∀(x(t), z(t)) ∈ Xi.
(1)

The variables x, z are the differential and algebraic variables, respectively. The setsXi = {(x, z) ∈ Rn1+n2=n |hi(x, z) >
0} define a partition of Rn such that:

⋃
i X i = Rn, int(Xi) ̸= ∅, for all i. In addition, let assume that i ̸= j,

∂Xi ∩ ∂Xj = ∅. Indeed, the definitions of the dynamics on the border of a partition are, in general, ambiguous.

Related Works

It is first worth to mention that some works, such as [14], have taken the approach of relaxing the non-smoothness inherent
to the hybrid DAE using smooth versions of a step function such as the sigmoid function, Hill function, or the hyperbolic
tangent. If these works enable a direct application of known numerical methods for non-linear DAEs, they, in general,
worsen the numerical simulation efficiency due to the high stiffness, but also the numerical stability because of bad
conditioning inherent to stiff systems. This was for example noted for the simulation of electronic systems with diodes
[1].
Another approach, taken by V. Merhmann et al. [7, 11], is to use numerical methods defined for hybrid DAE structured
as hybrid automata. Their implementation relies on event based numerical methods and explicit transition functions to
correctly re-initialise the system after switching. It is noteworthy that they detect and simulate in some particular case
sliding modes in a similar fashion to Filipov sliding motion [6] for ODEs. In particular, this concept of continuous
solutions for hybrid DAE as been formalised and studied by I.V Matrosov [9, 10] in an unrelated work. The work of
A. Benveniste et al. [3] uses non-standard analysis to construct well-defined transitions from one mode to another in the
context of hybrid DAE even in presence of varying index. In particular, this work pairs well with [11] as the definition
by the user of the DAE initialisation at switching is not needed anymore. It is also worth to mention the work of S.
Trenn [16] that defines the solutions of hybrid DAE with exogenous switching. In particular, he introduces the notion of
distributional solutions which can also be used to efficiently solve inconsistent initial conditions.
Outside of the hybrid automata approach, the hybrid DAE have also been studied as non-smooth dynamical systems.
For example, differential variational inequalities (DVI) form a class of non-smooth DAEs which are studied in [12]. In
particular, they give well-posedness results, and some numerical methods are analysed, for DVI with a structure similar
to index-1 DAEs. K. Camlibel et al. [5] extend results of well-posedness of differential inclusions to differential algebraic
inclusions with maximal monotone operators. In additions, they study the well-posedness of non-smooth linear DAEs
with some passivity properties.

Analysis of Non-smooth DAEs

In a previous work [13], we proposed to relax the switching algebraic equations gi(x, z) = 0 from (1) by filling-in the
graph of the constraints. This is achieved by using step-functions s+(·) in a similar fashion to [2] in order to build a
generalised constraint.

g(x, z) =
∑

i



∏

j 6=i

(1− s+(hj(x, z)))


 s+(hi(x, z))gi(x, z) = 0 . (2)

The actual definition of g(x, z) will depend of the choice of the step-function definition when hj(x, z) = 0. Then, we
studied the effect of such relaxation in (3), a particular 2-dimensional example (see Figure 1), and we have shown that the
constraint (2) is relaxed as a generalised equation, whose well-posedness can be studied. We show that the system with
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the generalised constraint (2) presents continuous sliding solutions that are not exhibited by the methods of [11] and [9].




ẋ1(t) = 1 + B1z(t)

ẋ2(t) = B2z(t)

0 ∈ sign(x1(t)) + |x1(t))| − x2(t) .
(3)

Then, by studying the well-posedness of the implicit Euler numerical discretization of this example (4), we conjecture
an extension of the implicit Euler numerical scheme for simulation of such non-smooth DAEs. This improved Euler
numerical scheme has proven to yield good results on our example (see convergence results on Fig. 2).

p∗k+1 := min
xk+1,zk+1,λk+1

‖xk+1 − xk‖ ,

s.t x1,k+1 − x1,k = h(1 + B1zk+1)

x2,k+1 − x2,k = hB2zk+1

0 ∈ sign(x1,k+1) + |x1,k+1| − x2,k+1 ,

(4)

In this work, we will extend this analysis the more general class of hybrid DAEs that can be formulated as mixed linear
complementarity systems. Indeed, in [13], we have seen the constraint (2) can be expressed as mixed linear complemen-
tary problems. We show that such representation can be used for the numerical simulation of a wide variety of systems
involving hybrid DAEs. We provide both a study of implicit Euler discretization, and numerical simulations of concrete
case studies implemented with SICONOS a toolbox for the simulation of non-smooth dynamical systems.

Figure 1: In red and green, we show two possible solutions of
the example studied in [13].

Figure 2: Linear convergence of implicit Euler extension for
various cases of the example studied in [13].
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Summary. Previous work proposed a new NSCD procedure fixing convergence issues for small dynamical systems. We demonstrate
here the resulting improved implicit solver efficiency compared to the existing Jean-Moreau scheme, when applied to large systems
such as granular media.

Introduction

The Discrete Element Method [Cunedall and Strack, 1979] has emerged from rock mechanics problems and is now
applied to many other engineering problems. Besides DEM, the lesser known NonSmooth Contact Dynamics pro-
cedure [Jean, 1999] offers an alternative procedure for this type of problems. This latter scheme, essentially a sta-
ble backward Euler scheme in time, is mathematically more sounded [Moreau, 1999]. However, Alart and Renouf
[Alart and Renouf, 2018] point out that the procedure is still hampered by non- or slow-convergence pathologies linked
with its incremental solver. In a previous work [Charles et al., 2018], a new NSCD procedure was set up to fix conver-
gence issues in small (dof) dynamical systems simulations. Since one cannot expect this convergence to be granted for
larger systems, the procedure is applied to granular media simulation and shows a great improvement in solver efficiency
for these problems compared to Jean-Moreau.

Numerical procedure

Differences and common points with respect to the original Jean-Moreau NSCD scheme are shown in Table 1. Both are
Backward Euler schemes with a midpoint update rule. However, at step 5, Jean and Moreau solve at the same time impact
and dry friction whereas we solve first the frictionless impact and only then friction in a staggered way. Jean and Moreau’s
way conveys a very direct implementation but challenges the convergence of the Nonlinear Gauss Seidel. This leads to
drift-off in the simulation due to the necessary cut-off in convergence search after a given (high) number of iterations is
reached. Jean notes that "The method has proven in applications to behave nicely as soon as the time step is small enough
and the friction coefficient is lying in the range allowed" [Moreau, 1999, Jean, 1999]. One can object the subsequent error
being only controlled by refining the time step, this somehow cancels the advantage of using an NSCD method versus a
DEM. The presented procedure instead conveys a more intricated implementation and the necessity at step 3 to infer, from
Coulomb law, a dry friction constitutive law in terms of Lagrange’s generalized forces. We show next that the current
method does however scale well and the gain is worth the pain in the case of a Hall Flowmeter Funnel simulation.

Step Jean Moreau current procedure
1 Evaluation of midpoint approximants
2 Contact detection
3 a. Normals and tangents in euclidian space a. Normals and tangents in Lagrange’s generalized

forces space
b. Inference of a dry friction law on the Lagrange’s
generalized forces [Charles and Ballard, 2014]

4 Contactless equation of dynamics and contactfree predictor
5 a. Coulomb and standard inelastic shock laws

resolution with a Nonlinear Gauss Seidel
(max 3000 iterations)

a. Standard inelastic shock law resolution (NLGS,
max 1500 iterations)
b. Inferred friction law resolution (NLGS, max 1500
iterations)

6 Actualization of final velocities and positions

Table 1: Comparison of the Jean Moreau and the current NSCD procedure

2D Simulation of a Hall Flowmeter Funnel

The increase in efficiency for solving the contact conditions using the novel procedure is illustrated with the simulation
of the flow of a granular medium under gravity through a funnel, inspired by the Hall Flowmeter Funnel. In Figure 1 the
initial state of the simulation is shown, along with the state of the granular medium at two subsequent moments during the
flow. This case was chosen due to the compacting phase the granular medium has to go through and the resulting multiple
self-equilibrated contact force networks usually causing convergence issues.
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Figure 1: Illustration of the 2D Hall Flowmeter funnel with evolution of the granular medium configuration with time for the same 50
particles (the radii following a normal distribution of average 0.3mm and a deviation of 5%) for both procedures and here with a time
step of 1e−4s. The difference in behaviour due to higher interpenetrations for Jean Moreau is clearly visible.

The simulation is run using both procedures for a total simulated time of 0.1s. The results in terms of CPU time and
cumulative penetration error when varying the time step are given in Figure 2. The penetration error is the sum of particle
interpenetrations as well as residual penetration of particles in obstacles.

Figure 2: Influence of time step on CPU time and cumulative error for both procedures in the case depicted in Figure 1.

The source for this difference in computational efficiency can be traced to the time spent iterating during the solving of
the contact conditions as depicted in Figure 3. One clearly sees the NLGS of the Jean-Moreau procedure maxing out its
(unusually high) number of allowed iterations while the novel approach, thanks to its preconditioning and reformulation
of the problem, converges very quickly (in less than 100 iterations) even though it has to go through two NLGS.

Figure 3: Total NLGS iterations for contact resolution at each time step in the case depicted in Figure 1.

Take aways

In the presentation, a novel nonsmooth procedure, until then limited to small archetypal problems, is upscaled to the case
of granular media. The final outcome is a swift integration in time (3 orders of magnitude faster than the typical JM NSCD
for an equivalent penetration error). The procedure is also illustrated on a selective laser melting powder bed spreading.
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Tangencies in the phase space of mechanical systems with spatial Coulomb friction

Mate Antali
Department of Applied Mechanics, Budapest University of Technology and Ec., Budapest, Hungary

Summary. When modelling dry friction between rigid bodies, the Coulomb friction law leads to discontinuity surfaces in the phase
space of the resulting dynamical system. This discontinuity is a codimension-1 subspace in the case of a planar (two-dimensional)
contact and it is a codimension-2 subspace in the case of a spatial (three-dimensional) contact. The qualitative mathematical description
of the trajectories is well-established in the literature for the former case, and some results has been recently added to the latter topic
by the author. In this work, the tangency points are analysed, which points divide the discontinuity surface to ’sliding regions’ and
’crossing regions’. These regions coincide to the existence or non-existence of rolling-sticking solutions, thus, tangencies as boundary
points are strongly related to these physical phenomena. The qualitative analysis of tangencies at codimension-2 discontinuities are
carried out by analytical methods and the results are demonstrated on mechanical problems with spatial Coulomb friction.

Tangencies in piecewise smooth vector fields

The mathematical concepts are presented in the simplest geometrical case in the phase space, but the formulation can eas-
ily modified for more general situations. Consider a dynamical system in the form ẋ = F (x), where x = (x1, . . . xm) ∈
Rm. We assume that the vector field F is smooth on Rm except in a discontinuity set Σ = {x : x1 = 0}. We call F a
piecewise smooth vector field according to the two smooth regions x1 > 0 and x1 < 0. The set Σ has m− 1 dimensions,
thus, we call it a codimension-1 discontinuity. Consider the normal vector n = (1, 0, . . . 0) of Σ at a chosen point x̃ ∈ Σ.
If the limits

lim
ε→0+

F (x̃+ εn) = F+(x̃), lim
ε→0+

F (x̃− εn) = F−(x̃), (1)

exist and F+(x̃) ̸= F−(x̃) for all x̃ ∈ Σ then F is called a Filippov-system. In the vicinity of the discontinuity set, two
generic types of behaviour occur according to the first components F+

1 and F−
1 of the limit vectors. The case F+

1 ·F−
1 > 0

is called crossing, where the trajectories of F can be continued through the discontinuity. The case F+
1 ·F−

1 < 0 is called
sliding. In this case, the so-called sliding dynamics can be defined inside Σ by using the convex set generated by F+ and
F− (for the details, see [1] or [2]).
The boundary between these two cases is when F+

1 = 0 or F−
1 = 0, which is called a tangency point or simply a

tangency, because the vector field is tangent to the discontinuity set from either side. Tangencies separate the crossing and
sliding regions of the discontinuity set. Tangencies often considered as singularities of the phase space; the analysis of
these points gives qualitative information about the local behaviour of the vector field. The simplest tangencies are called
invisible fold and visible fold (see Figure 1), more complicated cases can be found in the literature (see [3] and Chapter 6
of [4]).

x2

x1

Σ

slidingcrossing

tangency point

(invisible fold)

x2

x1

Σ

sliding
crossing

tangency point

(visible fold)

Figure 1: Two basic types of tangencies in piecewise smooth systems. Left panel: invisible fold. The term ’invisible’ expresses that
although the vector field is tangent to the discontinuity set Σ, we can find no finite trajectory which is tangent to Σ. Right panel: visible
fold. The term ’visible’ expresses that there exists a trajectory which just touches Σ at the tangency point.

Analysis of tangencies at codimension-2 discontinuities

Let us now turn to the systems with codimension-2 discontinuities. Consider a system ẋ = F (x) in the case when F
is smooth everwhere except in the set Σ = {x : x1 = x2 = 0}. That is, Σ is now a codimension-2 discontinuity. Then,
the continuously many normal directions to Σ can be parametrised by an angle φ as n(φ) = (cosφ, sinφ, 0, . . . 0). We
assume that for all x̃ ∈ Σ, the limit

lim
ε→0+

F (x̃+ εn(φ)) = F ∗(x̃, φ) (2)

exist for all angles φ ∈ [0, 2π). Then, we can call the vector field as an extended Filippov system. In such systems, the
sliding and crossing regions can be defined by transforming to polar coordinates and using the concept of limit directions
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[5]. We can define the concept of tangency points directly by requiring that the vector field is tangent to the discontinuity
if both components F ∗

1 and F ∗
2 of the limit vector vanish in the normal plane to Σ. That is, we call x̃ a tangency point if

there exists a direction φ1 ∈ [0, 2π] such that F ∗
1 (x̃, φ1) = 0 and F ∗

2 (x̃, φ1) = 0.
In this work, the tangencies can be analysed by similar tools those of the tangencies of codimension-1 discontinuities.
However, these methods should be adjusted to the specialities of the codimension-2 discontinuity set. The vector field can
be transformed to a truncated series form and by analytical tools, the local structure of the trajectories can be determined.
The singularity conditions of the different types of the tangencies are investigated. Moreover, regularization is applied at
the discontinuity, which provides a further insight into the problem.

Tangencies and mechanical problems with Coulomb friction

When Coulomb friction is assumed between rigid bodies, the two-dimensional contact problem usually leads to a piece-
wise smooth system where x1 = u is the relative velocity at the contact point. Then, the static (sticking or rolling) contact
state corresponds to the sliding dynamics inside the discontinuity set while the slipping state occurs outside the discon-
tinuity. The sliding region coincides with the region where the rolling/sticking state is permitted by the friction model.
Similarly, the crossing region coincides to the region where the sticking state is not available due to slipping. It can be
shown [6] that in the case of spatial Coulomb friction with a codimension-2 discontinuity, the same coincidence appears
between these mathematical objects of the phase space and the mechanical phenomena.
In both the planar and spatial cases, the tangencies are located at the boundary where the rolling/sticking motion becomes
realizable. Therefore, the local analysis of the vector field at the tangencies can be applied to explore the behaviour of
bodies at the limit of slipping.
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Figure 2: A three-dimensional mechanical model containing tangencies as important singularities at the boundary of slipping and
sticking. Left panel: the sketch of the model. A block is pulled on a rough surface with a spring. The mass of the block is m, the
stiffness of the spring is s, the friction coefficient on the surface is µ, and the end of the spring is pulled with a constant velocity v. The
state space of the block can be described by x = (ux, uy, δ) where ux and uy are the components of the slipping velocity of the block
and δ denotes the deformation of the spring. Right: the sketch of the phase space of the system with the projection of some typical
trajectories onto the normal plane of the discontinuity. The blue and red half-lines denote the attracting and repelling limit directions,
respectively.

The results are demonstrated on mechanical examples. For example, consider Figure 2, where we can see a block pulled
by a spring on a rough surface. Analysis of the phase phase shows that there are two tangency points and one of them are
a visible fold, the another is an invisible fold. It can be shown that although trajectories can reach the sliding region of the
discontinuity, the only way to leave it is going through the visible fold tangency, that is, any solution containing sticking
must go through the tangency point. In more complicated problems with a higher dimension of the phase space, the tan-
gency point form boundary surfaces in the discontinuity. These surfaces behave as separatrices between the qualitatively
different branches of solutions.
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The hidden bridge between continuous and discontinuous worlds
and why period 2 may imply chaos

Viktor Avrutin∗, Mike Jeffrey†

∗Institute for Systems Theory and Automatic Control, University of Stuttgart, Germany
†Department of Engineering Mathematics, University of Bristol, Ada Lovelace Building, Bristol UK

Summary. We report a recently developed approach for the investigation of discontinuous maps. Using so-called hidden orbits,
we demonstrate that several aspects of the dynamics well-known for continuous maps can also be transferred to discontinuous maps.
Moreover, hidden orbits help us to understand the dynamics of maps with steep branches, which are known to be hard to investigate
otherwise.

Motivation

Discontinuous maps appear naturally in many areas of nonlinear dynamics. In some situations, they act as approximate
models of systems where the rules governing the dynamic behaviour undergo a fast (but continuous) change at some
borders in the state space. In other situations, the change of the rules at the boundaries is in fact discontinuous.
It is well known that many properties of discontinuous maps differ quite significantly from the corresponding properties
of continuous ones. For example, it is easy to show that the famious rule “period three implies chaos” applies to contin-
uous maps and does not apply to their discontinuous counterparts where a 3-cycle may exist alone. Similarly, bifurcation
diagrams one can observe in continuous maps are well organized: for instance, the branches corresponding to stable solu-
tions appearing at (smooth or non-smooth) fold and flip bifurcations are typically connected via branches corresponding
to unstable solutions which appear at the same bifurcations and determine the basin boundaries of coexisting attractors.
In discontinuous maps, such unstable branches may be missing, the stable solutions may appear at border collision bifur-
cations “as if from nowhere”, and the basins may be separated not only by unstable orbits but also by the discontinuities
and their preimages. Chaotic attractors in continuous maps are always cyclic, while in discontinuous maps they may be
acyclic as well. Because of these – and many other – differences, it is indeed hard to believe that the two worlds can
be unified, i.e., that it is possible to develop an approach dealing with discontinuous maps in such a way that several
properties of continuous maps are restored as far as possible.

Approach

A novel approach for the investigation of discontinuous maps has been recently suggested in [1]. The key idea of the
approach is to extend the definition of a discontinuous map in such a way that at the discontinuities, the function is
considered to be set-valued (in particular, for 1D maps, interval-valued). It is worth emphasizing that following this
approach, the orbits of the map remain single-valued. An orbit visiting a discontinuity is mapped to a point belonging
to the corresponding set; if an orbit visits the discontinuity again, it may be mapped to the same or to a different point.
Accordingly, in addition to all orbits existing in the original discontinuous map, every time an orbit of such an extended
map (referred to as a map with vertical branches) visits a discontinuity, an infinite number of forward orbits (so-called
hidden orbits) is created. By construction, a hidden orbit is an orbit including points inside the discontinuities, and if
a hidden orbit {xn | n = 1, 2, . . . } satisfies xn+p = xn for all n, the orbit forms a hidden cycle of period p. Clearly,
each hidden cycle is repelling and can easily be computed, as its points are given by preimages of the corresponding
discontinuity.

Results

There are several different application areas for the proposed approach.

• When dealing with all kinds of discontinuous maps, the corresponding maps with vertical branches simplify the
bifurcation analysis by adding to the bifurcation diagrams the “missing” unstable branches given by hidden cycles.
In this way, by the bifurcation structures in discontinuous maps can be described in terms well-known for continuous
maps: for example, the border collision bifurcations at which a cycle appears “as if from nowhere” turn into the
usual border collision flip and fold bifurcations [2]. Hidden orbits unify also the treatment of basin boundaries: if in
a discontinuous map these boundaries are given by a discontinuity and its preimages, in a corresponding map with
vertical branches there is a (repelling) hidden cycle at the basin boundary, similarly to continuous maps.

• A discontinuous map may act as a model of a system with a very fast but continuous switching process. In such
cases, a more detailed modeling leads to maps with steep branches which are quite hard to deal with (from the
numerical point of view, but also because the laws governing the fast switching process are not always known).
Here, a map with vertical branches provides an approximation for dynamics involving steep branches. Clearly, a
cycle including points on a steep branch is strongly repelling and hard to find numerically. By contrast, to calculate
a corresponding hidden cycle is a simple task, as it is given by a sequence of preimages of the discontinuity.

ENOC 2022, July 17-22, 2022, Lyon, France

567



ENOC 2020+2, July 17-22, 2022, Lyon, France

• By definition, a map with vertical branches is discontinuous but connected. Several fundamental theorems have
been proven for continuous maps and do not apply to discontinuous ones. However, one may ask whether the
requirement for continuity of the function may be relaxed and whether the connectedness would be sufficient as
well. This is the case for the Sharkovsky theorem (which implies, in particular, the well-known rule “period three
implies chaos”): this theorem can be proven not only for continuous but also for maps with vertical branches [3].
In this way, hidden cycles restore the Sharkovsky ordering, providing all cycles which are missing in the usual
discontinuous map (without vertical branches). On the other hand, if one can prove that a hidden cycle of a certain
period does not exist in a map with vertical branches, then a non-hidden cycle of this period must exist in the
corresponding discontinuous map.

• A striking property of hidden orbits is that the existence of two distinct hidden cycles implies that a countable
number of other hidden cycles and an uncountable number of hidden aperiodic orbits exist as well. Although all
these orbits may be located at a final number of points in the state space (the points of discontinuities and their
preimages), their union can be seen as a hidden chaotic repeller. It is worth noting that under perturbation of a map
with a vertical branch to a map with a steep branch, this chaotic repeller persists, becoming non-hidden.

In the simplest case, the existence of a hidden fixed point and a hidden 2-cycle implies the existence of hidden
cycles of all periods, which can be interpreted as an unexpected form of the well-known rule, namely “periods one
and two imply chaos” [4].
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Non-smooth Reduced Interface Models for Co-simulation of Mechanical Systems
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Summary. In a co-simulation setup, an entire system is divided into multiple subsystems modelled separately which may be simulated
with different solvers and time scales suited to the subsystems. These subsystems are then interfaced and coupled in order to simulate
the whole system. For interactive rates, the non-iterative coupling schemes are used which are prone to instability. This problem can
become more challenging when non-smoothness is introduced into the modelling. In this work, an efficient model-based coupling
approach is introduced which is able to account for contact state transmissions between the communication points, resulting in more
stable and accurate results compared to other coupling methods. To further clarify the advantages of the proposed approach, an
illustrative example is also presented.

Introduction

Co-simulation is generally used to simulate systems consisted of different sub-systems with different nature; like multi-
body systems interacting with hydraulics, electronics or even other mechanical sub-systems which are modelled with
different phenomena. The main challenges for modelling such complex systems are related to the interfacing of these sub-
system components. One challenge will raise when contact interactions are included in the modelling which introduces
non-smoothness to the dynamics and increases the complexity of the model. Contact interactions which are also known
as unilateral constraints, transform the underlying dynamics problem by adding inequalities into the dynamic formulation
and turn it to a linear or a non-linear complementarity problem. In real-time applications, efficiency of the simulation is
also a requirement, where we are usually interested in non-iterative co-simulation because there is not enough time to go
back in time and resolve for a time step. Stability is a key element in non-iterative co-simulation which is related to the
size of the macro time step. To make a co-simulation more stable, we can estimate the subsystem variables between the
communication points and couple the subsystems. One promising way to estimate these variables is to use model-based
coupling in which the mechanical system is reduced into an interface model that emulates the dynamics of the mechan-
ical system at the interface. However, there still exist some aspects in model-based co-simulation which can be further
improved.
In this work, we are looking at non-smooth interface models. The idea is that to add some information about the unilateral
contacts of the full model in the interface model. This information would help us to estimate contact state changes during
macro time step using an interface model. As will be illustrated, this will enable us to successfully simulate some dynamic
behaviours which cannot be captured otherwise.

Dynamic formulation of the interface model

Consider a multibody system subjected to unilateral and bilateral constraints where friction is also neglected. In a general
form, the dynamic equations of a multibody system can be written in the impulse-momentum level as

M̂v+ + hĉ = Mv + hfa + h(AT
i λ

+
i +AT

bλ
+
b +AT

uλ
+
u ) (1)

where the contents of the modified mass matrix M̂, and modified Coriolis and centrifugal terms ĉ are determined with the
time discretization method used [1]. q = q(tk) and v = v(tk) are the generalized coordinate and velocity of the system
which are related by the transformation q̇ = Nv and are known at the instant tk. Moreover, fa and λi are the applied and
interface forces and Ai is the corresponding interface Jacobian matrix. Similarly, λb and λu are the bilateral and unilateral
constraint forces and their corresponding Jacobian matrices are Ab and Au. Then, considering a time step of size h, its
configuration, velocity and unknown constraint forces in the next time-step are shown with + sign. The constraint and the
interface velocity arrays are related to the generalized velocity array v as wj = Ajv (j ≡ i, b, u), which can be discretized
through time using the first-order Taylor series expansion as

w+
j = Ajv

+ + hȦjv (2)

Knowing that wb = 0, Eqs. (1) and (2) can be cast into a single matrix form which alongside the complementarity
condition of the unilateral constraints will form a Mixed Linear Complementarity Problem (MLCP) as,








M̂ −AT
b −AT

u −AT
i

Ab 0 0 0
Au 0 0 0
Ai 0 0 0
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hλ+
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0
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0 ≤ w+
u ⊥ λ+

u ≥ 0

(3)
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Figure 1: The manoeuvre sequence of the multibody system using smooth and non-smooth RIMs.
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Figure 2: Actuator force (left) and effective mass of the reduced model (right).

The final goal is to obtain a reduced interface model that represents dynamics of the mechanical system associated with
interface degrees of freedom parameterized by wi. From the first and second rows in Eq. (3), the generalized velocities
v+ and bilateral constraint impulse hλ+

b can be determined and be substituted into the third and forth rows. Then, the
MLCP in Eq. (3) can be rewritten as





[
Huu Hui

HT
ui Hii

] [
hλ+

u
hλ+

i

]
+

[
bu

bi

]
=

[
w+

u
w+

i

]

0 ≤ w+
u ⊥ λ+

u ≥ 0

(4)

Eq. (4) is the reduced interface model (RIM) of non-smooth multibody systems which includes the complementarity
condition and is able to capture the contact state transformation between the communication points. This reduced model
may be referred to as non-smooth RIM. The advantages of this formulation will be demonstrated in the next section
through numerical simulation.

Example and discussion

A planar model of a hydraulically actuated box with two bottom wedges connected to a disc through a revolute joint was
used to illustrate the efficiency of the proposed RIM in a co-simulation setup. The hydraulic actuator is the first subsystem
and set of the box and the disc are regarded as the second subsystem. Also, the box and the disc are allowed to slide
without friction. In the manoeuvre shown in the Fig. 1, the box is initially a bit rotated around the right wedge. Then, the
box will be pushed forward by the actuator under the effect of gravity. According to the reference solution (co-simulation
using zero order hold setup with macro step size of h = 0.2 ms), as the multibody setup moves forward, the box rotates
counterclockwise so that bot of its wedges touches the ground and the system continues to move forward horizontally.
However, when the smooth RIM method introduced in [2] is used for model-based co-simulation, the contact points of
the box are treated as bilateral constraints during the macro step which makes the system over-constrained when both
wedges touch the ground. This can be also seen in Fig. 2 where the effective mass of the reduced model is depicted and,
at the instances that both wedges are in contact with the ground, the effective mass shows a sudden rise in value due to
the over-constraining. The over-constraining and the resulting high effective mass values will store excessive pressure
in the hydraulic actuator and makes the system unstable so that in some instances, the box jumps off the ground and the
whole simulation becomes unstable. The sudden rise in actuator force is also depicted in Fig. 2. However, by employing
the proposed method, the contact detachment is taken into account in the reduced model and as it is evident from Fig. 2,
the behaviour captured by the non-smooth RIM is similar to the reference solution. It should be mentioned that both
model-based simulations were simulated with h = 5 ms.
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 Three-Link Snake Robot with a Single Control Input 
 
 Marat Dosaev, Liubov Klimina and Yury Selyutskiy 

Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
 

  
Summary. A three-link snake robot is proposed controlled by an internal flywheel installed at the first link. There are spiral springs 
installed in joints between links. These springs are non-deformed when angles between the links are zero. The robot performs plane-
parallel motion over a rough surface. Each link contacts with the surface at a single point. Anisotropic dry friction acts at the contact points. 
The friction coefficient corresponding to the direction along the link direction is much smaller than that corresponding to the direction 
transversal to the link. The control torque is applied to the internal flywheel. Parameters of the mechanism and coefficients of the control 
law are adjusted to ensure irreversible propulsion of the robot along a prescribed direction. 

Introduction 

Snake robots can be used for works in aggressive areas. Such devices are widely discussed in the literature, and various 
schemes of construction and control are proposed for them, e.g. [1, 2]. Most of the research in this field assumes that 
there are motors which control angles between links in each joint. In the current work, we show that the presence of 
such motors is not necessary to obtain a snake-like motion of a link mechanism. We suppose that the only control 
applied to the system is associated with the rotation of a single inner flywheel installed at the leading link. Similar 
approach to the control of a three-link mechanism is applied in [3] for a swimming robot. 

Description of the system, statement of the problem 

The robot consists of three links AB, BD, DE located in OXY plane and connected to each other by cylindrical joints B 
and D (fig. 1). Spiral springs with the stiffness c are installed in joints. These springs are non-deformed when all links 
make a single straight line. The inner flywheel with the shaft A, the mass m0, and the central moment of inertia J0 is 
installed at the first link. The point A is the center of mass of the first link; this link has the mass 1 0( )m m−  and the 
central moment of inertia J1. Masses m2 and m3 of the links BD and DE are concentrated in the points C and E, 
respectively. The current position of the robot is described by coordinates x, y of the point A and angles , 1, 2,3i iϕ =  
between links and OX axis. The angle of orientation of the inner flywheel is a cyclic coordinate; 0ω  is the absolute 
angular speed of the flywheel. 

 
Figure 1: The scheme of the snake robot controlled by a single internal flywheel 

 
Each link contacts the supporting plane in a single point: A, C, E. Anisotropic dry friction iF  is applied at each contact 
point; the corresponding friction model is taken from [4]. The friction coefficient iξµ  corresponding to the motion 
along the link is much smaller than iηµ  corresponding to the motion in the transversal direction. ,i iV Vξ η  are projections 
of the speed iV  of the contact point on the axis directed along the link and the axis orthogonal to it. The following 
relation holds: 

0
0

i i i i

i i i i

F V m g

F V V

ξ ξ ξ

η η η

µ

µ

    
= −    

    
. 

The single control torque U is applied to the shaft of the flywheel. It is limited in the absolute value by the constant 
Umax. The goal of the control is to ensure the existence of an attracting self-sustained irreversible mode of propulsion of 
the robot opposite to OX axis. This means that the projection xV  of the velocity V of the center of mass on OX 
shouldn’t change sign and the average value of projection yV  of V on OY should be zero. 
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Methods and main results 

Equations of motion are derived basing the Lagrange formalism. Generalized forces are associated with dry friction 
forces, corresponding generalized torques iQ , and the control torque U applied to the flywheel: 

1 2 3 1 2 3
0

, , ( 1, 2,3), ;x x x y y y i

i i i

d dK d dK d dK dK dP d dK
F F F F F F Q i U

dt dx dt dy dt d d d dt dϕ ϕ ϕ ω

     
= + + = + + − + = = =     

        
 

cos sin , ;sin cos ( 1,2,3)ix i i i i iy i i i iF F F F F F iξ η ξ ηϕ ϕ ϕ ϕ= − == +  

1 2 3 1 2 3 1 2 2 3 2 2 3 2 3 3 3 3 3( ) cos - ( ) sin , ( 2 ) cos - ( 2 ) sin , ( cos - sin ).y y x x y y x x y xQ r F F r F F Q r F F r F F Q r F Fϕ ϕ ϕ ϕ ϕ ϕ= + + = + + =  
Here K and P are kinetic and potential energies, respectively. The control torque U is as follows: 

( )( )
max

0 0 0 1 1

max max

, ,
signum sin(2 ) .

signum( ) , ,

p p

p

p p

U U U
U U a w t k y k

U U U U
π ϕ

 ≤
= = − − −

⋅ >

 

The first term of the Up represents a periodic excitation aimed to ensure oscillations of the inner flywheel. The other two 
terms are required to ensure zero average shift of links from the axis OX during the self-sustained propulsion. 
Analysis of motion equation was performed by direct numerical integration with different geometrical and mass 
parameters, coefficients of the control law and initial component (0)x  of the velocity of the point A. Initial values of 
other variables were zero. The total mass of the system was supposed to be equal to 0.5 kg, moments of inertia: 

0 0.0005J =  kgm2, 1 0.002J =  kgm2. Lengths of links were not varied: AB=BC=CD=DE=0.05 m. The maximum value 
of the control torque was fixed: Umax=0.1 N. Friction coefficients were fixed: 0.03, 0.9 ( 1,2,3)i i iξ ηµ µ= = = . 
Parameter continuation was used to find the set of parameters providing higher speed of motion at the program mode. 
It was shown that an attracting regime of irreversible propulsion exists in a rather wide range of parameters. In 
particular, high speed of propulsion is achieved for the following set: 1 3 0.2m m= =  kg, 2 0.1m =  kg, 0.15c =  kgm2s-2, 

0 0.1a =  Nm, 0 1.2w =  s-1, 0 0.1k = −  N, 1 0.1k =  Nm. The transition process with initial value (0) 0.1x =  m/s is shown 
in the fig. 2: initially robot was pushed in the direction opposite to the target direction; at first, the center of mass 
decelerates, then it starts accelerating and reaches the attracting self-sustained motion in the prescribed direction, i.e. 
against OX. At the attracting regime, the x-component Vx of the speed of the center of mass is always negative. Thus, 
the motion is irreversible. The average value 

xV  of the component Vx is about -0.37 m/s, and the average value of Vy 
is zero. 

 
 

Figure 2: Components of the speed of the center of mass during the transition to the program mode (an example) 
 
The control ensures transition of the system to the program regime of motion from a wide range of initial conditions. 
The program motion is irreversible with respect to the axis OX. It should be noticed, that the presence of springs in 
joints as well as the anisotropy of friction are necessary conditions for the existence of the desired irreversible mode of 
propulsion of the proposed robotic scheme. 

Conclusions 

A new scheme of the snake robot is proposed without any control inputs applied in inter-link joints. The only control is 
the torque applied to the inner flywheel installed at the first link. The robot performs a plane-parallel motion over a 
rough surface. An anisotropic dry friction acts in the points of contact between the robot and the supporting surface. The 
parameters of the construction and coefficients of the control law are adjusted to ensure existence of attracting 
propulsion mode of motion that is irreversible with respect to the preferable direction of propulsion. 
This works is supported by Russian Science Foundation (project No.22-21-00303). 
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Feedback Control for a Body Carrying a Chain of Oscillators

Igor Ananievski and Alexander Ovseevich
Ishlinsky Institute for Problems in Mechanics RAS

Prospekt Vernadskogo, 101-1, Moscow 119526 Russia

Summary. We study steering of a linear chain of point masses connected via springs to the equilibrium, by means of a bounded force
applied to the first mass in the chain. In other words, we design an explicit feedback control that bring the system to a given terminal rest
state in a finite time. Thus, we prove the complete controllability of the system, and describe explicitly the feedback control proposed.
Then, we show its robustness with respect to unknown disturbances.

The chain of n oscillators: Problem statement

We consider a control problem for a system representing a solid body carrying a chain of n linear oscillators modelled by
point masses connected via springs (Fig. 1). The whole system moves along a horizontal line under the action of a control
force and an external disturbance applied to the carrying body.

Figure 1: A body carrying the chain of oscillators

Equations of motion have the form

m0ẍ0 = −k1x0 + k1x1 + u+ v

miẍi = kixi−1 − (ki + ki+1)xi + ki+1xi+1, i = 1, . . . , n− 1

mnẍn = −knxn−1 + knxn

(1)

Here, we have the controllable mass m0, which is subject to control u, and disturbances v. Each mass mi, i = 0, . . . , n
has coordinate xi, and the Hooke law Fi = ki(xi − xi−1) gives the force from mass mi−1 to mi.
Assuming x = (x0, x1, . . . , xn), we can write (1) in the Cauchy normal form

ẋ = A1x+
1

m0
b(u+ v)

where A and b are the block matrices

A1 =

(
0 I
A0 0

)
, b =

(
0
e

)

A0 =




− k1

m0

k1

m0
0 . . . 0

k1

m1
−k1 + k2

m1

k2

m1

. . .
...

0
. . .

. . .
. . . 0

...
. . .

kn−1

mn−1
−kn−1 + kn

mn−1

kn

mn−1

0 . . . 0
kn

mn
− kn

mn




, e =




1
0
...
0




and I is the unit matrix.
We assume that we know the current values x0, ẋ0, x1, while the other coordinates are not directly observable. Therefore,
a measured output is

y = Dx, D =



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0




Theorem 1 Pair (A1, b) is controllable and the pair (A1, D) is observable.

Thus, we can in principle bring the system under consideration to any given state, at least if the disturbances are absent.
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Control of canonical systems

The control problem stated can be reduced [1, 2] to the control problem for canonical system

ż = Az +B(u+ v) (2)

where

A =




0 0 0 . . . 0
−1 0 0 . . . 0

0 −2 0
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −2N − 1 0



, B =




1
0
...
0


 , z, B ∈ R2N+2 (3)

We use matrices

qij =

∫ 1

0

xi+j−2(1− x)dx =
1

(i+ j)(i+ j − 1)
, i, j = 1, . . . , 2N + 2

Q = q−1, C = −1

2
BTQ, δ(T ) = diag{T−1, T−2, . . . , T−2N−2}

Note, that for the scalar control system (2),(3) the matrix C is a row-vector C = (C1, . . . , C2N+2).
This allows to define the canonical feedback control by

u(z) = Cδ(T (z))z

which takes the form

u(z) =
C1

T (z)
z1 +

C2

T 2(z)
z2 + · · ·+

C2N+2

T 2N+2(z)
z2N+2 (4)

in the scalar control case. The function T (z) is found from the equation

〈Qδ(T )z, δ(T )z〉 = 1 (5)

Theorem 2 (see [2])

A) Equation (5) define positive T = T (z) uniquely.

B) The control (4) is bounded: |u| ≤ 1
2

√
N(N + 1).

C) If there are no disturbances, the control (4) brings state z to 0 in time T (z).

Theorem 3 If disturbances v satisfy

|v| ≤ c < 1

2
√
N(N + 1)

the derivative of T satisfies inequality
Ṫ ≤ −σ, σ > 0

and control (4) brings state z to 0 in a finite time T = O(T (z)).
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 Swing Oscillations Generated by Sitting Human 
 
 Alexander Formalskii *, Alejandro Jenkins **  and Liubov Klimina* 

*Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia 

** Universidad de Costa Rica, San José, Costa Rica 
 

Summary. Oscillations pumped by the human sitting on the swing are modeled. The model is represented by a three-link mechanism. 
Control torques are applied in the knee- and hip- joints. The control strategy is proposed that allows generation and maintaining of 
oscillations with large amplitude and also rotation around the suspension point. Control torques are designed as autonomous feedbacks 
depending on the angle and the angular speed of rotation of the swing. Numerical simulation is performed. The anthropomorphism of the 
proposed control is illustrated. 

Introduction 

Pumping of a swing is systematically discussed in the literature as a classical example of forced oscillations. This paper 
deals with the case of pumping a rigid swing by a sitting person. The paper provides the following novel results: it is 
shown that the anthropomorphic strategy of pumping is quasi-optimal one, the control strategy is proposed that can 
pump the swing to stationary rotation (not only to oscillations), the numerical simulation is performed for the three-link 
model of the system while usually only oscillations of a double-link model are discussed (see, for example, [1-5]).  
 

Statement of the Problem 

Three-link planar hinge mechanism models a human pumping a swing (see Fig. 1a). Link VP models a body, link PK – 
both thighs, and KF – both shins. Link PK is rigidly joined to the rod that corresponds to the swing. The rod is pivotally 
joined to the suspension point O that is the axis of rotation of the swing. The viscous friction torque with coefficient c 
acts at this axis. The angle of rotation of the swing is denoted as  . One inter-link hinge K models two knee-joints, 

second hinge P – two hip-joints. Two limited control torques are applied at these two inter-link joints K and P. Thus, 
the system has three degrees of freedom, but only two control torques are applied. So, this system is under-actuated one. 
Angles   in joint K and   in joint P can be changed in limits min max     and min max    . Here 

min/max min/max,     are given constants. The limitation upon these angles is modeled via relatively strong single-side spiral 

springs in joints K and P which practically ensures that angles   and   do not leave the prescribed domain. These 

springs model ligaments and tendons.  
 

 
Figure 1: The schemes of the three-link and simplified double-link mechanisms 

 
The goal of the control is to pump the swing as fast as possible and to the largest amplitude taking into account the 
restrictions imposed on the control. In this paper, the solution that is “close to optimal” is proposed. 
 

Design of the control and simulation 

As a preliminary step the quasi-optimal control is designed for the simplified double-link model in which a human is 
substituted by a single rigid body (see Fig. 1b) and the limited angle   is a control input. This control strategy is 
represented by a relay-type function * ( , )  &  that ensures pumping the swing to the large amplitude oscillations or even 

to stationary rotations (depending on parameters min/max  and friction coefficient c in the suspension joint): 

max*

min

, if cos 0,
( , )

, if cos 0.

  
  

  

&
&

&
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Function * ( , )  &  is used as the program function in the initial problem for the three-link mechanism (with min/max  

equal to min/max  or min/max  correspondingly). Control torques are designed as combinations of linear feedbacks with 

respect to the differences between the current and program angles and their derivatives. Efficiency of this control 
strategy is illustrated by numerical simulation with parameters of the model similar to parameters of the human. This 
simulation shows that if friction coefficient c is rather large, then oscillations of the swing tend to a stationary 
oscillatory mode corresponding to a cycle in the configuration space (see Fig. 2). But if friction coefficient c is 
sufficiently small, then the swing is pumped to a stationary rotation corresponding to the cycle in the space 
( mod2 , , )    . These cycles are attracting ones. 

 

 
 

Figure 2: Illustration of stationary oscillations and rotations of the swing 
 

Conclusion 
The designed control allows maintaining oscillations in wide range of amplitudes as well as rotational motion with a 
constant period depending on the restrictions upon angles  ,   and on the viscous friction coefficient c.  
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Dynamics of Interacting Populations in a Bounded Domain: Control and Estimation
under Nonlinearity and Uncertainty

Tatiana F. Filippova
Department of Optimal Control, Krasovskii Institute of Mathematics and Mechanics,

Ural Branch of Russian Academy of Sciences,
Ural Federal University, Ekaterinburg, Russian Federation

Summary. The nonlinear control systems of Lotka - Volterra type which describe the dynamics of the interaction of predators and
their preys are studied. It is assumed that the initial states of the system are not known precisely but belong to a given ellipsoid in
the state space and there is no additional information (for example, probabilistic, statistical, etc.) on unknown values. We find the
external ellipsoidal estimates of corresponding reachable sets for control systems under study. The considered models may describe
the behavior of competing firms, population growth, environmental change, development of individual industries, etc. The results of
modeling based on proposed methods are included to illustrate the main proposed ideas and presented estimation algorithms.

Introduction

The problem of state estimation for control systems under conditions of nonlinearity and uncertainty is studied. The case
is investigated here when the probabilistic data of noise and possible errors is not available, and only some restriction
on unknown parameters and functions are given. Models of this kind may be found in many applied problems includ-
ing physics, economics, biology, ecology, etc. As one of the important and key idea to study such problems we use
the so-called set-membership approach which was developed earlier [1, 2, 3, 4] to deal with a whole set of feasible pa-
rameters, consistent with the model structure, for systems with bounded uncertainty, with special types of measurements
characterization etc.
The solutions of such classes of control and estimation problems with set-membership uncertainty are based on the
construction and on the analysis of the corresponding reachable sets or their analogs. In this paper we study the procedures
of upper estimating reachable sets for nonlinear control systems of Lotka-Volterra type. We use here the ideas and results
of state estimation theory developed for nonlinear control systems which have a special quadratic dynamical structure
[5, 6, 7, 8] and several new schemes of the problem solution are developed here. We prove here theoretical results
and formulate related numerical algorithms for constructing external ellipsoidal estimates of reachable sets for nonlinear
uncertain control systems of the studied type. Numerical examples and results of related simulations are included to
illustrate the basic ideas and results.

Problem statement

The paper deals with the problems of control and state estimation for a dynamical control system

ẋ(t) = A(t)x(t) + f(x(t)) +G(t)u(t), x ∈ Rn, t0 ≤ t ≤ T, (1)

with unknown but bounded initial state

x(t0) = x0, x0 ∈ X0, X0 ⊂ Rn, (2)

and with control constraint
u(t) ∈ U, U ⊂ Rm, for a.e. t ∈ [t0, T ]. (3)

Here matrices A(t) and G(t) (of dimensions n× n and n×m, respectively) are assumed to be continuous on t ∈ [t0, T ],
X0 and U are compact and convex. The nonlinear n-vector function f(x) in (1) is assumed to be of quadratic type

f(x) = (f1(x), . . . , fn(x)), fi(x) = x′Bix, i = 1, . . . , n, (4)

where Bi (i = 1, . . . , n) are constant n× n - matrices.
In previous studies [5, 6, 7, 8], it was taken as the main assumption that matrices Bi in (1)–(4) are positive definite; this
additional condition simplified the analysis of nonlinearity in studying the structure and the properties of reachable sets
of the control system (1)–(4).
As a particular kind of the above control problem we consider here the following Lotka-Volterra system which describes
the classical ecological predator-prey (or parasite-host) model with additional control functions:

{
ẋ1(t) = ax1 − bx1x2 + u1,
ẋ2(t) = −cx2 + dx1x2 + u2,

x(t0) = x0, t0 ≤ t ≤ T. (5)

Here we assume that numbers a, b, c, d > 0 are given and initial vectors x0 are unknown but bounded, that is we have the
inclusion x0 ∈ X0, where X0 is a given compact subset of R2. This assumption may be interpreted for example in such
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a way that we do not know exactly the initial states (or amounts) of predators and prey. We assume also that controls u(t)
in (3)-(5) are taken measurable in Lebesgue on [t0, T ], also the inclusion is true

u(t) ∈ U, a.e. t ∈ [t0, T ], (6)

where U ∈ compR2. The choice of a control can influence, in particular, the rate of change in amounts of predators and
prey.
Basing on results of ellipsoidal calculus [1, 4] and estimation schemes described in [5, 6, 8] we present here the modified
state estimation approaches which use the special structure of nonlinearity of studied control system (1)–(6) and combine
advantages of estimating tools mentioned above. Numerical simulation schemes together with modeling examples are
also included.

Main results

Note first that we have in the system (5)-(6) a bit more simple situation than in general case of the system (1)-(4), namely
we have the equality f(x)′ = x1x2 · (−b, d). The idea used here in the analysis of reachable sets of the system (5)–(6)
is based on the following transformion of the system (1)–(4) to the new one which will include only positive definite
quadratic forms, this case is more convinient for the analysis and for further numerical modeling. So we consider the
following modified control system

ż = A∗z + f
(1)
ε (z) · d(1) + f

(2)
ε (z) · d(2) + w(t),

z0 ∈ Z0, w ∈ W , t0 ≤ t ≤ T,
(7)

with

A∗ =

(
A −C
−C A

)

and with functions f (1)ε (z) and f (2)ε (z) being the positive definite quadratic forms with matrices B(1)
ε = diag{1, ε2} and

B
(2)
ε = diag{ε2, 1}, respectively.

We can find now the external ellipsoidal estimates of reachable set Z(t) of the system (7) applying for this purpose results
of [7]. The case of the presence of a state constraint on the dynamics of the dynamical system is considered separately;
here, the possibility of applying the procedure for removing restrictions using the results of [2] is discussed.
We formulate also a numerical discrete-time algorithms of ellipsoidal estimating the reachable sets of the studied uncertain
system. Examples and numerical simulation results related to procedures of set-valued approximations of trajectory tubes
and reachable sets are also presented.

Conclusions

The paper deals with the problems of control and state estimation for a dynamical control system with unknown but
bounded initial state. The solution to the differential control system is studied through the techniques of trajectory tubes
of the theory of differential inclusions. The estimation approach uses the special nonlinear structure of the Lotka-Volterra
system. Examples and numerical results related to state estimation procedures of reachable sets are presented.

The research was supported by the Russian Foundation for Basic Researches (RFBR) under Project 18-01-00544a.
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Controlled motion of two interacting particles on a rough inclined plane

Ivan Bogoslavskii∗, Nikolay Bolotnik ∗ and Tatiana Figurina∗
∗Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia

Summary. Two interacting particles on a rough inclined plane are considered.Coulomb’s friction acts between the particles and the
underlying surface. The system is controlled by the force of interaction of the particles. It is assumed that the parameters of the system
are such that one of the bodies can be moved upward along a line of maximum slope provided that the other body is resting. The
controllability of the system between two arbitrary states of rest is investigated. The system is proved to be controllable if the particles
do not lie on a common line of maximum slope at the initial instant. A control algorithm that alternates quasistatic and fast modes of
motion is constructed.

Statement of the problem

Consider a system of two particles on an inclined planeΠ (Fig. 1a). Letm andM denote the masses of the particles
(m < M ), k the coefficient of Coulomb’s friction between the particles and the underlying plane,γ the inclination angle
of the plane,g acceleration due to gravity,F the interaction force applied by particleM to particlem. We assume that for
F = 0, both particles can stay at rest and that particlem can be moved from the state of rest by the forceF upward along
the line of maximum slope, while particleM does not move:

kM cos γ ≥ (M +m) sin γ + km cos γ. (1)

Let the system under consideration be at rest at the initial instant. The aim of our study is to find out whether the system
can be driven from the initial state to any other state of rest on the plane. For the horizontal plane (γ = 0), this is
impossible. We are interested in the controllability of the system in principle. For this reason, we do not impose any
constrains on the magnitude of the control force, allow instantaneous change in the positions of the particles, and assume
that the particles may move through one another. If the particles at the initial instant rest on the common line of maximum
slope, they cannot quit this line, and this case will not be considered. We will show that the system can be driven between

Figure 1: a) Two-particle system on an inclined plane, b) Quasistaic trajectories of particlem

the initial and terminal states by combining two types of motions: quasistatic motions and fast motions. The quasistatic
motion is a slow motion that can be regarded as a continuous sequence of equilibria, while for fast motion we admit an
instantaneous change in the positions of the particles.

Quasistatic motions

Inequality (1) implies that in quasistatic motions, only particlem moves, while particleM is at rest. Denote byLM the
line of maximum slope passing through the pointM . Introduce in planeΠ the coordinate frameMxy (Fig. 1a). The
axisy lies on lineLM and is directed upward. The trajectories of the quasistatic motion of particlem are defined by the
equation

dr

dα
= ±r

√
1− a2 cos2 α
a cosα

, a =
tan γ

k
, (2)

wherer andα are the polar coordinates of particlem in planeΠ related to the poleM and the polar axisMx. When
moving quasistatically, particlem cannot intersect lineLM ; therefore we assumeα ∈ (−π/2, π/2). Sign minus on the
right-hand side in Eq. (2) corresponds to the repulsive motion when the interaction forceF applied to particlem acts from
M towardm, while sign plus corresponds to the attractive motion. Equation (2) has a closed-form solution in terms of
elementary functions. Denote byr±(α, α0, r0) the solution of Eq.(2) subject to the initial conditionsr(α0) = r0. The
functionr+ (r−) monotonically increases (decreases) asα increases in the interval(−π/2, π/2). The functionsr+ and
r− have the following properties:

lim
α→π/2

r−(α) = 0, lim
α→−π/2

r−(α) =∞, lim
α→−π/2

r−(α) cosα =∞. (3)
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lim
α→π/2

r+(α) =∞, lim
α→−π/2

r+(α) = 0, lim
α→π/2

r+(α) cosα =∞. (4)

r−(α, α0, r0) = r+(−α,−α0, r0). (5)

According to the properties of Eqs. (3)–(5), the trajectories of the quasistatic motion of particlem on planeΠ have the
shape shown in Fig. 1b. For each point (α0, r0) on the plane, one can indicate an area (attainable area) to each point of
which particlem can be driven quasistatically. This area is bounded by the curvesr±(α, α0, r0) (thick lines in Fig. 1b).
One can drive particlem to any internal point(α1, r1) of the attainable area using one switching between the repulsive
and attractive motions; the particle moves first along the curver−(α, α0, r0) or r+(α, α0, r0) and then, respectively,
along the curver+(α, α1, r1) or r−(α, α1, r1). In particular, using one switching, one can get quasistatically to the
point (α0 − δα, r0), δα ¿ 1, from the point (α0, r0). Then, similarly, using one switching, one can get to the point
(α0 − 2δα, r0) from the point (α0 − δα, r0), and so on. By lettingδα → 0, we obtain that the trajectory of particlem
can be made arbitrarily close to the circular arc of radiusr0; the angleα monotonically decreases, approaching but not
reaching a value of−π/2. Therefore, particlem can be driven from the point (α0, r0) quasistatically along a trajectory
arbitrarily close to the circular arcr = r0, α ∈ (−π/2, α0], with monotonically decreasing angleα. We will call such a
motion the quasistatic motion along a circumference.
All the aforesaid remains valid for the quasistatic motion forα ∈ (π/2, 3π/2). In this case, the repulsive and attractive
trajectories will be symmetric about theMy-axis to the respective trajectories forα ∈ (−π/2, π/2); particlem can be
driven along a circumference, withα monotonically approaching but not reaching a value of3π/2.

Fast motions. An algorithm for driving the system to the terminal state

By fast motions we understand the motions that drive the system between different states of rest in an infinitesimal time.
The force of interaction between the particles for such motions is much larger than the external friction forces; therefore,
thesystem’s center of mass and the line that connects the particles are fixed. We allow the particles in the fast motion to
pass through one another, changing as a result the direction of the vector

−−→
Mm to the opposite one. By means of the fast

motion, we can move particleM to any position on the initial lineMm.
By alternating fast and quasistatic motions one can move particlem to any position on the plane, with particleM remain-
ing arbitrarily close to its initial position. We will show this for the case where the initial and terminal positions of particle
m belong to different half-planes with respect to lineLM . We assume for definiteness thatα ∈ (π/2, 3π/2) for the initial
positions andα ∈ (−π/2, π/2) for the terminal position. We will show first that particlem can be brought onto a semi-
circumference of an arbitrarily small radius on the right half-plane, i.e., to any position(α∗, r∗) such thatr∗ = ε, ε¿ 1,
andα∗ ∈ (−π/2, π/2), while the change in the position of particleM is small. To this end we at the first stage move
quasistatically particlem toward particleM until the distancer between the particles becomesr = ε. If at this instant
the angleα does not satisfy the inequality|α− 3π/2| ≤ |π/2−α∗|, we move particlem along a circumference until this
inequality holds. After this, we perform the fast motion as a result of which particlesm andM change their positions on
the lineMm to the positions that are symmetric about the center of mass. The change in the position of particleM at this
stage is small (the distance moved by this particle is less thanε), while the distance between the particles does not change.
At the final stage, particlem moves quasistatically clockwise (with the angleα monotonically decreasing) until the angle
α becomes equal to the desired valueα∗. Thus we proved the possibility for particlem to be driven to an arbitrary point
of a circumference of small radius on the right half-plane. Taking into account the fact that the quasistatic repulsive and
attractive trajectories that go out from all points(α∗, r∗), α∗ ∈ (−π/2, π/2), r∗ = ε, sweep the entire right half-plane,
we conclude that particlem can be driven quasistatically into any position on the right half-plane. Somewhat simplifying,
we can regard the algorithm presented above as driving particlem onto particleM followed by the motion of particlem
along an arbitrary trajectory of quasiatatic repulsion that goes out from the origin.
In conclusion, we describe an algorithm that drives the system to the desired terminal state. We will confine ourselves to
the case where the terminal positions of the particles do not lie on the common line of maximum slope. At the first stage,
by alternating fast and quasistatic motions as was described above, we bring the system to a position in which the line that
connects the particles passes through the terminal position of particleM . Then by means of fast motion we move particle
M to its terminal position. Finally, by using the algorithm described above, we move particlem to the desired terminal
state; at this stage, the change in the position of particleM is arbitrarily small.

Conclusions

It is proved that if at the initial instant the particles do not lie on the common line of maximum slope, the system can
be driven into an arbitrarily small neighborhood of any terminal position on an inclined rough plane by combining qua-
siastatic and fast motions. A system of two interacting particles is a simple model of limbless worm-like crawlers. This
biomimetic principle of motion can be used for mobile microrobots. It is important that when on a horizontal plane, a
two-particle locomotion system that is in a state of rest at the initial time instant can move only along a line that connects
the initial positions of the particles, whereas on an inclined plane, the system can be driven to any terminal position.

ENOC 2022, July 17-22, 2022, Lyon, France

581



ENOC 2020, July 5-10, 2020, Lyon, France

Reorientation of a rigid body by means of an auxiliary mass

Felix Chernousko∗

∗Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia

Summary. Possible control of the space orientation for a rigid body by means of an auxiliary movable point mass is considered. The
motion of the point mass is proposed that provides the prescribed change of the body orientation.

Introduction

Control of the space orientation of a rigid body can be implemented by means of an auxiliary internal mass that is equipped
with an actuator and can move relative to the body. Two-dimensional motions of such systems in the absence of external
forces are analyzed in [1, 2, 3] where time-optimal controls are obtained. Three-dimensional motions are considered in
[4]. In the paper, a simple control is proposed which provides , in the absence of external forces, the prescribed change of
the rigid body orientation by means of an internal movable mass.

Basic equation

We consider a mechanical system consisting of a rigid body P of mass M and a particle Q of mass m (Fig. 1). Denote by
C the center of mass of body P and by O the center of mass of system P+Q. Suppose that external forces are negligible
and system P+Q is at rest at the initial time moment t = 0. Then its center of mass O is at rest for all t, whereas the
momentum of system P+Q and its angular momentum stay constant and equal to zero. The following equation is derived
from these conservation laws [1, 3, 4]:

J · ω + µMr× (ω × r+ v) = 0, µ = m/(M +m), (1)

where J is the tensor of inertia of body P relative to its center of mass C, ω is the angular velocity of body P, r = CQ is
the position vector of point mass Q relative to C, and v is the velocity of point Q relative to body P.

Reorientation

Let us introduce the Cartesian coordinate system Cx1x2x3 connected with body P, its axes Cxi being principal central
axes of inertia of body P, i = 1, 2, 3. Suppose that body P should be transferred from its initial state of rest to the
prescribed terminal state of rest by means of an auxiliary particle Q. We assume that the initial and terminal positions of
particle Q coincide with the center of mass C of body P. Hence, the required motion is the change of the orientation of
body P.
This motion can be implemented by means of three successive plane turns of body P about its three principal central axes
of inertia Cxi, i = 1, 2, 3. For the rotation about axis Cxi, body P must turn by a given angle ∆φi while the movable
mass Q must start and finish its motion at point C. Both body P and particle Q should be at rest at the beginning and the
end of this motion. Therefore, to design the required three-dimensional re-orientation, it is sufficient to construct such

Figure 1: Mechanical system
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plane motion of particle Q, with r = v = 0 at the beginning and the end of motion, that provides the required rotation of
body P.

Plane motion

Without loss of generality, let us consider rotation of body P about axis Ox3. Point Q will move in plane Cx1x2, its
trajectory begins and ends at point C. Time-optimal trajectories of point Q found in [1, 3] for small µ, are circular arcs.
Following this example, we will seek the trajectory of point Q as a circle with radius R passing through point C. Its center
S can be chosen arbitrarily in plane Cx1x2.
Denote by I the moment of inertia of body P about axis Cx3 and by ϕ the angle of rotation of the body about this axis.
Then the vectorial equation (1) is reduced to the following equation

ϕ̇ = − µMR2(1− cosψ)

I + 2µMR2(1− cosψ)
ψ̇, (2)

where ψ is the angle between radii SC and SQ; this angle defines the position of point Q along its circular trajectory. By
integrating equation (2), we obtain

φ(t) =
1

a
Arctan(a tan

ψ

2
)− ψ

2
, (3)

where

a = (1 + 4µMR2I−1)1/2. (4)

According to equation (3), the angle φ of rotation of body P about axis Cx3 depends only on angle ψ, i.e., on the position
of particle Q on its circular trajectory. When point mass Q makes the full rotation along its trajectory (ψ = 2π), body P
turns by angle

∆φ = π(a−1 − 1), −π < ∆φ < 0.

To turn body P by an arbitrary angle, mass Q can make several (n) revolutions along its circular trajectory. Hence, the
total angle of rotation ∆φ of body P can be estimated as follows

|∆φ| = πn(a− 1)/a. (5)

Using formulas (4) and (5), we obtain the expression for the radius R of the circular trajectory of point mass Q:

R =
[Iα(1− α/2)]1/2
(2µM)1/2(1− α) , α =

|∆φ|
πn

. (6)

To turn body P about axis Cx3 by angle ∆φ, particle Q should move in plane Cx1x2 along a circular trajectory of radius
R given by (6). The center of the trajectory and the time history of motion ψ(t) can be arbitrary.
This trajectory must pass through the center of mass C of body P, and the velocity of particle Q at point C must be zero.
To decrease the domain of motion for particle Q, we can, according to equation (6), increase the number of revolutions n.
The circular motions of particle Q relative to body P can be accomplished by means of rotating wheels.

Conclusions

Possible motions of an auxiliary point mass relative to a rigid body are described which provide an arbitrary prescribed
reorientation of the body in space in the absence of external forces.

Acknowledgements. The work is supported by Russian Science Foundation (Grant 18-11-00307).
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Phase resetting as a two-point boundary value problem

Bernd Krauskopf∗, Peter Langfield∗∗ and Hinke M. Osinga∗
∗Department of Mathematics, University of Auckland, New Zealand

∗∗Inria Bordeaux–Sud-Ouest, Talence, France and IHU Liryc, Electrophysiology and Heart
Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France

Summary. Phase resetting is used in experiments with the aim to classify and characterise different neurons by their responses to
perturbations away from a periodic bursting pattern. The same approach can also be applied numerically to a mathematical model.
Resetting is closely related to the concept of isochrons of a periodic orbit, which are the submanifolds in its basin of attraction of all
points that converge to this periodic orbit with a specific phase. Until recently, such numerical phase resets were performed in an ad-hoc
fashion, and the development of suitable computational techniques was only started in the last decade or so. We present an approach
based on the continuation of solutions to a two-point boundary value problem that directly evaluates the phase associated with the
isochron that the perturbed point is located on. We illustrate this method with the FitzHugh–Nagumo model and investigate how the
resetting behaviour is affected by phase sensitivity in the system.

In certain physiological experiments, a perturbation is applied to an oscillator, and one is interested in how the dynamics
relaxes back to its regular rhythm [3, 12]. The resulting phase-shift is known as a phase reset, and recorded in terms
of a phase response curve (PRC) or amplitude response curve (ARC); these are obtained by varying the phase at which
the reset is applied, or by varying the amplitude of the reset when applied at a fixed given phase, respectively. Phase
resets give insight into the underlying dynamics of biological oscillator, such as circadian clocks, yeast cells, and the cell
cycle [12].

Mathematically, the oscillator is an attracting periodic orbit. Points on the periodic orbit have a relative phase, and any
point in the basin of attraction can similarly be assigned an asymptotic (or latent) phase, defined as the phase with which
the point converges to the periodic orbit [11]. The set of all points with the same asymptotic phase forms a manifold, called
an isochron, and the family of isochrons foliates the basin of attraction [5]. Theoretically, a PRC or ARC can be computed
by determining the phases of the isochrons that are associated with the reset points. In practice, this idea has proved to
be rather challenging. Traditionally, ad-hoc model simulation has been applied [2, 4, 11]. Recently, more accurate tech-
niques have been developed for the computation of isochrons, which are amenable for isochrons of systems that exhibit
strong or even extreme phase sensitivity in possibly large regions of phase space; see [8] and references therein. Con-
sequently, there are now also much better algorithms for the computation of PRCs, ARCs, and other resetting curves [6, 9].

Our method [10] computes one-dimensional isochrons of planar systems by pseudo-arclength continuation of solutions
to a suitable boundary value problem (BVP). It has the advantage that it can generate very accurate approximations of
isochrons globally, over a very large part of phase space. We adapt this method here so that we can generate PRCs or
ARCs also with a BVP approach; we use the package AUTO [1] throughout to obtain solution families of the respective
BVPs. The BVP that defines a phase reset consists of four orbit segments that are related via boundary conditions. Each
orbit segment is a solution to the vector field given in the form

d
dsu = T f(u),

where f : R2 → R2 defines the original vector field and time is rescaled to time s measured in units T of total integration
time of the respective orbit segment. Hence, T is treated as a parameter.

The first two orbit segments define the periodic orbit Γ := {u(s) ∈ R2 | 0 ≤ s ≤ 1}, with period TΓ, and its associated
vector bundle v := {v(s) ∈ R2 | 0 ≤ s ≤ 1} of the stable Floquet multiplier of Γ; each vector v(s) is tangent to
the isochron associated with the point γϑ ∈ Γ such that γϑ = u(s). For both orbit segments, the parameter T is set to
the period TΓ of Γ. Instead of imposing a phase condition—which would be necessary if one wants to continue Γ in a
parameter—we allow the head point u(0) = u(1) on Γ to vary; in other words, u(0) is not necessarily equal to the point
γ0 ∈ Γ with phase 0. We keep track of the phase that corresponds to a shifted head point u(0) by way of a third orbit
segment w := {w(s) ∈ R2 | 0 ≤ s ≤ 1} that starts at w(0) = u(0) and ends at w(1) = γ0. For numerical reasons, the
end condition for w is relaxed so that w(1) is allowed to differ from γ0 in the direction of its (linearised) isochron. The
total integration time for w is measured in fractions of TΓ, that is, we set T = ν TΓ for this orbit segment. The fourth and
final orbit segment defines the orbit segment p := {p(s) ∈ R2 | 0 ≤ s ≤ 1} of a reset point p(0) converging back to Γ.
Its total integration time is an integer multiple of TΓ and its end point is p(1) = u(0) + η v(0), for some small parameter
0 < η ≪ 1; here, v(0) has length 1.

The PRC is then found by continuation in ν as the variation in phase φ = 1 − ν, while p(0) traces the path of a shifted
periodic orbit; the ARC is defined similarly by setting p(0) = γϑ + Ad and varying the reset amplitude A, where d is a
reset direction.
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Figure 1: Phase-resetting for the FitzHugh–Nagumo system (1) where a reset is applied in the direction d = (1, 0)t from the point
γ0.6 ∈ Γ with varying amplitude A ∈ [0, 0.75]. Panel (a) shows Γ with its isochrons plotted on a colour gradient from cyan at phase 0
to dark blue at phase 1; the purple curve indicates the A-dependent reset. Panel (b) shows the resulting phase ϕ = 1− ν versus A.

As an example, we consider the two-dimensional FitzHugh–Nagumo system, which is the iconic polynomial model for
which Winfree found that it exhibits extreme phase sensitivity due to its slow-fast nature [12]. The model is given as

{
ẋ = c

(
y + x− 1

3 x
3 + z

)
,

ẏ = − 1
c (x+ a− b y), (1)

where we fix z = −0.4, a = 0.7, and b = 0.8 as in [12], but set c = 2.5. For these parameter values, there exists an
attracting periodic orbit Γ with period TΓ ≈ 10.71. We define the point with zero phase as the point γ0 ∈ Γ that has a
maximum with respect to the x-coordinate; this point is γ0 ≈ (1.94, 0.89).

Figure 1(a) shows Γ together with its isochrons; the isochron associated with γ0 is coloured cyan and the other isochrons
are similarly coloured on a colour gradient from cyan to dark blue. We apply a reset to the point γ0.6 that lies on Γ at
time 0.6TΓ further along from γ0. The reset is in the horizontal direction d = (1, 0)t, and we vary its amplitude A in the
interval [0, 75]; see the purple line in Figure 1. Hence, γ0.6 is reset to the point γ0.6 + Ad and we compute the ARC as
the corresponding A-dependent asymptotic phase φ = 1− ν of the reset point γ0.6 +Ad.

Figure 1(b) shows the computed ARC as φ against A. Note that the A-parametrised line of reset points passes through
a region with extreme phase sensitivity [7]. Consequently, the ARC becomes near vertical in this region, which lies ap-
proximately at A = 0.42. Our numerical continuation set-up has no trouble traversing such a phase-sensitive region and
the ARC can be obtained reliably and efficiently even if it has a near-vertical derivative; note also the discontinuity at
A ≈ 0.67, where φ jumps from 1 to 0.
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Resonant nonlinear triad interactions of acoustic–gravity waves

Usama Kadri
School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK

Summary. Acoustic waves, such as underwater sounds generated by earth-plate movements, and gravity waves, such as surface ocean
waves, are two types of waves that are thought to share very little in common. However, recently it has been shown theoretically that
acoustic–gravity waves can interact and share energy. Such interaction could explain natural phenomena such as microseisms (faint
earth tremor), but also has many implications from tsunami mitigation and energy harnessing, to creating new measurement techniques
that can be applied in invasive medical operations. In this talk I will present a review on nonlinear interaction of acoustic–gravity waves,
theory and applications.

Background
Acoustic (compression) waves and free-surface (gravity) waves are virtually decoupled for two main reasons. Firstly,
the speed of sound in water far exceeds the maximum phase speed of gravity waves. Secondly, the mode shape with
depth is oscillatory for acoustic modes, and exponentially decaying for gravity waves. Nevertheless, it has been argued
theoretically that these two types of wave motion could exchange energy via resonant triad nonlinear interactions [1, 2,
3, 4, 5]. There are two cases of interest this review talk focuses on: (I) two gravity waves interacting with an acoustic
mode of a comparable frequency (almost double) [1, 2, 3]; and (II) two acoustic modes interact with a gravity wave of
a comparable lengthscale [4, 5]. In the first case, the theory suggests that for a perfectly tuned triad almost all energy
initially stored in the gravity waves can transfer into the generated acoustic mode, whereas for wavepackets a maximum
of 40% energy transfer can be obtained [2]. This has implications at the ocean scale where interacting surface gravity
waves can generate microseism (faint earth tremor) deep at the ocean floor [6, 7]. Not less interestingly is the particular
solution where two gravity waves of identical frequency generate a standing acoustic mode [8]. Such setting might explain
a physical phenomenon known as time reversal [9, 10]. The same solution might explain the evolution of Faraday waves
[8, 11] that find various applications in physics. In the second case, the interaction of two acoustic modes with one
gravity wave has implications on underwater communication [4], wave energy harnessing, or more ambitiously tsunami
mitigation [5].

Amplitude evolution equations
We consider the propagation of surface-gravity waves interacting with acoustic wave disturbances in water of constant
depth over a rigid bottom. The equation governing the velocity potential in the fluid interior is obtained by combining
continuity with the unsteady Bernoulli equation, i.e cubic nonlinear wave equation. The boundary conditions are the
standard higher order kinematic and dynamic conditions, at the surface; and the no-penetration condition at the bottom.
In the first case, resonance is possible among two surface -gravity waves and a single acoustic mode. The conditions for
resonance comprise an interplay of the frequencies σ+ + σ− = ω, and wavenumbers k+ + k− = κ, where σ± and k±
represent the two gravity waves, which combined form the acoustic mode represented by ω and κ. To derive the evolution
equations we employ multiple-scale analysis, which yields

∂A

∂t
+ c1∇A+ c2∇2A ∝ S+S−,

∂S±
∂τ
∝ AS∗

∓ + [cubic terms] (1)

where A and S± are the amplitudes of the acoustic and two gravity waves, t is the interaction timescale,∇ is the gradient
(∂x, ∂y), and c1 and c2 are constants. The derived evolution equations allow quantifying the parameters (i.e. frequency,
wavelength, and amplitude) needed to finely tune the interaction, which controls the energy exchange. Following a similar
approach we derive the amplitude evolution equations for two acoustic modes interacting with a gravity wave. Now, the
conditions for resonance become ω+ + ω− = σ, and wavenumbers κ+ + κ− = k and the evolution equations are
fundamentally different. The following are some examples that will be discussed.

Example 1: Faraday Waves
This case is analogous to a surface gravity disturbance (Gaussian) of frequency ω over a fluid layer that is subject to a con-
tinuous vertical oscillation, e.g. due to underwater tremor, at double the frequency. The interaction excites subharmonic
standing field of Faraday-type waves of frequency 2ω, as shown in the figure 1 (from [11]).

Figure 1: Evolution of Faraday-type waves from a gravity disturbance interacting with a long-crested acoustic mode [11].

ENOC 2022, July 17-22, 2022, Lyon, France

587



ENOC 2020+2, July 17-22, 2022, Lyon, France

Example 2: Time-Reversal
A mathematical model for the evolution of a time-reversed gravity wave packet from a nonlinear resonant triad perspective
is derived [8]. Here the sudden appearance of an acoustic mode is analogous to a sudden vertical oscillation of the liquid
film, which resonates with the original surface-gravity wave packet causing the generation of an oppositely propagating
(time-reversed) surface-gravity wave of an almost identical shape, see figure 2

Figure 2: Amplitude evolution of time reversal triad: (a) original disturbance; (b) time reversed disturbance; (c) sudden acoustic mode.

Example 3: Tsunami Mitigation
A tsunami interaction nonlinearly with two acoustic modes. The tsunami envelope is redistributed behind over a larger
space and its amplitude is reduced, see figure 3.

Figure 3: Amplitude evolution. A tsunami propagates from right to left (top), exchanges energy with two acoustic waves (middle and
bottom), that propagate from left to right, [5].
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Multi-scale and multi-pathways: How the ULF waves hoard electrons into precipitation
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Summary. The nonlinear resonant electron scattering by whistler-mode chorus waves is one of the main drivers of the electron
precipitation into the Earth’s atmosphere. However, the electron precipitation shows signs of modulation by much slower ultra-low-
frequency (ULF) waves, that cannot be in resonance with electrons. In this presentation we use the Hamiltonian frameworks for slow-
fast systems to consider two-pronged impact of the ULF waves on the electrons’ dynamics: First, ULF waves modulate the whistler
waves; and second, ULF waves directly affect electron distribution functions. We implement THEMIS observations of ULF waves
and modulated whistler waves to perform numerical simulations of electron dynamics. We show how the quasi-linear and nonlinear
regimes of electron scattering by whistlers interchange within one ULF period and how this interplay of the two regimes affect the
electron scattering (precipitation) rates.

Ultra-low-frequency (ULF) and whistler waves in the Earth magnetosphere

Ultra-low-frequency (ULF, 0.001–1 Hz) perturbations are generated at the magnetopause and propagate into the inner
magnetosphere, and effectively modulate whistler waves. Close to the magnetopause, VLF wave bursts have the same
periodicity as the ULF perturbations. Our results demonstrate that almost the entire outer magnetosphere (from the geosta-
tionary orbit to most elliptical orbits), including the outer radiation belts, is significantly influenced by ULF perturbations
excited by magnetopause dynamic responses to the solar wind. Space observations show that ULF wave modulate not
only whistler intensity, but also pitch-angle distributions of electrons. ULF waves propagate with velocities much smaller
than electron thermal velocity. Therefore the interaction of ULF waves with electrons is non-resonant (in this proposal we
do not consider the azimuthal resonances effective mostly for relativistic electrons). This interaction causes quasi-periodic
changes of characteristic pitch-angle of distribution functions. We use conservation of the electron adiabatic invariants
(the magnetic moment and the second adiabatic invariant) to describe the evolution of electron distributions. We will
fit spacecraft measurements of electron distributions in the 1-100 keV energy range, and rewrite this fitted distribution
in terms of adiabatic invariants. With ULF magnetic field included in calculation of invariants, we compute electron
distribution for several time moments within one ULF wave period.

The nonlinear wave-particle interaction

Consider a relativistic electron interacting with a whistler wave propagating at an arbitrary angle θ relative to the back-
ground magnetic field. In the absence of the resonance overlapping, which is the most typical situation in the inner
magnetosphere, the corresponding Hamiltonian is

H = mec
2γ +

eBw
k‖γ

∑

n=0,±1,..

h(n) sin (φ+ nψ), γ =

√

1 +
p2‖
m2
ec

2
+

2µΩce
mec2

(1)

In (1), n is a harmonic number, function h(n)(µ, θ, s, p‖) defines the effective wave amplitude for a particular harmonic
[1], (s, p‖) are field-aligned coordinate and momentum, (ψ, µ) are gyrophase and magnetic moment (µ = p2⊥/2meΩce),
Ωce = Ωce(s) is an electron gyrofrequency, φ, k‖(s), and ω(t) are a wave phase, field-aligned wave vector component,
and wave frequency. Particle energy E ≈ H −mec

2 = mec
2(γ − 1), magnetic moment µ = µ(γ, α) is defined by γ and

particle equatorial pitch-angle α. Wave amplitude Bw is much smaller than a typical particle energy (eBw/k ≪ E).
Dynamics of particles governed by Eq.(1) includes nonlinear resonant scattering and trapping, citeOmura, Artemyev.
Nonlinear scattering occurs at almost every resonant interaction and produces changes of the electron energy and pitch-
angle, ∆SE and ∆Sα, see Fig. 1(a,b). Such changes cause a drift in the energy/pitch-angle space, directed towards
relatively small values of E and α. This drift cannot be described by the quasi-linear diffusion. Not every resonant
particle is scattered, though, but some of them are trapped. Particle trapping (such as the one occurring at about t = 90 in
Fig. 1(a,b)) results in significant changes of the energy and pitch-angle, ∆PE, ∆Pα. Such changes are much stronger than
any individual change due to scattering, but the number of particles trapped at a single resonance crossing is much smaller
than the number of scattered particles. The relative amount of resonant particles (with a given energy and pitch-angle)
being trapped during a given resonant interaction is called probability of trapping.

Probabilistic approach: a single wave

Consider a 2D space (E,α) with a discretization (i, j), i.e., the electron distribution function f(E,α) is defined as fij =
f(Ei, αj). We can introduce the quantity sklmn(W ) as a probability of a particle to move from the state (Ek, αl) to the
state (Em, αn) due to a single scattering with a given wave. The letter W indicates all the relevant wave’s characteristics,
most importantly the amplitude, the frequency, and the angle of the wave propagation. For each concrete wave, one can

ENOC 2022, July 17-22, 2022, Lyon, France

589



ENOC 2020, July 5-10, 2020, Lyon, France

(f)

Δ
 E

, 
k
eV

10
2

103

E0, keV

10050 200 500

(e)
α0=20

o

α0=30
o

p
ro

b
ab

il
it

y 
o
f 

tr
ap

p
in

g

0

0.1

0.2

0.3

(d)

Δ
 E

, 
k
eV

0

25

50

75

100

125

α0, 
o

0 20 40 60 80

(c)
100 keV

200 keV

p
ro

b
ab

il
it

y 
o
f 

tr
ap

p
in

g

0

0.1

0.2

0.3

(b)
trapping

scattering

scattering

α
0
,o

20

40

60

80

time/τ0

0 25 50 75 100 125 150

trapping

scattering

scattering(a)
en

er
gy

, 
k
eV

45

50

55

60

65

70

75

Figure 1: (a,b) A fragment of a 100 keV electron trajectory: electron energy (panel (a)) and pitch-angle (panel (b)). This fragment
includes several scattering and one trapping. Time is normalized by a typical bounce period τ0 = LRE/c ∼ 1/7s (RE is the Earth
radius). (c-f) Main characteristics of electron trapping by oblique (c,d) and parallel (e, f) waves. Analytic results (curves) are shown
together with test particle simulations (symbols): energy change in trapping ∆PE and the probability of trapping for various initial
energy E0 and pitch-angle α0 .

view all sklmn(W ) as the elements of a big 4D matrix, that defines the phase space transport due to scattering. Similarly,
we can introduce the probability for trapping in the same way as we did for scattering: pklmn(W ) is a probability of a
particle to move from the state (Ek, αl) to the state (Em, αn) due to a single trapping into resonance with a given wave.
Almost all of the matrix elements are zero. Thus we arrive at

∂fij
∂t

= − 2

τij
fij +

∑

kl

Rklij (W )fkl; Rklij (W ) =
Nkl
τkl

(
sklij (W ) + pklij (W )

)
(2)

where each τij = τ(Ei, αj) is the bounce period. Elements of Rklij (W ) depend on wave characteristics. There is a
noticeable difference between sklmn(W ) and pklmn(W ): while the non-zero elements of sklmn(W ) correspond to nearby
cells (around k = m, l = n), the elements of pklmn(W ) are somewhat removed from there. Note that Eq. (2) is linear
with respect to the distribution function fij , and nonlinear with respect to properties of the wave, W . The nonlinearity is
included in the array Rklij (W ).

Multiple waves

For an ensemble of waves, let ρ(W ) define the statistical weight of a certain set of parameters, ρ(W ) describes statistics
of the wave amplitudeBw and frequency ω). The distribution ρ(W ) is normalized so that

∫
ρ(W )dW = Tint/Ttot where

Ttot is the total duration of spacecraft measurements and Tint is a cumulative duration of observations of intense waves.
Normalized ρ(W ) gives a

∂fij
∂t

= −nij
τij

Tint
Ttot

fij +
∑

kl

(∫

W

Rklij (W )ρ(W )dW

)
fkl = −

nij
τij

Tint
Ttot

fij +
∑

kl

〈Rklij 〉fkl (3)

where 〈Rklij 〉 =
∫
W
Rklij (W )ρ(W )dW . For a given state (Ei, αj), 〈Rklij 〉 contains two groups of nonzero elements in

the (E,α) space. The elements located near the “target” cell describe the efficiency of scattering, which, for the first
cyclotron resonance, results in energy/pitch-angle decrease. The elements related to trapping are located relatively far
from the “target” and they correspond to energy/pitch-angle increase.

Conclusions

The objective of the current research was to describe how the ULF waves impact the dynamics of electrons in the Earth
magnetosphere: directly through the non-resonant interaction, and indirectly through modulating the whistler waves, that
do have the non-linear resonance interaction with electrons. The research was supported in part by the NASA award
80NSSC19K0266.
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Slow-fast dynamics in vibratory pile driving: field tests and numerical modelling
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Summary. This paper presents a study of vibration-based pile driving methods on the basis of field data and numerical mod-
elling. Based on field data from an extensive field test campaign and existing results found in the relevant literature, the vibra-
tory pile installation is shown to constitute a slow-fast dynamical process. Moreover, a three-dimensional numerical model for
the analysis of vibratory pile driving is presented, comprised by a thin cylindrical shell (pile), a linear elastic layered half-space
(soil) and a frictional interface. Based on the latter numerical model, the relevant experimental findings are discussed and com-
pared in order to shed light into the complex pile-soil behavior during vibratory driving and the emergence of slow-fast pile motion.

Extended abstract

Presently, over 80% of the offshore wind turbines (OWTs) in Europe are founded on monopiles [1]. These foundations
are most commonly installed by impact hammer, albeit this method poses a source of noise pollution, harmful to marine
life, and can compromise the structural integrity and fatigue life of a monopile [2]. To this end, environmentally friendly
alternatives are investigated for offshore monopile installation, such as vibratory methods. The standard axial vibratory
pile driving is used onshore for decades, with advantageous features such as high installation speed and low axial pile
loading. However, in the offshore industry the use of the vibratory driving technique is limited, due to the lack of field
data and knowledge gaps related to the complex pile-soil behaviour during installation and the post-installation effects.
To further the potential of vibration-based methods a new technology – the Gentle Driving of Piles (GDP) – has been
proposed by TU Delft [3]. The GDP method is based on simultaneous application of low-frequency/axial and high-
frequency/torsional vibrations at the pile head and aims to improve installation performance and reduce underwater noise
emissions. Medium-scale field tests have been performed at Maasvlakte II site, at the port of Rotterdam (see Fig. 1), in
which different pile installation methods were investigated, with a focus on the classical vibratory and GDP methods.

(a) (b)

Figure 1: (a) Test pile layout and (b) GDP test site.

In this paper, the vibratory and GDP installation methods are studied and the emergence of pile penetration into the
soil medium as a slow-fast dynamical process is presented. In principle, the pile is forced by the combination of a
periodic excitation at the pile top and the self-weight of the pile and the vibratory device. The resulting motion can
be distinguished into a slow motion of the rigid body type and a fast motion characterized by the fundamental driving
frequency and its super-harmonics. The main findings of the installation tests and the comparison of the two methods
are discussed. Furthermore, a three-dimensional model for the analysis of pile installation for the considered methods is
presented. Specifically, the pile is modelled as a thin cylindrical shell, according to the Love-Timoshenko theory [4], in
order to properly capture the pile motion. The soil continuum is modelled as an elastic layered half-space, by means of the
thin layer method (TLM), augmented with perfectly matched layers (PMLs) [5]. Finally, a frictional interface is used to
couple the pile-soil system and permit pile slip. The numerical solution of the presented model is based on the alternating
frequency-time harmonic balance method, in order to address the problem with a computationally fast approach.
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In the topic of vibratory pile driving two classes of models are employed, i.e. the engineering-oriented one-dimensional
models and the advanced research-oriented three-dimensional models. The former describe in a simplistic manner the non-
linear pile-soil interaction during driving, neglecting effects such as the non-local and frequency dependent soil-reaction.
The latter models -although more rigorous- rely on a multitude of parameters for the soil constitutive model, which
cannot be customarily obtained by in situ measurements. Therefore, their use in engineering practice remains unfeasible,
especially considering their excessive computational cost. The model presented in this work aims to bridge the gap
between the two classes, by employing a more physically sound soil reaction with reduced semi-empirical soil parameters,
while retaining the computational efficiency required for use in engineering practice. To that end, the predictions of the
developed model are validated with the field data; the latter is of great essence for the GDP method, which cannot be
analysed by other existing numerical models.

Figure 2: Installation test of a pile driven by the GDP method.
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On the Escape of a Resonantly Excited Couple of Colliding Particles from a Potential
Well under Bi-harmonic Excitation
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Summary. Escape dynamics of a damped two-particle system with internal collisions in a truncated quadratic potential well under
biharmonic excitation is investigated. It is assumed that the excitation frequencies are tuned to the 2l-fold values of the modal natural
frequency of the relative motion and to the modal frequency of the center of mass on the bottom of the potential well. Although the
escape is an essentially non-stationary process, the critical forcing amplitude strongly depends on the stationary amplitudes of the
relative vibrations within the two particles. The characteristic escape curve for the critical force moves up with the increasing relative
vibrations.

Introduction

Escape from a potential well is an important topic in non-linear dynamics. The problem arises in various fields of physics
and engineering [1]-[5].
A broad spectrum of physical phenomena from the dynamics of molecules to celestial mechanics has been studied in
the literature, discussing topics such as energy harvesting [6], the physics of Josephson junctions [7], transient resonance
dynamics of oscillatory systems [8, 9] or such phenomena as capsizing of ships [3, 10]. A further example for an escape
related topic is the dynamic pull-in in microelectromechanical systems (MEMS) [11]-[16].
First, in 1940, Kramer started to investigate the forced escape phenomenon regarding the thermal activation of chemical
reactions [17, 18]. Despite of much research which has taken place in the last 80 years, important unsolved problems still
exist regarding the escape process [19].
In the case of constant forcing, escape might occur as a consequence of the slow variation of the system parameters
which leads to subsequent bifurcations of the steady-state regimes of the response [2, 11, 12]. Thompson investigates
extensively the mechanisms leading to escape in a cubic model potential. His numerical results describe the phenomenon
of escape along a broad scale of the excitation frequency of the harmonic forcing. It reveals the chaotic processes leading
to escape near the critical forcing amplitude curve. Using Melnikov’s method [32] a good approximation can be given for
the numerical location of a part of the critical force curve.
Different modeling approaches can be found in the literature to give analytic criteria for the escape. In the paper of Virgin,
[3] harmonically forced and damped particles are investigated in three different model potentials, where the steady state
response of the particle’s motion is used to obtain the partly empirically corrected analytic criterion. The author assumes
a harmonic response with an additional bias to correct asymmetries of the potential.
Technically relevant potential wells in general exhibit a monotonically decreasing stiffness when moving away from the
center of the potential well. This is necessary to flatten out the profile of the potential, otherwise its depth could not be
finite.
In the paper [3] some model potential wells are also investigated numerically. The numerical results show a sharp min-
imum of the critical forcing amplitude depicted along the forcing frequency. This sharp minimum takes smaller values
than the linearized eigenfrequency of the potential well. Papers [14, 15] investigating the problem of dynamic pull-in in
MEMS devices also come to similar results regarding the shape of the critical forcing curve.
In the papers [20, 21] investigating the safe basins of attraction for various dynamical systems similar patterns for the sharp
minimum were found. This let’s the reader formulate a hypothesis about the above mentioned feature of the critical forcing
curve as an inherent property of the escape phenomena. In the papers [22, 25] for different potentials this hypothesis was
investigated using harmonic forcing.
The above two papers investigate the escape dynamics of the harmonically forced bodies assuming 1:1 resonance. The
applied method is able to take into account the transient dynamics of the system, which can be described by the slow
flow on the resonance manifold. Varying the initial conditions (IC) allows the identification of two different escape
mechanisms. The simpler to describe maximum mechanism (MM) corresponds to the case when the oscillation amplitude
reaches the escape threshold as a consequence of the excitation. In this case, exciting with the critical force results in an
amplitude value that just reaches the escape threshold. The other mechanism is the so called saddle mechanism (SM).
It is different from the previous mechanism, because the amplitude of the vibration stays quite small even if the forcing
amplitude is almost critical. When the critical forcing amplitude is reached, the vibration amplitude starts to increase
abruptly and escape takes place. At the lowest point of the critical force curve both mechanisms can be observed at the
same time. The approach resembles the research done in [23, 24] describing transient phenomena in coupled oscillator
systems with the use of limiting phase trajectories (LPT).
In paper [28] a system of a pair of strongly coupled particles in a truncated quadratic potential well with a bi-harmonic
excitation, consisting of a high and a low frequency component, was investigated. The paper introduced a new method to
model the effect of the high-frequency excitation using an effective force field which was derived by convolution of the
original force field and the probability density function of the fast movement around the center of mass of the two particles.
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Figure 1: The setting of the collision problem in a potential well with harmonic force excitation.

The multi-body problem was simplified that way to a single body problem for which standard techniques could be applied.
The research also showed that the high-frequency excitation has a stabilizing effect on the escape behavior with the used
model potential, for which, being the model of a linear oscillator, a single particle has a critical forcing amplitude tending
to 0 at the the resonance frequency. In the case of two bodies, however, the minimal value of the critical force curve is
greater than 0 and it is shifted to a lower frequency than the linearized eigenfrequency of the potential.
In the present paper, the model presented in [28] is modified such that the particles, although they are still considered as
point masses, are not able to penetrate each other, but an almost elastic collision, with the coefficient of restitutionR takes
place every time they get in touch with each other, i.e. the distance between them is ∆ := r1 + r2.
First, the mathematical model of the problem is introduced. Then, after bringing the equations into an appropriate form
using a coordinate transformation, the first step of the model reduction based on the so called ’unfolding transformation’
is described. With the use of this result, the further reduction of the model takes place in the next section, which is based
on a probabilistic type of averaging, that leads to a single particle problem in a modified, effective potential. In the section
’Numerical results and discussion’ the reduced model is compared to the original problem by direct numerical integration
using parameter values spanned by a grid on the excitation frequency – force amplitude plane, highlighting the stabilizing
effect of the high-frequency excitation. The findings of the paper are summarized in the ’Conclusions’ section.

Description of the model

Let us consider the following problem setting depicted in Fig. 1.
The coupled pair of particles with masses m1 and m2 is excited harmonically in a one-dimensional quadratic potential
well. The linear spring between the particles has the stiffness k ≫ 1 and the linear damper is described by the damping
coefficient c ofO(1). The potential well is defined individually for both of the particles by V1(x) = m1V (x) and V2(x) =
m2V (x), respectively, where m1 and m2 are of O(1). Poly-harmonic forces, given by F1(t) and F2(t), respectively, can
act on both of the bodies. The particles cannot penetrate through each other and hence collide every time they are at a
distance ∆ := r1 + r2 from each other. The collision is nearly elastic, which means the coefficient of restitution is close
to one, i.e. R ≈ 1.
The differential equations describing the motion of the system are given by

[
m1 0
0 m2

] [
ẍ1
ẍ2

]
+

[
c −c
−c c

] [
ẋ1
ẋ2

]
+

[
k −k
−k k

] [
x1
x2

]
+

[
m1V

′(x1)
m2V

′(x2)

]
=

[
F1(τ)
F2(τ)

]
if x1 +∆ < x2, (1)

x1+ = x1−, x2+ = x2−, if x1 +∆ = x2, (2)

ẋ1+ =
Rm2(ẋ2− − ẋ1−) +m1ẋ1− +m2ẋ2−

m1 +m2
, ẋ2+ =

Rm1(ẋ1− − ẋ2−) +m1ẋ1− +m2ẋ2−
m1 +m2

,

(3)

where V is defined as

V (x) =

{
1
2x

2 − 1
2 |x| ≤ 1,

0 |x| > 1,
(4)

The excitation force can be chosen in general as

Fj(τ) =

p∑

i=1

Aji sin(Ωjiτ + βji), with j ∈ 1, 2 and p ∈ N+. (5)
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In order to be able to excite the center of the mass in the potential well and the relative vibrations within the particles
simultaneously, the excitation in the current investigation is chosen to be

F1(τ) = F11 sin(Ω11τ + β11) + F12 sin(Ω12τ + β12), (6)

F2(τ) = 0. (7)

The coordinates x1 and x2 can be linearly transformed to the new coordinates

y1 :=
m1x1 +m2x2
m1 +m2

, y2 := x2 − x1, (8)

thus, y1 describes the movement of the particle’s center of mass and y2 gives the distance between the particles. By having
collisions, y2 can never be smaller than ∆. The inverse of the coordinate transformation is substituted back into Eq. (1),
which leads to

ÿ1+µV
′ (y1 − (1− µ)y2) + (1− µ)V ′ (y1 + µy2)

=
1

m1 +m2
(F11 sin(Ω11τ + β11) + F12 sin(Ω12τ + β12)) if y2 > ∆, (9)

y1+ = y1−, ẏ1+ = ẏ1−, if y2 = ∆, (10)

ÿ2+
c

m
ẏ2 +

k

m
y2 + V ′ (y1 + µy2)− V ′ (y1 − (1− µ)y2)︸ ︷︷ ︸

small coupling term of O(1) since k
m≫V ′(x)

= −F11

m1
sin(Ω11τ + β11)−

F12

m1
sin(Ω12τ + β12) if y2 > ∆, (11)

y2+ = y2−, ẏ2+ = −Rẏ2−, if y2 = ∆, (12)

with

1

m
:=

1

m1
+

1

m2
, µ :=

m1

m1 +m2
. (13)

Eq. (11) is coupled to Eq. (9) only through a small term, which, if both terms of the sum are evaluated inside of
the potential, is equal to y2 and if both terms are evaluated outside of the potential, is equal to 0. Otherwise, the small
coupling term is not independent of y1 anymore, but still, even in this case the force of the potential is very small compared
to the force of the spring. In addition, the case, when both particles are in the potential well, is the most dominant one,
thus the small coupling term can be approximated by y2 very well. By doing so, Eq. (11) becomes linear and can be
solved easily.

ÿ2 +
c

m
ẏ2 +

(
k

m
+ 1

)
y2 = −F11

m1
sin(Ω11τ + β11)−

F12

m1
sin(Ω12τ + β12) if y2 > ∆, (14)

y2+ = y2−, ẏ2+ = Ry2−, if y2 = ∆, (15)

Since the damping coefficient, c
m in the investigated case is not small, the homogeneous solution will decay in relatively

short time and the relevant part of the solution becomes the particular solution [29]-[30]. The frequency of the resonance
peak in the motion of y2 without collision would be

Ω02 =

√
k

m
+ 1− c2

2m2
, (16)

but the collisions have a significant effect on the high frequency vibration, which has to be discussed first in order to be
able to determine the vibration amplitude and so the probability density function (PDF) of the high-frequency oscillations.
In the current investigation we are interested in the escape behavior of the two-particle system with large inner vibrations
under a low-frequency and small force amplitude excitation. To get large vibrations in the relative motion of the particles
the appropriate excitation frequencies should be found.
The resonance frequency of the particle’s center of mass in the potential well is not influenced by the collisions. When
both particles are in the potential well, Eq. (9) simplifies to

ÿ1 + y1 =
1

m1 +m2
(F11 sin(Ω11τ + β11) + F12 sin(Ω12τ + β12)) , (17)

which means that the linearized eigenfrequency of y1 is Ω01 = 1.
In the next section the focus is set on the description of the vibration amplitude of the relative movement depending on
the choice of the excitation frequency.
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The first step of the model reduction: resonance of the colliding particles under high-frequency
excitation

The analysis of the resonance frequencies of Eq. (14) is already performed by Fidlin in chapter 3.5 of [31]. In the present
section of this paper the content of the book is repeated mostly, however, due to a printing error in the book, a somewhat
different result is obtained in the end.
In order to be able to apply the results from the book, a preliminary step is needed. With a coordinate transformation it
has to be ensured that the term y2 in Eq. (14) has the coefficient 1.

Introducing the new, dimensionless time t = ω0τ , with ω0 =
√

k
m + 1 the time derivatives can be rewritten as follows

ẏ2 =
dy2
dτ

= ω0
dy2
dt

= ω0y
′
2, (18)

ÿ2 =
d2y2
dτ2

= ω2
0

d2y2
dt2

= ω2
0y

′′
2 , (19)

where the time derivative with respect to the dimensionless time is indicated by a prime (’). Rewriting Eq. (14) in the
dimensionless time yields

y′′2 +
c

ω0m
y′2 + y2 = − F11

m1ω2
0

sin

(
Ω11

ω0
t+ β11

)

︸ ︷︷ ︸
Negligible

− F12

m1ω2
0

sin

(
Ω12

ω0
t+ β12

)
. (20)

Given that Ω11 is chosen to be in the nearby of Ω01 = 1, the effect of the first term on y2 is negligibly small. Defining the
following parameters

β :=
c

ω0m
, ε :=

F12

m1ω2
0

, ω :=
Ω12

ω0
, (21)

we can rewrite Eq. (20) can be rewritten as follows

y′′2 + βy′2 + y2 = −ε sin(ωt+ β12) if y2 > ∆, (22)

y2+ = y2−, y′2+ = −Ry′2−. if y2 = ∆. (23)

Using the so called ’unfolding transformation’

y2 = |z|+∆, (24)

Eq. (22) can be written as

z′′ + βz′ + z = (−∆− ε sin(ωt+ β12)) sgnz if z ̸= 0, (25)

z′+ − z′− = −(1−R)z′− if z = 0. (26)

Using the Van der Pol transformation with

z = A sinφ, z′ = A cosφ. (27)

and a newly defined, uniformly rotating phase

ψ = ωt+ β12, (28)

Eq. (25) can be transformed to

A′ = −βA cos2 φ+ (−∆− ε sinψ) cosφ sgn sinφ if φ ̸= nπ,

A+ −A− = −(1−R)A− if φ = nπ, (29)

φ′ = 1 + β sinφ cosφ+
∆+ ε sinψ

A
| sinφ|, (30)

ψ′ = ω. (31)

With the usual definition of the resonant surface and resonant solutions as also defined in [31], we focus on the parameter
values of ω for which the averaged right hand side becomes discontinuous, as in the vicinity of those values, large
amplitude responses may occur. ’Dangerous’ terms are

< sinψ cosφ sgn sinφ > =
1

2π

∫ 2π

0

sin(ωt+ γ) cos t sgn sin tdt, (32)

< sinψ
∣∣ sinφ| > =

1

2π

∫ 2π

0

sin(ωt+ γ)| sin t|dt, (33)

γ = ψ0 − φ0, (34)
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which expression can have values different from zero for values ωl = 2l, l = 1, 2, 3... Then, by introducing

δ =
ω

2l
− 1, θ = φ− ψ

2l
, (35)

Eq. (29) can be rewritten as

A′ = −βA cos2 φ−∆cos(φ)sgn(sinφ)− ε sin
(
2l(φ− θ)

)
cosφ sgn(sinφ) if φ ̸= nπ, (36)

A+ −A− = −(1−R)A− if φ = nπ, (37)

θ′ = −δ + β sinφ cosφ+
∆+ ε sin

(
2l(φ− θ)

)

A
| sinφ|, (38)

φ′ = 1 + β sinφ cosφ+
∆+ ε sin

(
2l(φ− θ)

)

A
| sinφ|. (39)

Taking small values for δ, the discontinuous averaging procedure can be performed. Using the notations of [31], the four
integrals to be evaluated are

J1 =
1

2π

∫ 2π

0

sin(2lφ)| sinφ|dφ =
1

π

∫ π

0

sin(2lφ) sinφdφ = 0, (40)

J2 =
1

2π

∫ 2π

0

cos(2lφ)| sinφ|dφ = − 2

π(4l2 − 1)
, (41)

J3 =
1

2π

∫ 2π

0

sin(2lφ) cosφ sgn sinφdφ =
4l

π(4l2 − 1)
, (42)

J4 =
1

2π

∫ 2π

0

cos(2lφ) cosφ sgn sinφdφ = 0. (43)

Using the above results and averaging yields the following differential equations

A′ = −
(
1

2
β +

1−R
π

)
A− 4lε

π(4l2 − 1)
cos 2lθ, (44)

θ′ = −δ + 2∆

πA
+

2ε

π(4l2 − 1)

sin(2lθ)

A
. (45)

Eq. (44) differs from Eq. (3.95) in [31] by the additional factor 3 in the denominator, which is a printing error.
Setting the left hand side to 0, the stationary solution, A∗ and θ∗ can be obtained.

1
2β + 1−R

π

2l
A∗ = − 2ε

π(4l2 − 1)
cos 2lθ∗, (46)

δA∗ −
2∆

π
=

2ε

π(4l2 − 1)
sin 2lθ∗. (47)

Eliminating θ∗ and introducing

βl =
1
2β + 1−R

π

2l
, εl =

ε

4l2 − 1
, (48)

one obtains

β2
l A

2
∗ +

(
δA∗ −

2∆

π

)2

=
4ε2l
π2

. (49)

Its solution for A is then

A1,2 =
2

π

δ∆±
√
ε2l (β

2
l + δ2)−∆2β2

l

β2
l + δ2

. (50)

Only the root with the plus sign is a stable solution (see proof in [31]) therefore the stationary amplitude is

A∗ =
2

π

δ∆+
√
ε2l (β

2
l + δ2)−∆2β2

l

β2
l + δ2

. (51)

For fixed ∆, βl and εl but for varying δ the maximal value of A∗ can be found by setting

∂A∗
∂δ

∣∣∣∣
δmax

!
= 0, (52)
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which leads to

δmax =
∆βl
εl

. (53)

Inserted in Eq. (51) the biggest amplitude value estimated by the analytic approach is

A∗,max =
εl
βl
, (54)

independent from ∆, i.e. for every feasible choice of ∆ the maximal amplitude is the same for some δmax.
Now we can write the solution

z(t) = A∗ sin

(
ωt

2l
+ φ0

)
(55)

for some φ0, thus

y2(t) = A∗

∣∣∣∣ sin
(
ωt

2l
+ φ0

) ∣∣∣∣+∆. (56)
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(a) m1 = 1, m2 = 5, Ω12 = 61.988 (l = 1) and ∆ = 0.

0 5 10 15 20 25 30 35

t

0

0.02

0.04

0.06

0.08
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y
2
(t

)

Direct numerical solution
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(b) m1 = 2, m2 = 1, Ω12 = 138.71 (l = 2) and ∆ = 0.0006.

Figure 2: Comparison of the numerical solution for y2 with the theoretically estimated stationary amplitude for c = 0.5,
k = 800, F12 = 15. The theoretical model can predict the stationary amplitude very accurately.

The second step of the model reduction: calculating the effective slow potential using the probabilistic
description of the high-frequency oscillations

Given the amplitude of y2, the PDF of the high-frequency oscillations around the common center of mass, y1 can be
determined as

[
z1
z2

]
=

[
x1 − y1
x2 − y1

]
=

[
y1 − m2

m1+m2
y2 − y1

y1 +
m1

m1+m2
y2 − y1

]
=

[− m2

m1+m2
y2

m1

m1+m2
y2

]
. (57)

As it can be expected, the movement is not symmetric around y1, unless the masses are equal. In general the PDFs of the
individual particles, ρi(x) are given by arcsine distributions cut in the middle as depicted in Fig 3. To write the probability
density function of z1 and z2, first, we define

A1∗ = (1− µ)A∗, A2∗ = µA∗, ∆1 = (1− µ)∆, ∆2 = µ∆, (58)

thus

z1 = −A1∗

∣∣∣∣ sin
(
ωt

2l
+ φ0

) ∣∣∣∣−∆1, z2 = A2∗

∣∣∣∣ sin
(
ωt

2l
+ φ0

) ∣∣∣∣+∆2. (59)

In general the probability density function (PDF), ρ(x) of a function, f(t), which is strictly monotonically increasing and
continuously differentiable on the interval (a, b) is given by

ρ(x) =
1

f ′[f−1(x)]
· 1

b− a for f(a) < x < f(b). (60)

If the function, f(t) is strictly monotonically decreasing, its PDF is just the negative of the above expression. Thus in the
special case of

f(t) = Ai∗ sin(Ωt+ β) + ∆i (61)
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we have

ρ(x) =
1

Ω
√
A2
i∗ − (x−∆i)2

1

b− a , (62)

where a and b are such, that the function increases monotonically between them. Since f(t) is periodic, it suffices to
determine the PDF of one period, which in the case of z1 and z2 can be done by splitting the period into a monotonically
increasing and monotonically decreasing part. As the two parts obviously has the same PDF in this case, it is enough
to determine the PDF of the monotonically decreasing part for z1 and the monotonically increasing part for z2, that we
achieve by choosing

a = −2lφ0

ω
, b =

2l
(
π
2 − φ0

)

ω
, Ω =

ω

2l
, (63)

then we can write

ρ1(x) =

{
2

π
√
A2

1∗−(x+∆1)2
for −A1∗ −∆1 < x < −∆1,

0 otherwise,
(64)

ρ2(x) =

{
2

π
√
A2

2∗−(x−∆2)2
for ∆2 < x < A2∗ +∆2.

0 otherwise.
(65)

The PDF of the particle system, ρ(x) is obtained finally by the weighted sum of the individual probability density functions

ρ(x) = µρ1(x) + (1− µ)ρ2(x). (66)

A numeric example is given in Fig. 3.
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Figure 3: One period of the high-frequency oscillation and the corresponding PDF with masses m1 = 1 and m2 = 5.

Effective potential by convolution
Eq. (9) can be rewritten now as follows

ÿ1+µV
′ (y1 + z1) + (1− µ)V ′ (y1 + z2) =

1

m1 +m2
(F11 sin(Ω11τ + β11) + F12 sin(Ω12τ + β12)) . (67)

The arguments of V ′(·) oscillates with a high frequency around y1, instead of calculating the exact values for every
moment, a kind of averaging is used to obtain an effective potential Ṽ . As during a period of the high frequency vibration
zi the change of y1 is small, we can get the averaged force at y1 by calculating the total force on the particle density cloud
at y1 having the PDF ρ1(x) and ρ2(x). The latter operation can be performed, as for any continuously distributed volume
in a force field, by the following integral transformation

Ṽ ′(y1) =
∫ ∞

−∞
V ′(x)ρ(x− y1)dx. (68)

In our special case the integral can be evaluated analytically. First we define the positions

d1 = −1−∆2 −A2∗, d2 = −1−∆2, d3 = −1 + ∆1, d4 = −1 + ∆1 +A1∗, (69)

d5 = 1−∆2 −A2∗, d6 = 1−∆2, d7 = 1 +∆1, d8 = 1 +∆1 +A1∗. (70)
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In the following, we will only consider the case, when ∆+A∗ < 2, so that we can guarantee that d1 . . . d9 are in ascending
order. With the help of the above positions we can define the domains

D1 = {x ∈ R|x ≤ d1}, (71)

Di = {x ∈ R|di−1 ≤ x < di} for i = 2 . . . 8, (72)

D9 = {x ∈ R|d8 ≤ x}. (73)

Thus, the effective force field can be written as

Ṽ ′(y1) =





0 x ∈ D1,

(1− µ)
(
y1 +∆2 +

2
π

(√
A2

2∗ − (1 + ∆2 + y1)2 − (y1 +∆2) arcsin
(
− 1+∆2+y1

A2∗

)))
x ∈ D2,

(1− µ)
(
y1 +∆2 +

2
π
A2∗

)
x ∈ D3,

µ
(

2
π

(√
A2

1∗ − (∆1 − 1− y1)2 + (∆1 − y1) arcsin
(

∆1−1−y1
A1

)
−A1∗

))
+ (1− µ)

(
y1 +∆2 +

2
π
A2∗

)
x ∈ D4,

y1 x ∈ D5,

µ
(
y1 −∆1 − 2

π
A1∗

)
+ (1− µ)

(
2
π

(
A2∗ −

√
A2

2∗ − (1−∆2 − y1)2 + (∆2 + y1) arcsin
(

1−∆2−y1
A2∗

)))
x ∈ D6,

µ
(
y1 −∆1 − 2

π
A1∗

)
x ∈ D7,

µ
(
− 2
π

(√
A2

1 − (1 + ∆1 − y1)2 + (∆1 − y1) arcsin
(

1+∆1−y1
A1∗

))
−∆1 + y1

)
x ∈ D8,

0 x ∈ D9.

(74)

Through integration the effective potential can be determined as well. As the potential can be shifted arbitrarily by a

constant, we set the condition Ṽ (−∞)
!
= 0. However, the analytic expression for Ṽ (y1) is very complex, so we dispense

with giving an exact formula here.
Please note, that Eq. (74) is valid for arbitrary values of ∆, however, in practical cases ∆ is limited to O(ε), thus the
intervals D3 and D7 do not have a significant role.
In Fig. 4 a graphical example is represented for a certain parameter choice (cf. the caption of Fig. 4).
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Figure 4: Non-linear force field and some other derived quantities generated by m1 = 2, m2 = 1, c = 0.5, k = 800,
F12 = 30, Ω12 = 69.335 (l = 1), ∆ = 0.0006.

A very important effect, due to the asymmetric integration kernel, is the asymmetry of the effective force field. Therefore
all the other quantities derived from it, are asymmetric as well. Moreover, the potential energy on the right boundary
of the potential is also different from the potential energy on the left hand side of the potential, which might lead to an
asymmetric escape behavior. The probabilities of escaping to the right might differ from the probability of escaping to the
left. The further the ratio m1

m2
is from 1, the greater is the asymmetry, which leads to vibrations with a symmetry center

different from 0.
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Numerical results and discussion

A good way to determine the goodness of the order reduction method applied above is to depict the escaping/non-escaping
points on the low excitation frequency–low excitation force plane. In Fig. 5 such a comparison can be seen. It is important
to note, that the sharp minimum (ΩC , FC), observed by many authors in the literature, can be determined more or less.
However, in Fig. 5 on the right from the minimum, i.e. for Ω11 > ΩC there is not really a frequency dependent
critical forcing value, above which escape happens for whatever forcing amplitude. Instead the transition from no-escape
into escape happens through a fractal-like boundary and there exist even separated non-escaping ’islands’ in the ’see’
of escaping Ω11 − F11 parameter combinations. Such a time evolution is shown in Fig. 6. The remarkable feature of
the model reduction is, that even these non-escaping islands of the parameter combinations remain preserved. When the
non-linear part of the effective force gets smaller (cf. 5b), we can observe a less chaotic behavior around the critical
force values. Moreover, it is also obvious that the minimally needed force amplitude moves up, as the non-linearity of the
effective force field increases, due to the increasing amplitude of the relative motion. This simple fact explains also, why
the escaping region in the Ω11 − F11 plane moves closer to the point (1, 0), when the relative motion is excited with a
higher resonant frequency but unchanged force amplitude. Eq. (54) and Eq. (48) show the simple relationship between the
excitation frequency and the amplitude of the caused resonant motion that shows a decreasing amplitude with increasing
value for l.

(a) First resonant frequency is excited, Ω12 = 69.34 (l = 1). (b) Second resonant frequency is excited, Ω12 = 138.67 (l = 2).

Figure 5: Comparison of the reduced model to the original one with parameter valuesm1 = 2,m2 = 1, c = 0.5, k = 800,
F12 = 30, and ∆ = 0.0006. Dark blue dots mean no escape for both models, bright blue is escape in the simplified model,
but no escape in the original model, green is no escape in the simplified model, but escape in the original one. Yellow
stands for escape in both models. F := F11

m1+m2
.
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Figure 6: m1 = 2, m2 = 1, c = 0.5, k = 800, F12 = 30, Ω12 = 69.335 (l = 1) and ∆ = 0.0006.

Conclusions

In the present work escape of a strongly coupled, colliding pair of particles from a potential well under bi-harmonic
excitation was investigated. Through a coordinate transformation from the physical coordinates of the particles into the
coordinates of the common center of mass and into the distance of the particles the motion could be decomposed into a
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slow and into a fast variable. After determining the oscillation amplitudes of the fast motion with the use of the so called
’unfolding transformation’, a certain type of averaging, appropriate to use also with piece-wisely defined functions being
based on the probability density function of the fast motion, was performed. The resulting formulas for the effective
force-field are fully analytic, thus a huge reduction in the simulation time can be achieved (5 hours vs 4 minutes in the
example shown). It turns out, that even such properties of the system remain well conserved, as for example the location
of the non-escaping islands on the low excitation frequency–low forcing amplitude (Ω11 − F11) plane. Although in the
current work escape was investigated in a truncated quadratic potential well, the application of the PDF based averaging
method is straightforward for several different potentials as well.
Many questions may remain open in the Reader regarding the further analysis of the escape behavior of a colliding pair
of coupled particles. What happens if the resonant frequencies of the relative motion are of the same magnitude as the
eigenfrequency of the bottom of the potential well? How do the initial conditions of the particles influence the escape
behavior? How to proceed in case of poly-harmonic excitation? What if the collision of the particles is a random process?
What happens when there are more than two colliding particles?
The authors of this paper hope, that many of the readers will feel motivated to find answers to these and many other
different questions arising when studying the thrilling topic of escape from a potential well.
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Summary. The goal of this work is to develop a theoretical and numerical models of the coupled and uncoupled vibration of bi-material 
beams subjected the combined action of mechanical and thermal loads. The geometrically nonlinear version of the Timoshenko beam theory 
is used to describe the theoretical model of the problem. Starting from the geometrical, constitutive and equilibrium equations of each layer 
the governing equations of the bi-material beam are derived. The beam is subjected to heat flux and periodic mechanical loading. The 
influence of the elevated temperature or the heat propagation along the beam length and thickness on the response of the beam was studied.  

Introduction 

Among the most popular composite structures the bi-material structures and especially the bi-material beams are 
frequently used in different braches in industry. The growing interest to mechanical behavior of the bi-material beam can 
be connected with different MEMS (see, for example https://istegim2019.sciencesconf.org/285421). The thermoelastic 
behaviour of such beams is a subject of interest because of their applicability as well as because of the complex behaviour 
of the structures due to the different elastic and thermal properties of the layers.  
Generally, the most of the studies of the dynamic response of the thermally loaded beam consider that the structure gets 
elevated temperature instantly, and the heat propagation is not included in the model.  
The goal of the present work is to derive the equations of the geometrically non-linear vibration of a bi-material beam 
with non-symmetric layers according to the Timoshenko beam theory. Based on these equations it is aimed to study the 
coupled and uncoupled geometrically nonlinear vibrations of the beam as well as the vibration of the beam at constant 
elevated temperature. The influence of the coupled terms in the governing equations and the new terms counting the non-
uniform layers are specially studied for different material properties and different thermal loadings. The speed of the 
propagation of the temperature along the different layers is also analyzed. The reduced model created on the base of 
Galerkin approach allows analysis of the beam response in the frequency and time domains and an estimation of the 
stability of the solution, as well. Three dimensional finite element model of the bi-material beam is created in order to 
verify the results. 

Theoretical model 

A beam with length l , width b and thickness h  is considered. The beam consists of two layers made of different materials 
(Material 1 and Material 2) with thickness h1 and h2 (h=h1+h2). The geometrical scheme of the beam is shown in Fig. 1. 

 
Fig. 1 The geometrical scheme of the beam model 

 
The equations describing the coupled problem of the temperature propagation and the beam vibrations as a result of the 
action of a heat flow and of mechanical load with intensity  p x t,  are: 
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where I(i) is the inertia moment of i th layer, i ( ) is the density of the i th material  , ,T x z t  is current temperature, 0T  is the 

initial constant temperature, ( )i
T  is the thermal conductivity of i th material and ( )i

pc  is the heat capacity per unit volume, 
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( )i
T  is the coefficient of the thermal expansion , iE( )  is the Young’s modulus of the i th layer, 1

ic( )  and 2
ic( )  are damping 

coefficients,  ,w x t is the transverse displacement,  ,x t  is the rotation angle and  
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After integrations along each layer thickness the generalized stresses N, M and Q are expressed by the displacements 
and then the governing equations of the bi-material beam are derived. 
In comparison with the classical Timoshenko beam equations, additional nonlinear terms appear in the equations 
describing the longitudinal displacements, transverse displacements and the angular rotations. 

Numerical approach 

The equation for the heat propagation is discretized with respect to the space variables (x and z) by the finite difference 
method. The partial differential equations for the beam vibration are transformed to a system of coupled nonlinear 
ordinary differential equations by the Galerkin approach using the expansion of the generalized displacement vector in a 
series of the product of the normal modes of the linear Timoshenko beam and time dependent coefficients. The algorithm 
for the solution of the problem is based on the successive solution of the equations for the mechanical vibrations of the 
beam and for the heat transfer. The algorithm is similar to the one described in [1]. 

Numerical examples 

Two cases of the problem have been studied: (i) beam at elevated temperature and (ii) beam subjected to a heat impact. 
The influence of the elevated temperature applied together with periodic loading on the beam is studied in time and 
frequency domain. 
In the case of the heat impact the propagation of the temperature along the beam layers and specially at the interface layer 
is studied. It is shown that in the case of short and intensive heat pulses the beam can buckle (Fig. 2). The influence of 
the nonlinear terms appeared due to the different properties of the materials is estimated.  
In some cases, the coupled terms may influence the temperature propagation as can be seen in Fig. 3. 
 

 

Fig. 2. Time history of the response of the beam subjected to thermal 
and harmonic loading with 1- no heating; 2-heat impact with 
duration 0t =30 (dimensionless time) and q0=9000 W/m2. 

 
Fig. 3. Variation of the temperature at the beam center at 
6th interface layer of the beam cross-section. 

Conclusions 

A theoretical model of the dynamic behaviour of Timoshenko beam is developed. The model includes a full coupling of 
the mechanical and thermal fields i.e. the thermal field influences the beam motion and the beam motion influence the 
heat propagation. The dynamic behavior of the beam is studied in the case of coupled, uncoupled vibration, as well as the 
case of elevated constant temperature. 3D finite element model of the problem and a reduced model are used and the 
results obtained by both models are compared. 
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Summary. The drillstring dynamics is a complicated nonlinear rotordynamics problem. The slender drillstring is immersed in a 3D well in 

the presence of mud, drillstring-well contacts, fluid-structure interactions, bending-torsion-axial vibrations. The induced vibration problems 

increase the energy loss and cause failures. In order to understand and predict better the vibrations phenomena a Finite Element model is 

proposed. The simulation results are compared to field data.  

Keywords: Nonlinear rotordynamics, drillstring, fluid-structure interaction, rotor-stator contact, contact models  

 

Drillstring description 

In rotary drilling which addresses today more and more geothermal application, drillstring is a very slender rotor 

immersed in a well with a 3D trajectory, Fig. 1. The drillstring, driven by an electrical motor within a 0-180 rpm range, 

is an assembly of pipes 9 to 10 m long confined in tension in a 3D curvilinear well of several kilometers. Towards the 

drill bit, over 100 to 200 meters long, the drill collars have a larger outer diameter to ensure the Weight On Bit (WOB) 

on the rock and then constitute the Bottom Hole Assembly (BHA). Stabilizers act as bearings to maintain the drill collar 

concentric with the well and permit directional drilling. The drill collar is kept in compression with, at its upper end, the 

tension-compression neutral point. The mud, i.e. the drilling fluid, circulates downward inside the drill-pipes and 

upward in the pipe-well annular space. The role of the mud is to clean out rock debris and calories, to lubricate the 

numerous drillstring – bore hole contacts.   

 

Nonlinear phenomena 

Solicited by mud pulses, mass unbalances, pipe-well interactions and friction, motor and resistant torques as well as the 

axial forces of the various drill-bit shapes, the drill string has a dynamic behavior governed by equations of motion 

involving in particular the fluid-structure coupling, the nonlinearities of contact, and the axial-bending-torsion 

couplings. The drillstring is therefore a complex dynamic system because it is non conservative, gyroscopic, with 

parametric excitations, and necessarily non-linear. Thus, it is expected in the different portions of the drill string, 

nonstationary behaviors, stick-slip motion, tool-bit bouncing, forward and backward, periodic, quasi-periodic, and 

chaotic whirls. This set of phenomena induces, in particular, energy loss, failures. Consequently, the Rate of Penetration 

(ROP) decreases while the Non-Productive Time (NPT) increases. 

 

Coupled and nonlinear proposed model 

 Facing these technical issues requires to understand as well as possible the drillstring behavior with the implementation 

of a specific nonlinear rotordynamics model in order to predict in fine the forced dynamics response, the total amount of 

friction torques, and the drill pipe stresses. The proposed model is based on the Finite Element method using 

Timoshenko beam elements with 6 degrees of freedom per node. At the beginning of the computational process, the FE 

mesh of the drillstring is vertical and its positioning on the 3D-well neutral line is computed without any external load, 

combining the Newton-Raphson technique with a co-rotational formulation. The obtained path serves for starting the 

Newton-Raphson iterative method for calculating the drillstring quasi-static equilibrium position inside the well by 

considering: the drillstring pre-loading induced by the 3D-well, the gravity, the buoyancy, the nonlinear well end-stops, 

the inner and annular fluids, the static stress-stiffening due to the Weight-on-Bit (WOB), and the torque on-Bit (TOB). 

The drillstring-well contacts are modeled with contact stiffness and damping which are smoothed by using the arctan 

function. From this quasi-static equilibrium, assuming that the contacts remain permanent and linear, a classical modal 

analysis is carried out and a Campbell diagram is plotted by employing specific criteria that tracks the mode shapes and 

 

  

Fig. 1. Sketch of the drillstring immersed in the well Fig. 2. Configuration of nonlinear response computation 
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classifies them. In the case of the nonlinear response, the contacts are free to become unilateral, see Fig. 2. Finally, the 

dynamic response of the complete FE model in the time domain is governed by the following set of nonlinear equations:  

 

 𝑴𝜹 + 𝑪𝜹 + 𝑲𝜹 = 𝑭(𝑡,𝜹,𝜹) 

𝑴 = 𝑴! +𝑴!" +𝑴!" 

𝑪 = Ω 𝑪!"
𝑻
− 𝑪!" + 𝑪!" + 𝑪!" Ω        𝑪𝒂𝒅 = 𝑐!𝑴𝒂 + 𝑐!(𝑲! + 𝑲!"# + 𝑲!"# 𝜹! ) 

𝑲 = 𝑲!" + 𝑲!"# 𝜹𝒔 + 𝑪!"
𝑻
Ω                𝑲!" = 𝑲! + 𝑲!"# + 𝑲!" 

𝑭 = 𝑭! + 𝑭! 𝑡 + 𝑭! 𝜹,𝜹,  Ω,ROP − 𝑭𝜽𝒛
Ω + 𝑹!"# 

Ma, Mfi,            Mass matrices of the drillstring and of the inner mud 

Mfe, Cfe, Kfe ,    Mass matrices of the annular mud 

 Cac , Cad ,        Matrices of gyroscopic effect and of Rayleigh damping (coeff c!, c!) 

 𝑭𝜽𝒛
𝜴 ,             Torque vector  

 Fc , Fu ,           Contact load and mass unbalance force vectors  

 Ripa ,                Vector of the static pre-loading 

 

The dynamic response is computed using a RK4 scheme with an adaptative time step. A reduced model based on the 

Craig and Bampton technique is also available. The simulations are carried out on a field unconventional well with 

downhole measurements. Figure 3 presents the full-spectral analysis of the orbits all along the drillstring abscissa while 

Fig. 4 compares predicted and measured lateral accelerations. 

 

  
Fig. 3. Full spectrum analysis all along the drillstring. Fig. 4. Measured (red) and predicted (black) radial 

acceleration at a downhole sensor 
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Summary. The current papers dwells on the classical problem of escape from a potential well. The considered potential well in this 
study is infinite range, with one global minimum and reaching maximum asymptotically at infinity. The particle is parametrically 
excited and we consider the threshold of escape of this particle from the bottom of the well. The analytical study is based on invoking 
the canonical action-angle variables and the averaged dynamics on a resonance manifold. 

Introduction 

The oscillatory behavior of a dynamical system is governed by the potential to which the system is subjected to. In 
order to study the dynamics of the system close to the center (local minimum in a conservative system), one could 
linearize the system and add the nonlinear terms as weak perturbations. However, such quasilinear dynamical systems 
seldom model the behavior away from the center. For example, the classical case of escape dynamics of a forced 
particle from a potential well can hardly be analytically studied using a weakly nonlinear model, since problem of 
escape is essentially a transient phenomenon. Such problem are plenty in the domain of applied physics and engineering 
and have been quite extensively studied [1]. From an engineering perspective, the dynamical behavior of capsizing of 
sea vessels is provided by Virgin [2], whereas the dynamic pull-in and the escape dynamics thereof in MEMS devices 
were reported by Younis et al. [3], studies by Virgin et al. [4] considers escape from a well under harmonic excitation, 
while Mann [5] considers an energy-based criterion for escape from the double well of a magnetic pendulum. Recent 
studies by Gendelman et al. [6, 7] invoke the canonical action-angle (AA) variables and averaging [8] to study the 
escape. Current study is based on the framework of AA variables.  
As such, an analytical prediction of the particle escape from the potential well becomes quite relevant. We consider an 
undamped particle oscillating in an infinite-range potential. The minimum of the well is Lyapunov stable and the fixed 
point persists even with the application of parametric excitation. However, the excitation can render the fixed point 
unstable, but may not necessarily lead to escape. In contrast, for certain parameter range (excitation frequency and 
amplitude) one can observe escape (ref. Fig. 1) of the particle. The objective herein is to numerically and analytically 
study the parameter range of amplitude and frequency that leads to escape and the route thereof. The escape is 
characterized by breaching of the separatrix (connecting the two fixed points at       ) as shown in Fig. 1. 
 

Mathematical modeling and analysis 
Consider the dynamics of a parametrically excited (amplitude   and frequency  ) particle in an infinite-range potential                                                    
  

We are interested in the transition values of       that would render a particle situated close to the bottom (but not 
exactly at the bottom) of the well to escape. To this end, we introduce the AA (   ) variables and the canonical 
transformation resulting in                  . The perturbed Hamiltonian in AA variables is 
                                              
 

Where                                and     corresponds to the bottom of the well. Since        is    periodic, the perturbation term in Eq. 2 can be expanded in Fourier series. We consider     resonance and thereby 
introduce slow phase variable        . On averaging the slow-flow equation corresponding to the evolution of AA 
variables over the fast phase variables, we have the averaged (       ) slow-flow equations in the form, 
                                                             
 

The fixed points of the slow-flow equations are readily calculable to be (i)                    , (ii )                   (iii )                                             respectively. The fixed 
point at           is a center and            is a saddle for    . For a specific value of    , with an 
increase in the excitation amplitude, the saddle goes through a pitchfork bifurcation and there is emergence of two 
additional fixed points (i). Upon bifurcation, fixed point at            is a center, but not of much significance. 
The bifurcations would become apparent by investigating the integral of motion of the averaged system given by 
                                            
 

The bifurcation point corresponds to the threshold of the excitation amplitude resulting in escape. The locus of these 
points is shown in Fig. 2 as red curves (     ,      ) emanating from    . Incidentally, these curves also 
correspond to the instability boundary of the Mathieu equation                    , resulting from the 
linearization of Eq. 1 about      . The escape threshold for the exact system (Eq. 1) is indicated as     ,     . As 
observable, there is the close match of the       and     . However, the right boundary shows a very distinct transition 
wherein the averaged system predicts a much lower escape threshold in comparison to the actual dynamical system (Eq. 
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1). It is noted that along the boundary predicted by the averaged system, the center corresponding to the bottom of the 
potential well bifurcates to a saddle. This is evidenced by the Poincare maps of Fig. 3 (     ). In fact, along     , the 
creation of this saddle leads to the particle escape. In contrast, in the regions other than     , the creation of the saddle 
(along            ) leads to chaotic motion albeit bounded. On further increase in the excitation amplitude, the tori 
are broken and the particle escapes. This behavior is observable in the Poincare maps of Fig. 4 (     ). The minimum 
force amplitude required for the escape corresponds to a frequency              and is owing to the fact that Eq. 1 
exhibits softening nonlinearity. 

 

  
Figure 1: Particle escape from the bottom                  
0 of the potential well for  =0.41, =1.8. (Broken red curves 
correspond to the separatrix) 

Figure 2: Escape threshold. Blue shaded region (num. simulation 
of Eq. 1) corresponds to particle escape (for       ). The red 
lines emanating from     correspond to the point of 
bifurcation corresponding to Eq. 3 and those emanating from     correspond to the Mathieu equation described above 

 

  
Figure 3: Poincare maps corresponding to       (left panel)       (right panel)        

 

   
Figure 4: Poincare maps corresponding to       (a)      , (b)      , (c)       (a-c refers to the points indicated in Fig. 2) 

Conclusions 

The current study considers the escape dynamics of a parametrically excited particle (located close to the bottom of the 
well) from an infinite-range potential. We invoke the AA variables and study the dynamics of the system on the 
resonance manifold and predict the threshold for escape as a function of frequency. For certain      , the bifurcation of 
the bottom of the well to a saddle leads to the escape, whereas for other parametric range, the escape is through a 
chaotic route as evidenced by the Poincare maps and the slow-flow model fails to predict the escape in this case. 
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Explanation of the Locomotion of a Rigid Body along a Vibrating Nonlinear Beam
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Summary. Several independent research groups have investigated the self-adaptive behavior of a clamped-clamped beam with attached
slider. Under harmonic base excitation the slider passively moves to a certain position on the beam, going along with a significant
increase of amplitude. We are the first to fully explain this complex process theoretically by means of a model reproducing the behavior.
Moreover, we show that the slider’s movement takes places on a slower time scale compared to the beam’s vibration. Exploiting this
temporal separability, we explain the different mechanisms yielding transport towards or away from beam’s center.

Introduction

A harmonically forced clamped-clamped beam with a slider free to move axially on the beam has been experimentally
investigated by different groups [1, 2, 5]. After initially small vibrations, the slider moved to a certain position, where
vibration amplitude increased significantly. After this process, the amplitude and the final slider position, which is in many
cases away from the antinode at beam’s center, were maintained in steady state. In case the slider is initially placed close
enough to the beam’s center, it moves towards clamping first and turns back towards center at some point. The turning
point is accompanied with a jump to higher vibration level and the movement back goes along with a further increase of
amplitude [1]. In [1, 2], beside experimental results, models were presented, assuming that the slider is constrained to
the beam in the vertical direction. Simulation results exhibit a slider movement towards the beam’s center going along
with an increase of amplitude. However, a movement towards clamping, a jump of amplitude and a steady state slider
position away from center couldn’t be reproduced. In [3, 4], we present a model accounting for a gap between slider and
beam, which gives rise to unilateral and frictional contact interactions and consider also the beam’s stiffening geometric
nonlinearity. This model has the capability to reproduce all features of the self-adaptive process. In [5] we present
an experimental validation of this model, yielding excellent agreement of measurements and simulation. In the present
contribution we demonstrate that the beam’s vibration and the slider’s movement take place on well separated time scales
and exploit this separability to study the different mechanisms producing locomotion of the slider systematically.

Separable timescales of vibration and slider movement

The considered specification of the self-adaptive beam-slider system corresponds to the beryllium-copper beam described
in [1]. A schematic of the model is depicted in Fig. 1a. The beam is modeled according to Euler-Bernoulli theory,
where the deformation is approximated by the lowest frequency bending mode and the stiffening geometric nonlinearity
due to the fixed ends is considered. To model unilateral and dry frictional contact interactions between beam and slider,
the Signorini and Coulomb laws combined with Newton’s impact law are used. The resulting set-valued force laws are
solved numerically applying Moreau’s time stepping scheme. The contact model and simulation procedure are adopted
from [3]. A simulation of a successful self-adaptive process is depicted in Fig. 1b in terms of the vibration’s amplitude
as a function of the resulting slider position (dashed black). While vibration amplitude is initially small, the slider moves
towards clamping. At s̃/L ≈ 0.24, the slider turns and the amplitude jumps to a higher level. After this, the slider moves
back towards center, while the amplitude increases further. During the whole process, the global horizontal movement
of the slider is slow compared to the beam’s vibration [4]. To prove the independence of these time scales, we study the
steady state response depending on the relative slider position. In order not to affect the slider’s dynamics by an additional
constraint, we let the slider’s horizontal displacement s free, but consider the given relative slider position s̃ always when
evaluating the contact kinematics during the simulation. This essentially yields a model where the beam is moved with the
slider horizontally [5]. For each relative slider position we numerically integrate until steady state, increase the relative
slider position by a small ∆s̃ and again integrate until steady state, starting from the final state of the previous point.
The results for increasing and decreasing s̃ exhibit a high and a low amplitude branch, see Fig. 1b (green and orange
lines). This behavior can be explained by the beam’s stiffening nonlinearity [4]. Clearly, the response of the system with
free slider follows the low amplitude branch first, jumps, and follows the high amplitude branch then. The steady state
model enables us to evaluate also the slider’s absolute horizontal displacement s. In Fig. 1c we illustrate the steady state
absolute slider velocity by means of slider’s displacement per beam length and evaluation periods. In the range of s̃ which
is relevant for the self-adaptive process, the steady state slider velocity corresponding to the low (high) amplitude branch
points towards clamping (beam’s center). This is in qualitative and good quantitative agreement with the self-adaptive
process. Also on the fast time scale of vibration, the steady state model coincides very well with the system with free
slider (time histories not shown for brevity). Alltogether, this proves the separability of the different time scales [6].

Vibration induced locomotion towards center or clamping

We now want to explain, why the slider is transported towards clamping (beam’s center) during the low (high) ampli-
tude phase. To this end, we study the periodically dominated vibrations obtained by the steady state model exemplary
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Figure 1: (a) Two dimensional model of self-adaptive system. (b) Vibrational amplitude versus relative slider position. (c) Averaged
normalized slider velocity versus relative slider position. [6]

Figure 2: (a) Slider detail. (b) Relative slider rotation (steady state model, s̃ = 0.3, low vibration level). (c) Relative slider rotation
(steady state model, s̃ = 0.3, high vibration level). Markers indicate active contacts, where the colors match with P1 through P4 in
(a). [6]

at s̃/L ≈ 0.3. We start with the simple explanation for the high amplitude phase. Here, the beam’s elastic deformation is
close to a monoharmonic oscillation which is approximately in phase with the excitation and big compared to the clear-
ance between slider and beam. During almost one half of an excitation cycle, both upper contact points are in contact.
During the other half of the cycle, both lower points are in contact, see Fig. 2c. Therefore the system behaves like a beam
with vertically constrained but horizontally movable body. For this simplified system, the inertia force acting on the slider
has a horizontal component stemming from the beam’s slope, which can be approximated ms̈ = −m [ẅ(s) + ẅ0]w

′(s).
This force points always to center. In case of a very small [3, 4] or no [2] gap, the slider moves to center also for low am-
plitude level. Instead of that, successful adaptation is obtained in case the clearance is chosen in the order of magnitude of
the vibration level corresponding to the low amplitude branch, which allows for a complex limit cycle, see Fig. 2b. This
limit cycle contains states of maximum and minimum possible relative rotation between slider and beam. The crucial
transportation of the slider’s center of mass C towards clamping is obtained during rolling on the upper contacts P1 and
P4 from minimum to maximum possible rotation [6].

Conclusions

The beam’s vibration and slider’s movement take place on well separated time scales, which can be shown by using a
steady state model with prescribed relative slider position. Studying the periodically dominated steady state responses
corresponding to the different phases of the self-adaptive process explains the slider’s locomotion. Further work could
focus on optimization of the system and application as energy harvester or vibration absorber.
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Summary. Under harmonic excitation, soil exhibits softening behaviour that can be captured through the so-called hyperbolic soil model. 
The response of systems with such a material model can elegantly be obtained using the classical Harmonic Balance Method (HBM). Soil 
also exhibits nonlinear hysteretic damping under harmonic excitation, feature which is not incorporated in the hyperbolic soil model. The 
response of a system that includes also the nonlinear hysteretic damping cannot be obtained using the classical HBM. This work demonstrates 
the application of an advanced HBM (more specifically, alternating frequency-time HBM) for finite and infinite systems that exhibit 
softening behaviour and nonlinear hysteretic damping. The purpose of this model is to, in the future, investigate the influence of the nonlinear 
hysteretic damping on the response of such systems, as opposed to linear viscous or hysteretic damping that is usually adopted. To conclude, 
we show that the advanced HBM is an effective tool for revealing fundamental characteristics of continuous systems with softening behaviour 
and nonlinear hysteretic damping whose stationary responses consist of either standing or propagating waves. 

Introduction 

The Harmonic Balance Method (HBM) is often applied to compute the stationary response of nonlinear discrete systems 
to harmonic loading. It is known to be very efficient as it does not require the simulation of the transient response before 
reaching the stationary regime, and it can efficiently yield frequency-response curves.  

The HBM has been applied to nonlinear continuous systems too, but in many cases the nonlinearity is discrete and 
thus localized at one or multiple points; both finite [1] and infinite [2,3] models have been considered. Furthermore, 
Chronopoulos [4] presents the general framework for the application of the HBM to an infinite composite structure having 
distributed but still localized nonlinearity; however, the considered numerical example still only deals with a discrete 
nonlinear spring connecting two linear parts of the structure. To fill this gap, one of the authors’ previous works [5] 
presents the application of the HBM to continuous systems with distributed nonlinearity, where both finite and semi-
infinite systems are considered. 

In the previous work [5], the material damping is assumed to be linear. However, soil (among other materials) exhibits 
nonlinear and hysteretic damping under cyclic loading. For systems with such a material model, the stress-strain relation 
consists of loading and unloading branches that are different from each other. As the transition points (in the stress-strain 
relation) from loading to unloading are response dependent and, therefore, not known a priori, the classical HBM, being 
a purely frequency-based method, cannot be applied. Instead, a so-called alternating frequency-time HBM can be used. 
Furthermore, the material behaviour described by the so-called Masing model, well-known in soil mechanics, is used to 
introduce the strain dependence of the shear modulus as well as the nonlinear hysteretic damping, which obviously leads 
to nonlinearity of non-polynomial type. 

To demonstrate the application of this advanced HBM, three canonical problems are investigated (like those in [5]). 
More specifically, one finite-size system and two semi-infinite systems are considered, and all of them are subject to 
harmonic excitation at a boundary. The three systems and their stationary responses can be described as follows (see also 
Figure 1): 

a) a 1-D nonlinear layer with a free surface and rigid base: standing shear waves 
b) a 1-D nonlinear half-space with a rigid base: vertically propagating shear waves 
c) a 2-D axially symmetric nonlinear medium of infinite extent with a circular cavity: radially propagating 

compressional waves 

 
  

Figure 1: The three different systems (a, b, c) considered in this study. The blue line indicates the fictitious surface beyond which the 
behavior is linear. 
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Solution method 

The methodology of the alternating frequency-time HBM is as follows. Firstly, an initial guess of the system’s response 
is made based on which the transition points from loading to unloading can be determined. Then, these transition points 
are assumed to be fixed (not anymore response dependent) and the resulting nonlinear system can then be solved using 
the classical HBM. This leads to a different response than the initial guess and different transition points from loading to 
unloading. This process is then repeated until the response has converged. The iterations are performed using a slightly 
more sophisticated form of the Newton-Raphson method (so-called Levenberg-Marquardt method), which is used to 
circumvent a potentially singular Jacobian matrix. 
         As for the spatial discretization, a basic lumping method is used to derive a lattice that mimics the behaviour of the 
continuous systems (a, b, and c). Additionally, to accommodate the semi-infinite extent of systems b and c, it is possible 
to identify a fictitious surface beyond which the behaviour is essentially linear (due to the amplitude decay of the waves 
propagating away from the source). The region beyond that surface is therefore replaced by an exact frequency-dependent 
non-reflective boundary condition that is applied at the fictitious surface, so that only a finite domain needs to be 
discretized in the application of the advanced HBM.  

Results and conclusion 

In Figure 1, we present the response of the system with an expanding cavity (c). The softening behaviour can be observed by 
the larger amplitude of vibration compared to the linear system. The third harmonic can also be clearly observed, although its 
amplitude is significantly smaller than the one of the fundamental harmonic; this characteristic has also been observed in [5]. 
Additionally, it can be seen that the induced nonlinearity is significant from the more than 60% reduction in shear modulus at 
the cavity surface. Finally, the stress-strain relation follows the Masing model, and it shows that the advanced HBM is capable 
of handling systems with non-smooth transition in properties. 

Figure 2: The response of system (c); the amplitude of the first and third harmonics (top and middle panels), the normalized shear 
modulus (bottom panel), and the stress-strain relation evaluated at the cavity surface (right panel). 

To conclude, the advanced HBM is an effective tool for revealing fundamental characteristics of nonlinear continuous systems 
of finite and semi-infinite dimension that have nonlinear hysteretic damping and whose stationary responses consist of, 
respectively, standing and propagating waves. The considered systems have applications in earthquake and geotechnical 
engineering, among others, but the presented methodology is generic. 
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Summary. Closing-opening cracks during ultrasonic fatigue tests are suspected to generate nonlinearities in the vibration signal. Due
to the periodicity of the ultrasonic transducer and choice of non-smooth stiffness nonlinearity, the Harmonic Balance method is utilized
to simulate the resulting 1DOF dynamic model. The energy that transferred from the fundamental harmonic to higher harmonics is
represented as a harmonic amplitude ratio parameter and is utilized to inverse model a nonlinear crack parameter for an experimental
signal. A feature of this dynamic model allows for the addition of nonlinear effects that evolve with the fatigue specimen’s life.

Introduction

During ultrasonic fatigue tests, the evolving spectrum of a vibration signal is suspected to contain essential information
about the nature of fatigue damage, such as crack initiation time and actual size. Traditionally, the properties studied
from this information are the second harmonic, the eigenmodes, or the extremely small variations of resonance frequency.
These vibration properties are affected by micro-plasticity and by the formation of cracks which can therefore be used to
detect micro-structural changes [1, 2].
The approach proposed here consists of modeling the dynamical response of the standing wave of the system. A key
feature of a cyclically closing-opening crack is an instantaneous, nonlinear, and very local change of stiffness of the
system. This nonlinearity leads to a nonlinear dynamic response of the system and, as a consequence, manifestation of
higher-harmonic generation in the vibration response. A closing-opening crack’s restoration force is typically modeled
by an asymmetric piecewise linear or bilinear stiffness [3]. Thus the goal of this study is to inverse model a nonlinear
crack parameter γ using the Harmonic Balance method (HBM) [4] to obtain a nonlinear dynamic response of the system.
Ideally, this can allow for real-time crack initiation and possibly size evolution monitoring.

Harmonic Balance dynamic modeling

During ultrasonic fatigue testing, seen in fig. 1(a), repeatedly transmitted ultrasonic waves at a resonant or anti-resonant
frequency form a longitudinal standing wave in the fatigue specimen [1]. The undamaged fatigue specimen can be
schematized as an equivalent 2 degree-of-freedom (DOF) lumped mass-spring oscillator. The oscillator’s total mass
2m and stiffness k are tuned to resonate at the specimen’s first longitudinal mode. The phase difference between the
excitation and vibration is minimized by a phase-locked loop (PLL) within the converter. A longitudinal standing wave
is produced with peaks at specimen’s extremities, i.e., the oscillator’s masses. This phenomenon has two consequences:
First, the power required from the converter can be minimized. Second, the specimen’s motion allows for a half specimen
representation, or 1DOF system, that is dynamically modeled with respect to the specimen’s elongation, i.e., a mass-spring
excited by base motion at an anti-resonance frequency ωanti =

√
2ωres with ωres = ω0

√
1− ζ2 [5], where ω0 =

√
k/m.
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Figure 1: (a) Schematic of ultrasonic fatigue test experimental setup, (b) fatigue specimen model with absolute displacement of mass
X and Galilean reference displacement for mass x and base y, and (c) concept of crack nonlinearity parameter γ ∼ Sd/S0 with plot
of the bilinear stiffness restoration force fNL

The 1DOF system has the equation of motion:

mẌ = F, with F = −cẋ− fNL = −cẋ− k(1− γH)x, (1)

wherem,X , F , represents the upper mass, the absolute displacement of the system, and the force transmitted to the upper
mass through the central part of the specimen respectively. The fatigue specimen is forced at the base, with displacement
y, seen in fig. 1(b). The force F is obtained by splitting X into the relative displacement of the fatigue specimen free-end
x and base (lower mass) motion y. When the exerted force on the mass is due to base excitation, eq. (1) becomes:

mẍ+ cẋ+ k(1− γH)x,= −mÿ, (2)
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with γ suspected to be correlated to the crack area ratio (see fig. 1(c)) and H represents the Heaviside function evaluated
for values of x. It is assumed that the base moves harmonically with the amplitude of the base’s motion U , and the
frequency of the base’s motion, ωb, such that y(t) = U cos(ωbt). Eq. (2) is solved via HBM, yielding a finite Fourier
decomposition for x, with j harmonics:

x ≈ Re
(∑

Aje
ijωantit

)
. (3)

Since the standing wave is distorted as it passes through the crack nonlinearity, energy is transferred from the fundamental
harmonic to the higher harmonics. Thus, a harmonic amplitude ratio α is defined at the anti-resonant frequency ωanti as:

αn =
An(ωanti)

A1(ωanti)
, for n > 1, (4)

where peak amplitudes A1 and An correspond to the fundamental and nth higher harmonics, respectively. This anti-
resonant frequency is assumed to be the frequency of the base’s motion.

Experimental details and results

A short-time Fourier transform (STFT) algorithm [6] is utilized to extract the first five harmonics and the anti-resonant
frequency from the down-sampled velocity vibration signal, seen in fig. 2(a). Consequently, α′

2, . . . , α
′
5 is calculated using

the relation in eq. (4) with ( · )′ representing an experimentally determined parameter. The dynamic model, seen in eq. (2)
, is computed via HBM for 1e−4 < γ < 2e−1 and the corresponding α2, . . . , α5 are extracted. The dynamic model’s γ,
α relationship are curve fitted with first-order power equations. Experimental α′

2, . . . , α
′
5 are found with their respective

curve fits, seen in fig. 2(b). Under modeling assumptions, γ′ at the zeroth cycle is undamaged. Thus, fig. 2(c) shows the
evolution of damage parameters γ′2, . . . , γ

′
5. The second and third harmonics are seen to follow similar paths until 8e5

cycles in which they diverge exponentially. At cycles nearing fatigue, the third, fourth, and fifth harmonics rapidly grow,
with the fifth harmonic the quickest. Despite γ′ not equal throughout the evolution, the order of magnitude is consistent
between the different harmonics. The authors estimate that there is a magnitude factor of approximately 1e2 that would
lead to a measurement of crack size evolution if γS0 = Sd.

(a) (b) (c)

Figure 2: (a) Experimental α′ (left axis) and experimental ωanti (right axis) versus cycles, (b) HBM simulated γ versus α first-order
power equations fits, and (c) experimental γ′ versus cycles

Conclusions

The nonlinear crack parameter γ was calibrated with a bilinear stiffness dynamic model. α is computed with HBM
for multiple harmonics and compared with experimental γ′s versus cycles. Bilinear stiffness can qualitatively describe
nonlinear behaviors for the second and third harmonics for cycles before approximately 8e5, but other nonlinearities are
influencing higher harmonics and at cycles nearing failure. The form of eq. (3) allows for additional non-linearities to
dynamically model the fatigue behavior of higher harmonics in conjunction with bilinear stiffness.
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Summary. The paper deals with modelling and investigation of lock-in phenomena in bladed cyclic structure which is further influ-
enced by friction damping couplings. The investifation is focused on how the friction can affect the unstable behaviour during frequency
lock-in regimes.

Introduction

The fliud-structure interaction (FSI) phenomenon arises when an elastic structure interacts with the embracing fliud flow.
A particular case of FSI in which an alternate shedding of vortices forms the vibration of the structure is Vortex-Induced
Vibration (VIV). The natural vortex shedding frequency is dependent on the velocity of the flow. The vortex sheddding
exerts a periodic unsteady force on the body. As the vortex shedding frequency approaches the the natural frequency of
the body, the two frequencies lock-in for a small range of the velocity flow [2]. Experimental characterization of lock-in
is performed in [1].
The FSI plays significant role in modern aerofoils and turbine blades which are designed for higher efficiencies and higher
power under higher operational temperatures and flow rates. Higher operational safety and economical demands force
the designers to be more precise during phase of design with respect to operational condition laying out of the area with
loss of stability [3, 4, 5]. The fluid-induced forces create an aero-elastic couplings between the aerofoils and the fluid
flow. Moreover, in the case of periodical structures (gas or steam turbine blades in bladed disks) the aero-elastic coupling
influences not only the single blade but the adjacent blades as well. There are many experimental works investigating
experimentally the conditions of instability origin, e.g. [7, 8]. The paper deals with the modelling and dynamical analysis
of a periodic blade system influenced by VIV and friction-damping in inter-blade couplings.

Cyclic structure of blade profiles influenced by VIV

Further, it is assumed the cyclic structure formed by a bladed disk hasNB blades which are created by identical airfoil pro-
files. Each blade is modelled by the approach presented in the previous section, i.e. it comprises two degrees of freedom
(bending and torsion) and moreover these two motion are mutually coupled by so called bending-torsion coupling, see
[6]. Usually, in steam turbine applications, the bladed disks are equipped with different kinds of shrouding, which causes
that the system of blades mounted on a rotating disk become more stiff, especially with respect to axial flow direction.
The time-varying vortex force due to the alternating sheddin of vortices in the wake causing the VIV is modeled by the
van der Pol equation. The van der Pol model has two significant properties: i) self-sustained stable limit cycle oscillation
and ii) the lock-in with the frequency of external forcing [2].
In Fig. 1, the blade cascade of a bladed disk is depicted in a plane view. The axis of rotational symmetry designates
the axis of rotor symmetry which is the bladed disk attached to. Further, it is assumed that the flow direction is parallel
with the blade chords. The shrouding is supposed to be mounted at tips of the blades and it is modelled by means of two
lumped springs representing bending kshb and torsional ksht stiffness of each shrouding section between two adjacent
blades.
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Figure 1: Bladed cascade section with contact-friction shrouding coupling modelling.

The derivation of the linearized mathematical model of a bladed disk with the influence VIV is based on the methodology
presented in [2]. Here, it is extended for a cyclic structure and completed by the influence of interblade damping-friction
forces which are incopororated in shrouding coupling. It can be advantageously written in matrix form

MBDq̈BD +CBDq̇BD +KBDqBD = fEBD + fFCBD , (1)
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where MBD, CBD and KBD are rectangular of order 3NB mass, damping and stiffness matrices of a complex bladed
disk model. Right hand side of (1) contains force vectors of friction coupling fFCBD . Vector of generalized coordinates is
of following form qBD = [. . . , xi, φi, qi, . . . ]

T ∈ R3NB , where index i = 1, . . . , NB designates the particular blade.
The coordinate qi is governed by van der Pol equation which is used for the wake dynamics.

Lock-in in the cyclic structure

The figures below show multiple frequency lock-in reagarding different mode shapes of the structure (left). Real parts
of the eigen values witness of the stability. It is clear that when the frequency lock-in happens, the system exhibit can
unstable vibration.
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Figure 2: Frequency lock-in areas and stability charts for cyclic structure created of identical air-foil profile connected by shrouding.

Conclusions

The paper presents phenomenological model of vortex-induced vibration in a cyclic structure which is formed by blade
profiles. The attention is paid on the investigation of lock-in phenomenon using linearized model, which will further
completed by nonlinear friction terms based on LuGre friction model. There is obvious in the presented results, that the
system losses its stability during the lock-in phases. The future aim is to propose suitable damping mechanism which is
based on friction dampers and complete the analyses with experimental data.

Acknowledgement: This work was supported by the GA CR project No. 20-26779S "Study of dynamic stall flutter insta-
bilities and their consequences in turbomachinery application using mathematical, numerical and experimental methods".
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Summary. In recent years, applications for drones have multiplied, from surveillance, exploration, rescue and transport applications.
UAVs are more and more autonomous, therefore real-time trajectory planning is necessary and can be achieved with potential fields. A
quick study is proposed to better scale attractive and repulsive forces which has always been problematic when dealing with artificial
potential fields. The purpose of this article is to develop a new dynamical fractional potential attractive and repulsive field usable in a
dynamical 3D environment by taking into account the obstacle dynamics (position and speed) and theirs dangerousness. This makes it
possible to avoid the obstacle in a more robust way, both from a safety point of view and from a trajectory optimization point of view.
The potential fields are based on the relative position and speed of the drone in relation to the target for the attractive potential field or
to the obstacle for the repulsive one.

Introduction

Path planning is used to find a suitable path between two points (mostly provided by the GPS) while avoiding obstacles in
the environment. These obstacles can be dynamical or static. The notion of danger is therefore necessary to avoid a type
of obstacle in the most harmonious way. Research on potential field methods has been extensively studied [1, 2, 3, 4, 5].
However, most methods are generally adapted for a static environment or do not take into account the type of obstacle
(see e.g. [6, 7]). [8] have improved work on artificial potential fields by taking into account the obstacle dynamics. In
this sense, [9] and [10] have interpreted the attractive field as a control loop ensuring stability degree robustness of the
trajectory towards mass variations of the ego-vehicle and disturbances by taking into account the position and speed of
the target as defined by [8] (see Fig. 1). Also, a novel interpretation of robust control is proposed in [5] for autonomous
vehicle. The objective of this article is to present a new potential attractive and repulsive field adapted to a dynamical
3D environment that ensures the robustness of the trajectory. Potential fields are well adapted for drone applications
because its holonomic model can be identified by a point mass. The potential field method allows this mass to be taken
into account for both attractive and repulsive. The concept of danger will also be taken into account, the obstacles will
be considered as known and the method makes it possible to avoid the obstacle with a softer trajectory according to the
obstacle type, in other words, its dangerousness (pedestrian, buildings, bicycle, car etc.). In Ge & Cui, no distinction
is proposed to differentiate the dangerousness of obstacles (it is safer to go nearer a wall than a human). Therefore,
Weyl repulsive potential definition has introduced a fractional degree to distinguish obstacles with their dangerousness.
By gaining on differentiating obstacle danger, the dynamical behaviors of obstacle has been lost. Therefore, the paper
proposes a new definition of attractive and repulsive field that takes into account both dangerousness and dynamics of the
obstacles. Moreover, it is often difficult to scale the attractive and repulsive potential forces. A methodology is proposed
to efficiently scale them.
A fractional attractive force is presented in section 2. Section 3 presents a new dynamical fractional repulsive force. To
finally conclude in section 4.

Fractional Attractive Force

In [10], the [8] method has been reinterpreted as a control loop, see Figure 1.
This virtual attractive force is defined by:

Fatt = αp (ptar − pego) + αv (vtar − vego) (1)

Figure 1: Dynamical interpretation of Ge and Cui attractive and repulsive forces
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where ptar and pego respectively are the real-time positions of the target and the ego-vehicle (EGV). vtar and vego
respectively are the real-time speeds of the target and the ego-vehicle. αp and αv are positive constants that define a
lead-phase controller.
Introducing the error e(t) = ptar − pego, and considering the fractional derivating of the velocity, it then comes:

Fatt = αpe(t) + αv
dne(t)

dtn
, (2)

where atar and aego respectively are the real-time acceleration of the target and the ego-vehicle and mego is the mass of
the ego-vehicle.
Under zero initial conditions, the Laplace transform of relation (2) gives:

Fatt(s) = (αp + αvs
n)E(s), (3)

where E(s) is the transform Laplace of e(t).

Fractional Repulsive Force

Ge & Cui potential field definition depends both on the distance ρ between the EGV and the obstacle, and their relative
velocities vRO. Weyl potential field solely depends on the distance while distinguishing obstacle dangerousness with
order n. Therefore, it is proposed to differentiate the obstacle dangerousness by keeping the order n in the Weyl repulsive
field definition, and by adding distance and relative speed to add reactivity to the obstacle. The new fractional repulsive
potential becomes:

Urep (p,v) =
(ρs (p,pobs)− ρm (vRO))

n−2 − ρn−2
max

ρn−2
min − ρn−2

max

, (4)

from where one draws the following repulsive forces:

Frepv = η
(n− 2) (ρs (p,pobs)− ρm (vRO))

n−3
vRO

ρs (p,pobs) amax
(
ρn−2
min − ρn−2

max

) vRO⊥nRO⊥ (5)

and

Frepp = η
(n− 2) (ρs (p,pobs)− ρm (vRO))

n−3
(
1 + vRO

amax

)

(
ρn−2
min − ρn−2

max

) nRO. (6)

Now, the repulsive potential field function takes into account an order n to manage obstacle avoidance according to its
dangerousness and the obstacle speed to operate in a dynamical environment.

Conclusion

In trajectory planning, artificial potential fields provide good results for trajectory planning in dynamical environments.
It remains essential for real-time application and allows a good reactivity of the EGV. The Ge & Cui force allows taking
into account the velocity of obstacles but it is not robust to a change in mass. The Weyl potential force associates a degree
of danger with an obstacle. A new dynamical fractional attractive and repulsive field is presented allying both advantages
and guarantees robustness due to mass variations. This method takes into account the obstacle dynamical aspects such as
positions and speeds, and associates dangerousness to a fractional order. The fractional regulator in an attractive form,
which allows robustness in terms of EGV mass variations.
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Summary. The acoustic properties of rigid porous media can be described by the equivalent fluid model (EFM) in the frequency
domain, involving complex-valued functions. These physical quantities can be irrational, which leads to fractional derivatives in the
time domain. Besides, this model is built with a constant flow resistivity, which is known to grow linearly with the flow velocity in the
Forchheimer regime. Hence, a correction on the EFM is made according to the Darcy-Forchheimer law, leading to a more general model
with an additional nonlinear term. Here, an approach is presented to formulate the EFM equations with the Forchheimer’s correction in
the time domain, where the fractional derivatives described by causal convolution are approximated by additional differential equations.
It results in a nonlinear system on which an energy-based analysis is performed to ensure its stability under suitable conditions.

Nonlinear equivalent fluid model equations

When the material can be assumed rigid, acoustic wave propagation in porous media can be well represented by:
{
ρ0α∞ ∂tu + ∇p + M u + N (g ⋆ ∂tu) = −Fξ |u|u ,
χ0 ∂tp + ∇ · u + (γ − 1)N ′ (h ⋆ ∂tp) = 0 ,

(1a)

(1b)

where ρ0 is the ambient fluid density, α∞ the high frequency limit of the material dynamic tortuosity, χ0 the ambient fluid
adiabatic compressibility, and γ the heat capacity ratio; u and p are the particle velocity and pressure, respectively. Factor
M is defined through Darcy’s law. The two terms involving the kernel functions g and h and the convolution operator ⋆
account for viscous and thermal losses in the porous medium. Definitions ofM , N , N ′, g and h are based on the dynamic
tortuosity α and the dynamic compressibility β, for which complex-valued analytical models exist, such as the JCAPL
model [1], presented below with the same parameters:

α̂(s) = α∞


1 +

M

s
+N

√
1 +

s

L
− 1

s


 , (2) β̂(s) = γ − (γ − 1)


1 +

M ′

s
+N ′

√
1 +

s

L′ − 1

s




−1

, (3)

where f̂ denotes the Laplace transform of f , s is the Laplace variable and all the coefficients are defined from physical
quantities, detailed in [1]. Lastly, an additional nonlinear term to the initial EFM is taken into account in the right-hand
side of (1a), representing the inertial effects induced by high amplitude waves travelling in the material. It comes from the
nonlinear Fochheimer equation [2] where the multiplying factor Fξ depends on the Forchheimer nonlinearity parameter
ξ, computed in experimental studies [3, 4] by considering a linear relation between the total flow resistivity σ and the
velocity amplitude:

σ = σ0 (1 + ξφ|u|) , (4)
where φ is the porosity and σ0 is the static flow resistivity. This relation is known as Forchheimer’s correction.

Nonlinear equivalent fluid model with additional differential equations

In order to build an efficient numerical scheme for (1), a reformulation of the equations is performed using the additional
differential equations (ADE) method [5]. The irrational functions ĝ and ĥ are first approximated by rational functions Ĝ
and Ĥ , written as multipole models and parameterized by a set of real or complex conjugate weights and poles:

Ĝ(s) =
K∑

k=1

rk
s− sk

, (5) Ĥ(s) =
K′∑

k=1

r′k
s− s′k

. (6)

All the parameters rk, r′k, sk and s′k are here assumed to be real and can be computed using different available methods
[6, 7, 8]. Then, using (5) and (6) in system (1) written in the Laplace domain, leads to the following system:




ρ0α∞ s û+∇p̂+M û+N

K∑

k=1

(
rk +

rksk
s− sk

)
û = −Fξ|û|u ,

χ0 s p̂+∇ · û+ (γ − 1)N ′
K′∑

k=1

(
r′k +

r′ks
′
k

s− s′k

)
p̂ = 0 .

(7)

In order to express the discrete equivalent in the time domain, the inverse Laplace transform is applied, leading to a new
set of equations with causal convolutions which are computed by introducing additional variables as follows:

φkφkφk(t) = (esk ⋆ u)(t) , (8) ψk(t) = (es′k ⋆ p)(t) , (9)

where ex : t→ extH(t) and H is the Heaviside function.
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Each of these additional variables is solution to a first-order ordinary differential equation and can be computed with a
standard time-integration scheme. Finally, the global system of equations in the time domain reads:





ρ0α∞ ∂tu + ∇p +

(
M +N

K∑

k=1

rk

)
u + N

K∑

k=1

rkskϕkϕkϕk = −Fξ|u|u ,

χ0 ∂tp + ∇ · u + (γ − 1)


N ′

K′∑

k=1

r′k


 p + (γ − 1)N ′

K′∑

k=1

r′ks
′
kψk = 0 ,

∂tφkφkφk = skφkφkφk + u (∀k ∈ [1,K]) ,

∂tψk = s′kψk + p (∀k ∈ [1,K ′]) .

(10)

Note that in (10), there are no spatial derivatives in the ADE. Hence, when the system is discretized with a numerical
scheme based on fluxes, these fluxes depend on the velocity and pressure variables, but not on the additional variables.
Consequently, the problem to solve at each mesh interface does not grow with the number of additional variables.

Stability analysis

Hereafter, a stability analysis of system (10) is performed thanks to the energy functional defined below:

E(t) := 1

2

(
ρ0α∞

∫

Ω

‖u‖2 dx−N
K∑

k=1

rksk

∫

Ω

‖φkφkφk‖2 dx

)
+

1

2


χ0

∫

Ω

p2 dx− (γ − 1)N ′
K′∑

k=1

r′ks
′
k

∫

Ω

ψ2
k dx


 ,

(11)
the derivative of which is

dE
dt

(t) = −M
∫

Ω

‖u‖2 dx − Fξ

∫

Ω

|u| ‖u‖2 dx − N

K∑

k=1

rk

∫

Ω

‖∂tφkφkφk‖2 dx

− (γ − 1) N ′
K′∑

k=1

r′k

∫

Ω

(∂tψk)
2 dx −

∫

∂Ω

(pu) · n dσ .

(12)

From (11) and (12), combined with the fact that ρ0, α∞, χ0 and (γ− 1) are necessarily positive for porous media, as well
as the parameters M , N , N ′, Fξ, we impose the following sufficient conditions to ensure stability:

(C1) the weights (rk, r′k)k are positive, (C2) the poles (sk, s′k)k are negative.

When both these conditions are met, E is a positive-definite functional, which is decreasing in time without external
contributions at the boundary ∂Ω of the domain Ω.

Conclusion

This work formulates the nonlinear EFM equations for porous media in the time domain, with the diffusive part of the
complex-valued functions α and β described by a set of weights and poles. In addition, a proof of stability is given under
conditions on the sign of these, conditions satisfied by the JCAPL model for a realistic range of physical parameters. A
numerical study will be carried out in order to check the theoretical results and to investigate the effects of nonlinearity.
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Summary. Herein the dynamic response of a system of fractional viscoelastic beams embedded in fractional viscoelastic medium
and excited by motion of their supports is analysed, and the influence of properties of the connecting medium, modelled as a set of
connecting layers, on the system behaviour is investigated. First, the approximate solution to the problem is obtained through the use
of the Galerkin discretisation, impulse response method, Fourier transform and Residue theory, and then it is applied to analyse, both
qualitatively and quantitatively, the influence of fractional-order derivative model parameters on the dynamic properties of beam arrays.

Introduction

There are many possible mechanical and engineering applications of systems of cantilever beams connected into an array
and excited by motion of their supports, particularly for vibration attenuation and energy harvesting purposes [1]. One type
of such systems, where cantilever beams are embedded in fractional viscoelastic medium, which is modelled by a set of
light viscoelastic layers, and placed inside a moving container, is the subject of this study, and it is schematically depicted
in Fig. 1. Dynamics of beam arrays with elastic and viscoelastic properties has already been investigated, e.g. [2]. There
has also been some research regarding the fractional-order derivative viscoelastic systems (e.g. [3]), but these solutions are
applicable only for rational derivative orders. Freundlich [4] recently presented the exact solution for the dynamic response
of a single cantilever with a tip mass under transverse motion of the support, while the beam material was modelled with
damping of an arbitrary order of fractional derivative. In our recent study, we have obtained an approximate solution to
the problem of vibration of a system of fractional viscoelastic cantilevers, connected by a fractional viscoelastic layers and
excited by transverse motion of the support, where the fractional derivatives of arbitrary order were used. In the herein
presented paper, this solution procedure is briefly described, and then it is applied to analyse the previously mentioned
array of connected cantilevers confined in a transversally moving container, schematically presented in Fig. 1, in order to
determine the influence of the connecting layers’ material properties on the dynamic response of the system.

Mathematical model and the approximate solution to the considered problem

A system of Nb fractional viscoelastic Euler-Bernoulli cantilever beams embedded in fractional viscoelastic medium and
confined inside a transversally moving container, as presented in Fig. 1, is analysed. Each beam is of length L and carries
Nm(k) concentrated masses m(k)p

attached at xm(k) ∈ (0, L), p = 1, 2, . . . , Nm(k), k = 1, 2, . . . Nb . Beams can have
mutually different mass density ρk, cross sectional area Ak, moment of inertia Ik and relaxed elasticity modulus Ek, but
they have the same fractional derivative order α and retardation time τ1. The medium is modelled as a set of connecting
layers, with prolonged compliance coefficient κ, fractional derivative order β and retardation time τ2 being the same
throughout the system. Here we will use only the left Riemann-Liouville fractional derivative of order γ as defined in [5],
here denoted by Dγ(•) ≡ (•)(γ), γ ∈ (0, 1). The container moves transversally, following an arbitrary function ws(t).
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E , A , I ,nb ρNbNb Nb
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α
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α
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α
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w  (t)
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.
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β

2

m(1)1

m(Nb)1 m(Nb)2

m(1)Nm(1)

m(2)Nm(2)

m(Nb)Nm(Nb)

Figure 1: Schematic representation of the considered mechanical system

For the k-th beam of the system (k = 1, 2, . . . , Nb ), the equation of motion for transverse beam displacements w(k)(x, t)
and the corresponding boundary conditions (BCs), noting that w(0) = w(Nb+1) ≡ ws, can be formulated as

EkIk(1 + τα1 D
α)w′′′′

(k) +


ρkAk +

Nm(k)∑

p=1

m(k)pδ(x− a(k)p)


 ẅ(k) − κ(1 + τβ2 D

β)(w(k+1) + w(k−1))+

+ 2κ(1 + τβ2 D
β)w(k) = 0 ; BCs : w(k)(0, t) = ws(t), w′

(k)(0, t) = w′′
(k)(L, t) = w′′′

(k)(L, t) = 0

(1)
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The solution procedure and the influence of the connecting layer properties
In order to homogenise the BCs, the absolute displacements are decomposed into the rigid body motion part and the
displacements relative to the supported beam end - w(k)(x, t) = ws(t) + v(k)(x, t). Then, the relative displacements are
approximated by the Galerkin weighted residual method as v(k)(x, t) ≈

∑n
i=1 φ(k)i(x)q(k)i(t) , k = 1, 2, . . . , Nb, with

the bare beam mode shapes used as the trial functions and the weighting functions. This leads to a system n×Nb coupled
fractional-order differential equations which can be expressed in matrix form as

Kq + Cαq(α) + Cβq(β) + Mq̈ = Q (2)

where K, Cα, Cβ and M are the stiffness matrix, beam material damping matrix, connecting layer damping matrix
and mass matrix of the whole system, respectively, and q and Q are the vector of the yet undetermined time functions
and the vector of the inertial forces in the whole system. The unknown time functions qT = {q1, q1, . . . , qNb

} =
{q(1)1, q(1)2, . . . , q(1)n, q(2)1, . . . , q(N)n

} will be determined by first finding the system impulse response g, where g is
the vector of n×Nb corresponding Green functions Gi(t), i = 1, 2, . . . , n×Nb.
The impulse response is determined by taking the Fourier transform of the system and then using the equivalent elastic sys-
tem to obtain the decoupled system of equations, assuming relatively small damping. This leads to (almost) diagonalised
system matrices, i.e. a system of n×Nb decoupled polynomial algebraic equations with fractional exponents:

s2r + Cdαrrs
α
r + Cdβrrs

β
r + ω2

r = 0 , r = 1, 2, . . . , n×Nb (3)

where s = ıω, with ω2
r = Kd

rr/M
d
rr being the r-th undamped system frequency, and Cdαrr, C

d
βrr, K

d
rr, M

d
rr are the

r-th diagonal elements of the corresponding diagonalised matrices. After finding the roots of each of these equations,
the inverse Fourier transform is applied with the use of the Residue theory, and the Green functions are again coupled to
obtain the impulse response of the original system. Once the impulse response is determined, the sought time functions are
obtained by taking the convolution with the inertial forces of the system qi(t) =

∫ t
0
Gi(t− τ)Qi(τ)dτ , i = 1, 2, . . . , n×

Nb, thus providing the complete (approximate) solution to the considered problem. The influence of the connecting layer
material properties was investigated on a system of Nb = 3 cantilever beams with Nm(1) = 2, Nm(2) = 1, Nm(3) = 3
equidistantly attached masses of half of each beam’s weight. Geometrical and material properties of each beam were
adopted the same as in [4], with τ1 = 0.001s, α = 0.8. The container was set to follow the motion function ws(t) =
w0 sinωst

2, with w0 = 1mm, ωs = 10s−1. The parameters τ2, β and κ were varied, and their influence on the relative
displacements of the free end of the first beam in the array are presented in Fig. 2.

0 1000 5000

c)b)

0.5 0.90.2

a)

2 0.0001 2 0.001 2 0.01

Figure 2: Influence of the connecting layer properties on the dynamic response of the system

Conclusions

It can be seen that the connecting layer greatly affects system behaviour. An increase in retardation time τ2 and order of
fractional derivative β of the connecting layer leads to a more rapid vibration attenuation, as shown in Fig. 2a) and b),
respectively, while an increase in the layer’s relaxed compliance coefficient leads not only to an increase in damping, but
in the fundamental system frequency as well, which causes the resonant state shift observed in Fig. 2c).
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Free and forced modes of fractional-type torsional oscillations of a complex rod  
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Summary. In this paper we study torsional oscillations of a complex rod made of material with viscoelastic properties. Free and forced 
modes of fractional-type torsional oscillations of a discrete system of a complex rod are described by a system of differential fractional 
order equations for a special case. The kinetic energy, deformation work, and generalized energy dissipation function of a fractional type 
system are identified for a special case. It has been shown that in the general case of such fractional type systems, with torsional 
oscillations, there are no independent modes, and that the system behaves as a nonlinear system.  
 

Model of torsional oscillations of a complex rod  
 
Figure 1 represents a model of a complex rod which is considered as a fractional-type discrete complex system. It 

consists of a discrete complex structure composed of light rigid rods of negligible mass, lengthk , 4,3,2,1k  that bear 

material points km , 4,3,2,1k , at their free ends, and are rigidly connected to the main rod at an angle 
k , 4,3,2,1k at 

the other end. The rods are in pairs symmetrically arranged and rigidly joined in the sections of the main rod 1,2,3 and 4 

at distances 
4

 , 
2

 ,
4

3  and  , measured from the left fixed end of the main rod, and where   is the length of the main 

rod. In the cross-section, at distance 
4

  from left end of the main rod, a one-frequency 

momentum  1101,1, sin  tzz MM , with amplitude 01,zM , frequencies 1  and 1 phase is applied.  
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Figure 1. Model of a complex rod. This complex system which is considered as discrete system which torsional non-linear 

oscillations can be described using fractional derivatives.  
 
For a case of an ideally elastic material, a segment rigidity of a torsion rod is equivalent to the rigidity of a torsion 

spring tc  and is determined by a constitutive relation of the torsion momentum-torsion angle, 
1M and  . The rigidity 

of a torsion spring tc is defined as 0
t

GI
c  where G  is the modulus of sliding of the rod’s material, and 

0I  is the 

polar moment of the cross-sectional area of the main rod [1.2]. Assumptions of the model: all masses are equal and all 
angles are equal and the indentations are of equal lengths. The system is homogeneous. Materials of which beam and 
rods are made have viscoelastic properties and the constitutive relation of the moment 1M  of torsion of the angle  , 

of torsion of the beam segment can be written in the form: 
    

 tttt cc DM            (1) 

where tc  is the stiffness of the fractional type of dissipative properties of the torsion deformation of the beam segment 

considered as a torsion spring, and  
tD  is a differential operator of the fractional order in the following form (see 

References [3-6]):  

         
 

 






 





 d

tdt

d
t

dt

td
t

t

t  


01

1
D ,  1.0 ,  bt .0      (2) 

where   is a rational number between 0 and 1, determined experimentally and   1 is the Gamma function. 
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The kinetic energy, deformation work, and generalized energy dissipation function of the fractional type 
system 

 
Free and forced modes of fractional-type torsional oscillations of a discrete system of a complex rod are described by a 
system of differential fractional order equations for a special case. The system of the fractional order differential equations 
can be written in matrix form:  

       0 ktkk  
 DCCA          (3) 

where A  is the matrix of coefficients of inertia, C  is the matrix of coefficients of elasticity and C is a matrix of 

coefficients of the system of fractional properties. If the relation ktkt cc ,,,   , 4,3,2,1k  is valid, then 

CC    and, in that case, the system belongs to a special class of fractional type systems in which main modes of 

fractional type are independent. In this case, we can apply a procedure for transformation of the generalized coordinates 
into the main coordinates like for the corresponding linear system.  

Expressions for kinetic energykE , deformation work defA  of the torsional deformed system, and the generalized 

function w  [5,6] of fractional-type dissipation of the system energy are 
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  ttttttttw cccc DDDD    (6) 

To obtain a system of fractional order differential equations that describe the torsional oscillations of the observed 

discrete complex structure, Lagrange differential equations of the second order were used. 
Independent fractional order differential equations for describing free main fractional type modes are in the following 
form: 

  022  stssss  
 D , 4,3,2,1s        (7) 

 
and for describing forced main fractional type modes:  
 

   11
22 sin  

  thsstssss D , 4,3,2,1s       (8)  

where s are main coordinates, s are eigen frequencies of a fractional order system,   is the constant of 

proportionality. When ktkt cc ,,,    and CC   , the fractional-type modes are coupled and the system 

behaves in a non-linear way, and there is an interaction between fractional-type modes. 

Conclusions 

Torsional oscillations of a complex rod with viscoelastic properties are analyzed. The main idea applied in the paper is 
that the segment rigidity of the described torsion rod is equivalent to the rigidity of a torsion spring. The kinetic energy, 
deformation work, and generalized energy dissipation function of the fractional type system are identified. Free and forced 
main fractional type modes are defined. It has been shown that in the general case of such fractional type systems with 
torsional oscillations, there are no independent modes, and that the system behaves as a nonlinear system. When system 
belongs to an after-mentioned special class of fractional type systems, main modes of fractional type are independent. 
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Summary. Dissipation is part of every physical system. This paper looks at a possible classification of such effects based on the dy-
namic response characteristics. It highlights some interesting non-trivial characteristics that particularly enter when a system otherwise
unstable is stabilized by dissipative effects. These response properties can have various useful applications, and they can contribute to
determining the dominant dissipation sources in mechatronic systems.

Introduction

Mechanical system models generally include forces that arise from fundamental physical phenomena [2]. Dissipative
effects represent one of such basic classes of forces. The dissipative mechanisms at the micro-scale usually lead to
some resultant effective representations at the macro-scale, which are commonly used in dynamic system models. These
generally appear in two fundamental forms: one is when the damping/dissipative force model is directly proportional
with the velocity, i.e., viscous and structural damping models, and the second group is when the dissipative force model
depends on the sign of the velocity but not necessarily the magnitude, i.e., friction models [3].

Dynamic model

The mathematical models for these can be written considering one degree-of-freedom canonical models as

mq̈ + bq̇ + kq + c sgn (q̇) = f, (1)

where q represents the generalized coordinate parametrizing the single degree-of-freedom as a function of time, m is
the related to the generalized mass/inertia, k is the stiffness, and b is the viscous/structural damping coefficient. The
magnitude of the friction force is denoted by c, and f represents the other forces acting on the system.
If mechanical systems without dissipation are considered then one possible classification can be based on their stability.
The behaviour of a mechanical system model with purely inertia and stiffness terms is always stable by the Lyapunov
sense. These inertia and stiffness terms represent the physical system elements and generally derive from the Lagrangian
of the system. However, this usually represent only one part of the physical system.
The other forces that can enter in f determine in general whether the overall system is stable or not. Instability can
result from various effects that can be introduced by these forces. Several of the major effects include some form of time
delay. One important group of applications is virtual environments where f include discrete-time computer generated
representation of virtual interaction forces.
Based on Eq. (1), the two limit cases are considered where either only viscous/structural damping, bq̇(t) term, or friction-
based dissipation, c sgn (q̇(t)) term, exists. As an illustration, these are shown for the case where f vanishes and when
f represents a virtual stiffness with formula f(t) = −kpq(tj), where kp is the virtual stiffness coefficient, and q(tj)
represents the sampled position in every jth sampling instant, i.e., tj = jts with j ∈ Z, and ts denotes the sampling time.
With the reduced number of free parameters, Eq. (1) is rewritten

q̈(t) + 2ζωnq̇(t) + ω2
nq(t) + σω2

n sgn (q̇(t)) = −kpm q(tj), t ∈ [tj , tj + ts) , (2)

where the natural angular frequency ωn =
√
k/m, the damping ratio ζ = b/(2mωn), and σ = c/k. In order to obtain

a more compact model, the dimensionless time T = ωnt is also introduced. Thus, the dimensionless sampling instant is
Tj = jωnts = jτ . Based on these, the equation of motion can be given as

q′′(T ) + 2ζq′(T ) + q(T ) + σ sgn (q′(T )) = −p q(Tj), T ∈ [Tj , Tj + τ) , (3)

where p = kp/k, and prime denotes the differentiation with respect to the dimensionless time.

Dissipation analysis

The first case of f results in a stable system, while the second case produces a system that can be unstable without
dissipation, and adding dissipative effects can stabilize the system. In the case of only viscous/structural damping the
response properties are well-known; it generally shows exponential decay type characteristics. In the case of unforced
and in the case of applied virtual stiffness, the vibration characteristics are presented in Fig. 1a and Fig. 1b, respectively.
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Figure 1: Fundamental vibration shapes due to the effect of different kind of dissipation phenomena

It can be also observed that the effect of sampling results in an effective negative viscous damping; thus with increasing
virtual stiffness coefficient the effect of dissipation decreases, and there may be loss of stability, as it is shown in Fig. 1c.
However, for the second case where only friction-based dissipative effects exist, the response characteristics are much less
trivial.
There is a difference between the behaviours of a stable system and a dissipation-stabilized system. In the case when f
vanishes, linear decaying amplitude exists, while in case of the additional virtual stiffness, the so-called concave amplitude
decay [1] can be observed. These behaviours are shown in Fig. 1d and Fig. 1e, respectively. Due to the presence of friction-
based dissipation, the system become sensitive to the initial conditions resulted in an unstable limit cycle. The resulted in
unstable motion is presented in Fig. 1f.
It is noted that the behaviours of such concave decaying characteristics in various systems when generating discrete-
time virtual interaction forces were experimentally observed [1]. Such observations can generally indicate that Coulomb
friction may act as dominant dissipative and stabilizing effect for these cases.

Conclusions

In this paper, the vibration decay characteristics of mechanical systems were investigated by considering either vis-
cous/structural damping or dry friction as the primary source of dissipation. The fundamental vibration shapes were
presented for the unforced case, and for that case when the acting force represents virtual stiffness. It was highlighted
that the influence of different physical dissipation resulted in some non-trivial vibration decaying characteristics that
particularly enter when a system otherwise unstable is stabilized by dissipative effects.
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Summary. Rotating machines are often subject to fluctuating torques, leading to vibrations of the rotor and finally to premature fatigue
and noise pollution. These vibrations can be reduced using tuned vibration absorbers (TVA). These passive devices are made of several
masses oscillating along a given trajectory relative to the rotor. Previous studies showed that the dynamics of these devices is subject to
instabilities. In this paper, the dynamic stability of a new class of TVA is investigated. The particularity of this new class is that the TVA
now admits a significant rotation motion relative to the rotor, in addition to the traditional translation motion. Efficiency of such devices
is optimal for a perfect synchronous motion of oscillating masses. However, due to non linearities, masses unisson can be broken for
the benefit of energy localization on a given absorber, leading to a loss of mitigation performances. To assess the stability of such
devices, a dynamical model based on an analytic perturbation method is established. The aim of this model is to predict analytically
localisation and jumps of the response. The validity of the model is confirmed through a comparison with a numerical resolution of the
system’s dynamics.

Presentation of the system

Figure 1: Scheme of the system studied for N =
3 absorbers

The system considered in this study consist of a rotor (or support plate)
of inertia Js rotating about its center O with a mean velocity Ω with
respect to the galilean frame. Its angular position is written θ. On this
rotor are articulated N identical absorbers of mass m and inertia I .
These absorbers are located along their trajectory through the curvilin-
ear abscissa Si. The distance from point O to the mass center of the
ith absorber is written Ri(Si), i = 1, . . . N . The shape of the trajec-
tory is controled through this function. In addition to the translation
motion along the trajectory, the rotation of the absorbers about their
mass center with respect to the rotor frame is considered in this study,
and denoted by αi(Si). A mechanical device enables to prescribe it
as a function of Si. We choose Ri (respectively αi) to be a symmetric
(respectively antisymmetric) function as it is the case in practice due to
design issues. Finally, this system is subject to an external tork T (θ).
In this framework, the equations of the system take the form:

M(q)q̈ + fin(q, q̇) +Cq̇ + fint(q) = F cos (neθ) , (1)

where q = [θ, ..., Si, ...]
T is the vector of unknowns (T denotes the transpose). M(q) is the mass matrix and depends

on q. C is the damping matrix. fin(q, q̇) is the inertial forces vector, including Coriolis terms, and depends on q and q̇.
fint(q) is the internal forces vector and depends on q. The external forces vector is F = [T1, ..., 0, ...]

T where T1 is the
amplitude of the fundamental harmonic of the external torque. Finally, ne is the excitation order and it can be regarded as
a proportionality coefficient between the excitation frequency and the mean rotation speed.
Performing a linear study of this system, one can find that theN+1 eigenfrequencies can be written ω0 < ω1 < ω2 where
ω1 is of multiplicityN −1 and is also the natural frequency of the absorbers uncoupled from the rotor. The corresponding
eigenmodes read φ0 = [1, 0, . . . , 0]T , φ2 = [−a, 1, . . . , 1]T , a > 0. φ0 is a rigid body mode for which the absorbers are
not excited and φ2 is a mode for which absorbers are in-phase and in phase opposition with respect to the rotor. The mode
shapes corresponding to the N − 1 degenerated modes of eigenfrequency ω1 all have a zero first component so that this
mode is not excited by the external torque. For instance, for N = 2, φ1 = [0, 1,−1]T : the absorbers are out of phase.

Non-linear study

In practice, the absorbers create an antiresonance of the rotor at frequency ω1, which is thus the chosen operating point
of the system [1]. In the following, a non-linear study of the steady-state response of the system is carried out in the
vicinity of this operating point and we are interested in the response of the absorbers. An analytical model representing
the dynamical behaviour of the system is developped. Following [2], the first step to build the model is to perform a
change of the independent variable from t to θ and a scaling of the parameters. Then, to continue the study, we choose in
this work to use the multiple scale method [3]. This approach leads to the obtention of a system of the form

{
D1Ai = f1(Ai, Aj , φi, φj)

D1φi = f2(Ai, Aj , φi, φj)
(2)
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where D1 represents the derivative with respect to the slow time, and Ai and ϕi are the amplitude and phase of the first
harmonic of the scaled ith absorber’s response. On the one hand, using the fact that the stable response of the absorbers
is governed by the in-phase mode, one can solve (2) to get the unisson response of the absorbers. On the other hand,
the stability of (2) can be assessed through the computation of the determinant of its jacobian [4]. This leads to the
obtention of two bifurcation curves. The intersection of these curves with the absorbers’ response indicates a stability
change towards either a non-synchronous response of the absorbers (i.e. the absorbers stop moving in unisson) or an
unstable periodic response (this leads to jumps phenomena).

Results and introduction of the design space

Figure 2: Left hand side: Analytic and numerical comparison of the absorbers’ order response. Squares are numerical
results. Top right hand side: Time signal of a non-unisson motion of the absorbers. Bottom right hand side: maps of
designs representing their associated stability. The black dot corresponds to a given design (i.e. a given trajectory and a
given rotation function). A color code indicates the stability of the response. Green: stable; red: unisson unstable; blue:
steady state unstable; purple: unisson and steady state unstable

We choose here to apply the above study on a system of N = 2 absorbers. Fig.2 presents the response of the absorbers as
a function of the excitation order, which has the meaning of a driving frequency. In this case, ω1 corresponds to ne = 0.5
and the resonance to ω2. The numerical results are obtained through time integrations of the equations of motion using a
Runge-Kutta algorithm. Like what was observed in the case of absorbers with a pure translation motion [5], results show
that the system looses its stability through a pitchfork bifurcation in favor of a non-synchronous response. The model
allows to accurately predict the bifurcation point, which is theoretically located at the intersction of the black curve (limit
of unisson unstability region) and the unisson response. The time signal shown in Fig.2 clearly shows the difference in
amplitude and in phase of the response of the non-synchronous response of the absorbers.
For a given excitation order and absorbers’ amplitude, one can use the analytical model to assess the stability of several
designs of TVA simultaneously. Designs can be defined by their associated trajectory and rotation functions, so that the
result takes the form of 2D maps as it is shown on Fig.2. The black dot represented on these maps is fixed, as it is a given
design. We can see that depending on the absorbers’ amplitude of motion, this design goes through different stability
states. These maps can be very efficient to determine whether a given design is prone to desynchronisation and/or jumps.

Conclusions

This study presents analytical and numerical results about non-linear localisation and jumps in a TVA. This work gener-
alises previous studies to TVA with absorbers admitting a rotation about their mass center. The analytical and numerical
results agree very well, showing that the model developped is able to give a good representation of the physical system.
The design space has been introduced, allowing a quick assessment of the efficiency of TVA designs.
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Summary. Condition, under which thin-walled shallow panels can develop cyclical snap through dynamics due to airflow loads, is derived 
in the explicit analytical form. The methodology is based on the asymptotic of a perfectly flexible structure whose continuous manifold of 
equilibrium positions in the multidimensional space of configurations serves as a family of generating solutions. It is shown that supercritical 
airflows can cause global trajectories near such manifolds associated with a two-way snap through between the original and inverted positions 
of the panel. 

Introduction 

The term ‘flutter’ may cover quite different situations involving different mathematical tools of analyses [1]. The focus 
of the present study is flow induced dynamics with essentially nonlinear snap-through effects. Complexity of such type 
of problems is due to a multimodal strongly nonlinear structural behavior accompanied by a strong spatial coupling 
between the modes. The adapted elastic model of a shallow cylindrical panel ignores the longitudinal inertia term while 
taking into account the influence of membrane forces on the bending deformation as the only cause of geometrical 
nonlinearity [2, 3]. Assuming the presence of some initial imperfection and thus existence of multiple equilibrium 
positions, we define a snap-through flutter as the global panel dynamics with a cyclical self-sustained snap-through effect 
caused by the non-conservative aerodynamic load. Note that preserving the symmetric configuration during the snap-
through motion would typically require a significant compression of the panel surface. As a result, any path through the 
least potential barrier must involve certain modal transitions avoiding significant tension-compression deformations that 
requires multimodal considerations. On one hand, this essentially complicates the analysis by increasing the problem 
dimension. However, on the other hand, increasing the dimension reveals a simple enough analytical estimate for the 
generating trajectory due to the asymptotic of a perfectly flexible panel. This represents a core of the approach, which 
assumes a global linearization near the manifold of a perfectly flexible panel [5, 6].  
 
Technical details  
Let us consider the elastic panel in a gas flow as schematically shown in Fig.1. The problem is reduced to the two-
dimensional provided that the panel is subjected to a cylindrical bending. The panel thickness h is small compared to the 
amplitude of initial imperfection α, which itself is small compared to the span of the panel l. The outer surface of the 
panel interacts with the gas flow whose unperturbed velocity U is directed along the x-axis as shown in Fig.1.  

 
 

Figure 1: Aeroelastic model of a shallow panel in gas flow under the ‘external’ 
ep  and ‘internal’ 

ip  pressure loads. 

The Lagrangian function of the panel is obtained based on the assumptions [2] as 
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where e[w] is the longitudinal strain, V[w] is the potential energy of elastic deformations, and 
0 0( )w w x  is the shape of 

initial imperfection. Also, the variation of work done by the static pressure drop and nonconservative aerodynamic loads 
is given by 
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where the aerodynamic load corresponds to a linearized equation of the so-called piston theory; see an overview in [4].  
The manifold of zero-strain configurations is defined as  
 { : [ ] 0}fM w e w    (4) 

Then the linearization of the differential equation of motion near the manifold (4) is conducted with a continual version 
of transformation [5, 6] in the form  
  22, [ ] / [ ] , / 1/12w ww w n n e w e w h          (5) 
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where, 
w  is the so-called variational derivative, which is taken at the arbitrary “point” 

fw M , and the symbol ||…|| 
denotes the Euclidian distance in the functional space of the panel configurations, therefore n (5) is a unit vector, which 
is always perpendicular to the manifold.  
 
Two-mode illustration  
Transformation (5) admits a clear visualization (Fig.2) after the following two-mode approximation of the panel’ shape 
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  (6) 

Note that expansion (6) provides an exact discretization of the corresponding free panel. However, it becomes just an 
approximation due to the presence of first derivative /w x   in the loading function. 

 

 
(a) 

 
(b) 

 
Figure 2: a) Two-mode snap-through trajectory around the potential hill of tension-compression deformations in the neighborhood of 

zero-strain manifold (4) 
fM , and b) the local normal coordinate ζ near an arbitrary point ( )y   of the manifold

fM .   

 
Fig. 2a shows a typical shape of the potential energy 

1 2( , )V V q q  with a sample trajectory of a free panel, which is 

averagely resembles the shape of elliptic zero-strain curve shown in Fig2b, including its generalized coordinate θ 
describing the tangential motion, and the coordinate ζ describing the fast normal component associated with tension-
compression.  
 

Result  
Fig.2b justifies the averaging procedure with respect to the fast normal motion component compared to the slow tangential 
motion. This finally gives an asymptotic one-degree-of-freedom effectively conservative system for the tangential motion  
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Analyzing equation 0/effV    gives the critical number Q above which this equation has no real roots:  
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If 
*Q Q  then system (7) has no equilibrium points and as a result will continue to rotate around the ellipse.   

Conclusion 

It is shown that a strong enough airflow can result in global dynamic trajectories near such manifolds associated with 
two-way snap through between the original and inverted positions of the panel. The effective tangential to the manifold 
forces created by the airflow, dissipation, static pressure drop, and structural elasticity adequately determine conditions 
for qualitatively different dynamic regimes. In particular, it is shown that a strong enough airflow can result in global 
dynamic trajectories near such manifolds associated with a two-way snap through between the original and inverted 
positions of the panel. It must be noted that the developed approach is applicable to other problems with different types 
of loading as well as analyses of free vibrations accompanied by large amplitudes with or without snap through events. 
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Summary. This study focuses on the nonlinear response of dynamical systems due to harmonic force excitation using numerical
continuation methods. Nonlinear Normal Modes (NNMs) is a powerful tool for studying behavior of nonlinear vibrational systems.
Pseudo arc length continuation method is a very powerful method which is capable to handle strongly nonlinear systems by calculate the
NNMs. Several methods are available to compute NNMs. Recently reviewed articles mention the computational cost of the pseudo arc
length continuation method that limits its application. Based on assumption presented in other references and eliminate a mathematical
construction, in this research used an updating formula to reduce the computational cost of pseudo arc length continuation algorithm.
This modified method is called Efficient Path-Following Method (EPFM). In order, forced response of a single degree of freedom
duffing system is computed using EPFM method. It seen that this method has decreased computational time considerably up to 70%.
The results are in very good conformance to those obtained in other references which shows the accuracy the method. To study the
ability of EPFM to handle continues systems, a nonlinear Euler-Bernoulli beam is considered and stable and unstable branches of the
solution are computed. It observed that as the nonlinearity of the system gets stronger the updating formula becomes more effective.

Introduction

The structural engineers have utilized modern engineering knowledge to modelling the complex dynamic behavior of
structure. For example, rotorcraft, turbomachines, airplanes, bridges, marine platforms, and robotic complex arm have
become lighter, this way provide the possibility of operating at higher rates and velocities. Obviously, these On the other
hand it could be led to non-linear response of structural systems. The structural response is affected by the nonlinearity.
It may also cause complex resonance phenomena. Which makes it impossible to predict system behavior. Rauscher
and Mikhlin develop a definition for modal analysis in nonlinear systems and naming it as "Nonlinear Normal Mode
(NNM)". Shaw and Pierre modified the concept of NNM for the class of weakly nonlinear systems. Today, One of
the well-known tool to provide a solution of nonlinear dynamical systems is NNMs.[1, 2] Namely, The movement of a
system during internal resonance described using NNMs. also nonlinear vibration absorbers designing [2], also providing
reduce order model of a nonlinear dynamic system to show system frequency changes and system deformation during
free or forced vibration in nonlinear structures [3]. Also it applications include micromechanical oscillators and energy
harvesting. Along with analytical methods such as harmonics, multiple scales and other methods for calculating the
periodic responses of nonlinear dynamical systems, there are many numerical methods that are preferred because of their
less complexity and less mathematical operators. There are many numerical algorithms for computing periodic solution
families in nonlinear systems [4, 5].
One of the powerful methods in computation of periodic solution are neumerical continuation methods. Kerschen by
combination of Shooting method and Pseudo Arc length with continuation presented a High-performance algorithm to
calculate the nonlinear normal modes which are defined as periodic solutions of the nonlinear system [3, 6]. Michael W.
Sracic in 2010 try to extend the Peeters algorithm to a system with cubic nonlinearity under the harmonic forced excitation
[7]. Renson in 2016 has published an reviewed article [8] and studied the various methods for computation of nonlinear
normal modes [numerical computation of NNM]. They mention that the "continuation method is a very powerful method
for computation of periodic solutions however the computational cost has limited its application to large scale systems".
This paper presents the numerical continuation method modification to speed up the periodic solutions computations.
The assumptions and basis of the modified algorithm based on [6, 7], changes made include integrating an updating
formula in the algorithm and elimination of phase equation to decrease the computational time of the algorithm. To speed
up the process of calculating the periodic solutions we eliminate the phase equation that presented by peeters, and using
updating formula presented in [9]. The presented algorithm is called Efficient Path Following Method (EPFM)(Figure 1.f).
Numerical experiments show that EPFM is approximately 60-70 percent faster. The theoretical foundations and the
algorithm are presented first. Then, a one D.o.F.system and a nonlinear Euler-Bernoulli beam would be studied.

Theory and Algorithm

Governing equation of motion of a N-D.o.F system under harmonic force takes the following form in state space:

ż = g
(
z(z0, t, T ), t, T )

)
=

(
ẋ

−M−1 (Cẋ + Kx + fnl − Fe)

)
(1)

Where M,K, and C are the mass matrix, stiffness matrix and the damping coefficient matrix, respectively, fnl is the vector
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Figure 1: Results figures

of stored nonlinear force and Fe is the external harmonic force. z = [x ẋ]T2N×1 , t is independent variable of time and T is

the period of oscillation s. The response of the system to the initial conditions of ż(t = 0) = z0 = [x0ẋ0]
T is represented

as z(t) = z(z0, t, T ) to indicate the dependence of the system’s response to the initial conditions,z(z0, t = 0) = z0.
To compute periodic solution integrated Eq.(1) over time interval [0, T ]. We need to look for the following conditions.

H(z0, t, T ) ≡ zT (z0, t, T )− z0 ≈ 0 (2)

Using Newton-Raphson algorithm process try to find periodic condition by expansion of the Eq.(2) as follows:

∂H
∂z0

∣∣∣∣
(T,z0)

∆z0 +
∂H
∂T

∣∣∣∣
(T,z0)

∆T = −H(z0, t = T, T ) (3)

To calculate the periodic response, the equation (3) must be established. The partial derivatives of the equation (3) is
calculated based on the procedure given in [7].
The only difference is the calculation of the first derivative which is calculated in the first iteration. Monodromy matrix
( ∂H
∂z0

) calculated by sensitivity analysis, then in the next iterations, updating formula given in [9] is used to calculate it.
the updating formula defined as follows:

∂H
∂z0

∣∣∣∣
k+1

=
∂H
∂z0

∣∣∣∣
k

+ Hk+1

(
∆zk0

)T

|∆z0|
(4)

Results

Considering a system with one degree of freedom governed by Duffing equation presented in [7]. The results show
that for force amplitude equal 0.1, EPFM was %52 faster than [7] and for amplitude equal 1.0, EPFM faster about %70,
that result show in Figure 1.a. Also a nonlinear Euler-Bernoulli (Figure 1.b) analysed, Figure 1.c depict the periodic
solutions compute by EPFM method and Figure 1.d show two dimensional manifold of 1st NNM. EPFM also captured
superharmonic and subharmonic peaks as well Figure1.e. in this case EPFM is faster about %60 too.

Conclusions

An effective method is introduced in this study to compute periodic response of nonlinear systems under harmonic exci-
tation. The method is called Efficient Path Following Method (EPFM). The algorithm is a combination of single shooting
method and pseudo arc length continuation. The difference between EPFM and other algorithms is that, it uses an up-
dating formula to compute jacobian matrix in correction step. that EPFM also reduces one of the equations in shooting
method to speed up computation of periodic responses.
By analyzing the results and computational time, it is concluded that the EPFM is a very effective method for computation
of periodic response of nonlinear systems and as the D.o.Fs of the system increase and the nonlinearity of the system gets
stronger, this method gets more effective.
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Summary. The present work addresses passive suppression of vibrations induced by internal axial flow in a cantilevered flexible
pipe discharging fluid. The suppressor utilized is a rotative non-linear vibration absorber (NVA) composed of a mass connected to the
extremity of a rigid bar hinged to the main structure by means of a dashpot. Numerical results from the mathematical model show that
the NVA is able to bound the pipe structural response even in the supercritical flow regime.

Introduction
Today, the problem of a cantilevered pipe conveying fluid is considered as a classical problem in the study of the dynamics
and stability of structures because of its simplicity and potential for displaying a wide range of complex dynamics. This
problem belongs to a broader class of open dynamical systems with axial momentum transportation, and several studies,
such as [1] and [2], have been made on the extension of Euler-Lagrange’s equations and Hamilton’s principle for such
systems. Pipes conveying fluid, in their myriad of applications, such as heat exchangers and risers are susceptible to
flow-induced instabilities and vibrations which in turn can lead to fatigue failure, excessive noise and leaks.
Non-linear vibration absorbers (NVAs) have been studied in the last decades as alternatives to linear suppressors, such as
the tuned mass damper (TMD), for passive suppression of oscillations. Even though the literature on the use of NVAs for
suppressing axial-flow-induced vibrations is recent, studies have shown that they are capable of adapting and effectively
operating even if the load is broadbanded due to an energy transferring concept called Targeted Energy Transfer (TET),
as documented in [3] and [4].
This paper focuses on the use of a particular class of suppressors, called rotative NVA, with the objective of suppressing
axial-flow-induced vibrations of cantilevered pipes discharging fluid. Such a suppressor is composed of a point mass
connected to the extremity of a rigid bar which, in turn, is hinged to the pipe via a dashpot. In [3], the authors discuss
passive suppression of internal-flow-induced oscillations of a pinned-pinned pipe using a different type of NVA. To the
best of the authors’ knowledge, the use of a rotative NVA for suppressing axial-flow-induced vibrations of pipes conveying
fluid has not been previously addressed and is the main novelty of the present work.

Mathematical model
Consider a flexible pipe discharging fluid as shown in Fig. 1a. The pipe has the length L, the diameter D, the bending
stiffness EI and the mass per unit length m. The fluid has the mass per unit length M and flows at a constant velocity
U . At a point x̄ along the pipe length, the NVA is placed and constrained to rotate in the (y, z)-plane. The device has the
mass mn, the radius r and the damping constant c. The pipe transverse displacement is represented by w(x, t) while the
angular displacement of the NVA is θ(t). It is assumed that the pipe is inextensible and that the flow is incompressible
and has a uniform profile in the pipe (i.e. the plug flow model). By using the extended Hamilton’s principle found in [5],
the dimensional equations of motion can be found and are made dimensionless using the following quantities:

τ =
( EI

m+M

)1/2 t

L2
, ξ =

x

L
=
s

L
, η =

z

L
=
w

L
, γ =

(m+M)gL3

EI
, δ̂(ξ − ξ̄) = Lδ(x− x̄),

ĉ =
cL2

mn

(
EI

m+M

)1/2
r2
, u =

(M
EI

)1/2
UL, m̂n =

mn

(m+M)L
, β =

M

(m+M)
, L̂ =

L

D
, r̂ =

r

D
, (1)

where s is the curvilinear coordinate along the pipe length, and δ is the Dirac Delta function. The resulting dimensionless
partial differential equation is then discretized using Galerkin’s method, with the adoption of the first five mode shapes of
a cantilevered Euler-Bernoulli beam, i.e., η(ξ, τ) ∼=

∑5
n=1An(τ)ψn(ξ), where ψn are the mode shapes and An are the

corresponding generalized coordinates. Using the notation ( )′ = ∂/∂ξ and ˙( ) = ∂/∂τ , the final system of six coupled
second-order ordinary differential equations is obtained in the form of equations (2) and (3), for k = 1, ..., 5.

Results
Consider three different systems: system 1 is the unaltered (or plain) pipe, system 2 is composed of the pipe and a lumped
mass rigidly attached to the pipe at different spanwise locations and, finally, system 3 is the one with the NVA. System
2 allows for investigations into the effect of the placement of the stationary lumped mass on the critical flow velocity –
“static” effect – via Lyapunov’s Indirect Method. On the other hand, system 3 allows for investigations into the capability
of the device to mitigate vibrations of the main structure due to its motion with respect to the pipe, which locally dissipates
energy in the associated dashpot (TET mechanism). Here, passive suppression is achieved by a “dynamical” effect.
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∫ 1

0
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θ̈ − L̂

r̂
sin θ

5∑

n=1

Änψn(ξ̄) + ĉθ̇ = 0. (3)

Throughout this extended abstract, we assume β = 0.20 and γ = 10. An example of the analysis on the “static” effect
of the device is given in Fig. 1b, which shows the variation of ucl/uc (uc and ucl being the critical flow velocities for
systems 1 and 2, respectively) as a function of the lumped mass value and its location. As seen, counter-intuitively,
the lumped mass has a destabilizing effect with the exception of the region approximately defined by ξ̄ ∈ [0.35, 0.65]
and m̂n ∈ [0.025, 0.2], in which the critical flow velocity ratio ucl/uc increases as m̂n is increased. For system 3, the
“dynamical” effect is then evaluated through a numerical integration of the equations of motion at u = ucl, which leads
to unbounded responses of system 2. Considering A1(0) = 0.1 and θ(0) = 0.1 as the non-trivial initial conditions, Fig.
3c presents the time-history of the displacement at the free end of the pipe, i.e. η(ξ = 1, τ), the associated amplitude
spectrum and the angular response of the NVA, θ(τ), for the case in which the suppressor is placed at ξ̄ = 0.5 and is
characterized by m̂n = 0.01, ĉ = 0.2 and r̂ = 0.6. Both time series are shown within τ ∈ [2000, 4000] range. Note that
the response is bounded, even though for a supercritical internal flow velocity for system 2.

𝑈, 𝑀

𝑈, 𝑀𝐴𝐴
𝑤(𝑥, 𝑡)𝐿, 𝐷, 𝐸𝐼, 𝑚�̅� 𝑥

𝑧 𝑦
𝑧𝑔 𝑐 𝑟 𝜃 𝑚

𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝐴
a) b) c)

Figure 1: a) Schematic drawing of the system, b) (ucl/uc) as a function of (m̂n; ξ̄) - System 2, c) Example of response - System 3.

From Fig. 3c, a strongly modulated response composed of two intermittent regimes can be observed. The first regime is
characterized by a growth in the pipe response, while the device oscillates around the positions that are aligned with the
pipe motion, i.e. where cos θ = ±1. Then, when the energy reaches a certain threshold, the NVA rotates with practically
the same frequency as the oscillation frequency, that is f̂ = 2.37. Hence, we may conclude that the observed passive
suppression is associated with a 1 : 1 resonance.

Conclusions
A rotative NVA was utilized to successfully mitigate vibrations of a cantilevered flexible pipe discharging fluid. Both the
“static” and “dynamical” effects were examined. While the former showed to have an important role in the stability of
the system (i.e., the critical internal flow velocity), the latter was responsible for bounding the dynamical response due to
energy dissipation. More numerical results along with a more comprehensive analysis of the static and dynamic effects
will be presented in the full-length paper.
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Passive Nonlinear Energy Sink for Pathological Tremor Reduction
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Summary. Medications used to reduce the pathological tremor causes severe side effects which affects the life quality of the patients.
A mechanical solution using nonlinear passive controllers is suggested to reduce the tremor. A light weight non-smooth nonlinear
energy sink (NES) attached to the forearm of a modeled upper limb system was able to reduce the angular motions, of different parts
of the upper limbs, after a short period of time.

Introduction

Tremor is an involuntary oscillatory movement of a body part triggered by alternating simultaneous antagonistic muscles
contractions. It is associated with neurological disorders which lead to pathological tremor, like the Parkinson and essen-
tial tremors. Neurologically disordered patients suffer from a frustrating involuntary tremor which prevents the patients
from achieving their daily life tasks and can cause social isolation. There is still no cure for the pathological tremor, and
the effect of the used medication and surgical treatments are temporary. In addition, the treatments can cause severe side
effects specially in case of non-responsiveness or medication failure.
Research interest was recently shifted to find a mechanical solution for reducing the vibration tremor energy at the upper
limbs of the patient. The mechanical absorber is suggested to counter-act the tremor and to compensate the failure of the
muscles in performing accurate motor movements. A passive controller, using a non-smooth nonlinear energy sink (NES)
[1], is suggested in this paper to reduce the involuntary tremor of a modeled upper limb system.

Modeled system

The upper limbs of the human is modeled dynamically to reflect the tremulous motion. The response of the system is used
to design the physical parameters of the nonlinear vibration absorber placed at the forearm segment. The performance of
the suggested controller is examined by comparing the response of the system before and after the addition of the NES.

Upper limbs
The upper limb is modeled as a two degrees-of-freedom (DOF) system oscillating in the vertical plane as shown in shown
in Figure 1. The upper limbs can be modeled as two rigid links, the upper-arm as one segment, and the forearm and hand
together as a separated segment [2]. The links are represented as massless rods of length (l) with a concentrated mass
(m) placed at the position of the centroid (r), where the indices 1 and 2 refer to the upper arm and forearm, respectively.
The modeled system allows the flexion-extension planar motion at the shoulder and elbow joints, where θ1 and θ2 are the
angular displacement responses at these joints, respectively.
The musculoskeletal modeling of the upper limb is reached by the addition of the shoulder, elbow and Biceps brachii
muscles to the skeletal system. The passive elements of the muscles are the stiffness (k) and damper (c), such that the
indices 1, 2 and 3 corresponds to the shoulder, elbow and Bicesps brachii. The upper limb system is excited the active
torques generated by the muscles. The signals of the muscles can be measured by the Electromyography (EMG), which
can be used to detect the operational frequency of the muscle, and the amplitude of the signal at this frequency. The
inertial measurement unit (IMU) can be used to determine the acceleration and angular velocity ranges, which needs to
be reached by the responses of the modeled upper limb system.

Figure 1: Dynamical modeling of the upper limb in the vertical plane with a NES
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Nonlinear absorber
The well modeled upper limb system leads to an accurate design of the NES parameters. The NES has a light weight mass
(mN ), placed at the forearm segment at a distance (dN ) away from the elbow joint. The displacement response of the
NES (u) is acting in the vertical place, in a direction perpendicular to the forearm segment. The NES oscillating in this
direction, is designed to absorb the flexion-extension angular displacement of the upper limbs during its oscillation in the
vertical plane. A non-smooth piece-wise linear function is chosen for the NES since it can create, a better controllability
effects, when attached to a system affected by the gravitational field, than the cubic restoring function [3]. The piece-wise
linear function is characterized by the stiffness of the NES (kN ) and the clearance (2d).The damping of the NES is cN .

Complexification of the system
The nonlinear equation representing the motion of the global system (upper limbs with NES) is derived using Euler-
Lagrange formula. The equations are linearized using Taylor series multivariable linearization method in terms of θ1 and
θ2, while preserving the nonlinearity of the NES (u).
The complex variables of Manevitch [4], are applied to the partially linearized equations of motion transformed to the
modal coordinates. The multiple scale method [5] is used to treat the system at different timescales, low timescale τ0 = t
and fast timescale τj = ϵjt, such that t is the time, ϵ= m1

mN
and j = {1, 2}. The averaged equation is obtained by applying

a truncated Fourier series (constant terms and first harmonics) [6] to the equations transformed to the modal coordinates.

Results and discussion

The response of the system is analyzed in different time scales. The slow invariant manifold (SIM) and characteristic
points of the system are obtained from the analytical study. The numerical response of the system shows to follow
the SIM obtained analytically. The parameters of the NES are designed such that resonance occurs at the fundamental
frequency of the main system. Figure 2 shows the angular displacement response at the shoulder and elbow joints before
and after the addition of the NES, for different mN . The controllability response of the NES is faster when its mass is
higher. The NES of 20.7 g reduces the response of the system after 180 s. The mass of the NES can still be increased to
obtain a faster performance.
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Figure 2: Angular displacement signals at the shoulder and elbow joints simulated numerically with and without NES for different mN

Conclusions

The NES with piece-wise linear function is effective in reducing the involuntary tremor gravitational energy transmitted
to the upper limbs due to the muscles contraction. The NES can be designed in the form of a non-invasive device to help
people with pathological tremor.
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Summary. Nonlinear energy sinks (NESs) serve to transfer and absorb vibration energy of a mechanical system. They are locally
attachted to the system and consist of a light mass, a damper and a nonlinear stiffness. Compared to linear dynamic vibration absorbers
(DVA), NESs mitigate vibrations over a wider frequency band. If the mechanical system is subjected to a shock load, a NES is able
to dissipate the energy of each mode separately and sequentially, from high to low frequency. This unique feature is called resonance
capture cascade (RCC). When piezoelectric (PE) patches are bonded with the vibrating mechanical system, it can serve as an electrical
DVA, provided a suitable shunt circuit is attached over the PE electrodes. In literature, several nonlinear shunts have been proposed
and implemented. While the increased robustness has been discussed, there has been no attempt thus far to design an electrical NES
specifically for resonance capture cascade. In this abstract the RCC capabilities of a mechanical NES as well as an electrical NES is
shown.

Introduction

Machines are made lighter and more compact, civil structures become higher and slender. Consequently, more flexible
mechanical systems are created which are susceptible to unacceptable vibration levels. To protect these mechanical
systems, an auxiliary structure is attached, called a dynamic vibration absorber. It typically consists of a linear mass-
spring-damper system. The linear DVA is able to mitigate a single frequency really well. However, it does so only
in a narrow frequency band and as such, if the mechanical system has shifting vibration frequencies or multi-modal
vibrations, the linear DVA fails to mitigate the vibrations down to an acceptable level. To increase the bandwidth of the
DVA, a nonlinear energy (NES) sink has been proposed in literature [1]. The NES has a nonlinear connecting spring
which typically has a cubic spring characteristic.

Resonance Capture Cascade with Mechanical NES

If a mechanical system is shock loaded, a free vibration ensues, consisting of several vibration modes. While a linear
DVA is not able to decay all modes efficiently, a NES can engage in resonance capture cascade (RCC). During RCC, the
NES mitigates the vibration modes sequentially, from high to low frequency [1]. More recently, the author of the current
abstract [2] presented a thorough study of RCC and tuning of the NES to increase the speed of RCC. To introduce RCC,
a mechanical system with 2 vibration modes is equipped with a NES, Figure 1a. The NES has the following dynamics:

mnaẍna + cna(ẋna − ẋ1) + kna(xna − x1)3 + klin(xna − x1) = 0 (1)

with mna the NES’ mass, cna the NES’ damping, kna the NES’ nonlinear stiffness and klin the NES’ linear stiffness.
The bottom mass of the mechanical system is subjected to an initial speed of ẋ1(0) = 1. The RCC is seen in the NES
vibrations, Figure 1c, with the shifting vibration frequency best seen on its wavelet transform Figure 1d. At first, the NES
vibrates with the frequency of the second mode. Then, after about 25 s, the NES shifts its frequency to the first vibration
mode. After about 120 s, the NES is barely moving. The vibration in the mechanical system, Figure 1e are mitigated
over the 120 s where the NES is active, with the second mode decaying first, and then the first mode. A small amount of
residual energy is left after RCC.

Resonance Capture Cascade with Electrical NES as Piezo Electric Shunt

By bonding piezoelectric (PE) material to a vibrating mechanical system, the vibration energy can be transferred to
electrical energy. Similar vibration mitigation performance as with mechanical DVAs can be achieved by shunting the
electrodes of the PE with a suitable circuits. Because of the similar dynamical equations in mechanical and electrical
domain, a NES shunt was proposed in [3]. However, no attempt thus far has been made to achieve RCC. The dynamics
of a NES is highly similar to the nonlinear shunt:

Lq̈ +Rq̇ +
1

C3
q3 +

1

C1
q + V = 0 (2)

with V the voltage over the PE electrodes, generated by the vibrations, and q =
∫
Idt the charge. A numerical inves-

tigation now shows that RCC occurs in the electrical NES. The vibrating mechanical systems are two cantilever beams
with tip masses, connected at the tip with a spring, Figure 1c. The proposed mechanical system has two dominant modes
and is easy to construct experimentally. The PE patch is shunted with a NES. The electrical vibrations in the current are
shown on Figure 1f and Figure 1g . The behavior is identical to the mechanical NES. The second mode is mitigated first,
followed by the first mode. This can be seen as well in the tip displacement of the beam, Figure 1h.
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Conclusions

Resonance capture cascade (RCC) is the unique feature of nonlinear energy sinks (NESs) that can be exploited to miti-
gate transient multi-modal vibrations. During RCC, vibration modes of a vibrating mechanical system are sequentially
mitigated, from high to low frequency. This feature is associated with mechanical NES. In this abstract is is shown that
this unique feature of the NES is also possible in shunted piezoelectric patches.
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Figure 1: Mechanical system (a) with c1 = c1 = klin = 0, m1 = k1 = 1, k2 = m2 = 0.2, mna = 0.05, lna = 0.07 and
cna = 0.02. Mechanical system (b) consisting of two aluminum cantilever beams of 170 mm length, 35 mm width and
2 mm thick, tip masses M = 0.033 kg and connecting spring k = 550. The shunt consist of L = 250 H , R = 5000 Ω,
C3 = 0.25 µF 3 and C1 = −50 nF . The bonded PE patch the DURA-ACT P-876.A15 of PI [4]. The mechanical NES
vibrations (c) and its wavelet transform (d). On (e), the vibrations of the first mass of (a) and on (h) the vibrations of the
tip of the first cantilever beam of (b).
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Single mode control of overhead transmission line conductor with a nonlinear absorber
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Summary. The possibility of controlling of oscillations of overhead transmission lines by a nonlinear absorber is studied. We consider
a linear beam with elastic boundaries conditions in displacement and rotation under harmonic excitations. After complexification of the
system variables, we study the system at different time scales. The fast time scale provides the SIM (Slow invariant Manifold). Then, a
stability study of the SIM is performed. Studying the slow time scale leads to detection of equilibrium and singular points of the system.
Finally, we compare the analytical results with numérical solution obtained with the finite element method (FEM)(Code_Aster).

Introduction
Galloping of overhead transmission lines brings large amplitude at low frequency oscillations [1]. This phenomenon
occurs when there is an aerodynamic instability on iced conductors [1]. Since the 1930s several researchers work on a
better understanding of this phenomenon and to predict the amplitude of oscillation depending on the wind parameters
[2]. Some devices have been designed to mitigate the amplitude of oscillations caused by galloping. Torsion pendulum
have been designed to reduce galloping vibrations [3]. Interphase spacers have been developped to avoid shot circuits and
collisions between conductors [4]. On the other hand, there are some nonlinear dampers that can reduce aeolian vibration
like Hydro-Quebec damper [6]. However, galloping mitigation with a nonlinear energy sink (NES) [5] have not been
stydied yet. The NES has a small mass in comparison with the primary system and the two systems are coupled by a
nonlinearity [7]. Hence, the main objective of this study is the behaviour of a cable coupled with a NES. We will locally
modelise the cable with a linear beam with elastic boundary conditions in displacement and rotation. We conduct an
analytical study of the system at different time scales. Complexification method of Manevitch [8] is used to understand
the asymptotic behaviour of the system. We will validate the analytical results by comparison with the numerical solution
obtained from the finite element method (FEM) Code_Aster.

Linear beam with elastic boundary conditions coupled to a NES
We consider the system of a beam with elastic boundary conditions coupled with a nonlinear oscillator. We can see on
figure 1a the boundary conditions in translation k0, kL and rotation kR0, kRL. The nonlinear oscillator is coupled to the
beam at the distance ln from the extreme left part of the beam. One can see on figure 1b the restoring forcing function of
the non-smooth NES. Only one modal coordinate of the beam wil be taken into account, for instance the coordinate of the
first mode. The system is under external sinusoidal excitations F1(t), F2(t). We will consider the vertical displacement
of the beam v(x, t) and the vertical displacement of the oscillator u(t). The effects of gravity are neglected.
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Figure 1: a) Linear beam with elastic boundary conditions coupled to a NES; b) non-smooth NES restoring forcing
function.

The system behaviour around a 1:1 resonance is studied. We project the governing equations of the system on the first
mode. The variables of Manevitch are introduced to study the enveloppe response of the system [8]. Different time scales
are introduced and the system behaviour at each time scale is detected. By studying the dynamics at fast time scale we
obtain the slow invariant manifold (SIM) [9]. One can see on figure 2 the SIM curve for cubic and non-smooth NES.
Then, we study the dynamics at a slow time scale and we obtain the equilibrium points depending on the excitation
parameters namely, frequency and the amplitude [10]. On figure 3 one can see the equilibrium point depending on σ the
normalised excitation frequency.
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Figure 2: The SIM of the system for a) cubic NES; b) non-smooth NES, N1 and N2 stand for energies related to the mode
and the NES, respectively.
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Figure 3: Equilibrium points in three dimensions (N2,σ,N1) for a) cubic NES; b) non-smooth NES, σ is the detuning
parameter from studying the behaviour around a 1:1 resonance.

Finally, we can validate our theorical results with numerical integration with RK4 method and compare with FEM solution
obtained with Code_Aster. The FEM enables to detect system response for a given σ and to compare its enveloppe with
the analytical prediction. The developpements provide design tools for tuning parameters of the NES.
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Theoretical description of thermal transient grating experiment: dynamical and kinetic
approaches.

Aleksei Sokolov∗, Bogdan S. Borisenkov†, Wolfgang H. Müller∗, and Anton M. Krivtsov †
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Summary. Thermal grating technique is a promising method for direct measurement of transient anomalous heat conduction. This
work analyses approaches for theoretical description of this experiment. Kinetic and dynamical approaches to problem of initial
sinusoidal perturbation are found to be handful. Behavior of amplitude decay calculated from these models plays a role of a signature
of heat conduction regime. Decay of amplitude is analyzed using analytical, and molecular dynamics approaches. A comparison with
available literature is presented.
Experimental studies confirm that in in ultrapure materials heat can propagate ballistically (non-diffusively), which leads
to the phenomenon of thermal superconductivity [1, 2, 3, 4] . This fact opens up broad perspectives for the practical
applications of ultrapure crystals for design of new materials with unique properties and devices constructed with use of
these materials [4].
The difficulty in study of ballistic thermal processes in real materials lies in the fact that it occurs at very high speeds
(speed of sound in crystals, e.g.,> 10 km/s for graphene [5]). Moreover, since the process is fundamentally different from
Fourier’s law, it lacks the thermal conductivity coefficient as a material parameter. However, even when the Fourier’s law
does not hold, in an experimental setting and molecular dynamic simulations when a steady non-equilibrium temperature
gradient is applied to the specimen, it turns out that it is convenient to use the mathematical formulation of Fourier’s
law and to observe the size dependence of thermal conductivity as a signature of anomalous regimes [6, 7, 8, 9]. Thus,
experimental methods, which have now already become a standard, have been developed to determine the thermal con-
ductivity coefficient from Fourier’s law [10]. These methods, however, cannot describe transient processes. A promising
alternative of steady methods is the thermal grating technique which is a direct measurement of transient anomalous heat
conduction [11].
In this work we focus on the theoretical description of transient thermal grating experiment [11]. In this experiment a
sinusoidal periodic temperature excitation is created on a surface of the sample. Thus, a two dimensional heat transport
occurs. Since the sinusoidal initial profile is excited along one axis, the heat transport remains quasi one dimensional. Let
us consider initial temperature distribution as a periodic harmonic function along the spatial coordinate x.

T (x, 0) = eiqx, (1)

where q = 2π
L is a wavenumber, L is the period of initial excitation. Let us assume that the evolution of this excitation

remains periodic in space and has the form
T (x, t) = A1(t)e

iqx, (2)

where A1(t) is the amplitude which depends on time t.
The solution for function A(t) can be found using different approaches and methods. Let us first consider the model
where the heat transport is modeled using the particles – heat carriers which are called phonons [12]. Probability density
function f(x, y, t, u, v) describing distribution of these particles is goverened by the Boltzmann transport equation

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
= f scat, (3)

where f scat is the function describing scattering between the particles. Let us for simplicity first consider the case when
f scat = 0, i.e., when the particles propagate without scaterring – ballistically. In the one dimensional case the equation
then takes the form

∂f

∂t
+ u

∂f

∂x
= 0, (4)

and f is not deendent of y: f = f(x, t, u, v). Let us consider isotropic “grey” medium, i.e., medium where all the particles
propagate in all directions with the same absolute velocity. Let us suppose that the distribution function corresponds to
Eqs. (1), (2) and has the form

f(x, 0, u, v) = f0(u, v)eiqx, f(x, t, u, v) = A2(t)f
0(u, v)eiqx. (5)

Substitution of this anzatz (5) into (4) yeilds a linear diferential equation for A2

∂A2

∂t
+ iquA2 = 0, (6)

and solving the this equation yeilds
A2(t) = e−iqut. (7)
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Thus the solution for f has the form f(x, u, v, t) = f0(u, v)e
i(qx−qut). Initial distribution over velocities for a case of

grey medium, i.e., all the particles has constant absolute velocities and uniformly distributed random directions, may be
written in the form

f0(u, v) =
1

π
δ(u2 + v2 − c2), (8)

where c is the absolute velocity of particles, and the factor 1/π arises from normalizing condition
∫ ∫

f0(u, v)dudv = 1.
Density of particles given in a chosen point of space in time ρ(x, t) is found by integration over all velocities

ρ(x, t) =
1

π

∫ ∞

−∞

∫ ∞

−∞
δ(u2 + v2 − c2)ei(qx−qut)dudv. (9)

We are interested in the decay of the amplitude and not in the spatial dependency eiqx. From (9) it is seen that amplitude
is described by

A3(t) =
1

π

∫ ∞

−∞

∫ ∞

−∞
δ(u2 + v2 − c2)e−iqutdudv. (10)

Change of variables to the polar coordinates in integration in (10) u = r sin θ, v = r cos θ, dudv = rdrdθ yeilds

A3(t) =
1

π

∫ 2π

0

∫ ∞

0

δ(r2 − c2)e−iqrt cos θrdrdθ = 1

2π

∫ 2π

0

e−iqct cos θdθ = J0(cqt), (11)

where J0 is a Bessel function of the first kind. Molecular dynamical simulation performed to check analytical prediction,
Eq. (11). Simulation results confirm analytical predictions.
We would like to note that Bessel function has a power decay of amplitude ∼ 1/

√
(t), thus, obtained result contradicts

with results obtained from the dynamical approach in [13] and solution of BTE from the kinetic approach [14]. The study
of this discrepancy is a direction for further research.
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Summary.  
The piezoelectric bimorph (PZT) was adopted as an energy harvester for a newly underwater application basing on the combination of 
piezoelectricity and flow induced vibration. The shape of piezoelectric energy harvester was optimized through the theoretical simulation 
code, ANSYS. Then, the energy harvesters with seven different types of tail fins were tested in flow field experiments with a large hydraulic 
recirculating flume from 0.6 to 5.37 m/sec. We discover there are two main regions of oscillating frequencies for PZT and the spectrum 
modes depend on three swing modes for this underwater energy harvester. The amount of power generation does not only positively correlate 
with the increase of flow rate, but also depend on the oscillating frequencies of PZT. When it produces an obvious and unique oscillating 
frequency, there is a larger amount of power it can get. 

Abstract 

Piezoelectric Materials are recently adopted as energy harvesters besides sensors or switches. Especially there is recently 
a new energy harvesting concept proposed to convert hydraulic kinetic energy into useable electrical energy with 
piezoelectric bimorph. This concept is based on the combination of piezoelectricity and flow induced vibration. In the 
research, we propose an innovative fixation method, hyperplastic adhesive, resolved fracture and waterproof for 
piezoelectric component (PZT-brass-PZT). And we also conduct a thorough theoretical simulation and a full-scale flow 
field experiments to optimize the energy harvester and analyze the relevance between power generation and oscillating 
frequencies of piezoelectric energy harvester from hydraulic flow rate 0.6 to 5.37 m/sec.  
The designed energy harvester includes three structures, the bluff body, the piezoelectric material and the tail fin. A three-
dimensional simulation code, ANSYS, based on the finite element numerical calculation was used to simulate dynamic 
state of fluid field through the bluff body with/without a tail fin to identify the optimal shape to be “the triangle prism 
with a tail fin” (Figure 1). 
Then, the energy harvesters with seven different types of tail fins were tested in flow field experiments with a large 
hydraulic recirculating flume (Figure 2). A giant venturi tube was customized to increases the hydraulic flow rate 9 folds 
from 0.6 to 5.37 m/sec which was the highest record in Taiwan on piezoelectric energy harvesting researches. In addition, 
a customized micro-power rectifier and counter module was applied to accurately evaluate on the electromechanical 
transferring energy.  
From the flow field experiments, based on fluid characteristic the hydraulic flow rate 0.6 to 5.37 m/sec can be separated 
into three regions - Low Flow Rate Region(below 3.1m/sec), Transition Region(3.1 ~ 4.2m/sec) and High Flow Rate 
Region(above 4.2m/sec). We discover there are two main regions of oscillating frequencies for PZT and the spectrum 
modes depend on three swing modes. The ratio of magnitude under the two frequency regions changes with flow rate 
(Figure 3). This means, the energy harvester can measure the real-time flow rate by PZT plate oscillating frequencies. 
Another discovery is that the amount of power generation does not only positively correlate with the increase of flow rate, 
but also depend on the oscillating frequencies of PZT. When it produces an obvious and unique oscillating frequency, 
there is a larger amount of power it can get (Figure 4). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. How bluff body shapes change the dynamic analysis of the flow field. 
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Figure 2. Flow field experimental equipment (a) Giant venturi tube, (b) Recirculating flume with giant venture 
 
 

 
Figure 3. Oscillating frequencies in various flow rates with different system models. (a)Swing oscillation frequencies in Low Flow 
Rate Region. The smooth flow field produces an obvious and unique oscillating frequency. (b)Swing oscillation frequencies in 
Transition Region. The flow field starts to produce voids, it becomes unstable and complicated, and the oscillation frequency range 
becomes more irregular. (c)Swing oscillation frequencies in High Flow Rate Region. There are slug voids. The oscillating frequency 
resembles that of the low flow rate region, but the range in oscillation frequency from 4 - 15 Hz is significantly larger. 

 

 
 
 
 

Figure 4. Comparison of power generation with different tail fin structure designs. 
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Influence of gear topology discontinuities on the nonlinear dynamic response of a gear
train subjected to multiharmonic parametric excitation
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Summary. This work investigates the influence of holed gear blanks on the nonlinear dynamic behaviour of a flexible gear train. The
system is excited by a multiharmonic internal excitation, namely a time-varying mesh stiffness and the static transmission error. This
presentation will summarise the numerical procedure that has been developed to study such systems. A reference configuration without
holes is used to give insight into the underlying dynamics and to highlight the effects of holed gear blanks. A thorough parametric
study then addresses the robustness of the forced response curves and bifurcation structure to changes in gear blank topology.

Introduction

Weight reduction is a recurring concern in the design of modern mechanical systems. One of the most widespread solution
to design lightweight gears is to resort to adding holes in the gear blanks. An accurate prediction of the dynamic behaviour
of gears remains challenging due to the functional backlash, necessary to allow for assembly and operation, which can
lead to contact loss and a strongly nonlinear response [1]. We herein propose an algorithm based on the harmonic balance
method to investigate the dynamics of such systems. The proposed approach is able to take into account the internal
excitation associated to geared systems. This excitation consists of the static transmission error (STE), whose origin lies
in the teeth deflection under load, manufacturing defects and potential tooth profile modifications, and the time-varying
mesh stiffness expressed as the derivative of the transmitted load relative to the STE [2].

Dynamic model

The proposed dynamic model [3] considers a reverse spur gear pair (same number of teeth on the input and ouput gears)
modelled as lumped inertias and masses denoted I1 and m1 for the input gear and I2 and m2 for the output gear. Because
both gears have the same number of teeth the shafts rotate at a fundamental frequency Ω. The shafts are modelled by
torsional stiffnesses K1 and K2 and are supported by bearings of stiffness Kb. The input and ouput are modelled by two
lumped inertias Iin and Iout, respectively. The gears are connected by a nonlinear element consisting of a time-varying
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Figure 1: Dynamic model of the flexible transmission considered in this study.

piecewise linear stiffness. It includes the backlash 2b and the static transmission error as a gap function g(t) :

fnl(q) = Gkm(t)
(

GTq− g(t)
)
H
(

GTq− g(t)
)
+ Gkm(t)

(
GTq + g(t)

)
H
(
−GTq− g(t)

)
(1)

Here,H is the Heaviside step function and G is a 6× 1 column vector allowing for the projection of the displacements in
the global reference frame on the line of action. The gap function g(t) is expressed as

g(t) = b+ qs(t)−
Fs

km(t)
(2)

where qs(t) is the static transmission error, km(t) the mesh stiffness and Fs corresponds to the transmitted load. There
exists a number of methods to compute the static transmission error. However this work considers gears with holes which
warrants the use of a multibody analysis.
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Numerical methods

Due to the functional backlash, the equations of motions of the above described systems are strongly nonlinear. The
harmonic balance offers an efficient framework to compute the nonlinear response in the frequency domain. The equation
of motion takes the general form

[M] q̈ + [C] q̇ + [K] q + fnl(q, q̇) = fex (3)

where q contains the generalised displacement of each DoF and [M], [C], [K] are respectively the mass, damping and
stiffness matrices. fex is the vector of external periodic forcing and fnl the vector of nonlinear forces, i.e. the mesh force
caused by contact, or lack thereof, between gear teeth. The terms in equation (3) are thus expanded as truncated Fourier
series. More specifically, the generalised displacements are expressed as

q ≈
H∑

k=0

akcos(kΩt) + bksin(kΩt) = [T⊗ [In]]q̃ (4)

where T contains the harmonic base functions up to the truncation order H , ⊗ is the Kronecker tensor product, [In] the
identity matrix of size n and q̃ is the vector in which the Fourier coefficients are stored. The nonlinear forces are treated by
the well-known alternating frequency/time procedure [4]. An arc-length continuation method is coupled with the HBM to
build the frequency response curves. Hill’s method [5] is used to assess the stability of the computed points and a number
of test functions are defined to locate smooth [6, 7] and grazing bifurcations.

Numerical example

200 400 600 800 1000 1200 1400

 - [rad.s
-1

]

0

2

4

6

D
T

E
R

M
S
 -

 [
m

]

10
-6

SN bifurcation

NS bifurcation

Grazing bifurcation

(a)

200 400 600 800 1000 1200 1400

Angular frequency - [rad.s-1]

Reference

6R30

8R27

8R30

8R34

10R34

(b)

Figure 2: Forced response curve (a) and grazing bifurcation diagram (b). Dashed lines indicate unstable regions and solid
lines indicate stable regions. Saddle-node, Neimark-Sacker and grazing bifurcations are represented with circle, triangle
and diamond markers, respectively.

Conclusion

A numerical methodology has been developed to study the influence of gear topology discontinuities on the dynamics
of geared systems. Results show that holes have a beneficial effect in curtailing the frequency range where the system
exhibits vibro-impacts, both at low and high torques.
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Experimental investigation of Circular Cylindrical Shell with non newtonian fluid 
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Summary. In the presented study the nonlinear vibrations of a fluid-filled circular cylindrical shell under base excitation is investigated. A 

PET thin shell with an aluminium top mass is harmonically excited through an electrodynamic shaker in the neighbourhood of the natural 
frequency of the first axisymmetric mode. The dilatant fluid is composed of a cornstarch-water mixture with 60% cornstarch and 40% water  
of total weight. The preliminary results show a strong non-linear response due to the coupling between the fluid and structure and the shaker-
structure interaction that leads to a very interesting dynamic response of the system. 

Introduction 

The behaviour of thin-walled structure dynamics is always of high attention from the scientific community due to the 

extensive number of applications that can be found in engineering from macro to nanoscales (propellant tanks, micro-
electro-mechanical systems, nanotubes, etc.). 

In literature, it is possible to find several references where the response of thin-walled structures subjected to external 

forcing has been analyzed in presence of fluid-structure interaction [1-3], extreme temperature conditions [4-5] or 

interaction with electrodynamic shakers [6]. With the purpose of analyzing the response of the shell in presence of 

multiple interactions, an experimental study on the nonlinear vibrations of a fluid-filled cylindrical shell carrying a top 

mass has been carried out: the test setup is described, and preliminary results of the bifurcation analysis are presented. 

Experimental setup and tests procedure 

The specimen is a polymeric circular cylindrical shell, see Figure 1: an aluminum cylindrical mass is glued on the shell 

top edge; conversely, the bottom edge of the shell is clamped to a shaking table. 
The following sensors have been adopted: three triaxial accelerometers placed on the top mass at 120°, a monoaxial 

accelerometer at the base of the shell, a laser vibrometer to measure the lateral velocity on the mid-height of the shell. 

The test article has been excited in the axial direction through a harmonic load, with a step-sweep controlled output, the 

voltage signal sent to the shaker amplifier is closed-loop controlled; to avoid interaction between the control system and 

the specimen under study, no controls have been used for controlling the shaker base motion. 

The harmonic forcing load consists of a stepped-sine sweep of frequency band 100-500 Hz with a step of 2.5 Hz. All the 

tests have been performed with the shell full filled with quiescent fluid. 

 
Figure 1: fluid-filled polymeric circular cylindrical shell with a top mass 

Preliminary results 

In this section, a short overview of the preliminary results, obtained from the postprocessing of the experimental data, is 

shown. In figure 2 the amplitude frequency diagrams shown a transfer of energy to the lateral motion at increasing of the 

excitation. The bifurcation diagram of the radial velocity (figure 3a) and top acceleration (figure 3 b) of the downwards 

test at 0.48 Volt and the bifurcation diagram of the radial velocity (figure 3c) of the upwards test at 0.34 Volt shows 

clearly that the dynamic scenario of the shell is strongly nonlinear.  

 

(a) 

 

(b) 

 

(c) 

 
Figure 2: amplitude frequency diagram of (a) base acceleration (b) top acceleration (c)lateral velocity 
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This remark is confirmed by the Poincaré maps of the vertical acceleration of the top mass and the radial velocity of the 

shell: a 4-period subharmonic (Figure 3d) to chaotic states at 250Hz(Figure 3e) confirmed by the time history of the 

velocity (figure 3f) , and in the case of upwards at 0.34 Volt a period-doubling with amplitude modulation at 292.5 Hz: 

Poincarè maps (figure 3g) and spectrum of lateral velocity normalized respect to the forcing frequency at 292.5Hz (figure 

3h) has been observed in the experimental analysis. 

 

 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f)  

 
(g) 

 

(h) 

 
 

Figure 3: Bifurcation diagram and Poincaré maps of the fluid-filled shell response: experimental bifurcation diagram of the lateral 
velocity (a), top mass acceleration in axial direction (b) downwards 0.48V and lateral velocity upwards case at 0.34 V(c) , 4-period 

subharmonic response (d), chaotic motion: Poincaré maps(e) and time history (f), period-doubling with amplitude modulation: 
Poincarè maps (g) and spectrum of lateral velocity (h) 
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Reconfigurable Feedback Control of a Flexible Structure with a Nonstationary
Backlash via a Digital-Twin Framework

Yoav Vered∗ and Stephen J. Elliott ∗

∗Institute of Sound and Vibration Research, University of Southampton, Southampton, United
Kingdom

Summary. The following work portrays a method to adaptively reconfigure a nonlinear controller to ensure the asymptotical stability
of a position control mechanism that exhibits nonlinear and nonstationary backlash. The presented approach utilises a remote-based
digital twin to perform the reconfiguration. Thus, the digital controller can be implemented locally using simple hardware. At the
same time, the reconfiguration process takes place on a remote server that uses the acquired signal and dynamical models to perform
simulations and calculations at a high rate. The proposed approach is demonstrated based on a numerical simulation of a three degrees-
of-freedom structure coupled to an electrical DC motor via a lead screw. The lead screw exhibit backlashes whose characteristic width
grows during the normal operation of the mechanism. Such system loses their closed-loop stability when the backlash becomes large.
A nonlinear dead zone is used to restabilise the closed-loop system. The dead zone parameter is tuned based on a digital twin to ensure
the closed-loop asymptotical stability and to avoid over-conservative design. Finally, the successful use of the proposed methodology
is presented based on the simulation results.

Introduction

When a feedback-controlled mechanical system characteristic changes over time, the original design of the controller can
lead to instabilities [1]. Wear and tear lead to such changes by introducing, for example, a nonlinear backlash. Although
backlash is present in most mechanical position control systems [2], its effect on the linear feedback law is frequently
neglected. However, even when the backlash is considered when formulating the identification and control problem
[2, 3], its characteristics are usually modelled as a time-invariant. However, these time-invariant models are not applicable
when wear and tear processes occur [4], in which case the characteristics of the backlash change over time.
To account for the time dependence of the backlash, an adaptive controller [3] can be used. However, the downside of
doing so is that the controller’s structure is complex, and its implementation is not straightforward. Therefore, in this
work, a PID controller [5] is considered, with the addition of a dead zone to overcome the limit cycles introduced by
the backlash and maintain minimal control effort minimal in the backlash gap [3]. The dead zone parameter is estimated
asynchronously using a remotely-based digital twin [6] to monitor the changing backlash.
The core purpose of the digital twin is to create a fusion between physical and data-based models. Most research on
digital twins is concerned with utilising them for decision-making and structural health monitoring, with only a few
remarks on the use of digital twins in control, using classical ideas like controller scheduling [7]. This is in contrast to
the past developments in digital signal processing, which have led to a more profound understanding of advanced control
methodologies [8, 9]. Therefore, this work tries to pave the way and demonstrate the capabilities of incorporating digital
twins into system control by employing the digital twin as an asynchronous estimator, resulting in a simple structure of
the digital controller. This idea is not, by any means, a demonstration of the full capabilities of digital twins but only acts
as a stepping stone towards a fuller understanding of digital twins’ potential use in feedback control.

Control problem formulation

PID Feedback controllers are widely used for position control of flexible structures [5]. The schematics of a position
controller of a flexible mechanism are presented in Figure 1(a). The mechanism is composed of 3 lumped masses con-

Figure 1: The position control system models. (a) – Schematic of the feedback position control. (b) – Lumped elements model.
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nected via flexible beams. An electrical motor that is connected via a lead screw to the bottom mass is used to drive the
system. The system’s lumped model shown in Figure 1(b) is used for the numerical simulation. In the lumped model of
Figure 1(b), L and R denote the electrical motor’s inductance and resistance, respectively, J its lumped inertia, kB and
kT are the torque and back-emf motor’s constants, θm the angular position, and ωm the angular velocity.
The motor is connected to the lower mass via a lead screw, whose angle is denoted as θd, and its end position, d, is related
to its angular position via

d = pθd, (1)

where p denotes the lead screw’s pitch. The lead screw elasticity is modelled using a linear spring kd, which in the
following simulation is assumed to be infinitely rigid. m, k, and c denote the lumped mass of each platform and the
connecting beams’ elasticity and dissipation, which are assumed to be linear. Finally, qi i = 1, 2, 3, denote the horizontal
position of each platform. The physical values used throughout the paper are given in Table 1.

Table 1: Physical properties and values used in the numerical simulation of the three DOF with the DC electrical motor

Symbol Value, units Symbol Value, units Symbol Value, units

m 5.2, kg J 5 · 10−6, kg ·m2 p 10−3/2π, m/rad
k 104, N/m L 10−3, H kT 0.8, (N·m)/A
c 36.9, N/(m·s) R 12, Ohm kB 0.1, V/(m/s)

Linear models and controller
Assuming that the inertial loading of the structure is negligible compared to the motor’s torque, a single direction cou-
pling model can be used to represent the motor and platform dynamics. The motor’s input-output relation under these
assumptions can be written as

θm =
1

s

kT
JLs2 + JRs+ kBkT

u, (2)

where u denotes the input voltage to the motor. The top platform and the lead screw positions are related via:

q3 =
c2s2 + 2cks+ k2

m2s4 + 3cms3 + (c2 + 3km)s2 + 2cks+ k2
d. (3)

When the lead screw backlash is neglected, i.e., θd = θm, the static relation of Eq. (1) can be used to couple the two
systems’ dynamics.
To control the motion and position of the top platform such that it follows a stepwise constant reference signal, r, a
feedback PID controller of the following form

CPID(s) = Kp +Ki
1

s
+Kd

s

Tfs+ 1
, (4)

is introduced, where Kp, Ki, and Kd are the proportional, integral, and differential gains, respectively, and Tf is the
differential filter time constant. Such that the motor’s input voltage u is obtained from the tracking error e = r − q3 as

u = CPID(s)e. (5)

The PID was designed to achieve a zero steady-state error, a bandwidth frequency of 10 rad/s, and a minimum phase
margin of 10 deg.

Nonlinear backlash model
Since the positioning mechanism is based on a lead screw, it might exhibit backlash in practice, mainly as it wears. A
simple model for backlash, which is a nonlinear dynamic element, is by introducing a dynamic dead zone of known width
whenever the velocity changes sign [3].
The following nonlinear model can be used to relate the motor and lead screw angular velocities:

ωd =

{
ωm (sign(ωm) > 0 and θm − θd ≥ θb/2) or (sign(ωm) < 0 and θm − θd ≤ −θb/2)
0 Otherwise

, (6)

where θb denotes the backlash gap angle.
A time-invariant backlash model, with a constant backlash gap angle θb, is readily available with many simulation soft-
ware. However, since the backlash gap angle is time-varying here, a separate procedure for the state transition was used,
based on the model of Eq. (6). To illustrate its response, Figure 2 shows the output of the backlash model for a gap angle
of θb = 40 degrees, and for an amplitude changing sinusoidal input of the following form:

θm(t) = (1 + t/10) sin(2πt).
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Figure 2: Simulation results for the backlash model for an amplitude-modulated sinusoidal input.

Figure 3: Simulation results for the linear controller with a nonstationary backlash.

The lost motion between θm and θd can be seen in Figure 2(a), which shows their two waveforms, whereas the nonlinear
characteristics of the backlash are more transparent in Figure 2(b), which plot one against the other.
The simulation results of the feedback position control mechanism with a predetermine backlash’s gap angle profile are
shown in Figure 3. When the width is small, the position control is applied successfully to the system, and the top mass
position does converge to the required reference position. However, a limit cycle is observed when the width becomes
more significant, and the system can no longer be considered asymptotically stable.

Switched dead zone controller
A dead zone of a prechosen width is incorporated into the controller to capture and maintain the backlash’s effect and
restabilise the system [3]. The controller input-output relation can now be read as:

udz =

{
CPID(s)edz |e| > εdz
0 Otherwise

, (7)

where

edz =

{
e |e| > εdz
0 Otherwise

, (8)

and the dead zone tolerance, εdz , is given by:

εdz = pθ̂b, (9)

θ̂b being the backlash gap angle estimation.
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Figure 4: Simulation results for the dead zone controller with a nonstationary backlash and a constant backlash gap angle estimation.

If the controller’s dead zone width is tuned too conservatively, i.e., θ̂b is chosen large, a significant bias is introduced
between the required and actual position. Moreover, no force is applied to the structure inside the dead zone, and its
response decays similarly to its initial condition response. Thus, the desired damping levels of the designed controller are
lost, and the settling time can become significantly longer.
A second simulation was carried out using the same backlash’s width profile with the dead zone switched controller. In
the simulation, the backlash gap angle estimator was chosen as the mean value, i.e., θ̂b = 10 deg. The simulation’s results
are shown in Figure 4. It is clear that the system again loses stability when the real backlash’s gap angle is significantly
larger than the modelled one. Moreover, when the actual backlash’s gap angle is smaller, the settling time does get longer
as anticipated. An estimation of the backlash is proposed to ensure the closed-loop stability and reduce the amount of
conservative used for choosing the dead zone width. The backlash’s gap angle estimation is done via a remote digital twin
to avoid overflowing the controller and to enable, in the future, the use of more sophisticated estimation and designing
methods.

Digital twin reconfigurable controller

Figure 5: Schematics of the digital twin based reconfigurable controller.

The digital twin is a modern concept in engineering. At its core, the digital twin aims to create a fusion between meaning-
ful physical models of a system, combined with measured data collected from different sensors throughout the physical
system’s operation [6]. The digital twin as a concept has so far been used during several stages of a product’s life-cycle:
designing, manufacturing, and condition monitoring. However, the use of a digital twin is not as common in control
theory [7], specifically motion control. Although many systems for which digital twins are considered, like wind turbines
and aircraft [6], depend on motion controllers for their smooth operation. The idea put forward in this work is to use a
simple model of a digit twin to monitor the backlash’s width and reconfigure the dead zone feedback controller. The block
diagram of Figure 5 represents the physical system (physical twin and feedback controller) on the left-hand side and the
simulated system (digital twin and controller design) on the right-hand side. The main difference between the use of a
digital twin framework and adaptive control [1, 8], is the asynchronous nature of the communication and the ability to
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use highly detailed simulations. Therefore, ensuring that the digital feedback controller will operate properly, where the
states’ and controller’s estimation and reconfiguration occur on a remote server.

Backlash gap angle estimation
It is assumed that the control signal, u, and the top platform position, q3, are measured and are sent to the digital twin
asynchronous. After each data transmission, the digital twin can be used to simulate the internal signals of the feedback
system. It is desired to estimate both the output and input of the backlash and compare them to estimate the backlash
angle. The input of the backlash, the motor’s angle, is estimated using the measured control signal, which is fed to the
discretised dynamical model of Eq. (2), assuming a zero-order hold and an ideal sampler. The output of the backlash,
the lead screw’s angle, is estimated using the measured top platform position and a digital-based delayed inverse of the
dynamical model of Eq. (3). An impulse invariant discretisation algorithm is used [9] to ensure that the sampled system
remains minimum phase, up to the addition of zeros at the origin. Then the inverse filter of the sampled system can be
calculated. A discrete modelling delay of N samples is added to the sampled system inverse filter to ensure causality. The
minimal value of N required for causality is equal to the pole excess of the sampled system. Since N step delay is added
to the backlash output, a similar delay is added to the digital-sampled motor’s dynamics. The estimators of the motor and
lead screw’s angles, θ̂m and θ̂d, are thus the output of the following two sampled time linear systems:

θ̂m = z−N Ĝ1(z)u, (10)

θ̂d = z−N Ĝ−1
2 (z)y, (11)

where Ĝ1(z) and Ĝ2(z) are the discretised dynamical model of Eq. (2) and Eq. (3), respectively.
To estimate the backlash angle, θb, the difference between the angles is calculated. It follows from the backlash definition
that if ωd ̸= 0, then θm − θd = ∆θ±, where the plus or minus are chosen based on the sign of ωm. Therefore, it follows
that

θb = ∆θ+ −∆θ−, (12)

Equation (12) is accurate up to measurement and estimation errors. Therefore, a threshold is used for the lead screw’s
angular velocity criteria to overcome these errors. In addition, based on the previous simulation of Figure 4, it seems
safer to use a slight overestimation of the backlash gap angle. Consequently, the estimated values which correspond to the
angular velocity threshold are rounded up to the nearest scaled-integer degree, and the mean is taken as the estimator. If
degree units are used, then the estimator is:

θ̂b =
1

N∆θ+

∑

ts∈t+
⌈∆θ+⌉l/2 −

1

N∆θ−

∑

ts∈t−

⌊∆θ−⌋l/2, (13)

where t+ represents the sampling times when ωd ̸= 0 and ωm > 0, similarly, t− represents the sampling times when
ωd ̸= 0 and ωm < 0, N∆θ+ and N∆θ− denote the number of elements in each time subset, and the ceil l and floor l
operators are defined as:

⌈x⌉l := l · ceil(x/l) , ⌊x⌋l := l · floor(x/l). (14)

Figure 6: Post-processing identification of the time-varying backlash angle.
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Figure 7: Simulation results for the digital twin reconfigurable controller with a nonstationary backlash.

To check the estimation algorithm and help tune the angular velocity threshold, the simulation data in Figure 4 was post-
processed. A 5000 Hz sampling frequency was used, the angular velocity threshold was set to εb = 0.1 rad/s, the number
of discrete delays added to the digital sampled inverse system N = 2, and the rounding factor was chosen as l = 1/10.
Figure 6(a) shows the command and output signals, and Figure 6(b) shows the actual and estimated backlash angles
obtained using the proposed estimation algorithm. When the input to the digital sampled inverse system is constant (The
top mass is at rest following a step change), the estimated lead screw’s angle matches the measured one. However, if
the input is not constant, a small phase and gain delay are present. This is due to the dynamics of the inverse filter.
Consequently, the actual and estimated angles differ whenever the lead screw angular velocity is nonzero. However, as
seen in Figure 6(b), the estimation algorithm successfully identifies the backlash angle, even though the two angles differ
slightly. The results of Figure 6 were obtained based on noncausal signal post-processing, so the backlash angle estimation
has no delay. In the following subsection, the real-time use of a digital twin is simulated, including this processing delay,
to include its effects in restabilising the system.

Real-time simulation
A third simulation was carried out based on the block diagram of Figure 5, the dead zone PID controller, and the backlash
estimation method. The backlash gap angle estimator was initialised to be zero. To account for the communication delay
between the physical and digital twin, a 1-second delay was added.
Figure 7 shows the results of the digital twin reconfigurable dead zone controller. Note that unlike the previous simulation
results (Figure 4), the reconfigurable controller now restabilises the nonlinear feedback system at all times. Even though
a bias in the final position of each step is present, the worst bias is under 2% of the required reference amplitude. The
lead screw’s angle estimation procedure yields a sufficiently accurate estimation for stable control, and the delay due to
the data transfer does not significantly affect the estimation and control. These results show that the backlash’s estimation
is accurate and that the closed-loop system remains stable throughout the entire manoeuvre.

Conclusions

This paper puts forward the idea of utilising a digital twin to estimate the nonstationary characteristics of a nonlinear
mechanism and, in turn, reconfigure a feedback controller to stabilise the system. The advantage of using a digital twin
over classical adaptive control is using asynchronous communication and utilising the server’s high computation power.
Doing so ensures that the digital controller will operate without introducing additional delays or overflows. Moreover,
elaborate models can be used for the inverse estimation problems associated with the signal estimation procedure. Finally,
the numerical simulation results are an indication of future possibilities. Mainly, by employing the digital twin, evolved
nonlinear mechanisms characteristic can be identified, and a simulation-based design of a reconfigurable controller.
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Summary. Although not studied extensively, adaptive frequency oscillators (AFOs) could have many useful applications. AFOs
possess the capability of synchronizing their oscillating frequency with their input frequency. Here, the noise-influenced dynamics of
the Hopf Adaptive Frequency Oscillator (HAFO) are analyzed in a probabilistic manner. By adding a stochastic forcing term to the
ordinary differential equations (ODEs), the resulting stochastic differential equations (SDEs) are integrated using the Euler-Maruyama
(EM) method to obtain direct numerical solutions and the probabilistic dynamics of the oscillator. Additionally, a hardware circuit
realization of the HAFO is fabricated, and the experimental results and the simulation results are compared. Efforts are made to
quantify the working capability of the oscillator, which is limited by nonideal electrical components. The influence of noise on the
HAFO circuit will also be investigated and compared with the results obtained through the Euler-Maruyama simulations.

Hopf Adaptive Frequency Oscillator

The Hopf Adaptive Frequency Oscillator is capable of synchronizing its oscillating frequency to an oscillatory input
signal. The HAFO with the capability of learning the frequency of any rhythmic inputs are widely used for robotic
locomotion control, by using the HAFOs as central pattern generators to tune the walking patterns in a cooperative way
[1, 2]. The HAFO is an augmented form of the Hopf oscillator [3], which has an additional state related to the frequency:

dx
dt = (µ− r2)x− ωy + kF (t)
dy
dt = (µ− r2)y + ωx
dω
dt = −sgn(y)kF (t)

(1)

where r =
√
x2 + y2, k is the amplitude of the deterministic forcing function, µ is a constant related to the limit cycle

amplitude, and F (t) is a sinusoidal forcing function. The first two equations are the typical version of the Hopf oscillator,
while the dω

dt equation allows frequency adaptation. The learning process is embedded into the dynamical system, and
there are not any pre- or post-processing procedures needed to accomplish the frequency synchronization. This behavior
may be observed in Fig. 1.

Figure 1: a) MATLAB simulation and LTspice simulation of eqs. 1. The sinusoidal forcing causes the HAFO to adapt. After the
forcing is set to zero at t = 22 s, the HAFO “remembers” the input frequency. Additionally, the x output from both simulations overlaps
with each other when the frequency adaptation is accomplished. b) MATLAB simulation of eqs. 2 by the Euler-Maruyama method.
The noise amplitude is 10% of the amplitude of the sinusoidal forcing function. With the addition of noise, the frequency adaptation
takes a longer time, but there is no overshoot. The x output from both cases overlaps with each other after the transient response.

Influence of Noise

Previously, the stochastic response of the HAFO was approximated by using a Fokker-Plank formulation [4]. As noise
can change the dynamic stability of nonlinear systems [5, 6], it is important to further explore the effects of noise on the
HAFO. To consider the effects of noise on the HAFO, the sinusoidal function, F (t), is replaced with F̂ (t)+ σ

k Ẇ (t). Here,
F̂ (t) is a sinusoidal function, Ẇ (t) is white Gaussian noise, and σ is the amplitude of the noise. Making this replacement,
the stochastic differential equations are:

dx
dt = (µ− r2)x− ωy + kF̂ (t) + σẆ (t)
dy
dt = (µ− r2)y + ωx
dω
dt = −sgn(y)kF̂ (t)− sgn(y)σẆ (t)

(2)
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This set of SDEs can then be simulated using the Euler-Maruyama method, depicted in Fig. 1.

Circuit Realization

Figure 2: a) The circuit diagram in LTspice. b) A printed circuit board (PCB) of the HAFO.

The circuit design (Fig. 2) was inspired from [7], which presents an electronic implementation of the Lorenz chaotic os-
cillator for radar applications. To make the hardware circuit easier to implement, the original set of equations is modified,
as in [8]:

dx
dt = (µ− r2)x− ωy + kF (t)
dy
dt = (µ− r2)y + ωx
dω
dt = − y√

x2+y2
kF (t)

(3)

The modification of eqs. 1 does not change the frequency adaptation property. However, it does affect the length of the
transient response and the error (the difference between the steady-state frequency of the oscillator and the frequency of
the input signal). In Fig. 3, a comparison between the experimental circuit and the LTspice simulation is shown. Filtering
was performed on the experimental data in MATLAB. Nonideal electronic components cause discrepancies between the
experimental circuit and the simulated circuit. The voltages reported in the figure must be converted to find the frequency
in Hertz.

Conclusions

Figure 3: Comparison between the experiment and
simulation.

AFOs could prove to have useful properties for mechatronics. To gain
better understanding of their dynamics, numerical simulations of the
deterministic and stochastic system are pursued, while a PCB imple-
mentation provides experimental insight. In Fig. 3, the experimental
frequency was recorded with an oscilloscope, and LTspice was used
to simulate the HAFO circuit. The variation between the experimental
results and the numerical results is lower than 5%. The modeling of
the HAFO on the hardware circuit achieved by the PCB is practical and
inexpensive. Further work will be pursued to determine their efficacy
as analog controllers.
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Unified perspectives on nonlinear model reduction 
 
 Tieding Guo*,  Giuseppe Rega **   

*College of Civil and Architecture Engineering, Guangxi University, Nanning, China 
**  Dipartimento di Ingegneria Strutturale e Geotecnica, Sapienza University of Rome, Rome, Italy 

 
 

Summary.  The past decade has witnessed renewed interests to nonlinear model reduction and many differently motivated techniques are 
proposed, including nonlinear normal modes (NNMs), direct multi-scale method (dMSM, full-basis), normal form (NF), sub-spectral 
manifolds (SSMs), quadratic manifolds (QM, using a mode derivative concept), low-order elimination technique (LOE). There is indeed 
demand for unified perspectives on the whole nonlinear model reduction matter, aiming at a better understanding of subtle connections 
among all these reduction methods.  

In this talk, the recent low-order elimination (LOE) technique using a passive pattern concept will be first discussed, and then used to 
outline some unified perspectives on nonlinear model reduction, which are developed based upon two different basic problems, i.e., 
truncation order and truncation degree. The former refers to the common reduced dimension or number of dominant modes, while the 
latter refers to truncation degree of polynomials employed to approximate invariant manifold/transformation/passive pattern.  

An explicit theoretical correspondence among these reduction methods will be detailed, placing in particular NNMs/dMSM/NF/LOE 
within a unified framework in the sense of refined finite mode truncation, which justifies various claims/observations in literature that all 
these refined reduction methods correct the routine/flat Galerkin (say, single-mode) truncated model.  

Another unified perspective is built by focusing on various reduced-order models (ROMs) of general quadratic/cubic nonlinear 
structures, produced by different reduction methods with two-, three-, and four-degree truncations. It turns out that all the truncations 
produce valid and equivalent, but seemingly different, ROMs. Through translating invariant manifolds and nonlinear transformation 
terminology into low-order elimination language using passive patterns, we frame various reduction approaches within the same 
formulation and finally give a unified elucidation of distinct reduction methods in the sense of truncation degree. 

Model truncation issues 

We take a quadratic/cubic nonlinear structure as an archetypical model 

      2 2

2 3
w t L w N w N w        (1) 

with boundary conditions    
0 1

0B w B w  . Here  ,w x t  is the displacement,  L  ,  
2

N  and  
3

N   are the 

structure’s linear, quadratic and cubic spatial operators, respectively. Using single-mode truncation (m-th mode is 
assumed to dominate asymptotic dynamics), we deduce routine Galerkin model for model (1) 

    2 2 3

32 , , , +, ,
m m m m m m m m m m m m

q q N q N q            (2) 

where   2, , ,
i j ij i j i ij

L        , with i and i  being i-th modal frequency and shape. However it is often 

criticized due to completely neglecting non-essential modes ,
l

q l m , which leads to possible error predictions. 

Truncation order problem: refined finite mode truncation  
(1) The NNMs method introduces the following invariant manifolds  

        2 2 2 2, , , , , ,
l l m m m m l l m m m m

q g q q O q q q h q q O q q l m     (3) 

to enslave the non-essential modes ( l m ) to the dominant one, satisfying manifold equations (say, up to second order) 

      2 2 2 2

2
, , ,l l l l

m m m l m m m l l l m m m

m m m m

g g h h
q q h q q g N q

q q q q
     

   
       

   
  (4) 

(2) The full-basis or direct perturbation method designs a ‘ladder-type’ expansion scheme like 

      2 2

0 1 1 1 1
: 0, ,

m m m l m
O D q q O q O q l m      (5) 

      2 2 2 2 2 2

0 2 2 2 1 0 2 2 2 1

2 : , , , , , ,
m m m m m m m l l l l m m m

O D q q N q D q q N q l m               (6) 

to dynamically condense the non-essential modes ( l m ) to the dominant one ,
m m

q q  (satisfying Eq.(6) at O(2)) 

 
   2 2 2 2

2 2

2 2 2 2 2 2 2

, , , ,
,

0 2 2 4 2 2

l m m l m mm m m m

l

l m m l m

N Nq q q q
q l m

     

    
    

  

   
   
   

  (7) 

(3) The (simplified) normal form method introduces the following nonlinear near-identity transformations 

    ˆ ˆ, , , , 1, 2
l l l m m l l l m m

q p G p p q p H p p l       (8) 

to reformulate the original full-basis discretized Galerkin model as 
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2

3

2 2 3

1,

ˆ0 2 , ,

ˆ, , , , , ,
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  (9) 
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satisfying the simplified homological equations (say, up to second order) 

            2

2
ˆˆ ˆ ˆ ˆ0, , , , , , , ,,

T T

Y l m l l l m m m l l l m m Y m m
M Y M N p M G H Y p p p p                 (10) 

(4) The low-order elimination technique [1] designs a new displacement decomposition augmented by passive patterns 

          ,
k k

m m
w x t x q t x P t

 
     (11) 

where  i, m
t

m m
q e

  is the dominant mode and  i, k

k k

t
P e



 
  is the k-th passive pattern produced by low-order 

quadratic source terms, with  0, 2
p m

 , satisfying  

      
 

 2 2

2 0 1

0,2

, , 0
k k k k

k m

k m m m
I L x P t N q B B



 
   

 

                (12) 

        2 2 2 2 2 2

0 2
2 2 , 2 2

m
m m m m m m

P t q q P t q q       (13) 

leading to so-called low-order elimination in the reference model 

    
2

3

2 2 32
0 , , , ,

k k k

k p

m m m m m m m m m
L q N N q p N q

t
     

  
 


       



           
   (14) 

Quite interestingly, the four distinctly motivated reduction methods above are equivalent to each other, and a theoretical 
correspondence can be established [2]. 
Truncation degree problem 
Due to the correspondence/equivalence above, the truncation degree problem in nonlinear model reduction is developed 
in the low-order elimination formulation using passive patterns. We consider full/non-full truncations of degree two 

    0 0 2 2 0 0 2 2
, , ,

m m m m
m m m m

w x t q P P w x t q P P                  (15) 

and also full/non-full truncations of degree three 
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  (16) 

Note non-full truncation means the pattern shape functions 
k


  and ˆ

k


  are incomplete with master components 

being skipped. It turns out that the NNMs method (invariant manifolds) can always be regarded as a non-full truncation 
(thus non-full elimination) technique, while the existing normal form method can be regarded as either a non-full three-
degree truncation, or a full two-degree truncation with further third order simplification. Interestingly, for 
quadratic/cubic structures, all the reduction methods, either degree two or three, full or non-full, lead to equivalent 
third-order ROMs. Furthermore, in degenerate case, a four-degree truncation will be required [3]. 

The two unified perspectives on nonlinear model reduction are further illustrated in Fig.1 and the numerical results are 
obtained by applying the reduction methods above to a nonlinear foundation beam example. 

  
  (a)                                                    (b) 

Fig.1 Unified perspectives and numerical illustrations: (a) truncation order problem [2]; (b) truncation degree problem (degenerate 
dynamics) [3] 
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A General Bayesian Nonlinear Estimation Method Using Resampled Smooth Particle 
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Summary. The state estimation problem for noisy nonlinear systems remains a difficult problem, particularly as the dimension of the 

state space grows large. This presentation will consist of a brief introduction to the problem as a diffusion process and its solution 

employing smooth particle hydrodynamics (SPH) to advance the estimator through the state space in time. Performance comparisons 

between the current algorithm, the particle filter, and the extended Kalman filter for Duffing systems of two and four dimensions will 

be presented. 

Introduction 

The effectiveness of a nonlinear estimator in a noisy environment depends on many factors, one being the accuracy with 

which it can predict the state dynamics of the underlying dynamical system between measurements. It is well known 

that a memoryless nonlinear dynamical system driven by additive and/or multiplicative Gaussian white noise can be 

represented by a system of D nonlinear stochastic differential equations of the Ito form, where D is the number of 

system states. The  Bayesian optimal prior can be obtained by solving the corresponding Fokker-Planck Equation 

(FPE), governing the evolution of the transition probability density function of the system response over the state space 

[1]. The FPE is a degenerate, linear, elliptic-parabolic partial differential equation having D spatial dimensions, plus 

time, on an infinite spatial domain, for t ≥ 0. To date, for the nonstationary (transient) problem, analytical solutions exist 
only for the scalar case, D = 1, the exception being the linear system subject to additive noise for which the analytical 

solution can be found for arbitrary D. Thus, although computational solutions of the nonstationary FPE for nonlinear 

systems of dimension D = 3 have been tractable since the mid-1980s, solution remains problematic for realistic systems 

with D > 3 due to scaling issues caused by the well-known “curse of dimensionality,” and it remains extraordinarily 
difficult and costly to achieve accurate solutions to higher dimensional problems over the entire state space [2,3]. 

This presentation is a summary of our recent work addressing a general nonlinear filter based on solving the 

nonstationary FPE in RD using Smooth Particle Hydrodynamics (SPH) at lower resolution which, for the limited 

number of four-dimensional systems studied, appears to result in reasonably accurate state estimation results. The filter 

is enabled by an efficient heuristic resampling scheme of the SPH solution, also briefly discussed. The resulting FPE-

SPH filter appears able to replicate the accuracy of both the well-known, simulation-based  Particle Filter (PF) and 

linearization-based Extended Kalman Filter (EKF) for lower dimensional systems, while being more robust than the 

EKF, at least for the several higher-dimensional systems examined [4]. 

In the limited time available, a short exposition of the underlying theory will be given, followed by a comparison of 

results obtained for two-dimensional and four-dimensional Duffing oscillators. 

 

Background 

Consider a system of stochastic differential equations of the form  

 ( , ) ( , ) ( )d t dt t d t= +x f x g x W  (1) 

 ( , ) ( )t t= +y h x v   (2) 

where ,
Dx f , N

D Dg , and N
Dw , subjected to zero mean Gaussian white noise that defines a Wiener process 

( )d t t=W w , [ ( )] 0E t =w , 
T

[ ( ) ( )] ( )E t t   + =w w Q . Also, y  is a state measurement process, where 0,
Dy h  

and 0
Dv  is a nonzero mean Gaussian white noise, and [ ( )] 0E t =v , 

T
[ ( ) ( )] ( )E t t   + =v v R . There exists a 

corresponding Fokker-Planck-Kolmogorov equation which defines the evolution in time of the transition probability 

density function of the system states, which takes the form 

 
(1) (2)

1 1 1

1
( ) ( )

2

D D D

i ij

i i ji

dp
D p D p

dt x= = =


= − +


   (3) 

subject to 

  
0

1

0
( )( , 0 | )

D

i i

i

x xp 
=

−=x x  (4) 

where 
(1)

iD  and 
(2)

ijD  are the deviate moments derived from eq. (1). 
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Results and Conclusions 

For systems with simpler dynamics, the FPE-SPH, PF and EKF filters perform very similarly when properly 

parameterized. Differences emerge for systems such as the Duffing where the double-well potential of the PDF can 

result in rapid changes in an individual transient trajectory. In an estimation context sufficient process noise, 

measurement noise, and/or time between update steps can result in extreme EKF divergence. The PF and FPE-SPH 

filters on the other hand are robust against these sudden switches, which can be seen in the single run history below in 

Figure 1 and 25 run NEES in Figure 2.  

 

 
Figure 1: Example 2D Duffing estimated state histories (position, velocity) demonstrating EKF divergence. 

 

 
Figure 2: 2D Duffing NEES (25 Monte-Carlo runs, different initial conditions, common seeds between filters) 

 

Robustness of the FPE-SPH filter extends up to four-state systems where one of the oscillators possesses a Duffing 

term. The system parameters simulated are not severe enough to result in EKF divergence as with the two state Duffing, 

but the results confirm that the FPE-SPH Filter is an accurate estimator in higher dimensional systems. The RMS error 

is shown in Figure 3. 

  
Figure 3: RMS Errors for 4D Nonlinear System, separated by degree of freedom (10 runs) 

 

The FPE-SPH filter can accomplish this with only 5,000 particles using conservative runtime acceleration parameters 

compared to the PF’s 100,000. Improvements to the underlying algorithm to better handle higher dimensional behavior 

and more aggressive parameterization to further prioritize run time might allow for further scaling to tackle systems 

with more than four states. Please refer to the references for information about the algorithms employed. 
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Summary. The mathematical solution of a system of two coupled Duffing oscillators is obtained in closed form by extending to this 2 DOF 
system a technique previously used for 1 DOF systems. A parametric investigation is proposed to illustrate the usefulness of the exact 
solution to detect the main dynamical phenomena, in particular those related to the modal coupling which is the main characteristic of this 
archetypal system.  

Introduction 

A two Degrees of Freedom (DOF) nonlinear oscillator is an archetypal system that allow to detect, in a simple way, the 
modal coupling in nonlinear mechanical systems. It permits focusing on the main phenomena, without unessential 
mathematical developments that sometimes hide the main physical characteristics of interest. Furthermore, it is obtained 
when a two-mode reduced order model of any, even infinite dimensional, system is considered. It is the natural 
evolution of the study of simple 1 DOF archetypal systems, like Duffing, Helmholtz, van der Pool, etc., that have been 
largely studied in the past. 
Although it looks a simple model, it is not yet fully investigated, even if several studies have been devoted to modal 
coupling of different, specific, engineering systems. Furthermore, all previous works used numerical simulations or 
approximated analytical methods, notably the multiple time scale method. 
In this work, which is based on [1] and take advantage from the ideas of [2-4], we consider an exact, closed form, 
solution for a system of two Duffing oscillators, linearly and nonlinearly coupled. This permits a full parametric 
investigation and detection of “all” dynamical outcomes due to coupling. 

Governing equations and solution 

A system of two Duffing linearly and nonlinearly coupled oscillators is governed by the equations 
 𝑀௫ݔሷ + ሶݔ௫ܦ + 𝐾௫ݔ + 𝐾ଷ௫ݔଷ + ሶݔ௫௬ሺܦ − ሶሻݕ + 𝐾௫௬ሺݔ − ሻݕ + 𝐾ଷ௫௬ሺݔ − ሻଷݕ = 𝐺௫ሺ𝑡ሻ, 
 𝑀௬ݕሷ + ሶݕ௬ܦ + 𝐾௬ݕ + 𝐾ଷ௬ݕଷ + ሶݕ௫௬ሺܦ − ሶሻݔ + 𝐾௫௬ሺݕ − ሻݔ + 𝐾ଷ௫௬ሺݕ − ሻଷݔ = 𝐺௬ሺ𝑡ሻ, (1) 
where 𝑀𝑖 are the masses, ܦ𝑖 the damping coefficients, 𝐾𝑖 the linear stiffnesses, 𝐾ଷ𝑖 the nonlinear stiffnesses and 𝐺𝑖ሺ𝑡ሻ 
the external forces. To obtain the closed form solution, the excitations are assumed to be in the form 
 𝐺௫ሺ𝑡ሻ = ሶݔ௫ܦ + ሶݔ௫௬ሺܦ − ሶሻݕ + 𝐾௫௬ሺݔ − ሻݕ + 𝐾ଷ௫௬ሺݔ − ሻଷݕ − ܵ௫ݔ − ܵଷ௫ݔଷ, 
 𝐺௬ሺ𝑡ሻ = ሶݕ௬ܦ + ሶݕ௫௬ሺܦ − ሶሻݔ + 𝐾௫௬ሺݕ − ሻݔ + 𝐾ଷ௫௬ሺݕ − ሻଷݔ − ܵ௬ݕ − ܵଷ௬ݕଷ, (2) 
where ܵ ௫, ܵ ଷ௫, ܵ ௬, ܵ ଷ௬ are parameters that can be chosen freely. Inserting (2) in (1) yields 
ሷݔ  + ሺ𝜔௫ଶ +𝑊௫ሻݔ + ሺ𝑘௫ + ଷݔ௫ሻܥ = Ͳ,    ݕሷ + ሺ𝜔௬ଶ +𝑊௬ሻݕ + ሺ𝑘௬ + ଷݕ௬ሻܥ = Ͳ, (3) 
where 

 𝜔௫ଶ = 𝐾𝑀ೣ,   𝑊௫ = 𝑆𝑀ೣ,   𝑘௫ = 𝐾యೣ𝑀ೣ ௫ܥ   , = 𝑆యೣ𝑀ೣ ,   𝜔௬ଶ = 𝐾𝑀,   𝑊௬ = 𝑆𝑀,   𝑘௬ = 𝐾య𝑀 ௬ܥ   , = 𝑆య𝑀 . (4) 

Equations (3) are two uncoupled Duffing equations, for which the closed form solutions are  
ሺ𝑡ሻݔ  = 𝐴௫ܿ𝑛ሺܽ௫𝑡, ܾ௫ሻ,   ݕሺ𝑡ሻ = 𝐴௬ܿ𝑛ሺܽ௬𝑡, ܾ௬ሻ, (5) 
where 

 ܽ௫ଶ = ሺ𝜔௫ଶ +𝑊௫ሻ + ሺ𝑘௫ + ௫ሻ𝐴௫ଶ,   ܾ௫ଶܥ = ሺ𝑘ೣ+𝐶ೣሻ𝐴మೣଶమೣ , 

 ܽ௬ଶ = ሺ𝜔௬ଶ +𝑊௬ሻ + ሺ𝑘௬ + ௬ሻ𝐴௬ଶܥ ,   ܾ௬ଶ = ሺ𝑘௬ೣ+𝐶ሻ𝐴మଶమ . (6) 

and where “cn” is the Jacobian elliptic function. ݔሺ𝑡ሻ and ݕሺ𝑡ሻ are periodic with period 

 ௫ܶ = ସ𝐾ሺೣሻೣ ,   ௬ܶ = ସ𝐾ሺሻ . (7) 

The solutions of interest are those for which ௫ܶ = ௬ܶሺ= ܶሻ, i.e. both ݔሺ𝑡ሻ and ݕሺ𝑡ሻ oscillate with the same period (but 
not with the same amplitudes 𝐴௫ and 𝐴௬). Actually, this is an equation linking 𝐴௫ and 𝐴௬ (e.g. 𝐴௬ሺ𝐴௫ሻ), once all the 
other parameters are known. Then, from (7) one gets the period of the excitation ௫ܶ = ܶሺ𝐴௫ሻ and ܶ ௬ = ܶሺ𝐴௬ሻ. Inverting 
these expressions one obtains the frequency response curves 𝐴௫ሺܶሻ and 𝐴௬ሺܶሻ. Further details, including how to 
determine its stability, can be found in [1]. 
An advantage of the proposed method is that it is possible to use the free parameters ܵ௫, ܵଷ௫, ܵ௬, ܵଷ௬ to shape the 
excitation and to have it as close as possible to a desired target, still keeping the closed form expressions for the 
nonlinear oscillations. 

An example 

To shortly illustrate the previous findings we consider 
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 𝜔௫ = ʹ.ͷ,   𝑊௫ = −Ͷ.ͷ,   𝑘௫ = ௫ܥ   ,ʹ = Ͳ,   𝜔௬ = ʹ.ͷ,   𝑊௬ = Ͳ,   𝑘௬ = −ͳ,   ܥ௬ = Ͳ, 
 𝑀௫ = ͳ,   𝑀௬ = ௫ܦ   ,ʹ = Ͳ.Ͳͳ,   ܦ௫௬ = Ͳ.Ͳʹ,   ܦ௫ = Ͳ.Ͳ͵,   𝐾௫௬ = Ͳ.ͷ,   𝐾ଷ௫௬ = Ͳ.Ͷ, (8) 
which corresponds to the perfect internal resonance (𝜔௫ = 𝜔௬) with the ݔ mode hardening and the ݕ mode softening. 
The solution of ܶ௫ = ௬ܶ is reported in Fig. 1. For 𝐴௫ = ͳ one obtains 𝐴௬ = ͳ.9͵ͳ and ܶ = ͵.ͷͲͲ9. The corresponding 
excitations 𝐺௫ሺ𝑡ሻ and 𝐺௬ሺ𝑡ሻ and solutions ݔሺ𝑡ሻ and ݕሺ𝑡ሻ are illustrated in Fig. 2. In Fig. 3 it is shown how choosing 𝑊௫ = −Ͷ.Ͷ99ͶͶ͵, ܥ௫ = Ͳ.Ͳ͵ͳ9͵ʹͷ, 𝑊௬ = Ͳ.ͳͶ9ͲͷͶ, ܥ௬ = Ͳ.ͲʹͶͶʹͷ allows to strongly reduce 𝐺௬ሺ𝑡ሻ, 
by leaving practically unchanged 𝐺௫ሺ𝑡ሻ. This is an example of shaping the excitation, which can be improved by using 
optimization algorithms. Much more results, including frequency response curves, are reported in [1]. 

  
Figure 1: The solution 𝐴௬ሺ𝐴௫ሻ for the parameter (8). 

a)  b)  
Figure 2: a) 𝐺௫ሺ𝑡ሻ (black) and 𝐺௬ሺ𝑡ሻ (red); b) ݔሺ𝑡ሻ (black) and ݕሺ𝑡ሻ (red). 𝐴௫ = ͳ and parameters (8). 

a)   b)   
Figure 3: As Fig. 2, but with 𝑊௫ = −Ͷ.Ͷ99ͶͶ͵, ܥ௫ = Ͳ.Ͳ͵ͳ9͵ʹͷ, 𝑊௬ = Ͳ.ͳͶ9ͲͷͶ, ܥ௬ = Ͳ.ͲʹͶͶʹͷ. 
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 Phase - locked breathers in the damped driven granular chains  
 
 Margarita Kovaleva*, Yuli Starosvetsky**   

*N.N. Semenov Federal Center for Chemical Physics, Russian Academy of Sciences, Moscow, 
Russia 

** Faculty of Mechanical Engineering,  
Technion Israel Institute of Technology, Haifa, Israel  

  
Summary. Over the past few decades, dynamics of one-dimensional (1D) granular lattices has become a subject of immense theoretical and 
experimental research. In the present talk we will discuss the fundamental problem of nonlinear wave propagation in the damped-driven, 
granular lattice mounted on a linear elastic foundation which assumes the general type of strongly nonlinear, inter-site potential and subject 
to an external harmonic forcing in the form of a traveling wave. In the present work we will focus on the analysis of moving breather 
solution forming in the damped-driven chain. 

Introduction 

Of late, a special type of localized excitations forming in granular medium has become a subject of immense theoretical 
and experimental research. This special type of solutions is manifested by a spatial energy localization and time 
periodicity which are usually referred to in the literature as intrinsically localized modes (ILM) or Discrete Breathers 
(DB). To the best of authors knowledge the first theoretical study of the dynamics of localized modes in compressed 
granular chains has been reported in [1]. In fact as it was shown in this study, these localized modes are formed due to 
the presence of the mass defects. The first experimental study of the formation of long-lived, DB solutions in granular 
medium has been performed on the compressed, di-atomic granular crystal [2]. This groundbreaking experimental study 
of DBs has been followed by a systematic theoretical analysis of existence and stability of these spatially localized 
solutions [3]. All the DB solutions reported in [2-3] correspond to the bright breather solutions emerging in the di-
atomic, essentially compressed granular chains. Additional theoretical and experimental study of compressed, mono-
atomic granular crystal [4], have demonstrated the existence of dark breather solutions in these chains. These special 
nonlinear waves have also been reported in theoretical and experimental study of the damped, driven, compressed 
granular crystals [5]. In fact all the DB solutions existing in granular configurations reported in [2-5] have been 
considered solely for the pre-compressed state of granular medium. Therefore, when considering the uncompressed 
state of granular chains, one may wonder whether these spatially localized and time periodic nonlinear wave solutions 
exist. As a matter of fact, existence of discrete breathers in the un-loaded granular crystals, has been reported at first for 
one-dimensional, uncompressed granular chain subject to a linear on-site potential and an inter-particle Hertzian 
interaction [6]. In the same study, formation of static and traveling DBs has been demonstrated numerically. Passing to 
a small amplitude limit, authors derived the reduced model which has been coined a name of discrete p-Schrodinger 
(DpS) equation. This model can be regarded as a slow flow model, which approximates the slow (amplitude and phase) 
modulation of the low amplitude regimes of the original granular setup. 

Model  

Present study has been motivated by the earlier work by James et al. [8] who derived the analytical approximation for 
the moving breather supported by the DpS chain. In the present work we consider the DpS chain, subject to the external 
forcing and dry friction. As it has been shown by James the slow modulation of low amplitude oscillatory solutions can 
be efficiently described by the discrete p-Schrodinger equation which can be derived through the common multi-scale 
procedure [6-7].  Following same idea we consider p-Schrodinger equation with forcing and dry friction terms: 

   1 1 1 1
1 2 2

m mikk k
k k k k k k k k k

k

d i iF
e i i

dt
             

                                   (1) 

Asymptotic expansion 
Assuming the following asymptotic scaling of forcing, damping and the power of non-linearity,  

 2 2 2,  , , 1
n i n

n nm F F e         %%                                                               (2) 

we proceed with the multiple-scale expansion, 

    2
1 1, ,  ,  n qv n c v           .                                                                   (3) 

Log – NLS equation  

Proceeding to the multiple-scale technique we end up with the damped-driven Log – NLS equation 
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                                 (4) 

Seeking for the stationary (in terms of the super-slow time scale) traveling soliton solution we obtain the following 
second order ODE.  
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Assuming the phase-locked solution (strictly locked phase   ,  , Re,  iR e R const      ) the complex ODE 

equation is split into the real and imaginary part:  
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The real part is the second order ODE which depicts the evolution of the amplitude, while the second imaginary part is 
an algebraic equation which defines the stationary phase of the breather solution:  

2
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F

  ;
2

2
cos 1

F

      
 

                                                               (7) 

It can be easily inferred from the imaginary part we have two solutions which emerge through the typical saddle – node 
bifurcation. To illustrate better the dynamics of two distinct breather solutions on both branches we illustrate the 
following phase portraits.  

 
a)                                                        b)                                                          c) 

 
Figure 1: Phase planes of the two branches of the equation (a) First branch (b) Second branch (c) Time histories of the response of 

the DpS chain (Amplitude – upper panel, phase – lower panel), red-dashed lines stand for the phase locked approximation  
 
Clearly the homoclinic orbit of the phase plane shown in the right panel corresponds to the phase locked solitons 
solution. However, this solution could not be reproduced in the extensive numerical simulations. We conjecture that this 
solution is unstable.  Interestingly enough there exists an additional, phase locked, soliton solution which can be 
approximated using both phase planes.  This solution emanates from the saddle of the right phase plane (Figure 1b) (to 
the left of the saddle) and continues along the unstable manifold of the saddle up to the point of zero amplitude. When 
reaching this point there is a jump to the second branch which means that the solution changes phase. Further evolution 
of the trajectory on the second branch is denoted with the red, dashed line on the left phase plane (Figure 1a). When it 
reaches again the point of zero amplitude there is a subsequent jump to the first branch and then it gradually converges 
to a saddle of the first branch along the stable manifold. Here we would like to emphasize that the proposed solution is 
just an approximation as there is no immediate jump in the phase for the true system solution. This can be clearly seen 
from the results of Figure 2 where the jump from the vicinity of one phase to the second one, occurs in the fast time 
scale. Using our analytical model and in particular the analysis of the phase plains, we predict the amplitude, the 
background and the speed of the traveling soliton. As for the phase of this solution we can clearly see the fast evolution 
of the phase in the true DpS from one state (first branch) to another (second branch). Obviously enough this transient 
evolution of the phase from one state to another cannot be captured by our phase locked approximation. 

Conclusions 

New family of traveling solitons in the forced-damped DpS chain has been observed. The original approach of the 
analysis of the breathers in the conservative system developed by James [8], allowed us to predict the possibility of 
formation of phase locked DB in the damped-driven DpS. These solutions can be depicted on the phase plane in the 
Log-NLS limit. 
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Summary. The nonlinear dynamics of a thin circular cylindrical shell subjected to thermal gradients and random excitation is experimentally 

investigated. The combination of broadband random loading and thermal conditions both at different homogenous temperature and with 
thermal gradients across the shell thickness. The phenomenon of synchronization is observed at particular thermal and loading conditions: a 
severe transfer of energy from a broadband excitation to an almost subharmonic out of band response is experimentally observed. 

Introduction 

In several applications like aerospace automotive and civil engineering the role of thin-walled structures have a key 
function, for example, bodywork panels, fuselage or aircraft and satellite panels together with storage tower.  

A crucial factor in thin walled structures is the performance under random forcing whose dynamics, characterized by 

strong nonlinearity can give rise to unexpected complex phenomena that cannot be predicted by the traditional engineering 

tools and theories.  

It is well known that chain of non-linear oscillators under intense periodic forcing could exhibit a "mode-locking" 

phenomenon that synchronizes the exciting load with the response. A similar phenomenon, which is much less 

investigated, can happen when a nonlinear system is excited with a broadband random forcing [1], for example when  

internal resonances are present; in such cases it has been proven the possibility of entrainment of regular harmonic 

responses by the system. This phenomenon is said “synchronization” of non-linear oscillators subjected to random forcing 

[2,7], it has been partly investigated proving the unusual phenomenon of conveying the random spectral energy to specific 

frequencies, determining remarkable vibration amplitudes.  
In recent research published on Ref. [4, 5] it is proved that the effect of temperature greatly influences the instability 

regions and the vibration levels, moreover, it was pointed out that high environmental temperature leads to a more 

complex dynamics. 

In the present work an experimental investigation of the synchronization phenomenon is carried out. A circular cylindrical 

shell made of polymeric material is considered; the shell is mounted on a shaking table, the shell axis is vertical, the 

bottom is clamped to the table, the top is closed with a rigid disk. The shaking table provides a base motion in the direction 

of the shell axis. The temperature is controlled inside and outside the shell. Several random excitation level and types are 

considered (different frequency bands) as well as several internal and internal temperatures. 

 

Experimental setup and results 

The experimental test consists of a specimen mounted on an electrodynamic shaker coupled with a climate chamber and 

monitored by accelerometers, laser vibrometer and a telemeter. The specimen is a thin cylindrical shell made of 

Polyethylene terephthalate (P.E.T.), a thermoplastic polymer, a top mass, made of aluminum alloy, is glued with special 

epoxy glue, resistant to high temperature, on the top of the specimen. The bottom of the shell is clamped to the fixture 

through a shaft collar that guarantees a uniform connection to the vibration table adapter (VTA), i.e. a clamped-clamped 

boundary condition is guaranteed on the bottom and the top.  

Figure 1 shows the experimental setup including the control system, the shaker and the climate chamber. Inside the shell, 

a cartridge heater is mounted and is used to adjust the temperature inside the shell and to obtain the desired thermal 

gradient across the shell wall, see Figure 2; a mirror periscope has been used to allow the laser beam measuring the lateral 

vibration of the shell. An accelerometer located on the base of fixture, for control purposes, three triaxial accelerometers 

are located equally spaced on the top disk. 
A random controlled broadband base excitation is applied at the base through the electrodynamic shaker. Each test is 

carried out at different bandwidth and different overall RMS. 

The forcing is a band limited random (900-1500 Hz), see figure 3, with a 28°C thermal gradient from 48°C in the inner 

surface and 20°C in the outer surface, the Power Spectral Density is shown. In figure 3a the pink box identifies the 

electrical flat spectrum of the random signal provided to the shaker and controlled by the electronic controller, no out of 

band electric power is provided out of band. On the base the spectral energy is uniform in the band (900-1500 Hz) which 

is controlled; there is an energy transfer to superharmonics, where evident spikes are present; such spikes are due to the 

shaker-shell nonlinear interaction; therefore, the base motion contains a strong deterministic component (harmonic). On 

the top disk a clear deterministic (subharmonic) response takes place in correspondence of the first axisymmetric mode 

of the shell (467Hz) and, similarly to the base spectrum, high frequency out of band spikes are present.  

The novelty of the present paper consists in the experimental evidence of the synchronization phenomenon: when the 
nonlinear system is excited with random forcing a strong transfer of energy to specific harmonics can take place. It is 

worthwhile to point out that the phenomenon appears only for certain environmental and forcing conditions. 
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Figure 1: schematic view of experimental setup 

 

  
 

Figure 2: specimen, internal heater cartridge, vibrometer spot light (yellow circle) and telemeter spot light (orange circle) 

 

a) 

 

b) 

 
 

Figure 3: PSD of VTA a) base excitation and b) top shell vertical response 
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Summary. This study investigates the intermodal targeted energy transfer (IMTET) concept for passive mitigation of a model of large-scale 
twenty-story steel structure subjected to seismic excitation. This is achieved by introducing strategically placed, local strong nonlinearities, 
in the form of vibro-impacts of the floors of the building with a relatively light, yet stiff, auxiliary core structure. These impacts rapidly, 
robustly and irreversibly redistribute the input seismic energy within the modal space of the structure through extremely rapid IMTET 
from low-to-high frequency structural modes, yielding drastically enhanced mitigation of unprecedented effectiveness, right from the very 
first cycle of the structural response. Moreover, when optimized, this new concept can be realized fully passively, without the need to 
adding any mass to the building, and with minimal increase in the resulting floor accelerations and local stresses. Therefore, the IMTET 
methodology for seismic mitigation has the potential to be truly transformative in the field of hazard mitigation of civil infrastructure. 

Introduction 

The dynamical responses of structures subjected to extreme loads (such as blast, earthquakes, shock) poses a significant 
challenge and has attracted great interest among researchers and engineers [1]. One of most important issues here is 
rather limited suppression achieved for the first few (but most intensive and dangerous) cycles of the structural response 
to the excitation. Consequently, many new and innovative structural protection fully passive concepts have been 
proposed, developed, and even implemented, being classified as linear, and nonlinear passive mitigation strategies [1, 
2]. Specifically, load mitigation based on irreversible (directed) passive nonlinear vibration energy transfers, known as 
targeted energy transfers (TETs) has been widely explored for passive vibration control and energy harvesting purposes. 
This approach is based on transferring energy from a directly excited primary structure to a set of secondary strongly 
nonlinear structures (referred to as nonlinear energy sinks – NESs), where it is localized and locally dissipated without 
scattering back to the primary structure [2]. The dynamical mechanisms governing such TET mechanism are isolated or 
multiple (i.e., cascades of) transient resonance captures. However, such resonant energy transfers to the NESs are 
achieved through relatively slow modulations of the structural modal amplitudes, which, for some applications 
involving extreme loads, e.g., blast or seismic excitations, prove not to be fast enough.  
Recent studies [3, 4], however, has shown that nonlinear resonance is not the only fundamental mechanism for 
achieving TET, since it can also be realized through a non-resonant fast scale mechanism involving non-smooth effects. 
This has been employed to explore the concept of intermodal targeted energy transfer (IMTET) to mitigate the effect of 
blast loading on a nine-story steel structure [4]. In this study, we explore the implementation of the IMTET strategy for 
seismic passive protection of tall buildings (in particular, twenty-story) subject to strong earthquakes. 
 

Model description 
 
 The primary structure considered here is the benchmark 20-story steel building designed by Brandow & Johnston 
Associates for the SAC Phase II Steel Project, and its geometrical and physical properties are given in details in [5]. To 
achieve seismic mitigation using the IMTET concept, a flexible internal core structure is introduced, with distributed 
clearances with respect to the floors of the primary twenty-story building, as shown in Figure 1. 

 
Figure 1: Seismically excited 20-story primary building with internal flexible core structure: Schematic of (a) the integrated building-

core, and (b) the flexible core structure 
Denoting by 𝑴, 𝑲, 𝑪, and 𝑴𝒄𝒔, 𝑲𝒄𝒔 and 𝑪𝒄𝒔, the mass, stiffness and damping matrices of the primary building and the 
core structure, respectively, the equations of motion are given by: 
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  𝑴࢛ሷ + 𝑪࢛ሶ + 𝑲࢛ − 𝒇𝑁𝐿ሺ࢛ሶ , ,࢛ ሶ࢜ , ,࢜ ∆ሻ = −𝑴𝜞ݑሷ𝑔𝑴𝒄𝒔࢜ሷ + 𝑪𝒄𝒔࢜ሶ + 𝑲𝒄𝒔࢜ + 𝒇𝑁𝐿ሺ࢛ሶ , ,࢛ ሶ࢜ , ,࢜ ∆ሻ = −𝑴𝒄𝒔𝜞ݑሷ𝑔 (1) 

where ݑሷ𝑔 is ground acceleration, ࢛ and ࢜ the displacement vectors of the building floors and core contact points, 
respectively, 𝜞 the influence vector for base motion, and ∆ the vector of clearance gaps. Uniaxial seismic excitation is 
assumed, along the weak direction of the primary building (Figure 1(a)). The vector 𝒇𝑁𝐿ሺ࢛ሶ , ,࢛ ሶ࢜ , ,࢜ ∆ሻ contains the 
inelastic Hertzian contact interactions, and its ݆ݐℎ element is given by: 

 𝒇𝑗𝑁𝐿ሺ࢛ሶ , ,࢛ ሶ࢜ , ,࢜ ∆ሻ = ݇𝑐 𝑗ݒ]] − 𝑗ݑ − ∆𝑗]+ଷଶ − 𝑗ݑ] − 𝑗ݒ − ∆𝑗]+ଷଶ ] ቌͳ + ͵ሺͳ − 𝑟ሻʹ(ݑሶ𝑗− − (−ሶ𝑗ݒ 𝑗ሶݑ) − 𝑗ሶݒ )ቍ (2) 

where ݇ 𝑐 = ଶ𝐸√𝑅ଷሺଵ−𝜈2ሻ is a stiffness coefficient (Hunt and Crossley, 1975), assuming that the impact is between a semi-

sphere of radius 𝑅 on the core structure and a contact point on a flat plane on the primary building, with the contacting 
bodies having the same Young's modulus 𝐸 and Poisson’s ratio 𝜈. Also, ݑሶ𝑗− and ݒሶ𝑗−are the contact velocities of the ݆ݐℎ 
floor just before the impact, and 𝑟 is a restitution coefficient. The subscript ሺ+ሻ indicates that only non-negative values 
of the arguments in the brackets should be taken into account, with zero values being assigned otherwise. 

 
Preliminary results 

 
The computational results provide a preliminary demonstration of the effectiveness of IMTET for rapid seismic mitigation 
of the primary building response subjected to Kobe (1995) ground motion. Figure 2(left) shows an extremely rapid 
attenuation of the overall structural response, compared to the linear case of no core (i.e., infinite gaps). The governing 
nonlinear mechanism responsible for the drastic enhancement in seismic mitigation is shown in Figure 2(right), where 
the percentage of input seismic energy eventually dissipated by the inherent (modal) dissipation of each of the ten 
leading structural modes of the primary building (with no core) is depicted. Indeed, compared to the linear case of no 
core – where the energy dissipation is dominated by the fundamental structural mode in the case of optimized clearance 
gaps the seven leading modes participate in energy dissipation. Hence, there is a noteworthy, rapid, and irreversible 
nonlinear targeted energy transfer (or IMTET) from the low structural modes to the higher ones, causing rapid reduction 
of the structural response. 

                        
Figure 2: Primary building with optimized core and no core subject to the Kobe earthquake: Maximum floor displacement (left); 

Input seismic energy (%) dissipated by the inherent damping of the leading modes of the primary building (right) 

Conclusions 

In this work, a radically new concept for seismic mitigation of civil infrastructure is discussed, based on extremely rapid 
nonlinear scattering of seismic energy from low-to-high frequency modes of a building through strong local 
nonlinearities, which is referred to as intermodal targeted energy transfer (IMTET). The results show that the overall 
level of system vibration is reduced not by adding extra dissipative elements but rather by redistributing energy from 
lower to higher frequencies where the vibration amplitudes decrease. Moreover, the dissipative capacity of the system 
itself is radically enhanced since a much larger set of vibration modes (especially high-frequency ones) participate in 
the response, which can greatly enhance the rate of energy dissipation. Hence, IMTET provides a new approach to 
passive energy management. 
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Non-linear dynamic stability of mono-symmetric thin walled beams under random 
excitation 
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Summary. The focus of my presentation is to study the non-linear dynamic stability of a viscoelastic thin walled beam with cross section 
having one axis of symmetry and subjected to a dynamical axial compressive load P(t) (generally eccentric).The equations of motion is 
derived and the method of stochastic averaging is used to decoupled the governing equations into Itô equations. For small damping and 
weak stochastic fluctuation, the expressions are derived for the moment Lyapunov exponent. 

Introduction 

Thin walled beams are widely used in construction, aircraft, ship building, etc. Also, with the increasing use of 
materials, there exists the need for analyzing viscoelastic structures under dynamic loading. Therefore, there are lots of 
works in both deterministic and stochastic domains. The general theory of thin walled beams was investigated by 
Vlasov [1] and the dynamic instability of elastic system was explained by Bolotin [2]. Stratonovich formulated the 
method of stochastic averaging [3] and it mathematically proved by Khasminskii [4]. There are the overwhelming 
number of papers in the literature. The modern theory of stochastic dynamic stability is founded on Lyapunov 
exponents and moment Lyapunov exponents [5]. Also for distinguishing among the different cases of resonances, the 
method of multiple scales is used.   

Formulation 

The flexural-torsional vibration of a thin walled beam with mono-symmetric I-section is presented in Fig.1. In the 
present article, the boundary condition is considered as both ends simply supported. 
 

 
Figure 1 

 
The equations of motion is defined as [1]. In these equations, we can see inertia components ∆q, ∆M, ∆N which are 
nonlinearly related to the principal displacements u and f. By locating a mass on the movable end [2] and adding the 
viscous damping and also replacing the elastic modulus by the Voltera operators E(1-H) [5], the governing partial 
differential equations become:  
 

 

(1) 
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(2) 
 

With the aid of the Galerkin method, (1) and (2) can be converted into two ordinary differential equations. To show that 
damping, viscoelasticity and excitation are small, a parameter 0 < 3 << 1 is introduced. The axial thrust P(t) is assumed 
to be a stationary stochastic process.  
 
Stochastic averaging  
To apply the averaging method, one should consider first the unperturbed system which can be solved by the method of 
operators. The solutions are:

    
 

(3) 
 
The method of variation of parameters is applied to determine the solutions of the perturbed system. Here, in the present 
article, because of the nonlinearities, there is a difference in the applying of this method with  the other papers. 
 
 By averaging the responses over one period, we can expect to obtain accurate results. This may be done by applying 
the method of stochastic averaging. Through the method of stochastic averaging, the system can be approximated by Itô 
stochastic differential equations. 
 
Moment Lyapunov exponents  
To have a complete picture of dynamic stability, it is important to investigate both the moment and almost-sure stability 
which is the topic of the present work. 
However, the stability of the pth moment of the solution of system is governed by the pth moment Lyapunov exponent 
defined by: 

 

 

(4) 
 

If the Λ is negative, the pth moment is asymptotically stable; otherwise, it is unstable [5]. One can obtain the largest 
Lyapunov exponent (5) through its relation with moment Lyapunov exponents (6). 
 

 

(5) 
 

 

(6) 
 

 
 
In this article, I use the moment Lyapunov  exponents for analyzing the dynamic stability of system. 
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Summary. In this work an efficient tool is presented to numerically solve stochastic delay differential equations by transforming
them to stochastic differential equations. This approach allows the use of methods originally implemented for stochastic differential
equations, while algorithms specialized to delay problems can be also be included. The convergence and stability of the numerous
solver methods are investigated through Monte-Carlo simulations for different case studies.

Introduction

In scientific computing to analyze the behavior of dynamical systems a widely used approach is to numerically integrate
the corresponding differential equation (DE). For a large number of problem classes (e.g., ordinary DEs (ODEs), delay
DEs (DDEs), stochastic ODEs (SODEs or SDEs)), there is a wide range of official integrator solutions to choose from,
both open-source and commercial [8]. However, for stochastic delay DEs (SDDEs) there exists no such solver, despite
that there are algorithms already introduced since the late 90’s [1, 5, 3] along with proof of convergence for SDDEs with
point delays.
The goal of this work is to introduce a feature rich and “easy-to-use” open source tool to solve stochastic delay differential
equations. These features include but are not limited to parallelized Monte-Carlo calculations, use of arbitrary precision
numbers or the automatic differentiation of the solution w.r.t. to the parameters of the SDDE. This solver is available as a
Julia package under the name of StochasticDelayDiffEq.jl and is part of the DifferentialEquations.jl [7] ecosystem.

Stochastic Delay Differential Equations as SODEs

Consider the Itô stochastic delay differential equation (SDDE)

dx(t) = f(x(t), xt, t)dt+ g(x(t), xt, t)dW (t), x(θ) = φ(θ), −τ ≤ θ ≤ 0, (1)

where f, g : Rd×C([−τ, 0) ,Rd)×R→ Rd are smooth functions, xt(θ) = x(t+θ) ∈ Rd, θ ∈ [−τ, 0) defines the state at
time t (segment of the solution),W (t) is anFt-measureable standard Wiener process and the initial state φ : [−τ, 0]→ Rd

is sufficiently nice and F0 measureable. Note that the present state x(t) is separated from the solution segment xt and
this study is restricted to systems with J number of point delays, namely 0 < τ1 < τ2 < . . . < τJ := τ , since
distributed delays can be approximated as point delays using e.g. shifted Dirac delta distributions [4] or via Clenshaw-
Curtis quadrature [9].
Since all values of the interval xt are available at time t, the SDDE (1) can be rewritten as a SODE:

dx(t) = f̂(x(t), t)dt+ ĝ(x(t), t)dW (t). (2)

The transformation is performed by dynamically embedding the initial φ and current xt states into the functions f̂ and ĝ
as a time dependent inhomogenity, namely

f̂(x(t), t) = f(x(t), φt, t), ĝ(x(t), t) = g(x(t), φt, t), (3)

where

φt(θ) =

{
φ(t+ θ) t+ θ ≤ 0

x(t+ θ) t+ θ > 0
. (4)

This representation is similar to the method of steps [2], however it allows uninterrupted integration (with discontinu-
ity handling) and the utilization of the solver algorithms and features of the already existing SODE ecosystem from
StochasticDiffEq.jl [6].
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Figure 1: Demonstration of the convergence of multiple methods for f(x(t), x(t − 1), t) = x(t) − sin(x(t− 1)),
g(x(t), x(t− 1), t) = sin(x(t)) and φ(t) = t− 1. The sample trajectories in a) are calculated with the Euler-Maruyama
method using multiple time resolutions h, and with delay τ = 1, while the trajectories are integrated up to time T = 4.
For the convergence plots in b) the ℓT measure is used, defined in Eq. (7).

Convergence tests

As an example, if the general SDDE (1) has a single point delay it can be rewritten in the form

dx(t) = f(x(t), x(t− τ), t)dt+ g(x(t), x(t− τ), t)dW (t). (5)

If the Euler-Maruyama method is chosen from the package as the integrator algorithm with time step h = τ/Nh, where
Nh ∈ N+, the approximation of the value xn+1 ≈ x(tn+1 = (n+ 1)h) inherently reduces to:

xn+1 = xn + f(xn, xn−Nh
, tn)h+ g(xn, xn−Nh

, tn) ξn
√
h, ξn ∼ N (0, 1), (6)

which is shown to be convergent to the solution of (5) in [1]. The presented solver package can help to show the strong
and weak convergence of other methods from the StochasticDiffEq.jl as well as newly created methods for SDDEs. Some
examples are shown in Fig. 1, where numerical Monte-Carlo experiments were used to approximate the convergence of
the solution at the final time point T by studying

ℓT (h) = E
(∥∥xh(T )− xhref(T )

∥∥
2

)
, (7)

where xh is the solution of the SDDE (1) approximated with time resolution h and href = 2−15 is the reference time
resolution.
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Summary. The stability properties of the single track vehicle model with proportional, delayed feedback control are investigated in the
presence of measurement noise. The moment stability and the stationary behavior of the resulting stochastic system is analyzed using
the stochastic semi-discretization method and numerical simulations are conducted to verify the results.

Introduction

The stabilization of path following is a fundamental element of numerous autonomous driving functions from lane keeping
to self-driving. The focus of this work is to investigate the effects of measurement noise in the feedback loop of a path
following controller with time delay, leading to a system of stochastic delay differential equations (SDDE’s).
A number of important results have been developed over the years for the analysis of such systems. The moment stability
of the solution in the linear case was presented in [1]. In [2], an approximate Fokker-Planck equation was introduced for
the stationary solutions of nonlinear SDDE’s with small delays. The stability of linear control systems with time delay
was investigated in [3] using the Lyapunov exponent approach. The Taylor expansion of the control force was used in [4]
and [5] to investigate the control of stochastic time delay systems in the linear and the non-linear case, respectively.
In this paper, the stochastic semi-discretization method [6] is used in order to determine the second moment of the
stationary solution of a path following controller with time delay and measurement noise. Due to the so-called autonomous
stochastic resonance phenomenon, the effects of the noise excitation may be amplified close to the stability boundaries,
leading to an exceedingly large variance of the system response even if the control gains are selected from the stable
parameter domain. The stochastic semi-discretization method generates a mapping of the discretized second moment,
which can be used to assess the stability properties and the steady state solution of the second moment dynamics. As
a result, specific regions of the control gains can be established within the stable domains that correspond to a given
maximum allowable variance of the solution.
The rest of the paper is organized as follows: the mathematical model of the closed-loop system is introduced first. The
second moment of the stationary solution is analyzed along the stable domain of control parameters with the help of the
stochastic semi-discretization method and the results are verified by numerical simulations of the linear system. Next, the
effects of a cutoff frequency in the measurement noise are investigated, then numerical simulations are also performed on
the non-linear system by applying filtered white noise.

Figure 1: The single track vehicle model

Vehicle model

The mechanical model of our analysis is based on the single track vehicle model (see Fig. 1) with linear tire characteristics,
according to [7]. Linearizing the system around the rectilinear motion along the x axis leads to the linear system ẋ(t) =

Ax(t) +Bδs(t), where the state vector x =
[
y ψ σ1 σ2

]T
includes the lateral position, yaw angle, lateral velocity
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Table 1: Parameter values used for stability maps and simulations

f (m) d (m) m (kg) Jz (kgm2) CF (N/rad) CR (N/rad) V (m/s) τ (s) σy (m) σψ (rad)

2.7 1.35 1430 2500 45000 45000 20 0.5 0.1 0.005

and yaw rate of the vehicle, respectively. The steering angle is denoted by δs, while the system and input matrices are

A =




0 V 1 0
0 0 0 1
0 0 A33 A34

0 0 A43 A44


 and B =




0
0
B3

B4


 (1)

with the elements

A33 = −B3

V
− CR(Jz +md2)

mV Jz
, A34 = −B3

f

V
− V , B3 =

CF(Jz +md(d− f))
mJz

,

A43 = −B4

V
+
CRd

V Jz
, A44 = −B4

f

V
, B4 =

CF(f − d)
Jz

.

(2)

The vehicle parameters include the mass m, the yaw moment of inertia Jz (with respect to the center of gravity), the
wheelbase f , and the distance d between the rear axle and the center of gravity. V denotes the longitudinal speed of the
vehicle (assumed to be constant), and the tire cornering stiffnesses are denoted by CF (front axle) and CR (rear axle). The
control goal is to reach stable rectilinear motion along the x axis, therefore the steering angle is generated by the delayed
feedback of the vehicle’s lateral position y and its yaw angle ψ: δs(t) = Kx(t− τ) = −Pyy(t− τ)−Pψψ(t− τ), where
K =

[
−Py −Pψ 0 0

]
includes the control gains. The time delay τ consists of sensor and communication delays,

processing times, as well as the dynamics of the steering mechanism.
In order to represent measurement noise in the control loop, the above model is extended by adding an additive noise
component to the feedback signal of both y and ψ. This may include effects from environmental noise or the slight
jumps in the estimation results of the lane detection system in each frame in case of a vision-based solution. The noise
is modeled as a one-dimensional Langevin force excitation Γt [9], with the intensities σy and σψ collected in Dm =[
σy σψ 0 0

]T
. Overall, the resulting linear, stochastic, time delay system can be written as

ẋ(t) = Ax(t) +BKx(t− τ) + σΓt , where σ = BKDm . (3)

Since the Langevin force excitation Γt is defined such that its integration leads to the Wiener process Wt [9], Eq. (3) can
be rewritten into the incremental form

dx(t) = (Ax(t) +BKx(t− τ)) dt+ σdWt . (4)

Stability analysis

The system may lose its stability in two ways: at Py = 0, a static loss of stability occurs, which corresponds to a
real characteristic root crossing the imaginary axis. At the rest of the stability boundaries, a complex conjugate pair of
roots moves to the right half-plane, leading to an oscillatory loss of stability. The analytical derivation of these stability
boundaries for the deterministic system using the D-subdivision method is detailed in [7].
In order to investigate the stability properties of the stochastic delay differential equation (4), the stochastic mapping
yn+1 = Fyn + g is defined by discretizing the system with respect to the delayed term [6, 8]. The size of yn depends on
the resolution of the discretization; F is based on the deterministic part of Eq. (4) (A and BK), and g is calculated from
σ. For the exact definition of the above mapping, the reader is referred to [6].
The stability of the mean dynamics is determined by F (leading to the results presented in [7]), while the second moment
stability is analyzed according to [6]. Note that first moment stability is required for the stability of the second moment
process, therefore it is sufficient to check only the latter. Moreover, since there is no multiplicative noise term in our model,
stability analysis of the first and second moment dynamics leads to the same results. In other words, the introduction of
additive sensor noise does not influence the stability boundaries of the system. However, due to the autonomous stochastic
resonance effect, the steady-state second moment values may start to increase near the stability boundaries. This means
that even though the control gains are chosen from the stable parameter domain, the variance of the steady state solution
may become unacceptably large.
In order to check this, the first order stochastic semi-discretization method was applied with the help of the corresponding
Julia package [6]. A discretization step of 0.05 s was used and the vehicle parameters were selected according to Table 1.
The effect of autonomous stochastic resonance is illustrated in Fig. 2 (a), where the steady state second moment of y
(denoted by Mst,y) is plotted along the stable parameter domain of the control gains. The sections of the stability map
were chosen according to the control gains that lead to the most highly damped response of the deterministic system
(Py = 0.00077 m−1, Pψ = 0.0805).
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Figure 2: (a) The effect of sensor noise on the steady state second moment of y; (b) regions of the stability map corresponding to
different limits on Mst,y; the deterministic optimum is denoted with a cross

Figure 2 (b) shows a practical stability map that demonstrates how the usable domain of control parameters shrinks if we
want to limit the steady state second moment of y. Notice that the minimum of Mst,y does not fall into the deterministic
optimum (that is based on the eigenvalues of F). Instead, it depends on the values of σy and σψ , and the amplification
due to the control gains.

Figure 3: (a) The effect of sensor noise on the steady state second moment of ψ; (b) regions of the stability map corresponding to
different limits on Mst,ψ; the deterministic optimum is denoted with a cross

Figure 3 shows similar practical stability maps with regards to the steady state second moment of the yaw angle ψ. Note
the different shape of the contour lines compared to those in Fig. 2. As Py is decreased, the vehicle takes much longer
to reach the equilibrium (in terms of mean dynamics), since the position error is very weakly compensated (at Py = 0, a
static loss of stability occurs, where the vehicle path diverges). This also means that the steering action does not suppress
the stochastic jumps around the equilibrium as effectively once the steady state is reached, leading to an increase in Mst,y

(as seen in Fig. 2 (a)). On the other hand, the control action related to ψ is not affected as Py is decreased, which explains
why there is no increase in Mst,ψ in Fig. 3 (a) (note that Mst,ψ does not reach zero at Py = 0). Another effect to keep in
mind, however, is that decreasing the gains not only decreases the control action, but it also suppresses the noise amplitude
that appears in δs. Therefore decreasing the control gains directly leads to decreased noise gains, which means that the
second moments are generally lower near the origin of the stability maps (unless of course stochastic resonance effects
appear due to the proximity of a stability boundary).
In order to verify the results, 1000 Monte-Carlo simulation runs were conducted using the Euler-Maruyama method [10].
The control gains were chosen according to the deterministic optimum, and an initial condition of y(t ≤ 0) = 3m was
used (while the rest of the initial state values were set to zero), representing a lane change manoeuvre. The simulations
were run for 100 seconds, with a time step of 0.005 s. In order to calculate the stationary second moment, the first 30
seconds of the simulations were cut to ensure proper decay of the transients. There is good accordance between the
numerically determined stationary second moment and the result of the stochastic semi-discretization method (see the
first two columns of Table 2). This is also illustrated in Fig. 4, where the square root of the stationary second moment
according to the semi-discretization method (shown in red) matches the sample standard deviation of the Monte-Carlo
runs (shown in blue; note that the expected value of the stationary solution is zero).
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Figure 4: Simulation results of 1000 Monte-Carlo runs of the linear system. Black lines show the sample mean and blue lines denote the
standard deviations of the samples. An arbitrarily chosen single realization is shown in light gray, while the red dashed lines represent
the square root of the stationary second moments calculated using stochastic semi-discretization.

Table 2: Stationary second moment values determined using different methods

Stochastic SD Linear simulation Non-linear simulation

Mst,y (m2) 0.04867 0.04783 0.04896

Mst,ψ (rad2) 1.8642e-5 1.8553e-5 1.8741e-5

Colored noise, simulation of the nonlinear system

A possible extension of the previously detailed model is the use of colored noise in the form of a first order Markov
process [11]. This approach incorporates a cutoff frequency ωc to limit the bandwidth of measurement noise due to e.g.
digitization. The noise processes corresponding to the feedback signal of y and ψ are

ẇy = − 1

Ty
wy + σc

yΓt , ẇψ = − 1

Tψ
wψ + σc

ψΓt , (5)

where wi (i ∈ {y, ψ}) denote the state of the noise process and the time constants Ti determine the correlation time
of the noise and the corresponding cutoff frequency (ωc = 1/Ti). This time constant is assumed to be equal for both
measurement signals.
As opposed to the previous section, the Langevin force excitation Γt is now used to generate the colored noise process,
instead of directly acting on the feedback signal. Its intensity σc

i is chosen such that the energy content of the colored noise
process (at low frequency levels) matches the corresponding white noise process used in the previous section, leading to

(σc
i )

2
=
σ2
i

T 2
i

, i ∈ {y, ψ} . (6)

Using the above noise processes, the closed-loop system is of the form

ẋ(t) = Ax(t) +BK

(
x(t− τ) +D

[
wy
wψ

])
, D =

[
1 0 0 0
0 1 0 0

]T
. (7)

Combining Eq. (5) and Eq. (7), the system can be turned to a similar form as Eq. (3)

Ẋ(t) =




A BKD

02,4
−1/Ty 0

0 −1/Tψ


X(t) +

[
BK 04,2

02,4 02,2

]
X(t− τ) +




04,2

σc
y 0
0 σc

ψ


Γt (8)

using the augmented state vector

X =
[
y ψ σ1 σ2 wy wψ

]T
. (9)

0i,j represents the zero matrix of size i× j.
The stability maps in Fig. 5 demonstrate how the cutoff frequency of the measurement noise affects the previously shown
robust stability maps. At the boundary of dynamic loss of stability (the so-called D-curve), a complex conjugate pair of
characteristic roots crosses the imaginary axis at iω. The value of ω continuously increases along the stability boundary
from ω = 0 at the origin to approximately ω = 2 rad/s where the D-curve crosses the vertical axis slightly above Pψ = 0.3.
The line style of the deterministic boundary in Fig. 5 shows the relation between the selected cutoff frequency and the
system dynamics. The section of the stability boundary where the imaginary part of the corresponding characteristic roots
is below the cutoff frequency is shown in blue, while the sections plotted in dashed gray are above ωc.
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Figure 5: Robust stability maps in terms of the steady state second moment of y while increasing the cutoff frequency of the sensor noise
(ωc). The styling of the deterministic boundary shows the relation between the frequency component ω of the critical characteristic
roots at the boundary and the cutoff frequency ωc (blue: ω < ωc, gray dashed: ω > ωc).

It can be seen that as long as only a small section of the stability boundary (and therefore the corresponding dynamics) is
excited, the stochastic resonance effect is not very strong, the stationary second moment of y remains small throughout
the majority of the stable parameter domain, and there is not much difference between the deterministic and the robust
stability boundaries. However, as the cutoff frequency is increased, the stochastic excitation has a stronger effect on the
dynamics, and the contour lines of Mst,y start tending towards those shown for white noise excitation. Since the vehicle
model acts as a low-pass filter with relatively slow dynamics, the colored sensor noise also has to have a very low cutoff
frequency in order to show a meaningful difference in terms of the steady-state dynamics of the system compared to a
white noise excitation. Therefore there is not much benefit in taking into account the cutoff frequency of the sensor noise
in most practical cases, where ωc is typically at least 10Hz.

Figure 6: Simulation results of 1000 Monte-Carlo runs of the non-linear system. Black lines show the sample mean and blue lines
denote the standard deviations of the samples. An arbitrarily chosen single realization is shown in light gray, while the red dashed lines
represent the square root of the stationary second moments calculated using stochastic semi-discretization.

On the other hand, a possible advantage of modeling the additive sensor noise as a first order Markov process is that this
approach allows the numerical simulation of the non-linear system too (the non-linear system equations can be found in
[7]). In spite of feeding back the measurement noise through non-linear functions, the overall system remains driven by
an additive, white noise source, which is easy to handle mathematically.
The results in Fig. 6 and Table 2 show that there is minimal difference in the observed stationary second moments between
performing simulations on the linear and the non-linear system. This is mainly due to the fact that only geometrical non-
linearities are considered, which do not have a strong effect in the performed lane change manoeuvre, especially once the
steady state is reached. Even though there is constant steering action due to the stochastic effects, the steering and side-
slip angles all remain small enough that the system stays well within the linear regime. Nevertheless, this still provides a
useful example of simulating a non-linear system with direct feedback of measurement noise.

Conclusion

The stability and steady-state dynamics of a path tracking controller were investigated in the presence of time delay and
measurement noise. It was shown how the choice of control parameters influences the steady-state dynamics. Due to the
autonomous stochastic resonance effect, it is possible to choose control gains from the linearly stable parameter domain
that still lead to unacceptably large variance in the steady-state solution. The included robust stability maps aim to provide
guidelines about which regions of the stable domain should be avoided for this reason. The results determined using the
stochastic semi-discretization method were verified by numerical simulations. The simulation of the non-linear stochastic
system was achieved by using filtered white noise. A possible extension of the present study is to also consider the effects
of road excitation as another noise source in the system.
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Summary. Invariant manifolds, such as nonlinear normal modes, spectral submanifolds and normally hyperbolic invariant manifolds
are the key to understand the dynamical behavior of nonlinear mechanical systems and serve as natural candidates for model-order
reduction. While numerous related invariant manifold results are available for unforced and periodically forced nonlinear mechanical
systems, the case of random external forcing has not been studied from this perspective. Here, we clarify the role of deterministic
invariant manifolds in the case of small white noise excitation and demonstrate our results on explicit mechanical systems.

Introduction

To account for parameter uncertainty, unmodeled degrees of freedom or unknown disturbances in realistic engineering
structures, the use of statistical methods is unavoidable [1]. Gaussian white noise is commonly considered to account for
such random perturbations. Whether the deterministic invariant manifolds, such as nonlinear normal modes, spectral sub-
manifolds or normally hyperbolic invariant manifolds, are of relevance under uncertainties or random external excitation
has, however, remained unclear.
Various definitions of nonlinear normal modes have been proposed in the literature (cf. [2] for a review) and multiple
computational algorithms for the unforced or periodically forced nonlinear mechanical systems have been developed [3].
Recently, Haller and Ponsioen [4] identified the smoothest nonlinear continuation of a spectral subspace of the lineariza-
tion as spectral submanifold (SSM). While spectral submanifolds have proven valuable for model-order reduction, the
related computational tools assume a completely deterministic nature of the system. This assumption, however, does not
generally hold for structures which are subject to parameter uncertainties and external (unmodeled) disturbances.
Counterparts to deterministic dynamical features, such as normally hyperbolic invariant manifolds or stable/center mani-
folds of fixed points, for randomly perturbed mechanical systems are intricate to establish mathematically. Berglund and
Gentz [5] assume an idealized slow-fast decomposition in the deterministic system, while the stable and center manifolds
established in [6] generally depend on the realization of the random process. Therefore, each realization results in a dif-
ferent reduced-order model, which is computational costly and limits relevance of the reduced-order model significantly.
In contrast, the probability density function (PDF) is independent of the realization. In the case of Gaussian white noise
excitation, the time evolution of the probability density is governed by the Fokker-Planck equation [7]. Explicit solu-
tions of the Fokker-Planck equation, however, are only available in specific cases, and approximate numerical methods
discretizing the Fokker-Planck equation or Monte Carlo simulations are computationally expensive [8].
Recently, Haller et al. [9] derived tools to identify material diffusion barriers, including material surfaces that extremize
the diffusive transport of the PDF in the phase space. By the definition of these barriers, the transport of the PDF across
them is purely driven the by small stochastic perturbations of the otherwise deterministic system. Specifically, perfect
barriers block the transport at leading order completely and thereby demarcate regions of the phase space that trajectories
generally not penetrate. Similarly, ridges of the diffusion barrier strength (DBS) highlight surfaces with strong diffusive
transport, i.e., regions where trajectories accumulate. Both identifiers (perfect barriers and DBS) can be computed from
purely deterministic quantities associated with the dynamical system and hence computationally expensive numerical
methods such as Monte-Carlo approximations can be avoided.

Set-up

In this talk, we apply the methods from [9] for diffusive transport in fluids to mechanical systems excited by Gaussian
white noise with small intensity. Specifically, we consider N -degree-of-freedom mechanical systems of the form

Mq̈+Cq̇+Kq+ S(q) =
√
νf(q)dW, q ∈ RN , (1)

where M, C and K are the mass, damping and stiffness matrices. The geometric nonlinearity S(q) is a nonlinear function
of the position, such that S(q) = O(|q|2). The vector dW collects M independent one-dimensional Brownian motions
and the matrix f(q) ∈ RN×M prescribes their directions. Since f can depend on the coordinates q (cf. eq. (1)), our
formulation also covers parametric random excitations.
After transforming system (1) into first order, we introduce the probability density function ρ(q, q̇, t) depending on the
phase space location and time, both of which are suppressed in our notation for simplicity. The time evolution of ρ is then
governed by the classic Fokker-Planck equation [7], which can be recast in the advection-diffusion form

Dρ

Dt
=
ν

2
∇ ·
(
∇ · f(q)f⊤(q)

)
+ kρ. (2)

The constant k in equation (2) depends on the damping C and Dρ/Dt = ∂ρ/∂t+ v · ∇ρ denotes the material derivative.
The results of Haller et al. [9] on transport barriers can be applied to equations of the form (2). These results yield
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invaraint manifolds of an associated, deterministic barrier equation. The manifolds obtained in this fashion are barriers to
the diffusive transport of the PDF of the original mechanical system (1).

Results

We numerically investigate whether distinguished transport extremizers align with known deterministic slow manifolds
or fast stable manifold of stable fixed points. More specifically, we investigate the modified Shaw-Pierre example [10]

[
m1 0
0 m2

]
q̈+

[
c1 + c2 −c2
−c2 c1 + c2

]
q̇+

[
k1 + k2 −k2
−k2 k1 + k2

]
q+

[
κq31
0

]
=
√
ν

[
0
1

]
dw, (3)

where the intensity ν is a small parameter (ν ≪ 1) and dw indicates Gaussian white noise. Further, we investigate the
classical Duffing oscillator [11]

q + cq + kq + κq3 =
√
ν dw. (4)
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(a) Duffing oscillator (4) (b) Shaw-Pierre example (3).

Figure 1: Diagnostics from [9] applied to the Shaw-Pierre Example (3) and Duffing oscillator (4).

For systems (3) and (4), we plot the diagnostics for transport barriers from [9] in Fig. 1. In the case of the stochastically
forced Duffing oscillator (4) the slow manifold connecting the saddle type fixed point at the origin with the stable node at
q=1 is successfully identified as a DBS ridge (cf. Fig. 1a). For the Shaw-Pierre example (3), the fast stable submanifold
is successfully identified as a perfect barrier for the stochastically excited nonlinear system (cf. Fig. 1b).

Conclusion

We demonstrate that the methods developed in [9] link classic deterministic normally hyperbolic manifolds or stable
submanifolds of nonlinear mechanical systems to the stochastic dynamics arising under small random perturbations to
the deterministic system. Our analysis is based on purely deterministic quantities and thereby avoids computationally
expensive methods, such as Monte-Carlo approximations.
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Summary. The noisy dynamics of the system called the smooth and discontinuous (SD) oscillator in its frequency domain is studied.
The nonlinearity is smooth (continuous) or nonsmooth (discontinuous) depending on the value of the smoothness parameter α. It was
observed that the hysteretic region decreases with a higher correlation in noise. Furthermore, an increase in the smoothness parameter
in the presence of noise also has the effect of reducing the hysteretic region.

Introduction

The study of discontinuous nonlinear systems subjected to stochastic excitations using non-smooth transformations, ap-
proximate analytical methods, numeric-analytical methods and numerical methods are few [1]. Most of these studies were
carried out with the assumption of noise being uncorrelated in nature. However, white noise is a mathematical abstraction
and the noise occurring in real physical systems often has a finite bandwidth. Furthermore, the problem is more involved
in the vicinity of a bifurcation as the presence of a subcritical bifurcation in a deterministic dynamical system leads to the
formation of a pair of stable solutions separated by an unstable branch, thus creating a hysteretic loop when a forward
and a backward bifurcation is carried out. The dynamics follows a particular bifurcation branch until the critical value of
a control parameter is reached, followed by a sudden transition to another branch. However, if the integration is carried
out using the varying the same control parameter in the reverse manner, the critical transition occurs at a different value.
Noise has the potential to influence these critical parameters [2]. The dependence of the size of the hysteresis loop on
the intensity and correlatedness of noise is thus important to demarcate the stability regime of the dynamical system.
The complexity of the problem is increased when there is an interplay of nonsmoothness in the dynamical system. To
decipher the underlying dynamics of such noise-induced transitions, an archetypal snap-through truss oscillator has been
considered. The dynamics of the system can be considered to be smooth or non-smooth depending on the smoothing
parameter α in the problem. The non-dimensionalized equations of motion of this system are given by Eq. 1. In the
smooth regime, the system is observed to bear significant resemblance to the Duffing oscillator, exhibiting the standard
dynamics governed by the hyperbolic structure associated with the double well. At the discontinuous limit however, the
dynamics diverges substantially. The loss of local hyperbolicity leads to a jump in the velocity flow when crossing from
one well to another. The system has coexisting attractors in the presence of damping and external excitations.

ẍ+ 2ζẋ+ x

(
1− 1√

x2 + α2

)
= f0 cosωt+ nλ(t), (1)

where ζ is the damping coefficient, f0 is the amplitude of forcing and ω is the corresponding forcing frequency. λ(t)
depicts the Ornstein Uhlenbeck noise and n denotes its intensity.

Results and discussions

The results of direct numerical simulations using forward integration has been shown in Fig. 1. It can be observed that in
the presence of noise, the upper branch near ≃ ω = 0.8 is continued for a larger magnitude of frequency before there is a
transition to the lower amplitude branch. The transition is depicted by a saddle-node bifurcation of limit cycles, leading to
the creation of a stable and and unstable branch of bifurcations [4]. It is also observed that the lower amplitude branch has
a marked increase in the observed maximum amplitude of oscillations post the saddle-node bifurcation. Thereafter, the
effect of correlatedness in noise on the transition to the lower branch is studied. The intensity of noise, mean and variance
are kept constant at 0.5,0 and 0.1 and the mean reverting speed is varied, here denoted by θ. The system is assumed to
be ergodic and the maximum amplitude is computed with one simulation from an ensemble of realizations where a long
time history of 103 cycles is considered. It was observed that the transition occurred for a lower magnitude of frequency
when the mean reversion speed of the Ornstein Uhlenbeck process was higher i.e. higher correlatedness in noise led to a
proponent of transition to the lower amplitude branch when a forward numerical integration is carried out; see Fig. 2.
Furthermore, the effect of varying the smoothing parameter in the SD oscillator on the transition to the lower branch is

studied. Fig. 3. is a depiction of the variation of nonlinear restoring force as a function of α. It can be observed that the
restoring force becomes stiff as α decreases and is discontinuous at α = 0 [3]. Fig. 4 depicts the variation in the control
parameter leading to the occurrence of the nonsmooth saddle-node bifurcation. As α decreases, the bifurcation is delayed
to a higher parameter of ω. Also, a corresponding increase in the maximum amplitude of the response has been observed
post occurrence of the bifurcation. For the simulations, the intensity of noise n is kept constant at 0.5 and the process
parameters of the Ornstein Uhlenbeck process are 0, 0.5, 0.3 respectively. The step size of integration is fixed at 0.001.
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Figure 1: The frequency response of the SD oscillator
for α = 1.1, f0 = 0.25, ζ = 0.0141 using numerical
integration with stochastic Runge-Kutta method when
σ = 0, 0.1.
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Figure 2: The frequency response of the SD oscilla-
tor with Stochastic Runge-Kutta method with different
correlated noises.
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Figure 3: Nonlinear restoring force for different values
of α.
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Figure 4: The frequency response of the SD oscilla-
tor with Stochastic Runge-Kutta method with different
values of the smoothing parameter α.

A systematic semi-analytical and numerical approach to determine the effect of additive noise on the region of co-
existence of attractors in a SD oscillator is currently under investigation. The noise is appended to the harmonic excitation
in the system. The effect of the degree of nonlinearity given by α, the intensity of noise n, correlatedness of noise λ(t),
damping ζ are explored.
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Summary. Acoustic Black Hole (ABH) is a new passive technique for vibration damping of thin-walled strutures such as beams and
plates. It consists of a local decrease in the thickness profile, associated to the deposit of a thin viscoelastic coating in the thinnest
region. One of the common feature for this technique is that it is very efficient in the high frequency range, but it is less optimal in the
low frequency range. To overcome this limitation,we propose to investigate the benefit brought by different types of nonlinear dampers
into the system. The effect of a Tuned Mass Damper (TMD), a Nonlinear Energy Sink, and a Bistable Nonlinear Energy Sink are
respectively considered and compared. The dynamics of these systems are numerically solved using a modal approach with an energy
conserving scheme. Then, by defining some frequency indicators, the low frequency performance of each aforementioned strategy is
characterized. It is demonstrated that, if appropriately designed, all the proposed methods can effectively reduce the low frequency
resonance peaks in the ABH structure, and hence improve the average performance of an ABH.

Introduction

The Acoustic Black Hole (ABH) effect has become an increasingly popular technique for passive noise and vibration
control. Its one dimensional implementation (i.e its implementation in a beam structure) consists of a local decrease of
the thickness according to a power law profile associated to the adding of a thin viscoelastic damping layer in the tapered
area [1]. Existing theoretical, numerical and experimental papers show that Acoustic Black Holes induce significant
localization of the bending waves, and have a strong damping effect in the middle and high frequency ranges [1]. Some
design rules based on the analysis of the wave scattering induced by an ABH termination have been proposed [2] to
achieve high modal damping coefficients, the underlying mechanism being interpreted using the critical coupling concept
[3]. However, a significant limitation of the ABH effect leads in the fact that it is effective in the mid-high frequency
range. A cut-on frequency has been defined [4], for representing the critical frequency threshold below which the ABH
loses its efficiency. To overcome this issue, the idea of associating the ABH effect with some other nonlinear effects has
emerged: geometrical non linearities due to vibrations with large amplitudes have been exploited [5], as well as strong
nonlinearities induced by vibro-impacts [6].
In this paper, the interest of adding three different types of vibration absorbers to a beam ABH termination are tested in
order to meet the requirement of a broadband passive energy mitigation. A classical tuned mass damper (TMD) is first
considered, which consists of a linear device that has been proven to be a very reliable passive mitigation strategy in a
large number of contexts [7, 8]. It could be awaited that once a TMD is attached to an ABH beam and tuned to one of its
resonant modes below the cut-on frequency, where the ABH effect is ineffective, the peak response reduced [9], and the
average perfomance of the ABH could hence be improved.
Considering the known major drawback that TMD is only effective in a narrow frequency band, a more broadband
nonlinear vibration absorber consisting of an NES with cubic nonlinearity [10] is also proposed. Unlike a linear system,
a unique nonlinear phenomenon called targeted energy transfer [11] could be observed for effective broadband vibration
mitigation [12, 13]. A third proposition of absorber consists of a recently studied Bistable Nonlinear Energy Sink (BNES),
for which the targeted energy transfer can be activated with a lower energy barrier [15, 16].
The purpose of this paper is thus to use the aforementioned three types absorbers in order to improve the performance of
the ABH below its cut-on frequency, and to compare their performances. The numerical modeling of all the considered
systems will be formulated in Section 2. Section 3 is mainly devoted to the numerical results, the performance of each
methods will be discussed, before the conclusion given in section 4.

Equations of motion

Let us consider an ABH beam coupled to a single vibration absorber consisting in an elementary 1-DOF oscillator (see
Fig. 1). The absorber is located at x = xc. Its mass m is assumed to be small compared to that of the beam. It
is characterized by its linear stiffness kl, its cubic nonlinear stiffness kn, and its damping coefficient 2σ. Considering
such parameters, the three different types of absorbers can be modeled by varying kl and kn. More precisely, a linear
TMD [7, 8] is obtained by setting kl > 0, kn = 0; while the classical NES [11] with cubic nonlinearity corresponds to the
arrangement of kl = 0, kn > 0. Finally, the case of a BNES [15, 16] can be obtained for kl < 0, kn > 0.
The ABH beam is supposed to have a constant thickness h0 in the region x ∈ [0, xabh]. An ABH profile is assumed in
the right hand region x ∈ [xabh, L]: The thickness hb(x) is decreasing with respect to the variable x, in the form of the
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power-law function

hb(x) =





h0, for x ∈ [0, xabh]

h0

(
x− xend

xabh − xend

)2

, for x ∈ [xabh, L]
(1)

The cross-section of the ABH beam is assumed to be rectangular and with width b, such that the cross-section area A(x)
and the inertia moment I(x) writes respectively A(x) = bhb(x) and I(x) = bhb(x)

3/12. Finally, a viscoelastic layer
is added in the ABH region in consideration of ensuring the damping for a practical ABH with an inevitable truncation
thickness ht.

Figure 1: The layout of the considered system consists of an ABH beam coupled to a lightweight oscillator located at xc. A thin
damping layer (red) of thickness hl is added along the ABH profile.

Let u(x, t) be the transverse displacement of the beam, and v(t) the motion of the absorber. The governing equation for
the system can then be written as

ρ(x)A(x)
∂2u

∂t2
+

∂2

∂x2

(
D(x)

∂2u

∂x2

)
+ fδ(x− xc) = pδ(x− xF ), (2a)

mv̈ = f, (2b)

f = klw + knw
3 + 2σẇ, (2c)

w = u (xc, t)− v, (2d)

where ρ(x) is the material density of the beam, and D(x) = E(x)I(x) is the bending stiffness, p = p(x, t) stands for
the pointwise external force induced at the position x = xF . The force f = f(x, t) is the restoring force of the oscillator
written in form of the relative motion w = u (xc, t) − v. The mass ratio ǫ defined by ǫ = m/mbeam is supposed to be
small (m is the mass of the absorber and mbeam is the total mass of the beam). As for the boundary conditions, the beam
is considered to be clamped at x = 0 and free at x = L.
The damping induced by the viscoelastic layer is modelled with the Ross-Kerwin-Ungar method [2], in which a complex
bending stiffness D∗(x) is introduced and can be expressed as,

D∗ (x) =





EbIb(x) (1 + jηb) , ∀x ∈ [0, xabh] ,

EbIb(x)

[
(1 + jηb) +

El
Eb

(
hl

hb(x)

)3

(1 + jηl)+

3
(
1 + hl

hb(x)

)2
Elhl

Ebhb(x)
(1− ηbηl + j (ηb + ηl))

1 + Elhl

Ebhb(x)
(1 + jηl)


 , ∀x ∈ [xabh, L] ,

(3)

where j is the imaginary unit, Eb, Ib, and ηb stand respectively for the bending stiffness, the Young’s modulus, the
moment of inertia and the loss factor of the beam alone, while El and ηl are the Young’s modulus and the loss factor
of the viscoelastic layer. In addition, a modification on the thickness h(x) = hb(x) + hl and material density ρ(x) =
(ρbhb + ρlhl) /h at the ABH area are also performed due to the added mass of the damping layer.
A modal approach, whose implementation details are given in [6], is applied to numerically solve the problem described
in 2 in the time domain. A special emphasize on the added new dof introduced by the nonlinear damper will be further

explained here. First of all, the beam displacement is written as u(x, t) =
Nm∑
k=1

φk(x)qk(t), where qk(t) is the modal
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coordinate associated to mode φk(x), and Nm is the number of modes kept in the expansion. Introducing the modal
expansion into (2), and projecting the dynamics onto each mode yields :

q̈k + 2ξkωk q̇k + ω2
kqk = pφk (xF )− fφk (xc) , (4a)

mv̈ = f, (4b)

f = klw + knw
3 + 2σẇ, (4c)

w =

Nm∑

k=1

qkφk (xc)− v, (4d)

where ωk and ξk are respectively the eigenfrequency and the the modal damping ratio associated to each mode k. Hence,
the original problem with PDE is transferred to a set of ODEs with time variables only. Before solving Eqs. (4), a
eigenvalue problem should be solved to determine φk (x), ωk, and ξk for each mode. Such eigenvalue problem is written
from Eq. (2a), considering that f = p = 0. A finite difference method with a non-uniform grid is applied to discretize
the variable thickness of the ABH beam. All the complete details are given in [2]. They are skipped here for conciseness.
Once the eigenvalue problem solved, the last step of the numerical model consists in the time integration of Eqs. (4). It is
done using the exact energy conserving numerical scheme developed in [17].
Let tn = n∆t, with n the step index and ∆t the time step. The specific feature of the numerical integrator developed
in [17] is to use the modal approach for the linear part, whereas the contact force are computed in the physical space.
To that purpose, the relationship between the modal space and the physical space needs to be explicited. We introduce
SF = [φ1 (xF ) , φ2 (xF ) , · · · , φNm

(xF )], as the modal matrix containing the first Nm beam modes at xF , and
Sc = [φ1 (xc) , φ2 (xc) , · · · , φNm (xc)] the modal matrix at point xc. The relationship with the modal expansion
allows one to write u (xc, n∆t) = Scq, and u (xF , n∆t) = SFq. With these definitions, Eqs. (4) can then be written at
each time step n as:

qn+1 = Cqn − C̃qn−1 +∆t2
(
STF p

n − STc f
n
)
, (5a)

mδt·v
n = fn, (5b)

fn = klw
n + kn(w

n)
2
µt·w

n + 2σδt·w
n, (5c)

wn = Scq
n − vn. (5d)

where pn and fn are respectively the external and restoring forces at time step n. The matrices C and C̃ are t-
wo diagonal matrices whose expressions could be found in [17], δt· is a centred time difference reading δt·wn =(
wn+1 − wn−1

)
/2∆t, and µt· is an averaging operator: µt·wn =

(
wn+1 + wn−1

)
/2. The advantage of this partic-

ular choice stems from the consideration of ensuring the energy conserving properties and avoid numerical dispersion.
It should be noted that before the numerical analysis, a convergence study should first be performed on the sampling
frequency Fs = 1/∆t and the number of modes Nm, in order to appropriately select the numerical parameters. It was
demonstrated that an arrangement with Nm = 20 and Fs = 16kHz is sufficiently enough for obtaining accurate results in
our studies.

Nonlinear dampers attached to a uniform beam

The first results and comparisons of the three selected methods (TMD, NES and BNES) have been first tested numerically
on a simply supported uniform beam. goal is here to suppress one targeted single resonance of the beam using each of the
three selected methods. Fig. 2 provides two simulation results: 1/ the optimization of the nonlinear cubic stiffness kc and
the location xc of a NES is performed using the energy dissipation Ediss cost function (see Fig. 2(a)). 2/ The performance
of the system subjected to a harmonic excitation at the circular frequency ωF in the vicinity of the fundamental frequency
of the beam ω1 is illustrated in Fig. 2(b).
It can be seen that with a appropriate design, each strategy, either a TMD, a NES, or a BNES can effectively suppress the
resonance peak of the beam which confirms their efficiency. For the next step, the three methods will then be applied to
the ABH beam in order to improve the low frequency performance, with comparisons and optimizations for each of the
three mentioned method.

Nonlinear dampers attached to an ABH beam

Parameters of the ABH beam and linear performance
The geometrical and material parameters for the selected ABH beam used in our simulations are listed in Table 1. These
choices are related to the experimental beam used in the previous works in[2]. The first line in Table 1 defines also a
uniform beam of constant thickness, which will be used subsequently as reference in order to draw out comparisons.
The driving mobility defined as the ratio between the velocity spectrum and the input force spectrum at xF , is compared
in Fig. 3 between the reference (naked) beam and the ABH beam. It could be found that the ABH effect is particularly
noticeable on the high-frequency part of the mobility. The cut-on frequency of the ABH effect is evaluated at fc = 500 Hz,
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Figure 2: (a): Dissipated EnergyEdiss of a NES having a purely nonlinear cubic stiffness kc and located at xc. (b): Frequency response
of the beam under a harmonic excitation in the vicinity of the first resonance frequency ω1. Comparisons among the optimized TMD,
NES and BNES configurations, with the same damping σ = 0.1. |u(xc, t)| refers to the beam displacement at the attached point, the
dashed lines indicate that the periodic solution is unstable.

Beam parameters ABH profile viscoelastic layer
L=80cm xabh=71cm hl=400µm
h0=4mm xend=80.685cm El=10Mpa
b=2cm ht=20µm ρl=1000 kg ·m3

Eb=70Gpa ηl=160%
ρb=2700kg ·m3

ηb=0.2%

Table 1: Geometrical and material parameters selected for the studied ABH beam.

above which excellent damping properties in the ABH beam with strong attenuation of the sharp resonance peaks (more
than 20dB) could be observed. However, at the frequency range below 500Hz, sharp resonance peaks still exist, the ABH
almost has no effect. Therefore, in the next sections, our goal will be to improve the damping properties of the ABH effect
in the frequency range [0, 500] Hz, by associating the ABH with a special vibration absorber: TMD, NES or BNES.

0 500 1000 1500 2000 2500 3000 3500 4000
−100

−80

−60

−40

−20

0

20

Frequency (Hz)

P
oi

nt
 m

ob
ili

ty
 (

dB
)

 

 

Reference
ABH Beam

Figure 3: Comparison of the driving mobilities of the ABH and the uniform beam given in Table 1. Excitation and measurement point
are fixed at xF = 24 cm. The excitation is a white noise excitation on [0, 5000] Hz, with amplitude 1 N.

Effect of vibration absorbers on ABH beam
To investigate in the effect of the adding vibration absorber on the performance of the ABH beam, a white noise excitation
in the frequency band [0, 500] Hz is considered. Four different cases including the ABH beam without damper (the
reference case), the ABH with an attached TMD, the ABH coupled to a NES with pure cubic stiffness, the ABH coupled
to a BNES with both cubic stiffness and negative linear stiffness, are then discussed and compared. Fig. 4 shows the
output velocity spectrum at the excitation point for each case. Clearly enough, each method could be able to reduce the
resonant responses in the targeted low frequency range, while for this typical simulation, the performance is significant
for the first 4 modes but less important for the others. More precisely, for mode 2, a 15-25dB reduction could be observed,
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and for mode 3, this reduction is around 10-20dB. Thus, by using a linear or nonlinear absorber, the average performance
of the ABH beam at the low frequency range is considerably improved. On the other hand, the spectra above the 500Hz
indicate that while not significant, the nonlinearity of the NES and BNES brings some transfer of the energy from the low
frequency to the high frequency, whereas the TMD shows a linear behaviour without such energy transfer.

Figure 4: Reduction of the resonance peaks of an ABH beam by using a TMD with kl = 800 N/m, a NES with kn = 3× 109 N/m3,
and a BNES with kl = −300 N/m, kn = 3 × 109 N/m3. For all cases, σ = 0.5N · s/m, xc = 0.72 m. The beam is excited with a
white noise of [0, 500] Hz, with an amplitude A = 5 N and a location xF = 0.24 m. The dynamics are simulated up to 10s.

A performance indicator is proposed for a more quantitative comparison :

I = 10log10



∫ fend

f0
V 2
c df

∫ fend

f0
V 2
ref df


 , (6)

where V stands for the power spectrum of velocity at the exciting point, with subscript c or ref referring respectively to
the current case and the reference case (i.e. the ABH beam without attachment). This indicator allows one to assess the
improvements brought by each method over an arbitrary frequency band [f0, fend]. Having in mind the purpose that we
want to compare the performances of the three vibration absorbers in the low frequency range below the cut-on freuqency
of the ABH, some useful indicators can thus be defined in Tab. 2. Here, Iω1

to Iω3
are the indicators quantifying the

reduction in the vicinity of each eigenfrequencies ω1 to ω3, while Iave provides an evaluation for the average performance
at the low frequency band [0, 500] Hz of the ABH beam.

Indicators Iω1
Iω2

Iω3
Iave

ωi/2π (Hz) 5.9 36.7 101.9 /
[f0, fend] (Hz) [0, 15] [30, 45] [95, 110] [0, 500]

Table 2: Frequency bands used for defining the performance indicators

The performance indicators for all the cases considered in Fig. 4 are reported in Fig. 5. Considering the fact that the
chosen excitation signal is random, a single simulation result may not give an accurate value for the indicators, hence a
average values over 20 random selections for each indicator Iω1

to Iave, together with the standard variations is depicted
in Fig. 5. One can see that the variations brought by the randomness of the excitation is significant. For Iω1

, a worst
fluctuation at around ±6dB is observed. At the higher frequencies , the indicators are less prone to variations. As a
result, there finally exists a variation at around ±1.5dB for the average performance Iave. Thus, a single simulation is not
sufficient enough to provide accurate values for each indicator. A Monte Carlo method for obtaining convergence results
has then been performed. It is shown that, by make the average value of at least 5 times of simulation samples, Iave can
be converged to to a very small variation of less than 0.2dB. In this paper hereafter, for each case, we will repeat 10 times
each simulation, and we will take the average value for computing the indicators.
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Figure 5: Histograms of indicators Iω1 to Iave calculated for the four cases given in Fig. 4. Average values and standard deviation are
computed from 20 randomly generated white noise excitations with amplitude 5N and frequency band [0, 500]Hz.

It should be emphasized that the parameters associated to each method are randomly selected, hence their performances
are not really optimized currently but discussed thanks to the help of the indicators. It allows to propose some guidelines
for an optimal design.

Tuning the vibration absorbers: parametric study
This section is devoted to the parametric tuning and the optimization of the different vibration absorbers. The interested
parameters are the linear and nonlinear stiffnesses kl and kn, the damping coefficient σ, and the location xc. For all the
simulations, the external force is a white noise excitation limited to the low frequency band [0, 500]Hz, with amplitude
A = 5N and location xF = 0.24m.
Since the linear and nonlinear stiffnesses play an important role in the energy transfer between the ABH and the vibration
damper, their effects are first investigated. Fixing xc=0.72m, σ=0.5Ns/m, and ǫ = 0.1 and varying kl and kn, the values
of different indicators are depicted in Fig. 6 for the three vibration absorbers.
As the linear stiffness kl in the TMD increases, Iω1 , Iω2 , Iω3 , and Iave show a similar trend, with different minimum values
for each indicator (see Fig. 6(a)). For example, Iω1

meets its optimal value of Iω1
= −15dB for kl = 20N/m, showing

that the best reduction is obtained for the resonance peak of the first mode. For Iω2
and Iω3

, the optimal stiffnesses are
kl = 500N/m and kl = 5000N/m, respectively. Each optimal stiffness is just consistent with the eigenfrequency of the
correspond mode, which is also the key rule in the classical frequency tuning of TMD. Nevertheless, the combined effects
reported by the average indicator Iave show that a global minimum can be found for kl around 1000N/m.
For the case of an attached NES, trends similar to the TMD case can be observed (see Fig. 6(b)). The optimal performance
for the reduction of the resonance peaks of modes 1-3 could be found respectively for kn = 107N/m3, kn = 109N/m3,
and kn = 3 × 1010N/m3, with indicators respectively equal to Iω1

=-15dB, Iω2
=-23dB, Iω3

=-20dB. Besides, for the
average performance, kn = 2× 109N/m3 gives the optimal tuning.
In Fig. 6(c-d), the effect of the negative stiffness kl shows quite different trends for different values of kn. For a relatively
small value of kn = 106N/m3, the effect of varying kl is important. The optimal performance can be easily observed for
each single mode 1-3 as kl = −10N/m, kl = −300N/m, and kl = −2000N/m respectively, and the optimal average
performance is obtained within kl ∈ [300, 500] N/m. However, for higher values of kn, for example kn = 2× 109N/m3

(see Fig. 6(d)), where the nonlinear stiffness has been tuned to the optimal value found for the pure cubic NES, the effect
of kl become much less noticeable: varying kl does not bring an evident improvement and the indicators remain stable on
a wide range of kl. In this case, the dynamical behaviour is dominated by the nonlinear stiffness. Consequently, the effect
of having a (now small) linear negative stiffness is negligible and the dynamics of the damping mechanism is dominated
by that of a classical NES with targeted energy transfer. Finally, as testified by the abrupt increase of Iave for kl < −1000,
one can remark that when the negative linear stiffness becomes too large, the performance is largely reduced.
The influence of the damping σ on the performance of each vibration damper is depicted in Fig. 7. In each case, as damping
increases, the performance improves at first and then decreases, hence for effective vibration suppression, neither too large
nor to small value of damping is appropriate. This conclusion could be explained by the fact that when the damping is
too small, the absorber might be insufficient to damp out the energy, while an inappropriately too large value on the other
hand reduces also the relative motion the energy transfer between the beam and the absorber becomes more difficult. As a
result, a damping coefficient of σ = 3 N · s/m could be selected for the best suppression. Note the difference among the
absorbers, one can conclude that at low damping level, NES and BNES generally show a much better behaviour than the
TMD due to their strong nonlinearity. However, the difference becomes less significant when the damping increases up
to σ = 1 N · s/m, since overdamped motions make it more difficult for the NES and BNES to activate their nonlinearity
and take advantage of it.
Varying the location of the vibration absorbers on the ABH beam, the performance indicator Iω2

of mode 2 as a function
of xc is depicted in Fig. 8(a), for each of the three tested configurations: TMD, NES and BNES. Interestingly, a direct link
between on the value of Iω2

and the corresponding mode shape function is observed, whatever the absorber is mounted
on the ABH beam. This point is verified by the fact that the absolute value of the mode function |φ2(x)|, when multiplied
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Figure 6: Variations of indicators Iω1 , Iω2 , Iω3 , and Iave as functions of the linear and nonlinear stiffnesses: (a) TMD, indicators
as function of linear stiffness kl (b) NES, indicators as function of the nonlinear stiffness kn, (c) BNES, indicators as function of the
negative stiffness −kl, with nonlinear stiffness fixed as kn = 106 N/m3, (d) BNES, indicators as function of the negative stiffness
−kl, with kn = 2× 109 N/m3.
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Figure 7: Effect of the damping coefficient σ on the indicator Iave. The TMD Stiffness is kl = 500N/m, the NES Stiffness kn =
2× 109N/m3, and the BNES Stiffnesses are kn = 2× 109N/m3, kl = −300N/m. For all the absorbers, the mass ratio is ǫ=0.1

by a certain coefficient, is well fitted with the variation of the indicator Iω2
. Hence, as an direct conclusion, in order to

obtain an optimal reduction of a given mode, the linear or nonlinear dampers should be located at a local maximum of the
given mode described by the shape function.
Considering the combined effects of the low frequency modes involved below the cut-on frequency, the value of average
performance indicator Iave exhibits the variation depicted in Fig. 8(b). For all the absorbers, the optimal location lies
clearly in the ABH termination (gray area) of the beam, where most of the vibration is localized. However, for practical
considerations, one should keep in mind also that in this ABH area, the thickness of the ABH severely decrease from

ENOC 2022, July 17-22, 2022, Lyon, France

699



ENOC 2020, July 5-10, 2020, Lyon, France

 x
c
 (m)

I ω
2 (

dB
)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−30

−25

−20

−15

−10

−5

0

TMD

NES

BNES
−6.5|φ

2
(x)|

(a)

 x
c
 (m)

I a
ve

 (
dB

)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

TMD

NES

BNES

(b)

Figure 8: Effect of the position xc of the absorbers on the values of the performance indicators. TMD stiffness is kl = 500N/m, NES
stiffness kn = 2× 109N/m3, and BNES stiffnesses are kn = 2× 109N/m3 and kl = −300N/m, (a): value of Iω2 , (d): value of Iave.
The damping for each vibration damper is selected as σ = 0.5N · s/m for (a) and σ = 0.05N · s/m for (b). The gray area refers to the
ABH profile.

x = 0.71m in the selected design. Consequently, for practical reasons it does not appear as desirable to set a damper in
this region of small thickness where the beam is weaker. On the region on constant thickness, there are also two optimal
positions clearly observed for the NES and BNES, at xc = 0.24m and xc = 0.44m. While the TMD shows a quite flat
plateau at a wider range x ∈ [0.2, 0.55]m, and is not able to produce averaged improved performance below -4dB. This
important difference also shows that the nonlinear absorbers are more sensitive to the location as compared to the TMD.

Robustness to the forcing amplitude
The last parameter to be studied is the forcing amplitude. Indeed, as it is expected, the influence of this parameter is
crucial for the cases of a NES ad a BNES. It is well known that unlike a linear system, a nonlinear system has quite
different performance at different energy levels, hence a NES or BNES that is optimally designed at one energy level
might loses its effectiveness at another energy level, and vice versa. On the other hand, for a NES, an energy barrier
exists for activating targeted energy transfer, making the NES generally not able for effective vibration suppression in too
small vibration amplitudes, while a BNES is known to have a smaller energy barrier. Thus the effect of forcing amplitude
becomes to be of special significance for evaluating the performance of these vibration absorbers.
For forcing amplitudeA increases from 0.01 to 100N, the variations of Iω2

and Iave are shown in Fig. 9. The performances
of TMD (black), NES (blue) and BNES (red) are then compared for two different values of parameters, where the solid
lines refers to the case where the optimal parameters in each strategy, while the dashed lines show how they behave in
a weak damping case with internal damping σ = 0.05. Indeed, it has appeared interesting to show this case since the
optimal damping value is very large and probably difficult to implement in a practical situation.
Major differences could be found for the three absorbers on the effect of forcing amplitude. As it can be expected, the
TMD is always independent to the amplitude: the indicator at all excitation level remains the same. On the other hand,
the performances of the NES or the BNES are highly relevant to the amplitude, in Fig. 9(a), a energy barrier at 0.1N could
be observed for the NES. Below this barrier, the performance of Iω2

is weak and it starts to increase to meet an optimal
performance around 2.5N. The performance is deteriorated at very large amplitudes. Similar conclusion is also evidenced
for the average performance Iave in Fig. 9(b). When adding a negative stiffness in the NES, representing a BNES, the
performance at the low amplitude level that limited by the energy barrier is improved. Finally, at very high excitation
level, the performance of NES and BNES are similar, and both ineffective.
In a summary all these results show that all the proposed solutions, if appropriately designed and tuned, are able to achieve
a clear broadband vibration mitigation.

Conclusion

Aiming at improving the low frequency performance of a beam equipped with an ABH termination three different types
of vibration absorbers (TMD, NES and BNES) have been proposed and simulated numerically. The main results confirm
that all the proposed vibration absorbers, despite being linear or nonlinear, once appropriately designed, could be effective
to reduce the low frequency resonance peaks in the ABH beam with a reduction at more than 10dB.
The parametric effect in each method is also discussed. The values of the stiffnesses (linear and non-linear) play the most
important role for the performance of each absorber and it should be carefully designed according to different applications.
On the other hand, at weak damping level, NES and BNES outperform the TMD, but for large values of the damping, they
behaves linearly and all the three absorbers exhibit similar performances. The investigation on the location illustrates that
whatever the absorber is, its optimal performance for a single resonance modes lies in the local maximum of the targeted
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Figure 9: Robustness of the performance indicators according to the forcing amplitude, (a): value of Iω2 , (b): value of Iave. Solid line:
computation with the optimal parameters, dashed line: comparison in the weak damping case. dashed black: TMD with kl = 500N/m
and weak damping σ = 0.05N · s/m; solid black: TMD with optimized parameters σ = 2N · s/m and kl = 500N/m; dashed blue:
NES with kn = 2× 109N/m3 and weak damping σ = 0.05N · s/m; solid blue: NES with optimized parameters σ = 2N · s/m and
kn = 2× 109N/m3; dashed red: BNES with kn = 2× 109N/m3, kl = −300N/m, and weak damping σ = 0.05N · s/m; solid red:
BNES with optimized parameters σ = 2N · s/m, kl = −300N/m, and kn = 2× 109N/m3;

mode function.
A Robustness study to the forcing amplitude demonstrates that while a TMD with linear behavior is always independent
on the vibration level, the NES and BNES could be strongly dependent on the forcing amplitude. A NES is generally
effective only at a moderate excitation level, and its performance is deteriorated at low and high amplitude levels. Hence
for a robustness point of view, a TMD is better than the NES. Using a BNES improves a lot the performance at low
amplitude level, but the performance at high amplitude level stays also ineffective.
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Summary. We consider the interaction of wave disturbances for shallow water of uniform depth. When we allow for compressibility
effects in the linear theory, acoustic waves are assumed to be decoupled from free-surface gravity waves due to their disparity in
propagation. However, it is possible to have energy exchange between acoustic and gravity wave modes given a non-linear interaction
through a resonating triad. In this study, we analyse the case of a single gravity wave and two counter propagating acoustic modes
which are of comparable length scales, but differing temporal scales. We derive amplitude evolution equations to describe the cyclic
exchange of energy they exhibit through asymptotic methods, and implement them numerically to gain insight into the energy exchange
of the triad with respect to the steepness of the waves. We find that the interaction allows a periodic exchange of energy in the triad
where the steepness parameter is proportional to the a magnitude and inversely proportional to the period.

Introduction

In classical water-wave theory, the effects of compressibility are ignored, which stems from the idea that acoustic waves
are essentially decoupled from free-surface waves. This assumption can be rationalised for the linear theory due to the
speed of sound in water exceeding that of the maximum phase speed of surface waves, thus giving rise to differing spatial
and/or temporal scales in the acoustic modes, and a somewhat decoupled system. However, when considering the non-
linearity of the two types of waves, this assumption may not be as well justified. In a seminal paper by Longuet-Higgins
[1], it has been shown that quadratic interactions of surface gravity waves can excite compression modes when we consider
water of finite depth. It was argued that the formulation of oceanic microseisms could be due to such nonlinear coupling.
Through studying quadratic interactions of two counter propagating wave trains of the same frequency, the behaviour was
not in keeping with the classical theory, due to a non-decaying pressure component. Accounting for compressibility gave
rise to resonance in the second order when an acoustic mode had double the frequency of the surface wave. Thus, the
effects of compressibility must be considered to allow for this non-decaying component.
In this work we consider a non-linear coupling of acoustic and gravity waves in water of finite depth, and their interaction
through a resonating triad. In recent years, numerical evidence has been presented that the resonant behaviour seen in
Longeut-Higgins (1950) is a particular example of a resonant triad for two surface waves travelling in opposing directions
and a propagating acoustic wave mode[2]. Also shown was that the amplitude of the free acoustic-gravity wave which was
generated at resonance, or near-resonance conditions, was significantly larger than that of the bound acoustic-gravity wave,
being generated far from resonance conditions. It was argued that the resonating triad amplitudes should be governed by
a system of ordinary differential equations, and evolve in time, being governed by amplitude evolution equations of the
same form as that of a standard resonant triad, see [3]. Following this, asymptotic theory was developed for resonant
triad interactions concerning acoustic-gravity waves, taking waves of comparable temporal but differing spatial scales[4].
As Kadri and Stiassnie (2013)[2] suggested, it was shown that there is a resonance interaction between a given triad of
two opposing gravity waves and a long-crested acoustic wave. Due to the interaction time scale being longer than that
of a standard resonant triad, cubic terms were needed to display the wave self-interaction. What followed later was the
derivation of evolution equations through asymptotic methods for both the acoustic wave and both gravity waves[4].
In the following we proceed with a similar approach as Kadri and Akylas, (2016)[4], but consider a triad of two counter-
propagating acoustic modes, and a single gravity wave. In light of this, we consider differing temporal, but comparable
spatial scales of the acoustic-gravity modes, and use multiple scale analysis to derive the evolution equations for the given
amplitudes of the waves. Section 2 details the formulation of the the problem, deriving the governing equations and finding
the dispersion relations through linearisation. Section 3 discusses the resonance conditions and the cyclic exchange of
energy. Section 4 derivation for the evolution equations for a normal mode wave form, and Section 5 presents a numerical
solution to the problem with results and conclusions on the interaction and its corresponding energy exchange.

Preliminaries

We look at the propagation of surface and acoustic wave disturbances in water of a constant depth h with a rigid bottom
(z = −h), accounting for the effects of compressibility and gravity. In this setting we consider water as an inviscid
barotropic fluid such that the density ρ of the fluid is solely a function of its pressure p, the motion of such fluid to be
irrotational, and the speed of sound c = (dp/dρ )1/2 to be constant. An important parameter µ, defined as

µ2 =
gh

c2
, (1)

for g the gravitational acceleration, controls the effects of compressibility relative to gravity. Generally we can say that
µ ≪ 1 due to the fact that the speed of sound in water, c = 1.5 × 103 ms−1, and would surpass the maximal phase
velocity of gravity waves (gh)1/2.
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The following analysis is focused on nonlinear interactions of a single gravity wave mode with two acoustic wave modes,
all of similar spatial but differing temporal scales. The temporal disparity arises from the frequency of the gravity wave
being much smaller than that of the acoustic waves. To interpret µ, we can take τac ∼ h/c =⇒ τgr ∼ (λ/g)1/2, where
τac is the acoustic time scale and τgr the gravity time scale. If we take the scales to be comparable, this implies that
τac ∼ µτgr, where µ can be thought of as the ratio of temporal scales. Thus, to introduce non-dimensional variables, we
can take the time scale and length scale as (h/g)1/2 and h respectively.
Due to the assumption of an irrotational fluid, the problem can be formulated in terms of a velocity potential φ(x, z, t)
such that we have a velocity field u = ∇φ. The governing equation for φ(x, z, t) within the fluid interior is determined
by combining continuity with the unsteady Bernoulli equation[1, 4], such that φ(x, z, t) satisfies

1

µ2
(φxx + φzz)− φtt − φz − |∇φ|2t −

1

2
(φx|∇φ|2x + φz|∇φ|zx) = 0. (2)

The standard kinematic and dynamic conditions are applicable at the free surface z = η(x, t), and it is sufficient to satisfy
these conditions up to third order in the perturbations for the weakly nonlinear analysis that is to follow. Once the two
free-surface conditions have been expanded about z = 0, η can be expressed in terms of φ at the desired order. Thus, it is
possible to obtain the boundary condition for φ on z = 0 [4]

φtt + φz + |∇φ|2t − (φt(φtt + φz))z +
1

2
u ·∇(|∇φ|2)− (φt|∇φ|2t )z

−1

2
{(φtt + φz)(|∇φ|2 − φ2t )}z = 0 for (z = 0)

(3)

At the rigid bottom, the standard no penetration condition is derived

φz = 0 (z = −1) (4)

We now analyse the linear problem which is responsible for the disparity in temporal scales. We can drop the nonlinear
terms in (2), (3) and (4) and assume φ as

φ = f(z) exp

(
1

2
µ2z

)
exp (i (kx− σt)) (5)

being the normal mode form, and seek wave modes propagating along x with wave number and frequency k and σ
respectively. By substituting (5) into (2), (3) and (4), the boundary-value problem for the vertical profile f(z) becomes

d2f̂

dz2
+Ω2f = 0, for (−1 < z < 0)

−ω2f̂ + µ2 df̂

dz
+

1

2
µ4f̂ = 0, for (z = 0)

df̂

dz
+

1

2
µ2f̂ = 0, for (z = −1)

(6)

where Ω2 = ω2 − k2 − µ4

4 and ω = µσ. As µ≪ 1, we assume the solution of this system to be oscillatory, giving us the
solution

f̂ = cosΩ(z + 1)− µ2

2Ω
sinΩ(z + 1). (7)

The dispersion relation for the gravity mode can be obtained in the standard way by substitution of the solution (7) into
the boundary condition, specifically at z = 0, such that

σ2 = λ tanhλ (8)

where ignoring compressibility gives k = λ. To find a similar relation for the acoustic mode, we first notice that Ω2 > 0,
implying that we can take Ω =

√
ω2 − k2 + O(µ4). Thus, by substituting our general solution back into the boundary

condition at z = 0 as well as our expression for Ω, we have the acoustic dispersion relation

ω2 = ω2
n + k2 +

ω2
n − k2
ω2
n + k2

µ2 +O(µ4), (9)

where ωn = (n+ 1
2 )π.
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Resonance Conditions

It has been seen numerically that if we allow for the influence of compressibility, two gravity waves can interact resonantly
with an acoustic-gravity wave [2, 4]. In this study, we consider if the same holds true for two counter propagating acoustic
modes (k+, ω+) and (k−, ω−), and a single gravity mode (k, µσ). In order for these to form a resonant triad, they must
satisfy the prescribed resonance conditions

(i) k+ + k− = k and (ii) ω+ − ω− = µσ. (10)

as well as the appropriate dispersion relations (8), (9). Hence, we investigate said triads in the limit as µ≪ 1.
If we define

(I) ω± = ω̃ ± µσ

2
and (II) k± =

k

2
(11)

then by (I) and our acoustic dispersion relation (9),

ω̃2 ± µσω̃ +
µ2σ2

4
= ω2

n + k2± +
ω2
n − k2±
ω2
n + k2±

µ2 +O(µ4)

=⇒ k2± = ω̃2 − ω2
n ± µσω̃ +O(µ2).

(12)

Thus, if these conditions are satisfied along with the given dispersion relations, then the gravity mode can form a resonant
triad with two counter-propagating acoustic waves for the given conditions. Under these conditions, we expect interactions
between the resonant triad to results in a somewhat cyclic exchange of energy between the participants. As is seen in [4],
due to having disparity in the temporal scales, the interaction time scale and the amplitude evolution equations will vary
compared with the standard theory on resonance interactions.

Amplitude Evolution Equations

We look to derive the amplitude equations for our resonant triad. The two acoustic modes of complex amplitudes A±
with frequencies ω± interact with a single gravity mode of amplitude S and frequency µσ such that A+ = ei(k+x−ω+t),
A− = ei(k−x−ω−t), and S = ei(kx−µσt). Thus, under appropriate assumptions, the expanded velocity potential can be
seen as

φ =ǫ{A+(X,T ) cosωn(z + 1)ei(k+x−ω+t) + c.c.}
+ǫ{A−(X,T ) cosωn(z + 1)ei(k−x+ω−t) + c.c.}

+ǫ{S(X,T ) coshλ(z + 1)ei(kx−ϵ
1
2 σt) + c.c.} + . . .

(13)

where X = ǫx, λ2 = k2 − µ2σ2 and c.c is the complex conjugate. The amplitudes depend on the "slow" time T = ǫt,
where the wave steepness 0 < ǫ≪ 1 is related to µ as µ = ǫ

1
2 . We begin by substituting (13) into our governing equations

(2) through (4), and collect terms based on those which are proportional to ei(kx−µσt) and ei(k+x−ω+t). By doing this,
we are left with terms which contribute towards resonance in the form of a reduced boundary-value problem. We then
formulate a solvability condition based on this, whereby the amplitude evolution equations will follow. We start with the
gravity mode by collecting terms which are proportional to ei(kx−µσt), and impose a correction to (13) of leading order
O(ǫ

5
2 ) of the form

ǫ
5
2

{
F (X, z, T ) exp

{
i(kx− ǫ 1

2σt)
}
+ c.c

}
, (14)

such that F satisfies the boundary-value problem

ǫ
5
2Fzz − k2ǫ

5
2F = R1 for (−1 < z < 0)

ǫ
5
2Fz = R2 for (z = 0)

Fz = 0 for (z = −1)
(15)

where

R1 = −2iǫk ∂S
∂X

coshλ(z + 1)− 2iǫ
5
2σ
∂S

∂T
coshλ(z + 1)− ǫ2σ2S coshλ(z + 1) + ǫλS sinhλ(z + 1)

+ 2iǫ
5
2 k+k−σA+A− cos2 ωn(z + 1)− 2iǫ

5
2ω2

nσA+A− sin2 ωn(z + 1)

R2 = 2iǫ
5
2σ
∂S

∂T
coshλ+ ǫ2σ2S coshλ− ǫλS sinhλ+ 2iǫ

5
2ω2

nσA+A−

(16)

The solution to the corresponding homogeneous system is cosh kz, so we must be able to employ a certain solvability
condition for the in-homogeneous problem (15). Here, we multiply both sides of the field equation by cosh kz and
integrate over the whole domain −1 < z < 0, such that

kR2 +R1

∣∣∣
z=−1

sinh k = k

∫ 0

−1

R1 cosh kz dz. (17)
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Finally, we obtain the evolution equation for the gravity mode by substituting our expressions for R1 and R2 into the
solvability condition (17), resulting in

∂S

∂T
− k

ϵ
3
2

( σ

λ2 − σ2

) ∂S
∂X

= − σS

2iϵ
3
2

{
ϵσ2 − λ2

λ2 − σ2

}
+

A+A−
λ coshλ− sinhλ

{
Ψ+ (sinhλ− k)ω2

n −
k2

4
sinhλ

}
(18)

where Ψ =
k4+2k2ω2

n

4k2+16ω2
n
− 2ω4

n

2k2+8ω2
n

. Similarly, we employ a correction of

ϵ2
{
F (X, z, T ) exp{i(k±x− ω±t)}+ c.c.

}
(19)

so that for leading order of O(ǫ2), we are left with acoustic-gravity interaction and cubic acoustic self interaction terms.
Here, the solution to the homogeneous system is cosωn(z + 1), and we can formulate the solvability condition in a
similar way as above. After multiplication by the homogeneous solution, and integrating over the domain, we arrive at
the condition

−ωn
ω2
±
R4(−1)n =

∫ 0

−1

R3 cosωn(z + 1) dz (20)

where

R3 =− 2iǫk±
∂A±
∂X

cosωn(z + 1)− 2iǫ2ω±
∂A±
∂T

cosωn(z + 1)− ǫωnA± sinωn(z + 1)

+ 2iǫ2k∓kω±A∓S cosωn(z + 1) coshλ(z + 1)

+ 2iǫ2ωnω±λA∓S sinωn(z + 1) sinhλ(z + 1) = 0,

R4 =ǫωnA±(−1)n − 2iǫ2ωnω±λA∓S(−1)n sinhλ = 0.

(21)

Again, we compute the necessary integrals and rearrange to give us the acoustic evolution equation

∂A±
∂T

+
k±
ǫω±

∂A±
∂X

=
ω2
± − 2ω2

n

2iǫω3
±

A± − 2 sinhλΦA∓S (22)

where

Φ =
4ω4

nλ+ ω2
nλ

3 − ω2
±ω

2
nλ

8ω2
±ω2

n + 2ω2
±λ2

− 3λ3 − 8ω2
nλ

32ω2
n − 8λ2

, (23)

Simulation and Discussion

As we now have our evolution equations, we want to gain a qualitative understanding of the interaction they convey, and
whether there is periodic exchange of energy. The equations derived were solved numerically in MATLAB by an explicit
Runge–Kutta method. By making use of the acoustic and gravity dispersion relations, we are able to define the variables
needed in the solution process. We can then run the analyses for various initial conditions and see the temporal evolution
of the triad interaction. We note that all waves are assumed to be of Gaussian form.
Figures 1 and 2 show the interaction where we assume no spatial influences. It can be seen quite clearly in figure 1 how
the generation of the gravity wave plays out, and the cyclic exchange of energy, where the change in amplitude is periodic.
There is an overall increase and decrease in the amplitude of the acoustic modes which is sinusoidal. The gravity wave
quickly grows and decays, transferring its energy back and forth between the two acoustic modes. Similarly in figure 2,
when all waves begin with amplitude of 1, we can see how the energy is shared amongst the triad. When the amplitude
of the gravity wave is high, the energy has been transferred, so that of the acoustic is lower, and vice versa. In both cases,
the acoustic waves mirror each other and as such the temporal evolution has been given for a single acoustic mode.
The variable ǫ is pivotal to the way the interaction plays out. It represents the steepness of the waves, so taking ǫ higher
will result in greater energy transfer to the gravity wave. In the case of of figure 1, ǫ ∼ 0.3, which is why the maximum
amplitude of the generated gravity wave does not grow above 0.15, whereas, when taking a larger epsilon in the case of
figure 2, the maximum amplitude grows above 1.
We now want to analyse the energy exchange in terms of the value of the steepness, ǫ. We again look at the case where
the gravity wave is generated, relating to the initial conditions S(0) = 0 and A±(0) = 1. It is justifiable to take the two
acoustic modes as equal for simplicity. The other parameters such as σ and ω± are prescribed by the overall set up of the
problem and are related through the acoustic and gravity dispersion relations as before. Under these initial conditions, we
have the conservation law ∫ ∞

−∞
(|S|2 + 2|A|2) dX = 2

∫ ∞

−∞
|S0|2 dX (24)

where the initial condition S0 → 0 as X → ±∞. In our computation we took the initial condition S0 = exp
{
−X2

}
, the

Gaussian wave packet. Then we can see from (24) that

E(T ) =
1√
2π

∫ ∞

−∞
|S|2 dX (25)
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Figure 1: Generation of gravity wave with no spatial influences

Figure 2: Interaction when all waves begin with amplitude 1 for non-spatial dependencies

ENOC 2022, July 17-22, 2022, Lyon, France

706



ENOC 2020+2, July 17-22, 2022, Lyon, France

Figure 3: Transfer of energy to the gravity mode over time for varying small ǫ

Figure 4: Transfer of energy for increasing ǫ

is the energy of the gravity wave generated. Implementing (25) numerically, we observe how increasing ϵ results in a
larger amount of energy transferred to the generated gravity mode over time as shown in figure 3. Here, we used the
outlined conditions above, and took small values of ϵ. As ϵ → 0, the amount of energy transferred becomes smaller, but
much more frequent in its exchange, as indicated by ϵ = 0.1 compared with ǫ = 0.5. The periodic behaviour of curves is
representative of the energy transfer between the acoustic modes and the generated gravity wave.
It is also worth analysing the rate and magnitude of energy exchange as ǫ→ 1, which is shown in figure 4. As ǫ increases,
we begin to have infinite periodicity occurring, where the value of the energy plateaus. This is due to our assumptions
upon ǫ, mainly being that it can not be O(1). So as we approach the value of 1, our resonance condition breaks down, and
less energy is able to be exchanged back to the acoustic mode from the gravity wave.

Conclusion

We have derived spatial and temporal evolution equations in the case of a resonant triad of acoustic-gravity waves, and
using these, have been able to analyse the energy exchange between them. Similarly to what was observed in Kadri and
Akylas (2016), triad interaction of this nature differs from a standard resonant triad due to the disparity of temporal scales
for the given waves. Through the presented asymptotic analysis and numerical implementation, the cyclic exchange
of energy expected in a conventional resonant triad is observed, resulting from cubic self-interaction terms that were
preserved when taking certain leading order. These terms directly impact the amplitude-dependent change in gravity
wave frequency and the exchange of energy from surface to acoustic waves.
Similarly, the importance of the steepness parameter ǫ has been highlighted, heavily changing the interaction and effecting
the cyclic exchange of energy. As the steepness increases we see larger periodicity with more energy being exchanged
in each cycle. Further analysis should be conducted to investigate its effects for alternative initial conditions. Here, the
generation of a single gravity wave was observed, but this choice was arbitrary. Further to this, the relationship between
the interaction time and amplitudal growth would be worth investigating, as we would then have a wider picture of how
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the given interaction occurs. If we were able to analyse this interaction time, and find its relationship with the amount of
energy transferred, then we would have much more control over the given interaction.
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Abstract

In this study, an acoustic resonator – a bass trombone – with multiple resonances coupled to an exciter – the player’s lips –
with one resonance is modelled by a multidimensional dynamical system, and studied using the continuation and bifurcation
software AUTO [1]. Bifurcation diagrams are explored with respect to the blowing pressure, with focus on the minimal
blowing pressure giving stable periodic regime.

Brass instruments can be described thanks to both linear and nonlinear mechanisms: a localised nonlinear element (the lips’
valve effect) excites a passive linear acoustic multimode element (the musical instrument, usually characterised by its in-
put impedance in the frequency domain); the latter acoustic resonator in turn exerts a retroaction on the former mechanical
resonator. Such musical instruments are self-sustained oscillators: they generate an oscillating acoustic pressure (the note
played) from a static overpressure in the player’s mouth (the blowing pressure).

A brass instrument having N acoustic modes and M mechanical modes can be mathematically modelled as an autonomous
nonlinear dynamical system of dimension 2(N +M) [2, 3]. On the one hand, the corresponding acoustic input impedance
of the resonator is defined in the Fourier domain by the ratio between the pressure and the volume flow at the input of the
instrument :

P(ω) = Z(ω)U(ω) (1)

with ω the angular frequency. The modulus of Z is shown figure 1 for a bass trombone. Since AUTO requires equations to
be expressed in the time domain, a modal decomposition is performed on the measured input impedance of a bass trombone
in order to obtain an analytical form for Z(ω), thus allowing equation (1) to be expressed in the time domain by taking its
inverse Fourier transform.

On the other hand, the nonlinear behaviour of the lips can be modelled by the relation between the volume flow u(t) and the
acoustic pressure p(t) :

u(t) = wh(t)Θ(h)sgn(pm− p(t))

√
2 |pm− p(t)|

ρ
(2)

with w and h(t) the width and the height of the lips’ aperture respectively, pm the mouth pressure, and ρ the air density. The
Heaviside distribution Θ accounts for the fact that lips cannot interpenetrate: as soon as the lips touch (h = 0), the volume
flow is forced to zero. The sign function sgn accounts for the possibility of having an airflow going from the instrument into
the player’s mouth, in the absence of experimental evidence to the contrary.

Eventually, h(t) can be linked to p(t) to close the system by the following equation, which accounts for the resonance of the
lips :

ḧ+
ωl

Ql
ḣ+ω2

l (h−h0) =
pm− p

µ
(3)

with ωl and Ql being respectively the frequency resonance and the quality factor of the lips, and µ the lips’ mass per unit area.

In this study, the input impedance of the brass instrument addressed – a bass trombone – will be described by N = 12 acous-
tic modes, and the exciter – the player’s lips – will be assumed to have only one mechanical mode (M = 1), resulting in a
26-dimensional dynamical system. It is worth noting that this minimal brass model does not account for the « brassy » sound
produced by a trombone, which requires a nonlinear description of sound propagation in the instrument to be addressed.

The behaviour of the instrument can be first studied close to its static equilibrium using the Linear Stability Analysis (LSA),
so as to determine if oscillatory regimes (corresponding to the instrument producing a sound) could potentially arise from
destabilised equilibrium eigenvalues of the linearised system. Such an approach has already been carried out in [4], especially
to characterise the ease of playing of a brass instrument. Indeed, the latter can be related as a first approximation to the linear
threshold pressure (figure 2a), since the lower the threshold pressure, the lower the physical effort the player has to make to
play a note.
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Figure 1: Modulus of the input impedance of a bass trombone vs. frequency.
12 resonances (orange dots) can be seen, corresponding to N = 12 acoustic
modes.

The ease of playing is then assessed in more depth through
the study of the dynamic behaviour of the instrument, us-
ing the continuation and bifurcation software AUTO [1] as
in [5] or using an alternative continuation method (Manlab)
as in [6], thanks to which bifurcation diagrams are explored
with respect to the blowing pressure for instance. The os-
cillation threshold pressure can then be infered from such
a diagram (figure 2b). It is worth noticing that the oscilla-
tion threshold pressure is not necessarily equal to the linear
threshold pressure, as it is the case on figure 2b. It then re-
sults in an actual threshold pressure lower than the linear
threshold pressure given by the LSA (figure 2c), hence the
need to take into account the dynamic behaviour of the sys-
tem. Also, the nth regimes are all direct Hopf bifurcations

for n> 5, thus implying posc
thresh = plin

thresh for these.

(a) LSA of a bass trombone (b) Bifurcation diagram
(2nd regime of a bass trombone; fl = 100Hz)
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(c) Superposition of pthresh given by the LSA and AUTO
(2nd regime of a bass trombone; fl ∈ [80Hz,125Hz])

Figure 2: Linear Stability Analysis (left), bifurcation diagrams (middle), and comparison of threshold pressure values given by the LSA and AUTO (right),
corresponding to the case of the input impedance of a bass trombone shown figure 1. Left: top and bottom plots represent respectively the linear threshold
pressure and frequency vs. the lip frequency. The orange circles identify the value of fl corresponding to a local minimum of the curve (easiest note to
obtain), and dotted lines represent the resonance frequencies of the input impedance for comparison. Middle: Top and bottom plots represent respectively
the maximum amplitude of the periodic oscillation branches and the frequency of the corresponding periodic solutions vs. the blowing pressure. Right: top
and bottom plots represent respectively the threshold pressures and frequencies given by the LSA and AUTO vs. the lip frequency. As for figure 2a, the
circles identify the value of fl corresponding to a local minimum of a curve.

In the present study, the effects of the inclusion of the instrument’s dynamic behaviour on the minimum threshold pressure
is focused on, so as to enrich the results given by the Linear Stability Analysis.
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Fast Explicit Algorithms for Hamiltonian Numerical Integration
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Summary. Numerical integration methods for Hamiltonian systems are of importance across many disciplines, including musical
acoustics, where many systems of interest are very nearly lossless. Of particular interest are methods possessing a conserved pseu-
doenergy. Though most such methods have an implicit character, an explicit method was proposed recently by Marazzato et al. The
proposed method relies on a continuous integration which must be performed exactly in order for the conservation property to hold—as
a result, it holds only approximately under numerical quadrature. Here, we show an explicit scheme for Hamiltonian integration, with
a different choice of pseudoenergy, which is exactly conserved. Most importantly, a fast implementation is possible through the use of
structured matrix inversion, and in particular Sherman Morrison inversion of the rank 1 perturbation of a matrix. Applications to the
cases of fully nonlinear string vibration, and to the Föppl-von Kármán system describing large amplitude plate vibration are illustrated.
Computation times are on par with the simplest non-conservative methods, such as Störmer integration.

Introduction

Numerical integration methods that preserve an invariant energy-like quantity (or pseudoenergy) form part of the larger
family of geometric numerical integration methods [1]. In a recent article [2], an explicit method for Hamiltonian integra-
tion was presented, incorporating a conserved pseudo-energy. The method relies, however, on a continuous integration,
meaning that pseudoenergy is only preserved approximately due to discretisation error.

New methods, relying on potential energy quadratisation are suitable for systems under more restrictive conditions (non-
negativity of the potential energy) [3]. In this paper, it will be shown that such methods can be made fully explicit through
structured matrix inversion techniques, and in particular, Sherman Morrison inversion for matrices under a rank-1 pertur-
bation. This allows for extremely efficient numerical solution, while maintaining pseudo-energy conservation to machine
accuracy. In particular, no full linear system solutions are required to advance the solution, in contrast with what has
been presented for other methods based on quadratization [3]. Numerical stability is ensured, through the enforced non-
negativity of the numerical energy.

Two examples, that of fully nonlinear string vibration, and the nonlinear vibration of a thin plate according to the Föppl-
von Kármán system are presented, illustrating good numerical behaviour, and acceleration relative to other energy con-
serving designs. In a companion paper [4], the realistic case of piano string vibration will be broached in detail, as well as
the very important topic of the possibility of the shift in the potential energy of the system in order to improve convergence
rates.

Hamiltonian Systems and Quadratisation

Consider a Hamiltonian H(p,q) of the form:

H (p,q) = 1
2p

TM−1p+ V (q) (1)

Here, p (t) and q (t) are N × 1 vectors and functions of time t ≥ 0. M > 0 is a constant symmetric N ×N mass matrix
(for simplicity constrained here to be diagonal). p and q have the interpretation of generalized momentum and position,
respectively. Hamilton’s equations [5] follow as

Mq̇− p = 0 ṗ+∇V = 0 (2)

Here,∇ is the gradient with respect to q, and dots indicate time differentiation. Equations (2) require initialisation through
p(0) = p0 and q(0) = q0.

Under the constraint that V ≥ 0, one may write, using ψ =
√
2V ,

H (p,q) = 1
2p

TM−1p+ 1
2ψ

2 (3)

Now, Hamilton’s equations may be written as

Mq̇− p = 0 ṗ+ ψg = 0 ψ̇ = gT q̇ (4)

where the intermediate variable g , ∇ψ has been introduced. Such a quadratisation of the potential energy has appeared
recently in the context of port-Hamiltonian methods [6, 7], and in finite difference schemes modeling collisions [8] and
for string vibration under nonlinear conditions [9], and in other areas such as the modeling of binary fluids [10].
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Notice that the form of the Hamiltonian in (1) is not the most general available, and thus some restrictions are placed on
the range of applications in this paper. First, the energy is quadratic in the momentum p, and thus the resulting dynamics
are linear in p—a very common choice across many application areas in structural vibration. Second, the potential energy
V is constrained to be non-negative—a condition also common in structural vibration, but violated in other systems, such
as the N -body problem under a gravitational potential. The numerical stability property of the methods presented in this
paper hinges on these two restrictions.

A Pseudo-energy Conserving Explicit Fast Algorithm

Consider now a time-interleaved scheme for the dynamical system in (4):

qn+1 = qn+kM−1pn+
1
2 pn+

1
2 = pn−

1
2−k2

(
ψn+

1
2 + ψn−

1
2

)
gn ψn+

1
2 = ψn−

1
2+ 1

2 (g
n)
T (

qn+1 − qn−1
)

(5)

It is defined for discrete time sequences qn, pn+
1
2 and ψn+

1
2 , for integer n, representing approximations at times t = nk

to q(t) and at times t =
(
n+ 1

2

)
k to p(t) and ψ(t). Here, k is the time step. gn may be calculated explicitly by

evaluating the analytic gradient of ψ at qn. The scheme (5) conserves the following pseudoenergy:

Hn+
1
2 = 1

2

(
pn+

1
2

)T
M−1pn+

1
2 + 1

2

(
ψn+

1
2

)2

= constant (6)

and thus Hn+
1
2 = H is a constant for all n. It is non-negative, implying unconditional stability, as well as bounds on

pn+
1
2 for all n. In particular, (6) above implies that

‖pn+
1
2 ‖ ≤

√
2H

λmax(M)
(7)

where λmax(M) is the maximum eigenvalue of M, and ‖pn+
1
2 ‖ is the L2 norm of pn+

1
2 .

Fast Update
At first glance, the updates (5) appear to be implicit, thus requiring an iterative solver at each time step. This is not the

case, however. Given qn, qn−1 and ψn−
1
2 (as well as gn, determined directly from qn), they may be consolidated into

an update of the form

Anqn+1 = bn An = M+
k2

4
gn (gn)

T
bn = 2Mqn − k2gnψn−

1
2 −

(
M− k2

4
gn (gn)

T

)
qn−1 (8)

This update, which does not require iterative solvers, can be simplified by exploiting the structure of An, which is a rank
one perturbation of a matrix with an easily computed explicit inverse (M). Using the Sherman-Morrison formula [11],

(An)
−1

= M−1 − k2

4

M−1gn (gn)
T
M−1

1 + k2

4 (gn)
T
M−1gn

(9)

For diagonal M a linear system solution requires O(N) operations (and for full M, a linear system involving M−1 must
be solved, which is the same as in the case of other algorithms presented [2]).

Example: Nonlinear String Vibration

As a nontrivial example of interest in musical acoustics, consider the case of fully nonlinear string vibration including
longitudinal/transverse coupling [12]. This system has been dealt with by various authors, leading to energy-conserving
methods relying on nonlinear iterative solvers [13], quadratised methods requiring full linear system solution [9] as well
as in the recent article by Marazzato et al. [2]. It may be written as the following (nondimensional) coupled system of
PDEs:

∂2t u = ∂x (∂V/∂wu) ∂2t v = ∂x (∂V/∂wv) wu = ∂xu wv = ∂xv (10)

Here, u(x, t) and v(x, t) are the longitudinal and transverse displacement of a string, defined for x ∈ [0, 1], and t ≥ 0. ∂t
and ∂x represent partial differentiation with respect to x and t, respectively.

The potential energy density V is defined by

V(wu, wv) = 1
2

(
w2
u + w2

v

)
− α

(√
(1 + wu)2 + w2

v − 1− wu
)

(11)
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The complete Hamiltonian for the system is

H =

∫ L

0

1
2 (∂tu)

2
+ 1

2 (∂tv)
2
+ Vdx (12)

After semidiscretisation (using, e.g., basic finite difference operators to approximate spatial differentiation), a Hamiltonian
ODE system of the form of (1) results. Simulation results are presented in Figure 1, under initial conditions of increasing
amplitude, and illustrating pseudo-energy conservation to machine accuracy. Calculation time is comparable to that of
basic explicit methods (such as, e.g., Störmer). For more details regarding the particular application to the problem of
nonlinear string vibration, the reader is referred to the companion paper [4]. A key aspect not discussed here is the
possibility of adding an offset, or gauge to the potential energy, which can have a significant ameliorating effect on
convergence rates in the resulting numerical implementation. See [4].

Figure 1: Wave propagation for a pseudo-energy conserving scheme for the nonlinear string system, as defined in (10), with
α = 0.8, and k = 10−4. The string is initialised with zero initial velocity conditions, and with u = 0, and with v set to
raised cosine distributions of increasing amplitude (top: 0.01, middle: 0.1, bottom; 0.3). At right, the relative energy variation

Hn
e =

(
Hn+1/2 −Hn−1/2

)
/H1/2 is plotted as a function of time step n, showing energy conservation to machine accuracy (ap-

proximately 10−15).

Split Forms and Numerical Methods

In some cases, it can be useful to split the potential energy V (q) as

V (q) = V0(q) + V ′(q) where V0(q) =
1
2q

TKq and V ′(q) ≥ 0 (13)

for some positive definite matrix K > 0. While the underlying dynamics are unchanged under such a splitting, it becomes
possible to apply different numerical integration techniques to different parts of the problem. In particular, V0, a quadratic
form, may encapsulate the underlying linear dynamics of a particular system, and V ′ additional effects due to a nonlinear
mechanism.

Under the constraint that V ′ ≥ 0, one may write, using ψ =
√
2V ′,

H (p,q) = 1
2p

TM−1p+ 1
2q

TKq+ 1
2ψ

2 (14)

Hamilton’s equations may be written as

Mq̇− p = 0 ṗ+Kq+ ψg = 0 ψ̇ = gT q̇ (15)

where g = ∇ψ as before.

Numerical Scheme
Consider the following time-interleaved scheme:

qn+1 = qn+kM−1pn+
1
2 pn+

1
2 = pn−

1
2−kKqn−k2

(
ψn+

1
2 + ψn−

1
2

)
gn ψn+

1
2 = ψn−

1
2+ 1

2 (g
n)
T (

qn+1 − qn−1
)

(16)
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The update follows, from the extension of (8), as

Anqn+1 = bn An = M+
k2

4
gn (gn)

T
bn = (2M− k2K)qn − k2gnψn−

1
2 −

(
M− k2

4
gn (gn)

T

)
qn−1

(17)
and again, a fast implementation is possible using Sherman Morrison, through the explicit inversion of An.

This scheme now possesses the conserved numerical energy:

Hn+
1
2 = 1

2

(
pn+

1
2

)T
M−1pn+

1
2 + 1

2 (q
n+1)TKqn + 1

2

(
ψn+

1
2

)2

= constant (18)

This expression, though conserved, is of indefinite sign, due to the second term. However, this term may be bounded as

1
2 (q

n+1)TKqn ≥ − 1
8 (q

n+1 − qn)TK(qn+1 − qn) = −k28
(
pn+

1
2

)T
M−1KM−1pn+

1
2 (19)

and thus

Hn+
1
2 ≥ 1

2

(
pn+

1
2

)T
(M−1 − k2

4 M−1KM−1)pn+
1
2 + 1

2

(
ψn+

1
2

)2

(20)

A condition for non-negativity then follows as

k ≤ 2

λmax

(
M− 1

2KM− 1
2

) (21)

where M
1
2 is the positive matrix square root of the diagonal matrix M. (If M is not diagonal, but still positive definite,

then the condition above may be generalized to include the unique trangular factors of M.) This serves as a numerical
stability condition for scheme (16). Notice that the scheme is now conditionally stable, but the stability condition depends
only on the linear dynamics, and is independent of the nonlinearity. This scheme is distinct from (5), which is uncon-
ditionally stable. Indeed, beyond these two choices a family of conservative conditionally stable methods is available,
depending on how the splitting of the potential energy V is carried out.

Example: The Föppl-von Kármán Equations

Consider a flat, thin plate, of thickness ξ in m, and of material characterised by Young’s modulus E, in Pa, density ρ,
in kg· m−3, and Poisson’s ratio ν. The plate is assumed defined over a region (x, y) ∈ D ∈ R2, and has displacement
u(x, y, t). High amplitude vibration of the plate is described by the The Föppl-von Kármán equations:

ρξ∆∂2t u = −D∆∆u+ L(u, F ) 2

Eξ
∆∆F = −L(u, u) (22)

Here, D = Eξ3/12(1 − ν2) is the flexural rigidity for the plate, and F (x, y, t) is the Airy stress function, ∆ is the two-
dimensional Laplacian operator ∆ = ∂2x + ∂2y , where ∂x and ∂y represent partial differentiation with respect to x and y,
respectively. ∆∆ is the biharmonic operator. The special bilinear operator L is defined by

L(f, g) = ∂2xf∂
2
yg + ∂2yf∂

2
xg − 2∂x∂yf∂x∂yg (23)

Two initial conditions, u(x, y, 0) and ∂tu|x,y,t=0 are required; in this paper, boundary conditions are chosen to be simply
supported over the boundary ∂D of D [14].

The Hamiltonian for this system is given by

H =

∫∫

D

ρξ

2
(∂tξ)

2 +
D

2
(∆u)2 +

1

2Eξ
(∆F )2dσ (24)

(Note that this particular form of the Hamiltonian is not the most general, but holds under simply supported conditions. It
must be augmented by an additional term in the case of, e.g., free edge conditions.)

Semidiscretization
Consider the simple case of a square plate defined over (x, y) ∈ [0, L]2, for some plate side length L. Assume also that
the displacement u(x, y, t) is approximated over a grid with a grid function ul,m(t) such that

ul,m(t) ≅ u(x = lh, y = mh, t) l,m = 1, . . . ,M − 1 (25)
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Here, h is the grid spacing, and is chosen such that h = L/M , for some integer M . Simply supprted conditions are
assumed here, so that ul,m(t) = 0 for l,m = 0,M .

There are many approaches to spatial discretization; the simplest is to make use of basic difference operators of the form:

δx±ul,m = ± 1
h (ul±1,m − ul,m) δy±ul,m = ± 1

h (u1,m±1 − ul,m) (26)

which are forward and backward approximations to the spatial derivatives ∂x and ∂y , respectively. (Note that the time
dependence of ul,m has been suppressed above.) Approximations to the Laplacian and biharmonic operator follow as

δ∆ = δx+δx− + δy+δy− δ∆∆ = δ∆δ∆ (27)

A discrete approximation ℓ to the bilinear operator L may be written, for two grid functions fl,m, gl,m, as

ℓ(f, g) = δx+δx−fδy+δy−g + δy+δy−fδx+δx−g (28)

− 1
2δx+δy+fδx+δy+g − 1

2δx+δy−fδx+δy−g − 1
2δx−δy+fδx−δy+g − 1

2δx−δy−fδx−δy−g

A centered second order accurate approximation to (22) follows as

ρξül,m = −Dδ∆∆ul,m + ℓ(u, F ) = 0
2

Eξ
δ∆∆Fl,m = −ℓ(u, u) (29)

It is useful, at this stage, to introduce consolidated vector representations u(t) and F(t) of ul,m(t)) and Fl,m(t); both are
(M − 1)2 × 1 column vectors (grid points at the plate edges have been removed here, due to the use of simply supported
boundary conditions). All of the difference operators δ above may be replaced by matrix equivalents D. In particular,
Dx−, Dy− are of dimensions M(M − 1)× (M − 1)2, Dx+, Dy+ are of dimensions (M − 1)2 ×M(M − 1), and D∆

and D∆∆ are of dimensions (M − 1)2 × (M − 1)2. In this case, simply supported boundary conditions have been taken
into account—all matrices are sparse, with O(M2) nonzero entries.
In this case, (29) can be rewritten as

ρξü = −DD∆∆u+ ℓ(u,F) = 0
2

Eξ
D∆∆F = −ℓ(u,u) (30)

To arrive at a first order form (15) in terms of momentum p = Mu̇ and displacement q = u, with associated Hamiltonian
(14) and energy splitting (13), one may use

M = ρξh2I(M−1)2 K = Dh2D∆∆ V ′ =
h2

2Eξ
|D∆F|2 (31)

where here, I(M−1)2 is the identity matrix of size (M − 1)2 × (M − 1)2.

Fully Discrete Schemes
The most basic scheme for the Föppl-von Kármán system follows from a centered difference approximation to the semi-
discrete system of ODEs (30). Introducing the discrete-time vectors un and Fn, approximating u(t) and F(t) at t = nk,
for integer n and a time step k, the Störmer scheme results as

ρξ

k2
(
un+1 − 2un + un−1

)
= −DD∆∆u

n + ℓ(un,Fn) = 0
2

Eξ
D∆∆F

n = −ℓ(un,un) (32)

This scheme is simple, but stability is highly dependent on both the choice of time step and on the initial conditions—in
general, this scheme will become unstable as the size of the initial condition is increased. The first equation represents
the update, and is fully explicit. The second requires the solution of a linear system involving the matrix D∆∆. As this
is of a known form, a Cholesky factorisation may be computed prior to entering the runtime loop, greatly accelerating
calculation. This scheme will be referred to as Scheme I subsequently here.

A family of energy-conserving and provably numerically stable schemes has been presented in previous work [15, 14].
Though too elaborate to present in detail here, in its most general form, the update equation is of the form

Anun+1 = bn (33)

where, as in (32), un is the plate displacement in vector form. Here, An and bn are a matrix/vector pair which in general
are dependent on un and un−1; Although no iterative solvers are required, and thus existence/uniqueness are guaranteed,
the linear system to be solved must be constructed anew at each time step, in contrast with (32), and thus compute times
are much longer. This scheme will be referred to as Scheme II subsequently here.

Finally, one may employ he fast conservative scheme, as given in (16), and under the choices given in (31). This scheme
will be referred to as Scheme III subsequently here. In this case, the scheme is stable under the condition (21) which
reduces, in this case, to the following condition on the grid spacing h in terms of the time step k:

h ≥ hmin = 2
√
k (D/ρξ)

1
4 (34)
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Table 1: Timing comparison: Schemes I, II and III for the Föppl-von Kármán System. Run times for 1 s output are given, with time
steps k as indicated.

Scheme k = 10−3 k = 5× 10−4 k = 10−4 k = 5× 10−5 k = 10−5

I: Störmer-Verlet 0.032 0.142 0.344 6.04 25.24
II: Energy conserving 0.149 0.636 8.92 327.8 1742.8
III: Fast energy conserving 0.055 0.290 0.593 7.76 31.36

Numerical Results: Föppl-von Kármán Equations
As an example, consider a square plate of side length L = 0.5 m, of thickness ξ = 0.002 m, and made of steel, with
E = 2× 1011 Pa, ρ = 7850 kg· m−3, and ν = 0.3. Simply supported boundary conditions are assumed, and the plate is
assumed initialised in the lowest linear mode shape, and with zero transverse velocity, so that

u(x, y, 0) = aξ sin(πx/L) sin(πy/L) ∂tu|x,y,t=0 = 0 (35)

for some non-dimensional amplitude a. See Figure 2, illustrating plate displacement uo at the plate center as a function
of time, as well as the relative numerical energy variation He, defined as

H
n+

1
2

e =
Hn+

1
2 −H

1
2

H
1
2

(36)

The time step is chosen as k = 10−4 s. In all cases, the relative energy variation is on the order of machine accuracy in
double precision floating point arithmetic. See also figure 3, illustrating convergence of computed waveforms to trusted
high accuracy solutions generated using the standard Scheme I (Störmer) with a very small time step.

Figure 2: Top row: plate displacement at the plate center, as a function of time, for different initial condition amplitudes a = 1, a = 2
and a = 4. Bottom row: relative numerical energy variation He, as defined in (36).

In Table 1 timings per second output are given, for the plate with parameters as described above, and using different time
steps k as indicated. All computations were performed in Matlab on a Lenovo P50 laptop on a Xeon E3. Timings are
given for the basic Störmer method (Scheme I), the stable energy conserving method as given in [15] (Scheme II) and the
new stable energy conserving method presented here (Scheme III). As is clearly evident, the new method performs nearly
on par with Störmer, in cases where Störmer is stable—recall that this scheme has obscure stability properties that are
highly dependent on on the initialisation. These results were computed with initial condition (35) with a = 4; at higher
amplitudes, Störmer exhibits instability at larger time steps.

Concluding Remarks

A fully explicit method for Hamiltonian numerical integration has been presented here, with a pseudo-energy conservation
property leading to unconditional numerical stability—it is different in character from other explicit methods presented
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Figure 3: Computed waveforms at the plate center, using scheme III (in red) at different choices of time step k as indicated. Here, a
high initial condition amplitude of a = 4 is chosen. For reference, a high accuracy solution is computed using Scheme I (Störmer)
using a small time step of k = 10−6 s, and is shown in black.

recently, in that an additional update is required for the root-potential energy, which is treated as a new independent vari-
able. An extension to the case of split potential forms is also presented, useful in arriving at conditionally stable numerical
methods.

The fully explicit character of the eventual update follows from the exploitation of matrix structure, and leads to large
increases in computational speed relative to other provably stable energy conserving methods. The method on the whole
is nearly as efficient as the simplest explicit schemes for Hamiltonian integration.
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Summary. This work addresses the problem of the struck piano string. This system is highly nonlinear, and a sound representation
of the energy balance is therefore necessary in any time stepping routine used in simulation, in order to preserve stability. Many algo-
rithms have been developed in previous works. Among them, some present fully-implicit discretisations, which are only approachable
using iterative root finders such as Newton-Raphson. Others are linearly-implicit, but not quite suited for real-time rendering. Here, a
novel approach is presented, based on the idea of energy quadratisation. It will be shown that, when the nonlinearities are consolidated
into a scalar auxiliary state function, the time stepping scheme presents a fast inversion formula. A C++ implementation of the proposed
scheme yields indeed compute times below real-time, for typical strings.

Introduction

The dynamics of musical strings is often assumed to be linear. However, many perceptual phenomena cannot be explained
by linear theory alone, and inclusion of nonlinearities results therefore necessary [1]. This is certainly true for the piano,
where the appearance of “phantom partials” in the output spectra is often explained in terms of the nonlinear coupling
between the transverse and the longitudinal waves. Furthermore, the intermittent hammer-string interaction cannot be
modelled linearly [2]. At the simulation level, a sound representation of the energy balance of the hammer-string system
is necessary to preserve stability of the underlying time stepping scheme, and this can be accomplished via fully-implicit
discretisations [3, 4]. The finite element method, in particular, is preeminent here, see e.g. [5, 6], where the conservation
of a non-negative numerical energy allows to derive a stability condition involving the mesh size and the time step. Since
these methods are fully-implicit, they require the solution of a large nonlinear algebraic system at each time step, for
which existence and uniqueness of the solution must be proven, and which are only approachable using iterative routines
such as Newton-Raphson. Further complications arise in the choice of the tolerance thresholds and maximum number of
iterations of the routine [7, 8].
In recent years, a new class of schemes has emerged, based on the idea of “quadratisation”: when the nonlinear potential
energy is non-negative, it can be written as the square of an auxiliary function. This leads to schemes for which the update
is computable as the solution of a linear system, thus sidestepping the machinery of iterative root finders. Besides the
obvious computational advantage, existence and uniqueness of the computed solution are proven by inspection of the
update matrix alone. These methods have appeared in various guises, including applications in Port-Hamiltonian systems
[9, 10, 4, 11], nonlinear parabolic phase-field models [12, 13, 14], and others. This latter class of methods is often referred
to as “Invariant Energy Quadratisation” (IEQ) method, in that the auxiliary state function is treated as an independent
grid function to be solved for. This method has been applied successfully to the geometrically exact nonlinear string
[15, 16]. In this work, a different kind of quadratisation is proposed, where the auxiliary state function is not treated as
a distributed state variable, but as a scalar one. This idea shares some similarities with the “Scalar Auxiliary Variable”
(SAV) approach [17], but it also exploits the form of the update matrix to yield an extremely efficient algorithm. The
application of this method to Hamiltonian system is the subject of a companion paper [18]; here, the example of the
struck string is considered in detail. First, the problem is semi-discretised in space, resulting in a system of nonlinearly
coupled ordinary differential equations in time. Then, all the nonlinear components (i.e. the geometric nonlinearity of
the string, and the hammer-string nonlinear potential) are consolidated into a single, scalar state function. Then, it shown
that the update matrix is in the form of a rank-1 perturbation of a diagonal matrix, and thus invertible efficiently using
the Sherman-Morrison formula [19]. A computational test is then performed, showing that a sound implementation of
this method in C++ yields speedups of the order of 102, compared to Matlab implementations of previously available
methods. In particular, compute times for typical piano strings are below real-time. The introduction of a shift constant
in the nonlinear potential energy is also illustrated, aiding convergence of the quadratised numerical scheme.

A Continuous Struck String Model

Piano strings are known to vibrate in a nonlinear regime as a consequence of the large strains originating during motion
[1, 20]. The striking mechanism is also nonlinear, due to the intermittent contact between the string and the hammer
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[2, 21]. A suitable mathematical model incorporating these effects may be given as follows:

(ρA∂2t − Lu)u(x, t) = ∂x

(
∂φs

∂(∂xu)

)
+ δ(x− xc)

dφc
dη

, (1a)

(ρA∂2t − Lv)v(x, t) = ∂x

(
∂φs

∂(∂xv)

)
, (1b)

Mh
d2U(t)

dt2
= −dφc

dη
, (1c)

η(t) = U(t)−
∫ L

0

δ(x− xc)u(x, t) dx. (1d)

Above, constants appear as: ρ, the string’s volume density; A the area of the string’s cross section; Mh, the mass of the
hammer. The notation ∂ps denotes the p-th partial derivative with respect to s. u = u(x, t) : [0, L] × R+

0 → R is the
transverse displacement of the string, and v = v(x, t) : [0, L] × R+

0 → R is the longitudinal displacement, where L
is the string length; Lu, Lv are linear differential operators (to be specified shortly) including the tension, stiffness and
loss components for the two displacements; φs : φs(∂xu, ∂xv) : R × R → R+

0 is the nonlinear potential density due to
the string’s large stretching; φc : φc(η) : R → R+

0 is the collision potential modelling the hammer-string interaction;
U = U(t) : R+

0 → R is the hammer’s displacement; η = η(t) : R+
0 → R defines the compression of the hammer felt,

expressed as the difference between the hammer and string displacements at the contact point xc.
The linear operators Lu, Lv are given as:

Lu = T0∂
2
x − EI∂4x − 2ρA(σ0 − σ1∂2x)∂t; Lv = T0∂

2
x − 2ρAσl∂t. (2)

Lu includes tension and stiffness terms, the latter borrowed from the Euler-Bernoulli beam theory (this is largely sufficient
for musical strings, see e.g. [22, 23]). T0 is the applied tension, E is Young’s modulus, I is the area moment of inertia.
Losses in the transverse direction are modelled via the terms proportional to the coefficients (σ0, σ1) ≥ 0, yielding a
quadratic loss profile in the frequency domain. Inclusion of more refined loss profiles, such as the one proposed by Cuesta
and Vallette [24], is possible, but this will be neglected here for simplicity. Lv includes a tension term, and a simple loss
model proportional to σl ≥ 0.
The forms of the potentials are given here as:

φs(∂xu, ∂xv) =
EA− T0

2

(√
(1 + ∂xv)2 + (∂xu)2 − 1

)2
, φc(η) =

B

α+ 1
[η]α+1

+ . (3)

Here, B is the stiffness coefficient of the hammer felt, α ≥ 1 is an exponent: these values can be determined experimen-
tally [25]. The notation [·]+ stands for “positive part”, that is [η]+ , 0.5(η + |η|). Note that φc = 0 whenever η ≤ 0,
that is, the collision model is one-sided, and note that this model is consistent only when the hammer strikes from below.
Note as well that φs ≥ 0 when EA ≥ T0, a condition that is always verified for musical strings. In view of the numerical
application shown below, it is convenient to lump the nonlinear potentials into one single scalar function φ, as

φ(∂xu, ∂xv, η) =

∫ L

0

φs(∂xu, ∂xv) dx+ φc(η) +
p0
2
, (4)

where p0 ≥ 0 is a constant shifting the zero-point of the potential, but not affecting the equations of motion. This constant
will prove useful in the numerical scheme presented below.
Equation (1c) must be completed by two initial conditions, setting the hammer in motion. These can be given as U0 ,
U(t = 0) and V0 , dU/dt(t = 0). Furthermore, the string’s boundary conditions are given as: u(0, t) = u(L, t) =
∂2xu(0, t) = ∂2xu(L, t) = v(0, t) = v(L, t) = 0. These define an energy conserving set of boundary conditions; in
particular, the string is simply-supported transversely and fixed longitudinally. Under such conditions, system (1) is
energy-passive. A proof may be obtained by taking an l2 inner product (i.e. an integral over the domain) of (1a) with ∂tu,
of (1b) with ∂tv, and a product of (1c) with dU/dt, and summing the three equations. After suitable integrations by parts
[16], one gets the following energy balance

dH

dt
= −2ρA

(∫ L

0

(
σ0(∂tu)

2 + σl(∂tv)
2 + σ1(∂t∂xu)

2
)
dx

)
≤ 0, (5)

where the energy is

H(t) =

∫ L

0

(
ρA

2

(
(∂tu)

2 + (∂tv)
2
)
+
T0
2

(
(∂xu)

2 + (∂xv)
2
)
+
EI

2
(∂2xu)

2

)
dx+

Mh(dU/dt)
2

2
+ φ ≥ 0 (6)

Equation (5) represents the energy balance of the hammer-string, encoding passivity (i.e. the total energy is positive, and
decays over time).
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Semi-discretisation

System (1) may be semi-discretised in a number of ways, yielding a system of coupled nonlinear ordinary differential
equations in time. Here, a finite difference approach will be adopted, but the numerical method described below applies
equally to any other suitable semi-discrete problem, obtained for instance via Galerkin-type methods (modal methods,
finite elements, etc.). For the finite difference method, the continuous domain of length L is divided into segments of
length h, the grid spacing. Let the total number of subintervals be M , that is, the grid is composed of M + 1 grid points,
including the boundary points. Then, the continuous displacements u(x, t), v(x, t) are approximated by grid functions
u(t), v(t), which may be taken as column vectors of length M − 1: here, the end points need not be stored or updated,
since the boundary conditions are of fixed type. Difference matrices are now introduced, starting from the definition of
the backward difference matrix acting on the column vector u:

D−u =
1

h
([u⊺, 0]− [0,u⊺]). (7)

Note that this is a rectangular matrix of size M ×M − 1. From this, one may define the forward difference matrix, the
Laplace operator and the biharmonic operator, as

D+ = −(D−)⊺, D2 = D+D−, D4 = (D2)2, (8)

and note that these matrices are consistent with the prescribed boundary conditions in the transverse and longitudinal
directions. Note as well that the Laplace and biharmonic operators are of sizeM−1×M−1. Owing to these definitions,
semi-discretisation of the linear operators Lu, Lv in (2) is obtained as

lu = T0D
2 − EID4 − 2ρA(σ0 − σ1D2)

d

dt
; lv = T0D

2 − 2ρAσl
d

dt
. (9)

The Dirac delta function is here approximated using a linear Lagrange interpolant, that is, via the column vector J of
length M − 1. This is an all-zero vector, except at the grid points mc , floor(xc/h) and mc + 1, for which

Jmc = (1− α)/h, Jmc+1 = α/h, where α = xc/h−mc. (10)

Using this definition, a semi-discrete version of (1d) is obtained as:

η(t) = U(t)− hJ⊺ u(t). (11)

Note that the letter η is used here in a different fashion than in (1d) (in this section, the semi-discrete definition (11) is
adopted). It is now convenient to define two interleaved grid functions, q and r, which are column vectors of length M
defined as:

q = D−u, r = D−v. (12)

Owing to these, a semi-discrete version of the nonlinear potential φ in (4) is obtained as:

Φ = h
M∑

i=1

Φis(qi, ri) + Φc(η) +
p0
2
; where Φis =

EA− T0
2

(√
(1 + ri)2 + q2i − 1

)2

, Φc =
B

α+ 1
[η]α+1

+ . (13)

Note that here Φ = Φ(q, r, η) : RM × RM × R→ R+
0 , and it will be necessary to compute partial derivatives according

to q, r, η. These are denoted as

(∇qΦ)i ,
∂Φis
∂qi

, (∇rΦ)i ,
∂Φis
∂ri

, (∇ηΦ) ,
dΦc
dη

, i = 1, ...,M. (14)

The chain rule gives

dΦ

dt
= (∇qΦ)

⊺
dq

dt
+ (∇rΦ)

⊺
dr

dt
+ (∇ηΦ)

dη

dt
= [−

(
D+∇qΦ

)⊺ − h∇ηΦJ⊺,−
(
D+∇rΦ

)⊺
,∇ηΦ]︸ ︷︷ ︸

g
⊺

Φ

dw

dt
, (15)

where w , [u⊺,v⊺, U ]⊺ is the state vector, lumping the longitudinal and transverse string grid functions, and the ham-
mer’s displacement. Note that the second equality in (15) is obtained using the transposition property of the forward and
backward difference matrices in (8), and the definition of η in (11). Owing to these definitions, the semi-discrete equations
can be written in compact form, as:

M
d2w(t)

dt2
+C

dw(t)

dt
+Kw(t) = −SgΦ, (16)
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where M , diag([ρAI, ρAI,Mh]), K , diag([−T0D2+EID4,−T0D2, 0]), C , diag([2ρA(σ0I−σ1D2), 2ρAσlI, 0]),
S , diag([I/h, I/h, 1]). Here, the operator “diag” produces a block-diagonal matrix, with blocks given as components
separated by commas. The matrix I is here the M − 1×M − 1 identity matrix.
In (16), the left-hand side includes all the linear components (the mass, stiffness and loss matrices), and the nonlinearities
are now lumped in the vector gΦ as defined in (15). From here, it is now easy to see that system (16) is energy-passive: it
is sufficient to multiply both sides of the equation on the left by

(
S−1 dw

dt

)⊺
. This gives

dh

dt
= −dw

⊺

dt
C̃
dw

dt
≤ 0, with h =

1

2

dw⊺

dt
M̃
dw

dt
+

1

2
w⊺K̃w +Φ ≥ 0, (17)

where the “tilde” notation indicates the rescaled matrices M̃ = S−1M, K̃ = S−1K, C̃ = S−1C (the scaling by the
factor h is needed here to restore units of Joules in the transverse and longitudinal string components). Note that the
“tilde” matrices are all non-negative, hence the inequalities in (17) ensue.

Quadratisation
The expression for the semi-discrete energy h in (17) includes a linear part, given by the sum of quadratic forms cor-
responding to the kinetic and linear potential energy components, plus the nonlinear potential Φ. It results therefore
convenient to “quadratise” the nonlinear potential via the transformation

Ψ =
√
2Φ, (18)

for the function Ψ = Ψ(q, r, η) : RM × RM × R → R+
0 . This transformation is always well-defined since Φ is

non-negative. This transformation yields a semi-discrete system entirely equivalent to (16), but expressed in terms of Ψ
as:

M
d2w(t)

dt2
+C

dw(t)

dt
+Kw(t) = −Ψ(t)SgΨ, (19)

where
gΨ = [−

(
D+∇qΨ

)⊺ − h∇ηΨJ⊺,−
(
D+∇rΨ

)⊺
,∇ηΨ], (20)

and note that the partial derivatives of Ψ are easily obtained from (14), since e.g. ∇qΨ = ∇qΦ/Ψ. Division by Ψ in the
expression of the partial derivatives may be ill defined when the shift constant p0 in (13) is set to zero, and it will therefore
be necessary to shift the potential energy by a finite amount. Application of the chain rule gives

dΨ

dt
= g⊺

Ψ

dw

dt
. (21)

The energy balance now reads:

dh

dt
= −dw

⊺

dt
C̃
dw

dt
≤ 0, where h =

1

2

dw⊺

dt
M̃
dw

dt
+

1

2
w⊺K̃w +

Ψ2

2
≥ 0, (22)

and the expression for the energy only contains quadratic terms. Note that the nonlinear energy components are now
lumped in the single scalar function Ψ. The “quadratised” expression for the nonlinear energy is convenient since it can
be exploited in a time-stepping integrator yielding a non-negative nonlinear numerical energy, as detailed below. Note
that this type of quadratisation is fundamentally different from the one proposed in [15, 16], in that here the auxiliary state
function is a scalar, and not a distributed quantity. Applications of this method to Hamiltonian systems are presented in
the companion paper [18].

Time Stepping Procedure

(19) defines a system of nonlinearly coupled ordinary differential equations in time. Integration is now performed using
finite differences. To that end, the continuous state vector w(t) is approximated at the time tn = kn by a vector time
series wn, where n ∈ N is the time index, and k = 1/fs is the time step, defined as the multiplicative inverse of the
sample rate fs. The basic operators in discrete time are the identity and shift operators, defined as:

1wn = wn, e+w
n = wn+1, e−w

n = wn−1. (23)

From these, the time difference operators can be defined as:

δ+ =
e+ − 1

k
, δ− =

1− e−
k

, δ· =
e+ − e−

2k
. (24)

These are the forward, backward and centred operators respectively. The second-difference operator is obtained by com-
bining the the operators above:

δ2 = δ+δ− . (25)

ENOC 2022, July 17-22, 2022, Lyon, France

721



ENOC 2020+2, July 17-22, 2022, Lyon, France

Finally, averaging operators can be written as:

µ+ =
e+ + 1

2
, µ− =

1 + e−
2

, µ· =
e+ + e−

2
. (26)

The auxiliary state function is discretised on an interleaved time grid, so that Ψ(t) → Ψn−1/2. The definitions of
the difference operators are formally unchanged when applied to an interleaved time series, so that e.g. δ+Ψn−1/2 =
(Ψn+1/2 − Ψn−1/2)/k, etc. Note that Ψn−1/2 will be treated here as an independent scalar time series, to be updated at
each time step. To that end, it is necessary to discretise (19) along with the time derivative of Ψ in (21). One possible such
discretisation is given here as

M δ2w
n +C δ−w

n +Kwn = −µ+Ψ
n−1/2 Sgn

Ψ, δ+Ψ
n−1/2 = (gn

Ψ)
⊺δ·w

n. (27)

This defines a three-step scheme, in which the updates wn+1, Ψn+1/2 are obtained from the previous state values
wn,wn−1, Ψn−1/2. Note as well that gn

Ψ is known, and computed from (20) at the time step n, using the analytic
expressions for the derivatives of the continuous function Ψ.
System (27) is completed by initial conditions on w and Ψ. At the initial time n = 0, it is assumed that the string is at rest,
with the hammer moving according the initial conditions given above. The time series Ψ must be initialised accordingly,
using definition (18) and the expression of Φ from (13). Thus

w0 = [0⊺,0⊺, U0]
⊺, w1 = [0⊺,0⊺, kV0 + U0]

⊺, Ψ1/2 =
√
p0. (28)

Scheme (27) is energy-conserving. A proof is obtained by multiplying on left by (S−1δ·wn)⊺, and using various identities
(not shown here for brevity; see e.g. [20]). One gets

δ+h
n−1/2 = −(δ·wn)⊺ C̃ δ·w

n ≤ 0, (29)

where

hn−1/2 =
1

2
(δ+w

n)⊺
(
M̃− k

2
C̃

)
δ+w

n +
1

2
(wn)⊺ K̃ e−w

n +
(Ψn−1/2)2

2
. (30)

This expresses the fully-discrete energy balance. It is worth noting that the expression for the fully discrete energy (30)
is not positive semi-definite in all cases (as opposed to the semi-discrete energy in (22), which is always non-negative).
However, conditions on non-negativity can be obtained by inspection of the linear part alone, since the nonlinear energy
is here clearly non-negative, and expressed via the square of Ψ. It is possible to show (see e.g. [20, 16]) that, when the
loss coefficients are small (as is the case for all musical strings), a sufficient condition for the non-negativity of the total
discrete energy is

h ≥
√
E/ρ k. (31)

When this condition is enforced, the discrete energy is non-negative, and hence stability of the time stepping scheme
follows. Note that (31) is the CFL condition associated with the longitudinal motion, and it is expressed as a lower bound
on h: this is much larger than the natural bound for the transverse waves (which is of the order of

√
T0/ρAk for thin

strings). Thus, enforcing condition (31) has consequences in the choice of the sample rate fs, which has to be chosen
much larger than typical audio rates (such as e.g. 44.1 kHz) to get enough resolution within the audio band.
Note as well that in (27) the operator δ− was used to approximate the time derivative of the losses. This formally produces
a first-order convergent scheme in time. However, it also allows for a fast update, as detailed below. Since losses are small,
and since the time step k has to be chosen in the 10−5 − 10−6 range, this approximation does not introduce significant
errors compared to a second-order accurate discretisation of the same derivative.

Scheme Update
Scheme (27) yields an efficient update equation. To show this, first use the identity µ+ = (k/2)δ+ +1 in order to express
the right-hand side of the first equation in (27) in terms of δ·wn from the second equation. Then, one rearranges the terms
to get
(
M

k2
+

1

4
Sgn

Ψ (gn
Ψ)

⊺

)
wn+1 =

(
2M

k2
− C

k
−K

)
wn +

(
−M

k2
+

C

k
+

1

4
Sgn

Ψ (gn
Ψ)

⊺

)
wn−1−Ψn−1/2Sgn

Ψ, (32)

and note that the update matrix is now composed of the diagonal matrix M/k2 plus the rank-1 perturbation 1
4Sgn

Ψ (gn
Ψ)

⊺.
This is invertible in O(M) operations using the Sherman-Morrison formula [19, 18]. Once wn+1 is known, one may
compute Ψn+1/2 using the second equation in (27).
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Figure 1: Snapshots of the hammer-string interaction. Here, the hammer and the string parameters are taken from [25], for the C2
string. The hammer initial velocity is 2 m/s. The sample rate used is 12 ·48000 Hz, resulting in a state size 2M−1 = 547 components.
The times indicated are in ms.

Numerical Experiments

Scheme (27) is now tested in a number of numerical experiments. Figure 1 shows snapshots of the hammer-string dy-
namics, for the C2 piano string (the string and hammer parameters are taken from [25]). As expected, the hammer strikes
the string intermittently. Here, the string’s largest displacement is of the order of 4 mm, large enough to entail nonlinear
effects.
The energetic behaviour of scheme (27) is checked in Figure 2, where the same C2 string is simulated in the absence of
losses (that is, the matrix C is the zero matrix here). The discrete energy (30) is indeed conserved, with the error in the
range of 10−14. Note that here the kinetic energy includes that of the string and the hammer; the linear potential energy
includes the string’s alone, and the nonlinear energy includes the contributions of both the string’s large displacement and
the hammer-string collision. Note that the shift constant p0 was set to a finite amount, to avoid division by zero in the
computation of the derivatives of Ψ.

0 5 10 15 20

t (ms)

0

0.005

0.01

0.015

0.02

H
 (

J
)

Ek

Ep

En

H

0 5 10 15 20

t (ms)

-2e-14

-1e-14

0

 H

(a) (b)

Figure 2: (a) Energy components and (b) energy error for the same case as Figure 1. In (a), Ek is the kinetic energy (comprising
the string and the hammer), Ep is the linear potential energy of the string, En is the nonlinear potential energy including the string’s
nonlinear energy and the hammer-string collision potential, H is the total energy. In (b), ∆H is defined as 1− hn−1/2/h1/2, where the
expression for the discrete energy h is as per (30). In this simulation, the shift constant p0 is set to 10−15.

A quick convergence test is presented in Figure 3. Here, the time domain solutions at one output point are plotted, for
a number of sample rate values. As mentioned above, significant oversampling factors are needed, compared to audio
rate, since the number of grid points is now set according to bound (31), yielding a large grid spacing compared to typical
wavelengths in the transverse direction. For high enough sample rates (OF ⪆ 12), the computed solutions are very close,
but discrepancies are evident for low-sampled waveforms. Various tests were run (not shown here), indicating that an
oversampling factor of at least 12 is usually required for good resolution within the audio band. Some audio files are
available on the companion webpage1.
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Figure 3: Convergence test under various oversampling factors for a base sample rate fs0 = 48 kHz, indicated in the legend. (a):
transverse displacement. (b): longitudinal displacement. Here xout = 0.32L, and the string’s parameters are the same as in Figure 1.

Figure 4 presents the output spectra of the longitudinal displacement under three different hammer initial velocities. Note
the change in brightness as the velocity increases, as well as the appearance of phantom partials.

1https://mdphys.org/ENOC_2022.html
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Figure 4: Output spectra for the D2 string, with initial hammer velocities as indicated. Output is extracted at xout = 0.32L

Table 1 presents a computational testing comparing various schemes, and implementations. Two schemes, called ICA_IT
and ICA_NIT, are taken from [15]. ICA_IT is a finite difference iterative scheme, obtained via a fully-implicit con-
servative discretisation of the gradient in a fashion similar to that used in many works, see e.g. [3, 4, 5, 26]; ICA_NIT
is a non-iterative finite difference scheme obtained via quadratisation, in a fashion similar to the scheme presented here,
but where the nonlinear auxiliary variable Ψ is approximated via a grid function, and not as a single scalar variable as
here (that is, it is not possible to update ICA_NIT using the fast Sherman-Morrison formula, though the scheme’s update
is in a form of a linear system). LU_NIT, presented in [16], is also a non-iterative scheme, where the transverse waves
are simulated using finite differences, and the longitudinal waves are approximated using a modal approach. The system
is again in “quadratised” form, and a block LUD decomposition is adopted to compute the update. All these schemes
were coded in Matlab. Finally, SM_MTL and SM_C++ present the compute times for the fast Sherman-Morrison formula

OF M Mlong ICA_IT ICA_NIT LU_NIT SM_MTL SM_C++

1 10 2 14.6 8.73 7.59 14.1 0.008
2 21 4 24.7 19.8 16.1 16.4 0.029
4 42 7 53.4 41.4 22.5 19.1 0.108
8 85 14 145 102 87.0 26.6 0.362

12 128 21 267 191 173 37.8 0.756
16 170 28 453 324 279 58.3 1.15

Table 1: Compute time / real time ratios, using various schemes and implementations, for the D3 piano string from [25]. Here,
ICA_IT and ICA_NIT are, respectively, the finite difference iterative and non-iterative schemes presented in [15]; LU_NIT is the
non-iterative mixed finite difference-modal method described in [16] (where the transverse displacement is approximated using finite
differences, and the longitudinal displacement using a modal approach); SM_MTL is the Sherman-Morrison implementation presented
here, using Matlab; SM_C++ is the same scheme implemented in C++. In the table, OF indicates the oversampling factor for a base
sample rate fs0 = 48 kHz. M is the number of grid points; Mlong is the number of longitudinal modes used in LU_NIT. In this test,
for simplicity, the hammer was not considered, and the string was initialised in its first mode of vibration in the transverse direction,
i.e. u0(x) = 0.01 sin(πx/L). The size of the state vector, for all schemes, is then 2M − 2, with the exception of LU_NIT for which
the size is M − 1 +Mlong . Below-real-time simulations are highlighted. All simulations were run on a 2016 Macbook Pro, equipped
with a 2.9 GHz Intel i7 processor. Matlab simulations were run in MatlabR2020.

given here, using both Matlab and C++ implementations. A few aspects are worth commenting. First, note that the rate
of growth of the compute times for the two SM schemes is much lower than for the other schemes, since, as remarked
previously, the Sherman-Morrison formula is solvable in O(M) operations. Second, note how the C++ implementation
yields considerable speedups compared to Matlab. Here, all the matrix operations were “unrolled”, avoiding the need for
sparse matrix libraries. Update (32) is remarkably fast, yielding under-real-time compute times for systems with over 250
nonlinearly coupled degrees-of-freedom. Compared to typical fully-implicit discretisations, such as ICA_IT coded in
Matlab, SM_C++ is about 350 times faster at OF = 12.

Concluding Remarks

The piano string was modelled using a nonlinear, geometrically exact model, and including the hammer-string interaction.
The model was first discretised in space using the finite difference method, and then “quadratised” via a scalar auxiliary
state function. The resulting system was then integrated in time. It was shown that the update matrix lends itself to a
fast inversion via the Sherman-Morrison formula. A C++ implementation of the proposed scheme was given, yielding
speedups of a few orders of magnitude compared to Matlab realisations of previously available schemes. In particular,
real-time simulations of typical piano strings are now available. The proposed schemes are part of a larger class of
schemes of recent development, based on the idea of quadratisation.
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Influence of the base motion on the dry-whip onset of an on-board rotor-journal bearing 
system 
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Baudin**  
*Univ Lyon, INSA-Lyon, CNRS UMR5259, LaMCoS, F-69621, France 

** Avnir Engineering, F-69621, France 
 
Summary: In this paper, the special class of on-board rotor undergoing rotor-stator contact is under investigation. In particular, a well-known 
and harmful contact instability, the dry-whip phenomenon, is addressed. The aim of the paper is to present original experiments evidencing 
this instability being triggered by a multi-axial shock translation from the rigid rotor base. Moreover, the influence of the base motion 
parameters, such as the shock amplitudes, directions and time instants, on the onset of dry-whip is investigated both numerically and 
experimentally. 

Introduction 

On-board rotors represent a very special class of rotors, which are subject to motions of their base that may induce high 
vibration levels. In practice, they can be encountered in a large variety of industrial fields such as energy, transports, 
defense, etc. In this context, these systems have recently raised a particular interest as highlighted by the literature [1-2]. 
Due to the base motions, contact is likely to occur between rotating and non-rotating parts. In some cases, these contacts 
can lead to harmful dynamic instabilities, such as the dry-whip phenomenon, threatening the structural integrity of the 
mechanical systems. The latter is characterized by a sudden change in the whirl that leads to backward whirl owing to the 
tangential friction contact forces, which causes high displacement amplitudes and frequencies. It can be triggered by a 
mass unbalance only or in combination with an external disturbance [3] such as a hammer impact or a base motion. 
The evidencing of the dry-whip phenomenon as caused by base motion is relatively recent [4]. The aim of this paper is to 
emphasize the experimental and numerical outcomes of [4]. Moreover, the conditions of onset of the instability depending 
on the base motion parameters are investigated in more details.  

Experimental and numerical investigations 

The on-board rotor test rig (two disks mounted on a slender shaft) used in this context is modelled with Timoshenko beam 
elements and its mesh is sketched in Figure 1. It is equipped with two short fluid film bearings at Nodes 6 and 23 and 
with multiple contact rings. The ring at Node 15 is intended to be the first one to experience rotor-stator contacts and to 
be responsible for the dry-whip occurrence while the others are stator bores used rather for safety requirements. 
 

 
Figure 1: FE mesh of the on-board rotor-bearing system mounted on finite-length journal bearings and equipped with multiple 

contact rings 
 
In a first study case, the rotor rotates at a fixed speed of rotation of 1700 rpm and two mass unbalances of 2.37 10-3 kg 
with a 57.0 10-3 m gyration radius are screwed on each disk at 0° and 20°. After reaching the steady-state response, a 
multi-axial base motion composed of two synchronous transverse shocks (pre- and post- 10 ms pulse of 15 m/s²) is 
imposed suddenly and briefly in order to trigger the dry-whip. The measured response in terms of the full spectrogram of 
the Node 16 transverse displacements is shown in Figure 2. The whirl transition from forward at ~28 Hz (1700 rpm) to 
backward at ~-170 Hz is clearly identified when the shock is performed near t=2.55 s. Meanwhile, critical vibration levels 
are also highlighted, until t=~6 s where the instability suddenly vanished because of the motor-shaft coupling failure and 
the damping effects. 
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Figure 2: Full spectrogram of the measured Node 16 orbit of the test rig subject to mass unbalance and to pre- and –post pulse from 

the base 
 

Then, the instant of the shock is varied numerically in order to impact the contact ring at different rotation angles and to 
assess if this may favor or inhibit the dry-whip triggering. To this aim, ten values of time instants, equally distributed 
between 0° and 360° (0° and 360° corresponding to t=2.55 s and t=2.55s + T, respectively, with T the mass unbalance 
period), are performed. The results are presented in Figure 3. It is noticed that for all instants, the dry-whip is triggered, 
however, it is more delayed and many rebounds are found for instants near 216°. This result can be assigned to the 
variation of the angle of contact and to the radial velocity of impact that change with the shock instant. 
 

 
(a) 

 
(b) 

Figure 3: Numerical eccentricities of Node 16 of the test rig subject to mass unbalance and to a base transverse shock translation at 
t=0,95s with different time instants equivalent to (a) [0°-144°] and to (b) [180°-324°] 
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Investigation of bifurcations in a nonlinear rotor system using numerical continuation 
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Summary. Nonlinearities in rotating systems have been seen to cause a wide variety of rich phenomena, however the understanding of these 
phenomena has been limited because numerical approaches typically rely on ‘brute force’ time simulation, which are inefficient due to issues 
of step size and settling time, cannot locate unstable solution families and may miss key responses if the correct initial conditions are not 
used. This work uses numerical continuation to explore the responses of such systems in a more systematic way. A simple isotropic rotor 
system with a smooth nonlinearity is studied, and the rotating frame is used to obtain periodic solutions. Asynchronous responses with 
oscillating amplitude are seen to initiate at certain drive speeds due to internal resonance, in a manner similar to that observed for non-smooth 
rotor stator contact systems in previous literature. These responses are isolated, in the sense that they will only meet the more trivial 
synchronous responses in the limit of zero damping and out of balance forcing. In addition to increasing our understanding of the responses 
of these systems, the work establishes the potential of numerical continuation as a tool to systematically explore the responses of nonlinear 
rotor systems. 

Introduction 

Nonlinear dynamic system’s response can show bifurcations with small changes in its parameters. Therefore, 
systematically locating these bifurcation points is vital. Rotating machinery makes this more challenging with gyroscopic 
coupling that ties the whirl frequencies to the rotor speed. As a result, the internal resonance phenomenon can occur in a 
large range of operating rotor speeds, resulting in the bouncing orbits  involving rotor-stator contact. The contacting 
interaction can be defined in various ways in the literature, ranging from rigid impact [1] to soft penalty contact [2].  
For the solution of nonlinear problems within rotordynamics field, time simulations [3] and analytical and semi-analytical 
approaches based on harmonic balance method [4] have been used, aside from experimental investigations. However, this 
work uses the numerical continuation method applied directly to the systems of ODE, as a contrast to Refs. [5], due to its 
advantages over time simulations in computational cost and over algebraic methods in setup simplicity.  
The analysed system is a 2-dof overhung rotor with isotropic cubic nonlinearity, shown in Figure 1 in the dimensional 
form. The equation of motion is nondimensionalised and transformed into the autonomous rotating coordinate frame 
equations given in Eq. (1). 
 𝑈′′ + (−�̂�ܫ)ܬ�̂� − ʹ) + ʹ𝜁)𝑈′ + (�̂�2(ܫ�̂� − ͳ) + ͳ + ʹ𝜁�̂�ܬ)𝑈 + 𝛾�̂�2𝑈 = �̂��̂��̂�2 {ͳͲ} , ܬ = [Ͳ −ͳͳ Ͳ ] (1) 
 

where hat indicates the nondimensional form, 𝑈 = ,ݑ̂]  �̂� is ,ݒ̂ and ݑ̂ is the rotating coordinate vector with coordinates [ݒ̂
the rotor speed, ̂ܫ𝑝 is polar moment of inertia, 𝜁 is damping ratio, ܬ is a skew symmetric matrix, 𝛾 is the cubic stiffness, �̂� 
is the distance of disk geometric centre to the stationary equilibrium, �̂� is the disk mass, �̂� is the eccentricity of the disk, ሺ. ሻ′ is the derivative with respect to time, all in nondimensional forms. 
The main focus of this work is on asynchronous periodic orbits that are caused by internal resonance, and we address 
similarities and differences to the case of contacting nonlinearity. The solutions found are validated with time simulation. 
AUTO open-source ODE numerical continuation software and MATLAB ode45 explicit integrator were used in the study.  
 

 
Figure 1: The 2-dof overhung rotor system with isotropic cubic stiffness.  

Results 

The bifurcation diagram resulting from the numerical continuation procedure is plotted in Figure 1(a). In this plot, the 
responses of the system with different damping levels are given together to see the effect of damping. The solution 
includes the synchronous response, which is skewed highly towards right due to stiffening, and asynchronous response 
that has two distinct sets of solution families, named here as double- and single-loop solution families after their apparent 
shapes in Figures 1(b) and 1(c). These orbits are periodic due to being viewed in the rotating frame (otherwise quasi-
periodic in the stationary frame). Figures 1(d) and 1(e) show close-ups of asynchronous response to the synchronous 
solution. The double-loop and single-loop solutions were linked to the internal resonance conditions 3:1 and 2:1 in the 
rotating coordinates, respectively, by comparing them to the Campbell diagram with signed frequencies. These clearly 
show the closeness of the periodic responses to the stationary ones in the case of very low damping, ζ=1e-5. The periodic 
solutions were shown to be present only below a certain damping value that is peculiar to the solution family. This limit 
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was found to be 0.0116 for double-loop solutions and 0.082 for single-loop solutions, as illustrated in Figure 2.  
  

 
Figure 1: a) Continuation results as bifurcation diagram, b-c) double- and single-loop periodic orbits in rotating frame, d-e) and their 

low damping tips’ close-up. Red “L” signs locate the folds of the solution families. Dashed lines show unstable solutions.  
 

 
Figure 2: Damping limits for a) double- and b) single sloop solution families were 0.0116 and 0.082, respectively. The “U” signs 

locate the orbits corresponding to the sampled damping values. Dashed lines show unstable solutions. 

Conclusions 

The softer extreme of rotor-stator contact interaction was investigated by replacing the contact with a cubic stiffness 
nonlinearity. Direct application of continuation on the equations of motion was easy to setup and the solution procedure 
can be validated with time simulations easily. The following conclusions were drawn. The previously reported intermittent 
contact patterns for the models of hard impact and compliant snubber rings can also be observed in the case of the 
geometric nonlinearity of cubic stiffness. The level of damping changes the region where periodic motions was expected. 
Higher damping can cause the periodic solutions to disappear from the bifurcation diagrams. However, for low damping 
there is a limit to the growth of the periodic orbit region towards the lower rotor speeds; for very low values of damping 
(e.g. ζ=1e-4 and 1e-5) the periodic solution family approaches the synchronous solutions. It might be inferred that the gap 
closes asymptotically as ζ and the oscillation amplitude approach zero. This indicates that this region requires very little 
disturbance for synchronous solutions to jump to the periodic orbits.  
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Investigation of energy dissipation based on shock and friction to suppress critical self-
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Summary. In this article, a passive damper based on energy dissipation through shocks and dry friction (shock-friction damper) is investigated 
with regard to its effectiveness for damping self-excited torsional vibrations similar to those occurring in deep drilling. A minimal model 
based on a modally reduced complex finite element model of a drill string and a lumped mass representing the inertia of the forcedly 
connected damper is introduced for an effective and precise investigation of the dynamic motion and damping effect. Particular focus is on 
the energy flow within the dynamic system and on the change of the dissipation process in the friction contact. The resulting damping effect 
is compared with the self-excitation due to the bit-rock interaction in the drilling system. Parameters of the considered mode as well as 
parameters of the damper are examined regarding the damping effect. The shock-friction damper is compared to conventional friction 
dampers. 

Introduction 

In downhole drilling systems, various types of vibration occur that can reduce drilling performance and result in premature 
failure of components [1]. Especially in hard and dense formations, high-frequency torsional oscillations (HFTO) occur 
in the range of 5Ͳ to 5ͲͲ Hz. These oscillations are self-excited torsional vibrations of higher-order modes that can lead 
to critical torsional loads. Downhole measurement data show that the self-excitation can be described by a torque 
characteristic at the bit that decreases with the rotary speed. In [2], an analytical criterion based on a modal transformation 
is introduced to determine modes that are prone to self-excitation by linearizing the torque characteristic at the mean 
rotary speed of the drillstring. Increasing the damping of a system is a well-known approach to reduce self-excited 
vibration amplitudes. Tondl investigated the effect of tuned mass dampers and dry friction [3] on self-excited vibrations. 
Different types of friction contacts and friction dampers for various fields of engineering were investigated and classified 
[4]. For example, a friction damper is analyzed in [5] designed for railway wheels consisting of an inertia mass and a 
friction contact. In drilling systems, the effectiveness of inertia-based dampers is limited due to the small design space in 
the bottom-hole assembly (BHA) that is naturally limited by the drilled borehole size [6]. This reality necessitates 
investigation and optimization of the nonlinear forces characteristics between the inertia-mass to dampen the structure 
effectively. Similar efforts and analysis for nonlinear attachments show a significant effect on the energy output of a 
dynamic system [7]. 

Modeling of a passive shock-friction damper 

To investigate drillstring vibrations, a finite element model of an entire drillstring using the angular deviations 𝒙 from the 
operating point (constant angular speed and twist) with 𝑴𝒙ሷ + 𝑪𝒙ሶ + 𝑲𝒙 = 𝒇 is used. Herein, 𝑴, 𝑪 and 𝑲 are the mass, 
damping and stiffness matrices and 𝒇 an external force vector. The critical torsional modes are determined by a modal 
analysis and stability considerations. Following the modal transformation, the physical degrees of freedom 𝒙 are 
expressed by 𝒙 = 𝚽𝒒 with the mass-normalized modal matrix 𝚽 and the modal degrees of freedom 𝒒. 
To perform an efficient and accurate investigation of the damping effect and dynamic behavior of the nonlinear shock-
friction damper regarding critical self-excited drill string vibrations, the complex drilling system is reduced. Downhole 
measurement data show that mostly one critical mode dominates the dynamic motion of the entire drillstring when HFTO 
occurs. Resulting in a modal single-degree-of-freedom system ݍሷ + ʹ𝐷𝜔,ݍሶ + 𝜔,ଶ ݍ = ∑ 𝜑,𝑀𝑛=ଵ  where 𝜔, and 𝐷 
are the natural frequency and modal damping of the i-th mode (𝐷 < Ͳ for the self-excited HFTO-mode), 𝑀 is an external 
torque that acts at the j-th node and 𝜑, is the mass-normalized modal amplitude of the i-th mode at the j-th node. This 
minimal model can be extended to any damping force characteristic to determine its influence on the critical mode. The 
equation of motion  
 (ͳ ͲͲ 𝐽) ቀݍሷ𝑥ሷቁ + ቀʹ𝐷𝜔 ͲͲ Ͳቁ ቀݍሶ𝑥ሶ ቁ + (𝜔ଶ ͲͲ Ͳ) ቀݍ𝑥ቁ = ቆ−𝜑,𝑀(𝜑,ݍሶ − 𝑥ሶ)𝑀(𝜑,ݍሶ − 𝑥ሶ) ቇ (1) 

 

describes a critical mode connected by a torque to an inertia mass. 
The torque between the inertia mass and the structure (Equation 2) consists of a friction contact with a normal force 𝐹𝑁, 
a coefficient of friction 𝜇, a friction radius ݎ and an elastic backlash with a stiffness 𝑐 and a width 𝑆. 
 𝑀(𝜑,ݍሶ − 𝑥ሶ) = {𝐹N𝜇ݎ sgn(𝜑,ݍሶ − 𝑥ሶ) ,                                                                              |𝜑,ݍ − 𝑥| < 𝑆𝐹N𝜇ݎ sgn(𝜑,ݍሶ − 𝑥ሶ) + 𝑐(|𝜑,ݍ − 𝑥| − 𝑆) sgn(𝜑,ݍ − 𝑥) ,         |𝜑,ݍ − 𝑥| ≥ 𝑆 (2) 

 

The relative angular speed 𝑣re୪ = 𝜑,ݍሶ − 𝑥ሶ  and the relative angular displacement 𝑥re୪ = 𝜑,ݍ − 𝑥 between the damper 
and the structure are composed of the modal and physical degree of freedom. 
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Investigation of vibration response and energy flow 

To investigate the influence of the nonlinear shock-friction damper on the structure and the energy flow within the system 
time domain, simulations are used. Figure 2 (left) shows the motion of the structure and the damper. For small amplitudes, 
sticking occurs in the friction contact. No relative movement between the structure and the damper takes place. Due to 
the self-excitation (𝐷 < Ͳ), energy periodically flows into the system (Figure 2, right), resulting in an increase of the 
amplitude in the sticking phase. At a certain amplitude, the inertial torque of the damper is greater than the friction torque 𝐽𝑥ሷ > 𝐹𝑁𝜇ݎ, resulting in sliding regimes and energy dissipation in the friction contact. When the dissipated energy in the 
friction contact is not sufficient to stabilize the system, the amplitude increases further, resulting in an increased relative 
displacement and thus in shocks between the damper and the structure.  

  
Figure 2: (left) Time response of the damper and the structure, (right) Energy flow within the system 

These shocks, which do not occur in a conventional friction damper, lead to an energy transfer between the damper and 
the structure. Figure 2 (right) shows that while a shock occurs the energy is dissipated in the self-excited structure while 
the total energy remains almost constant and the energy of the damper increases. This leads to two positive effects on the 
stability and energy output of the system. The energy transfer reduces the energy of the structure, resulting in a reduced 
amplitude and thus lower energy input due to self-excitation. Secondly, the energy transfer to the damper increases the 
relative speed between the damper and the structure, dissipating the energy in the friction contact. Analyses with several 
modes show similar effects regarding the energy distribution, leading to an improved effectiveness in adjusted parameter 
ranges. 

Parameter influences 

Analyzing various parameters show that an increase of the inertia of the damper or the mass normalized modal amplitude 
at the position of the friction contact results in an increased damping. This is similar to the conventional friction damper 

without backlash, for which an analytical solution 𝐷୫ax = ଶ𝜋2 𝜑,ଶ 𝐽 is found by harmonic linearization [6]. In contrast to 

the conventional friction damper, the provided damping depends on the backlash width, the friction torque and the natural 
frequency. A reference for the influence of these parameters is given by the amplitude at which relative displacement 

occurs ̂ݍ = 𝐹𝑁𝜇𝑟𝜑,ೕ𝐽𝜔0,ೕ2 . If this amplitude is significantly smaller compared to the backlash width, the damper acts like a 

conventional friction damper. If the amplitude is much higher, the damping effect is reduced due to limited movement. 

Conclusions 

This paper examines a combined friction and shock damper for its suitability to reduce self-excited torsional vibrations 
in downhole drilling systems. The combination of friction and backlash results in passive shocks, causing energy transfer 
between the self-excited structure and the damper that positively influences the energy output. Compared to a 
conventional friction damper without backlash, an increase in the damping effect is achieved by adjusting the normal 
force and backlash width with regard to the vibration frequency. 
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Summary. The direct parametrisation of invariant manifold is used for model order reduction of large amplitude vibrations of clamped-
clamped and rotating cantilever beams. A particular emphasis is set on the computation of the backbone curve in case of internal
resonance. For the clamped beam, the 1:5 resonance between first and third mode occuring at large amplitude, is reproduced with the
model. For the rotating cantilever, a Campbell diagram is first used to detect the appearance of a 1:5 resonance, which is then computed
with the reduction method.

Introduction

The study of slenders structures is becoming a prominent issue in several industries as the mass gain becomes crucial. For
instance, in the aeronautic industry, the development of more efficient engines by the use of ever larger fan is targeted.
This leads to the design of large fan blades, i.e. more than 1 meter long. In order to compensate the dimension of the
blade, ligther and softer materials are used, such as composite materials. The combination of the slenderness of the blade
with the softeness of the material may induce large displacements of the structure when it is submitted to a dynamical
loading. It is then important to predict such behaviours, which can lead to specific phenomena like mode coupling and
internal resonances, and to the premature failure of the structure.
Model order reduction methods are often used to compute more easily the nonlinear dynamics of such structures [6]. For
application to finite element (FE) problems, important steps have been made recently with the possibility of computing
directly nonlinear mappings to go from the physical space to the reduced subspace where the dynamics is governed
by a very small number of master modes. The Direct Normal Form (DNF) has been proposed in [4], elaborated on a
third-order development based on previous works in modal space [5]. An arbitrary order expansion, fully relying on the
parametrisation method of invariant manifolds [3], has also been proposed in [7].
In this contribution, the direct parametrisation of invariant manifold is applied to two different test cases featuring internal
resonances. In the case of the clamped beam, it is known that a 1:5 internal resonance exists between the 1st and 3rd flexural
modes [8]. Concerning the rotating cantilever beam, the internal resonance condition may appear with the rotation and
the stiffening of the structure. We will thus show the appearance of a 1:5 internal resonance between the 2nd and the 4th

flexural modes, and compute its backbone with the reduction method.

Reduction method with the direct parametrisation

The Direct Parametrisation of Invariant Manifold (DPIM) is very briefly recalled here, relying on the developments shown
in [7], and adapted in order to handle the effect brought by centrifugal force for a rotating system. The general equations
of motion writes, using standard notations:

Mẍ + [K + N]x + g(x, x) + h(x, x, x) = fΩ, (1)

with N the spin softening matrix, fΩ the centrifugal effects, and where the Coriolis forces have not been taken into
account [2], in contrary to geometric nonlinear terms expressed via g and h. These equations can be rewritten around the
static equilibrium position x0, depending on the rotation speed, by introducing x = x0 + u, leading to:

Mü + Ktu + g(u, u) + 3h(x0, u, u) + h(u, u, u) = 0 (2)

with Kt = K + N + 2g(x0, I) + 3h(x0, x0, I) the tangent stiffness matrix.
The direct parametrisation method introduces a nonlinear mapping between the original coordinates (displacement u and
velocity v), and a new, normal coordinate z, which describes the motion on invariant manifold associated to the selected
linear master modes, as u = Ψ (z) and v = Υ (z), where Ψ and Υ are unknowns to be determined. The reduced dynamics
is also searched under the form ż = f(z). All unknowns are expanded via polynomial expressions at arbitrary order, and
solved for, by plugging the expansions in the invariance equation [7]. At each order p, the homological equation gathers
the unknowns, which depends only on previous orders, while the first-order term leads to the known modal problem.
Importantly, different styles of solutions exist. Finally, the reduced dynamics, which contains very few equations, can be
solved with numerical continuation. The results shown in the next section used MATCONT [1] for this step.

ENOC 2022, July 17-22, 2022, Lyon, France

733



ENOC 2020+2, July 17-22, 2022, Lyon, France

1 1,05 1,1 1,15

0
0
,
5

1
1
,
5 ×10−2

l/l1F [-]

am
p

[m
]

(a) backbone curve of the clamped beam

1 100 1 200 1 300 1 4006
5
0

7
0
0

7
5
0

Ω [RPM]

l
[r

ad
/
s]

l2F

l4F/5

(b) Campbell diagram of the rotating
beam

0,96 0,98 1

0
2

4
6

8 ×10−2

l/l2F [-]

am
p

[m
]

Ω = 1100 RPM

Ω = 1200 RPM

(c) backbone curves of the rotating beam

Figure 1: Internal resonances of the beam with 2 boundary conditions : clamped and rotating cantilever

Application case : nonlinear beam

The DPIM is applied here on a beam with dimensions 1m-2 cm-3 cm. The space is discretised with 27-nodes hexaedral
elements with 50 elements in the length and 2× 2 in the cross-section.
The first configuration considered is the clamped one. The backbone curve of the first mode is searched for, since it is
known that at relatively large amplitudes, it meets a nonlinear internal resonance relationship with the 3rd flexural mode
(their linear frequency ratio being ω3F = 5.36ω1F). Since a 1:5 resonance is at hand, the parametrisation is developed
up to order five, using a complex normal form style. The backbone curve is shown in figure 1a, and is found to very well
reproduce the tongue of internal resonance (see e.g. [8] for a reference, full-order solution).
The other configuration is the rotating cantilever beam. For this, we consider the 2nd and the 4th flexural modes. In
this case, the internal resonance does not appear without rotation, even though the relation is ω4F = 5.45ω2F. As it is
visible on the Campbell diagram on figure 1b, the 2 modes cross at a rotation speed around 1180RPM. In fig. 1c two
backbone curves are shown, computed with the reduced order model method. Before the crossing, for a rotational speed of
1100RPM, the backbone shows a classical softening behaviour without internal resonance (blue dashed curve in fig. 1c).
On the other hand, for Ω = 1200RPM, the backbone shows a clear tongue of internal resonance (orange curve in fig. 1c),
highlighting that the 1:5 internal resonance is excited and revealed by the model.

Conclusion

The DPIM [7] has been applied to compute the reduced order model solution of a beam where 2 modes interact in an
internal resonance with 2 different boundary conditions. The interesting case is the rotating beam where a condition for
the internal resonance to occur has been found on the rotation speed. The method allows to predict those specific behaviors
with a very small computation time. Those results need full order model resolution to be compared with, which will be
achieved in the near future.
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Summary. In this work, the mutual influence of the nonlocal behavior superimposed to the size effects on the dynamics of electrically actuated 
single walled carbon nanotube based resonator are examined. In this regards, two nonlinear models to capture the nano-structure nonlocal 
size effects are considered: the strain and the velocity gradients theories. A reduced-order model based on the Differential-Quadrature Method 
(DQM) to discretize the governing nonlinear equation of motion and acquire a discretized-parameter nonlinear model of the system is 
investigated. Both model results show that non-local as well size effects should not be neglected since they somehow improve the prediction 
of corresponding dynamic amplitudes and most importantly the critical resonant frequencies of such nano-resonators.  

Introduction 

Thanks to their amazing electro-mechanical features, carbon nanotubes (CNTs) and their respective compounds have 
shown potential applications in numerous electronic devices, energy storage, smart materials and composites, sensors and 
actuators and etc... Consequently, a lot of researchers and scientists worldwide [1-5] have been attracted to investigate 
their interesting physio-mechanical properties by introducing non-classical models. Several non-classical continuum 
theories have been presented and developed to pave the way for precisely extracting the size-dependent behavior of CNTs 
for future applications. To cite few, nonlocal theories [1] and strain gradient elasticity theory [2] are very useful to account 
for the nanoscale characteristics of nanostructures. In nonlocal theories, it is assumed that the stress at a specific point is 
a function of the strains of that point and its neighborhood as well [3]. It is demonstrated that the nonlocal theories only 
consider the inter-atomic long-range force [4] and the gradient elasticity theory exclusively takes into account the higher-
order microstructure deformation mechanism [5]. From another point of view, the gradient elasticity theory captures the 
hardening behavior of nanoscale structure and, on the contrary, can only model the softening behavior of nanostructures 
like CNTs [4]. Therefore, in order to predict two different behaviors simultaneously and combine both possible features 
in nanoscale structures, it is convenient to merge two theories to bring into account two distinct properties at the same 
time. The key motivation behind this research work is to conduct a comprehensive study to account for the nonlocality of 
the stress in nanostructures incorporating the complete gradient elastic analysis of structures, that is to say, the strain and 
velocity gradients are included in the generalized governing equations.  

Problem formulation 

The investigated CNT-based resonator, Fig.1, is triggered by its lower substrate with an assumed initial gap width d. The 
CNT will be assumed as a cylindrical beam shape of radius R% , and length L. The area moment of inertia of 4 / 4I RɎ= %  
and a resultant cross-sectional area 2A RɎ= % . It also has a Young’s modulus E=1 TPa and a density ɏ =1.35 g/cm3 [6]. 

 
Figure 1: 3D drawing of an electrostatically actuated SWCNT based resonator. 

Through considering the nonlocal effects of higher-order strain gradients ,ij kε , in which the index k after the comma 
denotes the differentiation with respect to kx , the extended Eringen’s model gets the following expression for the internal 
potential energy as [7,8]: 

( ) ( ) ( ) ( )
2

' ' ' ' ' ' (1)
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1 1
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V V V
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U C x x e a dV C x x e a dV dVε ε α ε ε α ε α ε ε α ε σ ε σ ε= - + - = +ò ò ò  (1) 

where 0e a  and 1e a  represent the influence of the inter atomic long range force and ls stands for the strain gradient length 
parameter. In the framework of an Euler-Bernoulli beam theory and taking into consideration the so-called von-Karman 
nonlinearity, the relation for the strain-displacement of the beam (to the first order) can be written as 

2

, , ,/ 2xx x x xxu w zwε = + - . Employing the Hamilton's principle, the following normalized nonlinear governing equations 
of a fixed-fixed CNT resonator based on the nonlocal strain and velocity gradient theories [4]: 
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where kμ is the velocity gradient kinetic internal length scale and: 
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(3) 

Spatial Discretization using the Differential Quadrature Method 

In order to numerically solve the nonlinear governing equation (14), we suggest to implement the Differential Quadrature 
Method (DQM) superimposed to the Finite-Difference Method (FDM). For the accuracy of the numerical results, the 
subsequent lattice distribution is assumed as 1 / 2[ ],        1,2,...1 cos(( 1) / ( 1))

i
x i ni nɎ= =- - -  [9]. Therefore, for a 

normalized space variable x in the interval (0,1) and defining n discretization points in the space domain, the  pth-sequence 
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Nonlinear Dynamic Analysis: Results and Discussion 

As a case study, the parameters of the studied SWCNT are considered as: d=100 nm, L=3000nm and R% =30 nm. In this 
work 19 discretization points is used in the DQM to get the converged results. The variation of the steady-state maximum 
deflection Wmax versus the forcing AC frequency Ω is outlined in Fig. 2 for different values of the nonlocal parameter µ0. 
As can be seen, when VDC= 1 volt, an increase of the nonlocal parameter resulted in decreasing the maximum dynamic 
amplitude of the CNT. Furthermore, when considering the nonlocality effect, a softening-like behavior of the CNT is 
been replaced by a hardening type behavior. Figure 3 displays the frequency response of CNT for different values of the 
strain gradient parameter µs. It is evident that the maximum amplitude of the system is increased by increasing the value 
of DC voltage and the bandwidth expansion is increased as the DC excitation voltage increases. Figure 4 shows the 
frequency-response curves for three different values of velocity gradient parameter µk. As can be observed, the maximum 
dynamic deflection of the structure is considerably amplified by increasing the velocity gradient parameter and 
consequently the bandwidth expansion increases as the velocity gradient parameter increases.  

 
Figure 2: Dynamic response for three 
different nonlocal parameters for for 

VDC= 1 Volt, VAC= 1 Volt. 

Figure 3: Dynamic response for three 
different values of the DC voltage for 

μs= 0.12. 

Figure 4: Dynamic response for three 
different velocity gradient parameters  

(a) VDC= 1 Volt, VAC= 1 Volt. 
 

Conclusion 

In this numerical investigation, the nonlinear dynamics of an electrically actuated doubly-clamped single-walled carbon 
nanotube resonator is carried out. A nonlinear Euler-Bernoulli beam model incorporating both the nonlocal and 
strain/velocity gradient theories is implemented. The derived nonlinear governing equation is discretized through a 
Differential Quadrature Method (DQM). The acquired results in this work demonstrated the fact that neglecting the 
nonlocal as well as the size effects imposed considerable errors in the estimation of the dynamic response of SWCNT and 
consequently in determining accurately its dynamical parameters such as: its resonant deflection (approx. 10-20% error) 
its fundamental resonant frequency (approx.15-20% error). 
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Modelling and dynamics of smart composite box beam
with nonlinear constitutive behaviour of active elements

Jarosław Latalski∗, Jerzy Warmínski∗

∗Department of Applied Mechanics, Faculty of Mechanical Engineering,
Lublin University of Technology, Lublin, Poland

Summary. The presented research discusses the mathematical modelling of composite thin-walled beams with embedded active
elements made of piezoceramic materials. The the analysis the nonlinear relations in piezoceramics with respect to electric field
(electrostrictive effect) is considered to properly capture the behaviour of the transducer in near-resonant conditions. Moreover, the
importance of disregarding/accounting for the magnetic effects is highlighted. In the adopted model of the piezoceramic actuation the
bending load to the hosting composite beam is achieved by means ofd31 piezoelectric effect. The governing equations of the system are
derived using Hamilton’s principle for a beam undergoing complex deformation involving transverse and in-plane shearable bending,
torsion and axial deformations. The obtained system of partial differential equations is transformed into a set of ordinary ones by
the Galerkin discretization method. The results of performed numerical studies show the importance of non-linear terms for accurate
prediction of systems dynamic properties; in particular one can observe the softening phenomenon near the resonance zone due to the
nonlinear characteristics of the PZT layers and electrostrictive effect.

Over recent 10-20 years smart composite elements have received a considerable attention due to their potential for design-
ing adaptive structures that are both light in weight and possess adaptive capabilities. Due to their unique propertieslike
e.g. high strength-to-weight ratio and high structural damping the composite based smart structures are very competitive
for many designs. In particular active transducers based onpiezoelectric/piezoceramic materials have found numerous
applications ranging from astronautics and aerospace technology to the automotive industry and civil engineering. Typ-
ical examples might be spacecraft antennas, helicopter rotor blades, wind turbines, multi-stable morphing shells, bridge
elements etc.

Modelling of smart composite structures
The physics involved in piezoelectric theory can be regarded as a coupling between Maxwell’s equations of electromag-
netism and elastic stress equations of motion. The couplingtakes place through the piezoelectric constitutive equations
providing the relationships between the tensors of stress and strain and the vectors of electric field and electric flux density.

The system of Maxwell’s equations in vector form is written as

∇ ·D = ρe

∇ ·B =0

∇×E = Ḃ

1
µ (∇×B) = ib + Ḋ

(1)

whereD is the electric flux density vector, also known as the electric displacement vector,ρe is the charge density,B is
the magnetic induction,E is the electric field intensity vector andµ is the magnetic permeability constant. The over dots
represent differentiation with timet.

In the literature there are mainly three approaches to deal with electromagnetic effects when modelling the behaviour of
piezoelectric domain [1]:

• electrostatic approach when all magnetic effects ale completely ignored. This involvesB = Ḋ = ρe = ib = 0.
Therefore the system of Maxwell’s equations is reduced to∇·D = 0 and∇×E = 0⇒ E = −∇φ. This approach
is the simplest one and simultaneously the most common one even when studying dynamics of smart structures.
This is due to the fact that the electric potentialφ is directly available,

• quasi-static approach that rules out some but not all the magneticeffects. Typicallyρe = ib = 0 butD andB
are time-dependent. Thus, the (1)2 implies that there exists a magnetic potential vectorA such thatB = ∇×A.
Therefore, the electric potential is related to electric field and changes in magnetic potential:E = −∇φ− Ȧ,

• fully dynamic whenA andȦ are left in the analysis. Depending on the type of material, body charge densityρe
and body current densityib can also be non-zero.

The well known physically linear relationships between thetensors of stress and strain and the vectors of electric fieldand
electric displacement for piezoelectric materials are applicable to a particular case where nonlinear effects are negligible
[2, 3]. However, numerous theoretical and experimental studies suggest the piezoceramics can exhibit nonlinear constitu-
tive properties resulting from high electric fields, near resonant operation regimes or stress-strain hysteresis [4, 5, 6, 7, 8].

ENOC 2022, July 17-22, 2022, Lyon, France

737



ENOC 2020, July 5-10, 2020, Lyon, France

To properly capture these phenomena authors postulate to enhance the classical piezoelectric constitutive formulation by
adopting the higher-order relations with respect to electric field [9]

σ = Cε− eE− b̂ sgn(E3)E
2

D = eε+ ξE+ χsgn(E3)E
2

(2)

In the above relationsC stands for the second order piezoceramic elasticity tensorat constant electric field,e is the tensor
of piezoelectric coefficients,ξ is second order permittivity tensor,b̂ is effective electrostrictive constants tensor,χ is third
order electric susceptibility tensor. Moreover, the variablesσ andε stand for stress and strain tensors, respectively.

The submitted research is a continuation of former author’s studies on dynamics of smart composite thin-walled beams
[10, 11]. In the former one an electromechanical coupled theory is used to develop the equations of motion of a rotating
thin-walled beam with surface bonded/embedded piezoelectric transducers. In the mathematical model of the hybrid
structure, the non-classical effects like material anisotropy, rotary inertia and transverse shear deformation as well as an
arbitrary beam pitch angle and hub mass moment of inertia areincorporated. It has been shown this approach results
in an additional equation of motion for the hub sub-system and significantly enhances the generality of the formulation.
Comparing to the purely mechanical model with simplified approach, the proposed electromechanical one introduces
additional stiffness-type couplings between individual degrees of freedom of the system. In the following paper [11] the
dynamics of layered composite piezo-beam with lamination scheme exhibiting the circumferentially uniform stiffness
properties of the cross section has been presented. Moreover, the two-way coupling interaction involving the spatial
distribution of electric field in the piezoceramic domain has been discussed.
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Phase resonance of an oscillator with polynomial stiffness

Martin Volvert and Gaëtan Kerschen
Space Structures and Systems Laboratory, Aerospace and Mechanical Engineering Department,

University of Liège, Quartier Polytech 1 (B52/3), Allée de la Découverte 9, Liege, B-4000, Belgium

Summary. This paper extends the linear concept of phase resonance, which occurs when the damping forces counterbalance exactly
the external forces, to oscillators with polynomial stiffness. To this end, a first-order averaging technique is applied to a one degree-of-
freedom oscillator with arbitrary polynomial stiffness. We show that phase resonance exists in the vicinity of amplitude resonance and is
associated with a phase resonance of π/2.

Introduction

Modal analysis has been, and continues to be, the dominant dynamical method used in structural design. The goal of
modal analysis is to find the vibration modes, resonance frequencies and damping ratios of the considered system [1].
One key assumption of modal analysis is linearity.
In linear theory, the resonant behavior of dynamical systems can be characterized either the amplitude or phase resonance.
Amplitude resonance corresponds to a relative maximum in the frequency response function whereas phase resonance is
associated with quadrature between the displacement and the external forcing. At phase resonance, the external forcing
cancels exactly the damping force with the result that the resonance frequency coincides with the natural frequency of the
linear system. The difference between the two resonances remains small for weakly damped systems.
However, real-world structures are intrinsically nonlinear because they may feature advanced materials, friction and con-
tact [2]. In this context, the present study proposes to extend the concept of phase resonance to oscillators with arbitrary
polynomial stiffness. To do so, a first-order averaging technique is applied to a one degree-of-freedom oscillator and we
show that phase resonance exists in the vicinity of amplitude resonance for a phase lag of π/2.

Oscillator with polynomial stiffness

The governing equation of motion of a harmonically-forced oscillator with arbitrary polynomial stiffness is

mẍ(t) + cẋ(t) + kx(t) +

n∑

d=2

kdx
d(t) = f sinωt (1)

wherem, c, k and kd represent the mass, damping, linear and nonlinear stiffness coefficients, respectively. f is the forcing
amplitude whereas ω is the excitation frequency of period T . The natural frequency of the undamped, linearized system

is ω0 =
√

k
m . Through mass normalization, Equation (1) can be recast into:

ẍ(t) + 2ζ̄ ω0 ẋ(t) + ω2
0x(t) +

∞∑

d=2

αdx
d(t) = γ̄ sinωt (2)

where ζ̄ = c
2
√
km

, αd = kd/m and γ̄ = f/m.

An averaging technique

We consider a weakly nonlinear oscillator of the form:

ẍ(t) + ω2
0x(t) = εf(x(t), ẋ(t)) (3)

When ε = 0, the periodic solution of (3) is written as:

x(t) = u cosω0 t− v sinω0 t (4)

where u and v are constants. When ε ̸= 0, we seek a solution of frequency ω such that ω2−ω0
2 = εΩ. The solution is

expressed as in Equation (4) but with time-dependent u and v:

x(t) = u(t) cosω t− v(t) sinω t (5)

We impose that the velocity should have the same form as in the case ε = 0, i.e.,

ẋ(t) = −u(t)ω sinω t− v(t)ω cosω t (6)

Equation (6) holds if:
u̇(t) cosω t− v̇(t) sinω t = 0 (7)
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Differentiating Equation (6) and replacing ẍ(t) and x(t) in Equation (3) yields:

u̇(t)ω sinω t+ v̇(t)ω cosω t = −ε [f(x(t), ẋ(t)) + Ωx(t)] (8)

Finally, taking into account Equations (7) and (8) and solving for u̇ and v̇, a system of first-order equations is obtained:
{
u̇ = − ε

ω [f(x(t), ẋ(t)) + Ωx(t)] sinω t

v̇ = − ε
ω [f(x(t), ẋ(t)) + Ωx(t)] cosω t

(9)

This system has a suitable form to apply first-order averaging, which is performed herein using the Krylov-Bogolyubov
technique [3, 4], which consists in integrating these equations over one period of time T , during which u and v are
considered to be constants: {

u̇ = − ε
ω

1
T

∫ T
0
[f(x(t), ẋ(t)) + Ωx(t)] sinω t dt

v̇ = − ε
ω

1
T

∫ T
0
[f(x(t), ẋ(t)) + Ωx(t)] cosω tdt

(10)

Or alternatively, if we consider ω t = θ:
{
u̇ = − ε

ω
1
2π

∫ 2π

0
[f(x(θ), ẋ(θ)) + Ωx(θ)] sin θ dθ

v̇ = − ε
ω

1
2π

∫ 2π

0
[f(x(θ), ẋ(θ)) + Ωx(θ)] cos θ dθ

(11)

Finally, x(t) is often represented using the polar coordinates r and φ such that x(t) = r(t) sin (ω t− φ(t)) with r =√
u2 + v2 and φ = atan2(−u,−v), where u = −r sinφ and v = −r cosφ. Furthermore, we can express the time

derivatives of r and φ as: {
ṙ = ∂r

∂u u̇+ ∂r
∂v v̇ = u

r u̇+ v
r v̇

φ̇ = ∂φ
∂u u̇+ ∂φ

∂v v̇ = v
r2 u̇− u

r2 v̇
(12)

For conciseness, the time dependence for u, v, r and φ is dropped in the remainder of this chapter.

First-order averaging of an oscillator with polynomial stiffness

Scaling of the equation of motion
Considering Equation (2), we scale the system such that ζ̄ = εζ, ᾱd = εαd and γ̄ = εγ, with ζ, α, γ = O(1), we obtain
a weakly nonlinear oscillator:

ẍ(t) + ω2
0x(t) = ε

(
γ sinωt− 2ζ ω0 ẋ(t)−

∞∑

d=2

αdx
d(t)

)
(13)

Assuming a forcing frequency in the vicinity of the natural frequency of the linear system, i.e., ω2−ω0
2 = εΩ, we can

apply an averaging technique and the displacement as explained in Section . This consists in solving:
{
u̇ = − ε

ω
1
2π

∫ 2π

0

[(
γ sin θ − 2ζ ω0 ẋ(θ)−

∑∞
d=2 αdx

d(θ)
)
+Ωx(θ)

]
sin θ dθ

v̇ = − ε
ω

1
2π

∫ 2π

0

[(
γ sin θ − 2ζ ω0 ẋ(θ)−

∑∞
d=2 αdx

d(θ)
)
+Ωx(θ)

]
cos θ dθ

(14)

For clarity, the different terms are analysed separately, i.e., the forcing, damping, frequency and stiffness terms.
Furthermore, to solve these integrals, we make use of the fact that:

∫ 2π

0

cosa θ sinb θ dθ =
1

2
[(−1)a + 1]

[
(−1)b + 1

] Γ
(
a
2 + 1

2

)
Γ
(
b
2 + 1

2

)

Γ
(
a
2 + b

2 + 1
2

) (15)

which is always equal to 0 if either a or b is odd. Therefore, we can write:

1

2π

∫ 2π

0

cos2n θ sin2m θ dθ =
1

π

Γ
(
n+ 1

2

)
Γ
(
m+ 1

2

)

Γ
(
n+m+ 1

2

) (16)

where Γ is the Gamma function.

Forcing term
For u̇ and v̇, we have respectively:

1

2π

∫ 2π

0

γ sin2 θ dθ =
γ

2
(17)

and
1

2π

∫ 2π

0

γ cos θ sin θ dθ = 0 (18)
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Damping term
For u̇ and v̇, we have respectively:

− 1

2π

∫ 2π

0

2ζ ω0

(
−uω sin2 θ − v ω cos θ sin θ

)
dθ = ζ ω0 ω u (19)

and

− 1

2π

∫ 2π

0

2ζ ω0

(
−uω cos θ sin θ − v ω cos2 θ

)
dθ = ζ ω0 ω v (20)

Frequency term
For u̇ and v̇, we have respectively:

1

2π

∫ 2π

0

Ω
(
u cos θ sin θ − v sin2 θ

)
dθ = −Ω v

2
(21)

and
1

2π

∫ 2π

0

Ω
(
u cos2 θ − v cos θ sin θ

)
dθ =

Ωu

2
(22)

Polynomial stiffness terms
For u̇ and v̇, we need to solve respectively:

−
∞∑

d=2

1

2π

∫ 2π

0

αd (u cos θ − v sin θ)d sin θ dθ (23)

and

−
∞∑

d=2

1

2π

∫ 2π

0

αd (u cos θ − v sin θ)d cos θ dθ (24)

To do so, we need to expand the polynomial term using the binomial expansion:

(u cos θ − v sin θ)d =
d∑

p=0

(
d

p

)
(u cosφ)d−p(−v sin θ)p (25)

which thus gives for u̇ and v̇, respectively:

−
∞∑

d=2

αd

d∑

p=0

(
d

p

)
ud−p(−v)p 1

2π

∫ 2π

0

cosd−p θ sinp+1 θ dθ (26)

and

−
∞∑

d=2

αd

d∑

p=0

(
d

p

)
ud−p(−v)p 1

2π

∫ 2π

0

cosd−p+1 θ sinp θ dθ (27)

The result of the integrals depends on the parity of the exponents of the sine and cosine terms and the different possibilities
are studied hereafter.

Case 1: d and p are odd.

In this case, we set d = 2i+ 1 and p = 2j + 1. For u̇ we have:

∞∑

i=1

α2i+1

i∑

j=0

(
2i+ 1

2j + 1

)
u2(i−j)v2j+1 1

2π

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ ̸= 0 (28)

for which the result depends on the values of i and j. For v̇, we have:

∞∑

i=1

α2i+1

i∑

j=0

(
2i+ 1

2j + 1

)
u2(i−j)v2j+1 1

2π

∫ 2π

0

cos2(i−j)+1 θ sin2j+1 θ dθ = 0 (29)

since both exponents are odd.
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Case 2: d is odd and p is even.

In this case, we set d = 2i+ 1 and p = 2j. For u̇ we have:

−
∞∑

i=1

α2i+1

i∑

j=0

(
2i+ 1

2j

)
u2(i−j)v2j

1

2π

∫ 2π

0

cos2(i−j)+1 θ sin2j+1 θ dθ = 0 (30)

since both exponents are odd. For v̇, we have:

−
∞∑

i=1

α2i+1

i∑

j=0

(
2i+ 1

2j

)
u2(i−j)+1v2j

1

2π

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ ̸= 0 (31)

for which the result depends on the values of i and j.

Case 3: d and p are even.

In this case, we set d = 2i and p = 2j. For u̇ we have:

−
∞∑

i=0

α2i

i∑

j=0

(
2i

2j

)
u2(i−j)v2j

1

2π

∫ 2π

0

cos2(i−j) θ sin2j+1 θ dθ = 0 (32)

since one of the exponents is odd. For v̇, we have:

−
∞∑

i=0

α2i

i∑

j=0

(
2i

2j + 1

)
u2(i−j)v2j

1

2π

∫ 2π

0

cos2(i−j)+1 θ sin2j θ dθ = 0 (33)

since one of the exponents is odd.

Case 4: d is even and p is odd.

In this case, we set d = 2i and p = 2j + 1. For u̇ we have:

∞∑

i=0

α2i

i∑

j=0

(
2i

2j + 1

)
u2(i−j)−1v2j+1 1

2π

∫ 2π

0

cos2(i−j)−1 θ sin2(j+1) θ dθ = 0 (34)

since one of the exponents is odd. For v̇, we have:

∞∑

i=0

α2i

i∑

j=0

(
2i

2j + 1

)
u2(i−j)−1v2j+1 1

2π

∫ 2π

0

cos2(i−j) θ sin2j+1 θ dθ = 0 (35)

since one of the exponents is odd.

Summary:

Therefore, we end up with:

∞∑

i=1

α2i+1

i∑

j=0

(
2i+ 1

2j + 1

)
u2(i−j)v2j+1 1

2π

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ (36)

and

−
∞∑

i=1

α2i+1

i∑

j=0

(
2i+ 1

2j

)
u2(i−j)+1v2j

1

2π

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ (37)

for u̇ and v̇, respectively. We thus observe that the stiffness of even orders do not participate in the motion around the
primary resonance at first order.

Averaged solution around the primary resonance
The average solution for u̇ is therefore:

u̇ = − ε
ω


γ

2
+ ζ ω0 ω u−

Ω v

2
+

∞∑

i=1

α2i+1

i∑

j=0

(
2i+ 1

2j + 1

)
u2(i−j)v2j+1 1

2π

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ


 (38)

and for v̇:

v̇ = − ε
ω


ζ ω0 ω v +

Ωu

2
−

∞∑

i=1

α2i+1

i∑

j=0

(
2i+ 1

2j

)
u2(i−j)+1v2j

1

2π

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ


 (39)

Those equations can be gathered in order to get ṙ and φ̇ using the relations from Equation 12. However, this leads to
complex expressions and it is interesting to see if the effect of the polynomial stiffness can be simplified.
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Solution for ṙ
First, for ṙ, it is possible to show that when we use the relation: uu̇+ vv̇, then we have for the polynomial stiffness terms:

∞∑

i=1

α2i+1

i∑

j=0

(
2i+ 1

2j + 1

)
u2(i−j)+1v2j+1 1

2π

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ

−
∞∑

i=1

α2i+1

i∑

j=0

(
2i+ 1

2j

)
u2(i−j)+1v2j+1 1

2π

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ = 0

(40)

Taking out the constant terms, we end up with:

i∑

j=0

u2(i−j)+1v2j+1

2π

((
2i+ 1

2j + 1

)∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ −
(
2i+ 1

2j

)∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ

)
= 0 (41)

and therefore, we need to prove that
(
2i+ 1

2j + 1

)∫ 2π

0

cos θ2(i−j) sin2(j+1) θ dθ −
(
2i+ 1

2j

)∫ 2π

0

cos θ2(i−j+1) sin2j θ dθ = 0 (42)

in order to show that Equation (40) is valid.
The first step is to use the results of the integrals from Equation (16) and rewrite Equation (42) as:

2

Γ(i+ 2)

((
2i+ 1

2j + 1

)
Γ(i− j + 1

2
)Γ(j + 1 +

1

2
)−

(
2i+ 1

2j

)
Γ(i+ 1− j + 1

2
)Γ(j +

1

2
)

)
(43)

After that, we can make use of the following property of the Gamma function:

Γ(n+
1

2
) =

(
n− 1

2

n

)
n!
√
π (44)

for non-negative integer values of n, as well as the following binomial coefficient property:
(
n

k

)
=
n− k + 1

k

(
n

k − 1

)
(45)

to rewrite Equation (43) as

2π

Γ(i+ 2)
(i− j)!j!

(
i− j − 1

2

i− j

)(
j − 1

2

j

)(
2i+ 1

2j

)(
2i− 2j + 1

2j + 1
(j +

1

2
)− (i− j + 1

2
)

)
= 0 (46)

which proves the relation from Equation (40).
Finally, we can write for ṙ:

ṙ = − ε

ωr

(
ζ ω0 ω r

2 − γ

2
r sinφ

)
(47)

Solution for φ̇

In the case of φ̇, we need to use the relation vu̇ − uv̇ and therefore, the terms related to the polynomial stiffness can be
written as:

∞∑

i=1

α2i+1

i∑

j=0

(
2i+ 1

2j + 1

)
u2(i−j)+1v2(j+1) 1

2π

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ

+
∞∑

i=1

α2i+1

i∑

j=0

(
2i+ 1

2j

)
u2(i−j+1)v2j+1 1

2π

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ

(48)

which can be simplified and written under the form:

∞∑

i=1

α2i+1C
i+1∑

j=0

(
i+ 1

j

)
u2(i+1−j)v2j =

∞∑

i=1

α2i+1C(u
2 + v2)i+1 =

∞∑

i=1

α2i+1Cr
2(i+1) (49)

where C is a constant to be determined. To demonstrate this, we need to show that:

i∑

j=0

1

2π

((
2i+ 1

2j + 1

)
u2(i−j)v2(j+1)

∫ 2π

0

cos2(i−j) θ sin2(j+1) θ dθ +

(
2i+ 1

2j

)
u2(i−j+1)v2j

∫ 2π

0

cos2(i−j+1) θ sin2j θ dθ

)

(50)

= C

i+1∑

j=0

(
i+ 1

j

)
u2(i+1−j)v2j
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First, we rearrange the left hand side of Equation (51) such that:
(
2i+ 1

0

)
u2(i+1) 1

2π

∫ 2π

0

cos2(i+1) θ dθ (51)

+

(
2i+ 1

1

)
u2iv2

1

2π

∫ 2π

0

cos2i θ sin2 θ dθ +

(
2i+ 1

2

)
u2iv2

1

2π

∫ 2π

0

cos2i θ sin2 θ dθ

+ . . .

+

(
2i+ 1

2k − 1

)
u2(i+1−k)v2(k)

1

2π

∫ 2π

0

cos2(i+1−k) θ sin2k θ dθ +

(
2i+ 1

2j

)
u2(i+1−k)v2k

1

2π

∫ 2π

0

cos2(i+1−k) θ sin2k θ dθ

+ . . .
(
2i+ 1

2i+ 1

)
v2(i+1) 1

2π

∫ 2π

0

sin2(i+1) θ dθ

Or simply:
(
2i+ 1

0

)
u2(i+1) 1

2π

∫ 2π

0

cos2(i+1) θ dθ (52)

+

i∑

j=1

((
2i+ 1

2j − 1

)
+

(
2i+ 1

2j

))
u2(i+1−j)v2j

1

2π

∫ 2π

0

cos2(i+1−j) θ sin2j θ dθ

(
2i+ 1

2i+ 1

)
v2(i+1) 1

2π

∫ 2π

0

sin2(i+1) θ dθ

Which can be further simplified by making use of the fact that first:
(
2i+ 1

2j − 1

)
+

(
2i+ 1

2j

)
=

(
2(i+ 1)

2j

)
(53)

and second: (
2i+ 1

0

)
=

(
2i+ 1

2i+ 1

)
= 1 =

(
2(i+ 1)

0

)
=

(
2(i+ 1)

2(i+ 1)

)
(54)

which leads to
i+1∑

j=0

(
2(i+ 1)

2j

)
u2(i+1−j)v2j

1

2π

∫ 2π

0

cos2(i+1−j) θ sin2j θ dθ (55)

The final step consists in showing that:
(
2(i+ 1)

2j

)
1

2π

∫ 2π

0

cos2(i+1−j) θ sin2j θ dθ = C

(
i+ 1

j

)
(56)

To do so, we make use of the fact that a binomial coefficient can be written using the Gamma function:
(
n

k

)
=

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
(57)

Furthermore, using the results from Equation (16), we can write the left hand side of Equation (56) as:

1

π

Γ(2z1)

Γ(2z3)Γ(2z2)

Γ(z2)Γ(z3)

Γ(z1 +
1
2 )

(58)

where z1 = i+ 1 + 1
2 , z2 = i+ 1− j + 1

2 and z3 = k + 1
2 . Using the Legendre duplication formula:

Γ(z)Γ(z +
1

2
) = 21−2z

√
πΓ(2z) (59)

it is possible to rewrite Equation (58) as:

Γ(2i+ 3)

22(i+1)Γ2(i+ 2)

(
i+ 1

j

)
= Ci

(
i+ 1

j

)
(60)

where Ci = Γ(2i+3)
22(i+1)Γ2(i+2)

is a constant that only depends on i. Therefore, we can indeed rewrite Equation (48) as

Equation (49). Finally, we can write for φ̇:

φ̇ = − ε

ω r2

( ∞∑

i=1

α2i+1Cir
2(i+1) − Ω

2
r2 − γ

2
r cosφ

)
(61)
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Solution at steady-state

Since we are interested in solutions at steady-state, we have ṙ = φ̇ = 0 and therefore
{
r = γ

2ζ ω0 ω
sinφ∑∞

i=1 α2i+1Cir
2i+1 − Ω

2 r =
γ
2 cosφ

(62)

where the first relation shows that the amplitude r does not directly depend on the nonlinear stiffness coefficients αd. This
relation also confirms that even order stiffness do not participate in the motion around the primary resonance.

Amplitude and phase resonances
Amplitude resonance occurs when both ∂r

∂ ω and ∂r
∂φ are equal to 0. From Equation (62), we obtain:





∂r
∂φ = γ

2ζ ω0 ω

(
cosφ− sinφ

ω
∂ ω
∂φ

)
= 0

∂r
∂ ω = γ

2ζ ω0 ω

(
cosφ ∂φ∂ ω −

sinφ
ω

)
= 0

(63)

where
∂φ

∂ ω
= − 2

γ sinφ

( ∞∑

i=1

α2i+1Ci(2i+ 1)r2i
∂r

∂ ω
− 1

2

(
2ω

ε
r +

ω2−ω0
2

ε

∂r

∂ ω

))
(64)

Eventually, we have

∂r

∂ ω
=

γ2 sin2 φ (ω−εζ ω0 tanφ)(
2(ω0

2−ω2)ζ ω0 ω+ε
(
2γ2ζ2 ω0

2 ω2 cosφ+
∑∞
i=1 α2i+1Ci(2i+ 1) (γ sinφ)2i+1

(2ζ ω0 ω)2i−1

)) = 0 (65)

This relation is verified when:
tanφa =

ωa
εζ ω0

(66)

Since we consider a small damping ratio ζ̄ = εζ, the phase lag φa at amplitude resonance is very close to π
2 .

On the other hand, phase resonance for linear and nonlinear systems occurs when the external forcing counterbalances
exactly the damping forces [5]. From the first equation in Equation (62), we see that this happens when the phase lag is
π/2. Phase resonance thus occurs in the immediate vicinity of amplitude resonance.

Numerical validation on a Helmholtz-Duffing oscillator

The previous results are applied to a Helmholtz-Duffing oscillator governed by the following equation:

ẍ(t) + 2ζ̄ ω0 ẋ(t) + ω2
0x(t) + β̄x2(t) + ᾱx3(t) = γ̄ sinωt (67)

According to Equation 62, first-order averaging around the primary resonance gives
{
r = γ

2ζ ω0 ω
sinφ

3α
8 r

3 − Ω
2 r =

γ
2 cosφ

(68)

Setting β̄ = 0.05 N/(kg m2), ᾱ = 0.05 N/(kg m3) and ζ̄ = 0.005, the numerical solution using a harmonic balance
continuation procedures with 8 harmonics is compared to the analytical solution from Equation (68) in Figure 1. The two
methods give very similar results around the primary resonance. In addition to that, the phase resonance points, which
correspond to a phase lag of π2 for the first harmonic component of the solution, is also plotted and both techniques show
that it is indeed in the vicinity of the amplitude resonance.
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(a) (b)

Figure 1: Nonlinear frequency responses (Numerical: black, analytical: green) around the primary resonance of the
Helmholtz-Duffing oscillator for forcing amplitudes γ̄ of 0.001N, 0.005N and 0.01N: (a) amplitude and (b) phase lag.
The red (numerical) and green (analytical) dots correspond to a phase lag of π2 .

Conclusion

A first-order averaging technique was applied around the primary resonance of an oscillator with arbitrary polynomial
stiffness. The results show that phase resonance associated with a phase lag of π

2 exists in the immediate neighborhood
of amplitude resonance in the case of weak damping. These results are in agreement with those of Peeters et al. [5] and
Haller et al. [6].
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Parallel Harmonic Balance Method: towards very large scale systems

Loïc Salles∗, Jiri Blahos∗, Alessandra Vizzacarro∗ and Fadi El Haddad∗
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Summary. This paper presents a parallel implementation of harmonic balance method coupled with continuation method. The different
elements for a parallel implementation are introduced. The obtained software permits to accurately solve problem that has never
been studied in this manner before. The results obtained with the proposed approach gives hints for creating accurate reduced order
modelling.

Figure 1: Fan blade with nonlinear frequency response

High-cycle fatigue caused by large resonance stresses remains one of the most common causes of turbine blade failures.
Nonlinear vibration can have an important effect on the high cycle fatigue of components. Harmonic Balance Method
is an efficient technique to model the nonlinear vibration of turbomachinery components. Efficient software have been
developped for the last two decades but are still limited to reduced size system [5, 4, ?].
We propose in this work to present the element to develop continuation method based on harmonic balance method for
large scale system. We will explore in the paper two types of common nonlinearities: localized (contact with friction)
and non-locolized (large deformation). The equation of motion and its transformation to nonlinear algeabric system will
be introduced. We proposed an original implementation [6] that allows to easily treat any type of problem: frequency
response, nonlinear modal analysis or limite cycle oscillation. We will then how any type of localized nonlinearities
can be treated using harmonic balance method and alternating frequency time procedure [3]. We will present how the
computation of nonlinear forces can be parallelised using both OPENMP and MPI programming language.
In a second part the paper focus on the non-localized nonlinearities and their implementation in the Finite Element frame-
work. A C++ code has been developped and solves the nonlinear HBM problem in parallel, using MPI. A 3rd party
software package is used to load and distribute a mesh. Standard finite element scheme is then used to assemble the sparse
system matrices (mass, stiffness, damping) in parallel using CSR format. Nonlinearities are added using the alternating
frequency time (AFT) procedure. Frequency domain dofs are organised in a way that keeps them on the same MPI rank
as their corresponding mesh nodes to minimise necessary communication. To solve the nonlinear HBM problem the
Newton-Raphson iterative algorithm is used. For the underlying linear problem, we used a 3rd party software package
based on parallel sparse implementation of the LU decomposition [1]. The code results have been verified against previ-
ous results presented in the scientific literature. The code has been tested on multi-million degree of freedom problems.
A decent speed-up was obtained for number of MPIs up to approx. 100 MPI ranks.
Several numerical results on academic problems (cantilever beam and clamped-clamped beam) will illustrate the proposed
method and gives hint for creating reduced order model. It will be shown that care has to be taken when creating reduced
order model for structure in large deformation.
The paper will finish with recommendation about future work needed to develop more scalable continuation methods for
nonlinear vibration analysis.
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Tracking basin boundaries with Clustered Simple Cell Mapping method

Gergely Gyebrószki† and Gábor Csernák†
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Summary. The Simple Cell Mapping (SCM) method [3] is a simple and effective algorithm to analyse the (discretized) state space of
dynamical systems. A state space region is divided into cells and an image cell (where the dynamics lead to) is determined for each
cell. SCM is able to find chaotic attractors and – depending on the cell resolution – repellers, and their basin of attraction. Chaotic
structures are usually represented by a periodic cell group with high period, while basins of attraction are composed of transient cell
sequences leading to periodic groups.
Previously, we have improved the SCM method with the ability to extend its underlying state space region and join the new state space
region to the previous SCM solution. This method is called Clustered Simple Cell Mapping (CSCM) [2]. We show that CSCM can be a
valuable tool for automatically exploring the state space or tracking certain features – for example the basin of attraction of an attractor
or the closure of a chaotic repeller, especially in the case, where the underlying system can exhibit crisis bifurcations. An example is
shown using the well-known Ikeda-map [4].

Clustered Simple Cell Mapping

Simple Cell Mapping (SCM) is a great tool to quickly analyse the state space of dynamical systems. An initial state space
region is discretized into cells, for each cell a single image cell is determined, usually by following a trajectory from
the center point of each cell for a given time step, or by applying the map corresponding to discrete systems. The SCM
method then classifies cells as either periodic cells (belonging to a periodic group) or transient cells (leading to one of the
periodic groups within the state space, or the region outside – the sink cell). Chaotic attractors or repellers are usually
represented by a periodic cell group with high periodicity.
There are several extensions for the SCM method, some of them exploits certain properties of a class of dynamical sys-
tems: eg. discontinuous systems [5], or Filippov systems [1]. In [2] we have introduced the Clustered Simple Cell
Mapping (CSCM) method, another extension aiming to adaptively extend the analysed state space region in a computa-
tionally effective manner. Clustered SCM is able to join an additional state space region to the so called cluster of SCMs,
and update the solution by re-using the existing cell classification in the initial SCM region.
The concept is illustrated in Fig. 1: the left region is the initial SCM solution containing a periodic group (denoted by
dark grey ■) and a set of transient cells leading to it (gray colour ■). The right state space region is added to the cluster
of SCMs: this allows the discovery of transient cells leading to a previously classified periodic group (green ■), a new
periodic group (at the boundary of the two regions) and non-trivial transients in the initial SCM’s region (denoted by
orange ■).
Clustered Simple Cell Mapping allows the continuation of SCM solutions towards state space structures (e.g. basins of
attraction) that get clipped by the initial choice of state space region.

previously classified transient cells
previously classified periodic cells
newly classified cells (trivial transients)
newly classified cells (non-trivial transients and periodic groups)

initial SCM solution new SCM solution

sink cell

Figure 1: The concept of the Clustered Simple Cell Mapping (CSCM) method.
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The Ikeda-map

The Ikeda-map [4] is originated from a model of light going around across a nonlinear optical resonator. Depending on
its parameters it can have fixed points, chaotic attractors or a repeller in its state space and can exhibit crisis bifurcations.

xn+1 = 1 + u (xn cos(tn)− yn sin(tn)) (1)

yn+1 = u (xn sin(tn) + yn cos(tn)),

where u is a parameter and:

tn = 0.4− 6

1 + x2n + y2n
. (2)

An application example

We show an example of state-space exploration by using the CSCM method in the case of the Ikeda-map defined by
Eq. (1). The starting region (denoted by 1 in Fig. 2) is a 6 × 6 square at (0, 0) in the (x, y) plane, where a chaotic
repeller resides. Note, that the repeller can only be found by SCM if the cell resolution is sufficiently coarse, to artificially
stabilize it. The adaptive state-space extension algorithm adds another 8 square-shaped state space region to the cluster, by
following the basin of attraction along the four main directions. This is shown on Fig. 2, where the successive state-space
regions are numbered. After the initial exploration procedure, the cluster is made convex by adding regions 10 to 12. As
the last state space region is included – where a fixed point resides – the SCM algorithm is able to classify its basin of
attraction as well (denoted by shades from green to blue based on step numbers needed to reach the fixed point).

Figure 2: A CSCM cluster consisting of 9 SCM solutions (left) and 12 SCM solutions (right) of the Ikeda-map with u = 0.96. The
state space region consists of squares with side lengths of 6.0. The first region’s center is at (0, 0). The whole cluster spans from
(x0, y0) = (−9,−3) to (x1, y1) = (15, 15).

Conclusions

Clustered Simple Cell Mapping is a method allowing the successive expansion of the state space region corresponding to
an SCM solution of a dynamical system. This allows quick and computationally effective exploration of the state space
in case of crisis bifurcations (where certain state space features explode), or tracking basins of attraction as shown in
Fig. 2. Since existing SCM solutions are re-used when the cluster is expanded, CSCM allows interactive or real-time
applications.
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Summary. Nuclear fusion reactor design crucially depends on numerical simulation. The plasma can usually be modeled using fluid

equations (for mass, momentum and energy). However, the reactor also contains neutral (non-charged) particles (which are important in

its operation), of which both the position and velocity distribution is important. This leads to a Boltzmann-type transport equation that

needs to be discretised with a Monte Carlo method. In high-collisional regimes, the Monte Carlo simulation describing the evolution

of neutral particles becomes prohibitively expensive, because each individual collision needs to be tracked. In this talk, we look into

several strategies to overcome this computational bottleneck.

Introduction

Numerical simulations of the plasma edge play a key role in the divertor design of nuclear fusion reactors [1]. The divertor

needs to handle large power loads and is essential for the power and particle exhaust in a reactor. Two types of particles are

modeled in plasma edge models: the plasma, consisting of charged particles (ions and electrons), and the neutral particles.

The plasma can usually be described with a Navier-Stokes-like fluid model, discretized in space with a finite volume (FV)

method. For the neutrals, however, a more microscopic, kinetic description is necessary, in which the particle distribution

is modeled in a position-velocity phase space. Due to the additional dimensions in velocity space, FV simulation of the

kinetic equations is computationally prohibitive. Therefore, one turns to Monte Carlo (MC) simulation.

Plasma and neutral particles interact through collisions, which can be charge exchange (an ion and neutral particle collide

and exchange charge) or ionization (a neutral particle becomes a plasma particle). Due to these interactions, the plasma

and neutral models need to be coupled, leading, for instance, to the B2-EIRENE code [2]. During charge-exchange

collisions, momentum and energy are transferred between plasma and neutrals. During ionization, also mass is exchanged.

Additionally, neutrals arise from the plasma due to surface and volumetric recombination of ions and electrons. Because

of the different nature of the two types of discretizations (MC and FV), the two codes cannot be solved simultaneously,

and an iterative procedure is needed. One thus simulates the neutral particles against a fixed plasma “background” and

estimates the source terms (mass, momentum and energy) for the plasma equations. One then solves the plasma equations

with these estimated sources. This procedure is repeated until no more corrections are required.

Although B2-EIRENE is used worldwide for the analysis of experimental tokamaks and for the design of ITER, compu-

tation time is a serious bottleneck. One reason is the number of collisions neutral particles undergo in a realistic setting.

Large reactors suitable for electricity generation typically operate in a so-called detached regime. In this regime, one aims

at an increased interaction of the neutrals with the ions, especially by means of charge-exchange collisions. The goal is

to create a kind of neutral “cushion” that prevents the ions to flow immediately to the divertor targets. While this regime

is advantageous to avoid a direct interaction between the plasma and the divertor (and thus lengthens the lifetime of the

reactor), this has a detrimental effect on the computational cost of the MC simulation, since each individual collision

needs to be tracked.

In this presentation, we overview a number of approaches that can alleviate the computational burden associated with the

high-collisional regime.

Kinetic-diffusion Monte Carlo methods

One option is to avoid simulating each invididual collision. In the limit of infinite collision rate, the law of large numbers

dictates the approach of an advection-diffusion like particle behaviour, in which the accumulated effect of an infinite

amount of collisions is aggregated in a Brownian motion (diffusion). To maintain accuracy and remove exploding simula-

tion costs in high-collisional regimes, one can define hybridized particles that exhibit both kinetic behaviour and diffusive

behaviour depending on the local collisionality [3]. Features of the method are maintaining an asymptotically correct

distribution and a correct mean, variance, and correlation for all values of the collisionality.

Multilevel Monte Carlo methods

An alternative approach is to reduce the number of Monte Carlo particles that needs to be simulated via an appropriate

variance reduction technique. One very appealing option is the multilevel Monte Carlo method[5]. Asymptotic-preserving

schemes as defined above result in an additional time discretization error, possibly resulting in an unacceptably large bias

for larger time steps. To remove this bias, we can define a multilevel Monte Carlo scheme that reduces this bias by

combining estimates using a hierarchy of different time step sizes. The multilevel Monte Carlo method relies heavily on

the construction of correlated trajectories on two subsequent levels. We demonstrate how to correlate trajectories using

different time steps. We also present a strategy for selecting the levels in the multilevel scheme. This approach signifi-
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cantly reduces the computation required to perform accurate simulations of the considered kinetic equations, compared to

classical Monte Carlo approaches.

Hybrid finite-volume Monte Carlo methods

Finally, one can also reduce the variance of the simulation by using an approximate fluid model for the neutral particles,

discretized with a finite volume methods. This deterministic simulation can be used as a control variate, allowing the

Monte Carlo simulation to focus on solely the deviation of the kinetic model with respect to the approximate fluid model.
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Summary. The hybrid position feedback controller, proposed previously by the authors, is a control technique for bistable systems and 
it is based on the well-known positive-position-feedback controller. This controller is an unstable-then-stable position feedback 
controller, which is a second-order single-degree-of-freedom system in nature. The hybrid controller takes advantage of the resonant 
mode of a bistable system about one equilibrium position, destabilizes the system, and dynamically induces snap-through between the 
two equilibria. In this paper, a new multi degree of freedom metamaterial concept that utilizes the hybrid position feedback controller 
is introduced. An arbitrary number of bistable “segments” or “material elements” are attached to each other in a serial (or parallel) 
manner to generate a “distributed” bistable structure – also referred to as a metamaterial.  Due to the simplicity of the hybrid controller, 
the physical implementation of proposed approach can be realized using simple circuit elements distributed in the material domain. 
This new metamaterial inherits the multiple bistable positions that its building blocks have; hence, the metamaterial becomes multi-
stable. It can hold multiple positions without consuming power and has the capability of achieving many shapes. The proposed 
metamaterial concept can be used in various applications: locomotion in bioinspired systems, undulatory motion, morphing 
aerodynamic surfaces, wave guiding, and vibration attenuation. The concept can also be used in energy harvesting to enable maximum 
power extraction for a given vibratory input. 

Introduction 

Bistable structures are useful in many applications such as morphing aerodynamic surfaces, vibration energy harvesters, 
robotic actuators and mechanisms, and for locomotion of bioinspired systems where energy may be severely limited. A 
bistable system has two stable configurations and one unstable equilibrium. 
The dynamics of bistable structures have been studied by various researchers [1-9]. The control of bistable structures 
using piezoelectric actuators has received significant attention in the last two decades. Shultz et al. [10] demonstrated one 
directional snap-through of a bistable plate using a piezoelectric actuator with static excitation. Arrieta et al. [11-13] 
studied the dynamic properties of bistable structures and achieved only one-directional snap-through. Later, Arrieta et al.  
[14] and Bilgen et al. [15] introduced resonant control with a surface bonded piezoelectric device. Zarepoor et al. [16] 
demonstrated the energy characteristic of a Duffing-Holmes (D-H) type bistable structure under dynamic forcing. Simsek 
et al. [17, 18] demonstrated an automated method for bidirectional state transfer on a wing-like cross-ply bistable plate 
using the hybrid control strategy and a piezocomposite actuator. Simsek et al. [19] demonstrated the prevention of chaotic 
behavior for Duffing-Holmes oscillator by applying the Hybrid Position Feedback (HPF) controller, which consists of 
the Negative Position Feedback (NPF) and Positive Position Feedback (PPF) controllers. Simsek et al. [20] analyzed the 
stability and response types of Duffing-Holmes oscillator with the HPF controller. Simsek et al. [21] demonstrated a 
piezoelectric-material induced monotonic snap-through without possibility of triggering cross-well oscillations or chaotic 
response. Crosswell oscillations are undesirable, as only one state is desirable (and nominal) for various applications. To 
this end, a hybrid position feedback (HPF) controller shows superior performance in terms of control, stability, and 
performance both theoretically and experimentally. In that work, the application of the HPF controller to a bistable 
unsymmetric cross-ply composite plate with surface-bonded piezoelectric actuators was presented. 
Metamaterials or metastructures have engineered functionality that conventional materials or structures do not exhibit 
naturally. They have a broad range of applications from electromagnetics, acoustics, energy harvesting to vibration 
control. The assembly of HPF controlled bistable elements can be used to create a metamaterial or a metastructure. A 
system consisting of individual bistable units can form a desired configuration. Each individual element can be either at 
one state or the other which eventually forms a multi-stable metastructure. The proposed design can be implemented 
either using mechanical components such as mass-, damper- and spring-like elements, or it can be realized using circuit 
elements such as inductor-, resistor-, and capacitor-like elements. 
The paper is organized as follows. First, the HPF control scheme is discussed. Next, the metamaterial concept is 
introduced. Then, the preliminary numerical simulation results are presented. 

Hybrid Position Feedback Control  

The hybrid position feedback controller was previously proposed by the authors to enable stable and monotonic cross-
well transition of bistable (or multi-stable) structures [17, 18]. The controller is designed based on the dynamics of the 
stable equilibrium positions of a bistable structure around which it exhibits linear behavior for small perturbations. The 
control method first achieves system destabilization to make the structure move away from its current stable equilibrium 
position, and subsequently stabilize the system to the other (target) stable equilibrium position. The proposed hybrid 
control scheme employs the well-known PPF controller, and its modified version, the NPF controller. The PPF controller 
is a second order damped system (filter) that creates approximately 180° phase difference between input and output of 
the system in a certain gain range [22], which enables the system to dissipate energy through the controller. The NPF 
controller is a modified version of a PPF controller, here used to create a destabilizer by exploiting the phase 
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characteristics. As a destabilizer, the NPF controller, is expected to provide kinetic energy to the system until it reaches 
the desired threshold position (i.e. the unstable equilibrium.) Ref. [23] proposed and compared different switching 
methods for the HPF controller, and presented an analysis of the control effort and settling time.   
The control diagram of the HPF controller is represented in Figure 1. In this diagram, the parameters of the NPF and PPF 
controllers are the same given by the block G. The reference signal ݎሺݏሻ is considered as zero since system is in stabilizer 
and destabilizer mode. The authors have also investigated the system where the NPF and PPF controller parameters are 
individually selected and tuned. 

 
Figure 1: The block diagram for the hybrid position feedback controller. 

First, the so-called NPF mode is used to start the cross-well transfer by making the PPF controller intentionally unstable. 
When the feedback gain is -1, the system is destabilized, and the apparent dynamic stiffness of the system becomes 
negative. The controller induces an oscillatory response with increasing amplitude. When the system position reaches a 
threshold value at the unstable equilibrium, the feedback gain is changed to +1. This leads to a stable controlled (i.e. 
decaying) system response with decreasing amplitude. Figure 3 illustrates the cross-well motion of an example bistable 
system with the hybrid controller. In the figure, the stable states of the bistable structure are labeled as S1 and S2. The 
current position and the unstable equilibrium position are represented by w and 𝑤𝑢 respectively. 

 
Figure 2: Illustration of state transfer a) from state 1 to state 2, and b) from state 2 to state 1. 

For the state transfer from state 1 to 2, the structure is destabilized around equilibrium position S1 by using the NPF mode 
of the HPF controller. Due to the destabilization, the structure starts an increasing amplitude oscillation around the first 
equilibrium position. Once the amplitude reaches the unstable equilibrium, the structure snaps towards the second stable 
equilibrium position S2. The crossover is detected by an internal logic and the controller mode is switched to the PPF 
mode to attenuate the response around the target state of 2. 
Figure 3 depicts the mechanical representation of the D-H system and HPF controller. In the system 𝑘ଵ , ܿ 𝑎݊݀ 𝑘𝑛𝑙ଵ are 
linear stiffness, damping constant and cubic stiffness of system, respectively. 𝑘𝑐 and  ܿ𝑐 are the stiffness and damping 
parameter of HPF controller. 
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Figure 3: Mechanical model of the bistable Duffing-Holmes system with the hybrid position feedback controller. 

The coupled system equations become: 

 𝑤ሷ + ʹ𝜁𝜔𝑛 𝑤ሶ − 𝜔𝑛ଶ𝑤 + 𝑘𝑛�݉� 𝑤ଷ =  𝑔𝑛 𝜔𝑛ଶ 𝑢 (1) 

 𝑢ሷ + ʹ𝜁𝑓𝜔𝑓  𝑢ሶ + 𝜔𝑓ଶ𝑢 = 𝑔𝑓 𝜔𝑓ଶ 𝑤 (2) 

where 𝜔𝑛 𝑎݊݀ 𝜁  represent natural frequency and damping ratio of the underlying linear system respectively, and 𝑔𝑛 is 
the structure input gain. Here, it is noted that the actual value of input gain 𝑔𝑛 𝜔𝑛ଶ is not constant in a physical 
implementation as the voltage/strain level changes [24, 25]. In this paper an effective 𝑔𝑛 value previously determined 
from experiments is utilized [26]. The controller parameters 𝜁𝑓 and 𝜔𝑓 correspond to damping ratio and natural frequency 
of the controller, respectively. The control gain is denoted as 𝑔𝑓 and it is simply a proportional amplification of the 
feedback signal. 
The complete system response depends on controller frequency, damping and gain, and depends on the system damping 
constant and other system parameters. The coupled system can yield three response types, namely, “intra-well,” “single 
cross-well,” and “multiple cross-well” types of responses. The “intra-well” response corresponds a response that will not 
reach to the threshold limit, while “single cross-well” response crosses the threshold limit once, and “multiple cross-well” 
response crosses twice or more. 

The Metamaterial Concept and Mathematical Representations 

In this paper, two different mechanical representations are considered. They are series and parallel configurations. The 
series configuration represents a cantilevered beam, and the parallel configuration represents an elastic foundation. Both 
of these configurations have different utilities in actual implementation. 

Series Configuration 

The so-called series configuration is presented in Figure 4. In this approach, the metamaterial concept is realized by 
connecting one bistable unit to next one with linear and cubic stiffnesses, and a viscous damper. A dedicated HPF 
controller is attached to each DOF. The series configuration represents a beam-like structure; however, with a multi-stable 
characteristic as opposed a “natural” monostable characteristic.  

 
Figure 4: Mechanical model of the MDOF cascade bistable Duffing-Holmes system with the hybrid controller in series configuration. 

The nonlinear coupling between the masses produces complex dynamics and a capability for the system to adopt various 
static or dynamic shapes. The proposed metamaterial concept is realized by adding multiple bistable oscillators in series. 
Figure 5 shows a representative model of cantilever beam with bistable elements connected in series. 
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Figure 5: An illustration of a beam like metastructure with multiple bistable elements connected in series. 

Parallel Configuration 

Figure 5 shows an alternative, so-called parallel, configuration in which each DOFs is connected to the ground with a 
linear and cubic stiffness, and a viscous damper. In addition, a linear stiffness is used to connect the DOFs to each other. 
A dedicated HPF controller is attached to each DOF. 

 
Figure 6: Mechanical model of the MDOF cascade bistable Duffing-Holmes system with the hybrid controller in parallel 

configuration. 

This configuration reduces the coupling effect between the DOFs which minimizes the effort required to snap from one 
stable equilibrium while maintaining the connection between the DOFs. The proposed metamaterial concept is realized 
by adding multiple bistable oscillators in parallel. Figure 7 shows a representative model of a plate with bistable elastic 
foundation. 

 
Figure 7: An illustration of a plate like metastructure with multiple bistable elements connected in parallel. 
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Simulation Results and Feasibility Analysis  

Both the series and parallel configurations are examined through numerical integration. The dynamic response of the 
system is obtained using Dormand-Prince numerical integration method.  

Series Configuration 

The dynamic response of the series configuration is studied. Figure 8 presents the mechanical model of the 2DOF cascade 
bistable Duffing-Holmes system with the hybrid controller. 

 
Figure 8: Mechanical model of the 2DOF cascade bistable Duffing-Holmes system with the hybrid controller in series configuration. 

The governing equation for the series configuration is written as follows assuming unit mass for each DOF, 

 𝑤ሷ ଵ + ʹ𝜁𝑠ଵ𝜔𝑠ଵ 𝑤ሶ ଵ −𝜔𝑠ଵଶ 𝑤ଵ + 𝑘𝑛𝑙ଵ𝑤ଵଷ − 𝑘𝑛𝑙ଶሺ𝑤ଶ − 𝑤ଵሻଷ − kଶwଶ − cଶ𝑤ሶ ଶ = 𝜔𝑠ଵଶ  𝑢𝑐ଵ (3) 

 𝑢ሷ 𝑐ଵ + ʹ𝜁𝑐ଵ𝜔𝑐ଵ 𝑢ሶ 𝑐ଵ +𝜔𝑐ଵଶ 𝑢𝑐ଵ = 𝑔𝑓ଵ𝜔𝑐ଵଶ  𝑤ଵ (4) 

 𝑤ሷ ଶ + ʹ𝜁𝑠ଶ𝜔𝑠ଶ 𝑤ሶ ଶ − 𝜔𝑠ଶଶ 𝑤ଶ + 𝑘𝑛𝑙ଶሺ𝑤ଶ − 𝑤ଵሻଷ − kଶwଵ − cଶ𝑤ሶ ଵ = 𝜔𝑠ଶଶ  𝑢𝑐ଶ (5) 

 𝑢ሷ 𝑐ଶ + ʹ𝜁𝑐ଶ𝜔𝑐ଶ 𝑢ሶ 𝑐ଶ + 𝜔𝑐ଶଶ 𝑢𝑐ଶ = 𝑔𝑓ଶ𝜔𝑐ଶଶ  𝑤ଶ (6) 

where 𝜔𝑠ଵ, 𝜔𝑐ଵ, 𝜔𝑠ଶ, 𝜔𝑐ଶ  𝑎݊݀ 𝜁𝑠ଵ, 𝜁𝑐ଵ, 𝜁𝑠ଶ , 𝜁𝑐ଶ  represent frequencies and damping ratios of the system and controllers, 𝑔𝑓ଵ and 𝑔𝑓ଶ is the controller gains for each DOF. 𝑘𝑛𝑙ଵand 𝑘nlଶ are cubic stiffness terms for the first and second DOFs, 
respectively. 𝑘ଶ and ܿ ଶ are stiffness and damping terms representing linear coupling between the masses.   
The dynamic response of the series configuration is presented in Figure 9. The HPF authority for two different scenarios 
is tested for weakly coupled 2DOF system. In the first scenario, HPF switches the first and second DOFs forward. In the 
second scenario, the HPF moves both DOFs backward from one state to another.  

 
Figure 9: Example time response for the series 2DOF cascade bistable Duffing-Holmes system with the hybrid controller: a) DOF-1 

st1->st2 and DOF-2 st1->st2, b) DOF-1 st2->st1 and DOF-2 st2->st1. 

A parametric analysis is carried out to determine the controller parameters that satisfy the desired switch properties for 
different cases. The proposed schematic for series configuration can be realized when two DOFs achieve forward, 
backward, converse state transfer.  In the analysis, two controller parameters 𝜁_npf and 𝑔_npf are chosen since they have 
the major effect on switching behavior. In the analyses, the 𝜁_npf and 𝑔_npf are equal for the two DOFs – they are swept 
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through a range to determine the optimum values that satisfy the desired switching behaviors. Figure 10 presents a 
parametric analysis for the series configuration. 

 
Figure 10: Parametric analysis for the series 2DOF cascade bistable Duffing-Holmes system with the hybrid controller a) Forward 

(DOF-1 and DOF-2: st1->st2) and Backward (DOF-1 and DOF-2: st2->st1) state transfer case, b) Converse State transfer case (DOF-
1: st1->st2 and DOF-2: st2->st1, vice versa), c) all cases together. 

Figure 10a presents a forward and backward state transfer behavior with respect to the controller parameters. The triangle 
pointing left or right shows the configuration of controller. The green and red colors indicate that initial configuration is 
desirable (i.e., intended state transfer) and undesirable (i.e., no state transfer), respectively. Figure 10b demonstrates the 
analysis carried out for converse state transfer where DOF-1 is set to achieve state transfer from state 1 to state 2 while 
DOF-2 is set to achieve state transfer from state 2 to state 1. Also, vice-versa case simulation is presented in this figure. 
Figure 10c demonstrates the behavior of controller for all cases mentioned above. The green color indicates the controller 
parameters that achieve successful state transfer for all scenarios. Figure 11 shows the time responses for desired 
configuration. 
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Figure 11: Time response for the parameters 𝜁𝑓𝑛𝑝𝑓 = Ͳ.5 𝑎݊݀ 𝑔𝑓𝑛𝑓 = Ͳ.ͳ that achieves all scenarios of series configuration. 

Parallel Configuration 

The dynamic response of the parallel configuration is studied. Figure 12 presents the mechanical model of the 2DOF 
cascade bistable Duffing-Holmes system with the hybrid controller. 

 
Figure 12: Mechanical model of the 2DOF cascade bistable Duffing-Holmes system with the hybrid controller in parallel 

configuration. 

The governing equation for parallel configuration is written as follows assuming unit mass for each DOF, 

 𝑤ሷ ଵ + ʹ𝜁𝑠ଵ𝜔𝑠ଵ 𝑤ሶ ଵ − 𝜔𝑠ଵଶ 𝑤ଵ + 𝑘𝑛𝑙ଵ𝑤ଵଷ − 𝑘ሺ𝑤ଶ − 𝑤ଵሻ = 𝜔𝑠ଵଶ  𝑢𝑐ଵ (7) 

 𝑢ሷ 𝑐ଵ + ʹ𝜁𝑐ଵ𝜔𝑐ଵ 𝑢ሶ 𝑐ଵ +𝜔𝑐ଵଶ 𝑢𝑐ଵ = 𝑔𝑓ଵ𝜔𝑐ଵଶ  𝑤ଵ (8) 

 𝑤ሷ ଶ + ʹ𝜁𝑠ଶ𝜔𝑠ଶ 𝑤ሶ ଶ − 𝜔𝑠ଶଶ 𝑤ଶ + 𝑘𝑛𝑙ଶ𝑤ଶଷ + 𝑘ሺ𝑤ଶ − 𝑤ଵሻ = 𝜔𝑠ଶଶ  𝑢𝑐ଶ (9) 

 𝑢ሷ 𝑐ଶ + ʹ𝜁𝑐ଶ𝜔𝑐ଶ 𝑢ሶ 𝑐ଶ + 𝜔𝑐ଶଶ 𝑢𝑐ଶ = 𝑔𝑓ଶ𝜔𝑐ଶଶ  𝑤ଶ (10) 

where 𝜔𝑠ଵ, 𝜔𝑐ଵ, 𝜔𝑠ଶ, 𝜔𝑐ଶ  𝑎݊݀ 𝜁𝑠ଵ, 𝜁𝑐ଵ, 𝜁𝑠ଶ , 𝜁𝑐ଶ  represent frequencies and damping ratios of the system and controllers, 𝑔𝑓ଵ and 𝑔𝑓ଶ is the controller gains for each DOF. 𝑘𝑛𝑙ଵand 𝑘nlଶ are cubic stiffness terms for the first and second DOFs, 
respectively. 
The dynamic response of the parallel configuration is presented in Figure 13. The control authority for four different 
scenarios is tested for a weakly coupled 2DOF system. In the first and second scenario, the HPF keeps the first DOF at 
the  first state while switching the second DOF forward and backward from one state to another. In the third and fourth 
scenario, the first DOF is attracted to the second state while the second DOF switches forward and backward between the 
states. 
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Figure 13: Example time response for the parallel 2DOF cascade bistable Duffing-Holmes system with the hybrid controller: a) 

DOF-1@st1 and DOF-2 st1->st2, b) DOF-1@st1 and DOF-2 st2->st1, c) DOF-1@st2 and DOF-2 st1->st2 and d) DOF-1@st2 and 
DOF-2 st2->st1. 

A parametric analysis is carried out to determine the controller parameters that satisfy the desired switch properties for 
different cases. The proposed schematic for parallel configuration can be realized when two DOFs achieve forward, 
backward, converse state transfer.  In the analysis, two controller parameters 𝜁_npf and 𝑔_npf are chosen since they have 
the major effect on switching behavior. In the analyses, the 𝜁_npf and 𝑔_npf are equal for both DOFs – they are swept 
through a range to determine the optimum values that satisfy the desired switching behaviors. Figure 14 presents a 
parametric analysis for the parallel configuration. 

 
Figure 14: Parametric analysis for the series 2DOF cascade bistable Duffing-Holmes system with the hybrid controller a) Forward 

(DOF-1 and DOF-2: st1->st2) and Backward (DOF-1 and DOF-2: st2->st1) state transfer case, b) Converse State transfer case (DOF-
1: st1->st2 and DOF-2: st2->st1, vice versa), c) all cases together. 
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Figure 14a presents a forward and backward state transfer behavior with respect controller parameters. The triangle 
pointing left or  right shows the configuration of controller. The green and red colors indicate that initial configuration 
successful and unsuccessful, respectively, as described previously. Figure 14b demonstrates the analysis carried out for 
converse state transfer where DOF-1 is set to achieve state transfer from state 1 to state 2 while DOF-2 is set to achieve 
state transfer from state 2 to state 1. Also, vice-versa case simulation is presented in this figure. Figure 14c demonstrates 
the behavior of controller for all cases mentioned above. The green color indicates the controller parameters that achieve 
convergence to the desired state for all scenarios. The other colors in the figure are undesirable with the number of 
unsatisfied case indicated in the legend. Figure 15 shows the time responses for desired configuration. 

 
Figure 15: Time response for the parameters 𝜁𝑓𝑛𝑝𝑓 = Ͳ.5 𝑎݊݀ 𝑔𝑓𝑛𝑓 = Ͳ.͵ that achieves all scenarios of parallel configuration. 

Conclusions 

A multi degree of freedom metamaterial concept that utilizes the hybrid position feedback controller is introduced. An 
arbitrary number of bistable “segments” or “material elements” are attached to each other in a serial or parallel manner 
to generate a “distributed” bistable structure. The initial results, derived for 2DOF systems, show the merit of the proposed 
concept which can be applied to many applications. Due to the simplicity of the hybrid controller, the physical 
implementation of the proposed approach can be realized using simple circuit elements distributed in the material domain.  
The proposed metamaterial concept can be used in various applications: locomotion in bioinspired systems, undulatory 
motion, morphing aerodynamic surfaces, wave guiding, and vibration attenuation. The concept can also be used in energy 
harvesting to enable maximum power extraction for a given vibratory input.  
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Summary. Relay synchronization is a dynamical phenomenon occurring in complex networks when remote parts of the network
synchronize due to their interaction via a relay. This phenomenon can be observed in lasers, electronic circuits, biological systems. We
investigate relay synchronization scenarios in a three-layer network and elaborate the effect of inhomogeneous network topology of the
individual layers.
Complex networks are currently of great interest, since they allow to model various types of real-world systems, such as
social networks, economical, biological, financial, transportation systems, as well as neural activity in the brain [1]. In
many cases the network can be divided into several similar parts, called layers, where interaction inside the layers and
between the layers can be qualitatively different [2]. Multiplex networks are a special class of such multilayer structures,
where each layer consists of the same number of nodes and only one-to-one interaction between the corresponding nodes
of neighbouring layers are allowed [3].
Relay (or remote) synchronization between layers which are not directly connected is an intriguing phenomenon, which
has some similarities with relay synchronization of chaotic lasers [4]. In neuroscience various scenarios have been uncov-
ered where specific brain areas act as a functional relay between other brain regions, having a strong influence on signal
propagation, brain functionality, and dysfunctions [5, 6], as well as visual processing [7].
We examine relay synchronization in a three-layer neuronal network, where the dynamics of individual nodes is governed
by the FitzHugh-Nagumo system, widely used to describe spiking dynamics of neurons. In the simplest configuration,
the individual layers have a nonlocal ring topology, where each node interacts with its neighbours within some fixed
coupling range. In such a network, we observe relay synchronization when spatio-temporal patterns of the two outer
layers synchronize, but the middle layer which transfers the signal, performs different dynamics. Later on, we replace
regular links with random shortcuts, which results in the formation of a small-world topology inside the layers. With the
irregular topology in the layers we uncover dynamical scenarios of relay synchronization. In the focus of our study are
chimera states- patterns of coexisting coherent and incoherent domains [8, 9, 10, 11], which can be observed in isolated
layers of the network [12].
Our model is described by the following system of differential equations:

ẋmi = F(xmi (t)) +
σm
Lmi

N∑

j=1

Gm
ijH(xmj (t)− xmi (t)) + σml

3∑

l=1

H(xli(t)− xmi (t)), (1)

where i = 1, ..., N numbers the nodes inside each layer, m = 1, 2, 3 labels the layer, x = (x, y)T is a state variable, and

the local dynamics is described by the FitzHugh-Nagumo system F(x, y) =

(
1

ε
(x− x3

3
− y), x+ a

)T
. The adjacency

matrices Gm define the topology of each layer, and Lmi is the number of links belonging to the ith node of the mth layer.
σm is the strength of the couplings inside the layers, and σml the strength of the couplings between the layers. The matrix
H defines the interaction scheme between the two-dimensional individual systems. Usually, we allow not only direct, but
also cross coupling between the variables x and y. Fig. 1 shows schematically the structure of the three-layer network,
where each layer has a nonlocal coupling topology, the outer layers are shown in grey, and the middle relay layer is shown
in red. As a measure for synchronization between the layers we employ the global synchronization error:

Eij = lim
t→∞

1

NT

T∫

0

N∑

k=1

||xjk(t)− xik(t)||dt, (2)

which takes values close to 0 when the patterns in the layers m = i, j are synchronized. When coherent and incoherent
domains coexist spatially in each layer, we observe nontrivial synchronization scenarios, where the coherent domains of

Figure 1: Schematic structure of a three-layer network
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Figure 2: Scenario of synchronization transitions depending on the inter-layer coupling strength σij . (a) Global synchronization error;
(b) local synchronization error; (c) mean phase velocity profiles and inter-layer synchronization errors (left column) and snapshots
(right column) for three values of σij marked by vertical lines in (a), (b).

the patterns synchronize while the incoherent domains perform different dynamics. To distinguish this special kind of
partial synchronization, we introduce the local synchronization error

Eijk = lim
t→∞

1

T

T∫

0

||xjk(t)− xik(t)||dt. (3)

When the topology of the layers in the network is regular, we observe complete relay synchronization of chimera patterns
in the outer layers, as well as partial relay synchronization, where only the coherent domains of patterns synchronize [13].
If we change the topology of the outer layers by replacing the regular links with random shortcuts, we find the scenarios
shown in Fig. 2. Here the global and local inter-layer synchronization errors for increasing coupling strength between
the layers, and examples of snapshots of chimera states and their mean phase velocities are depicted. We analyze the role
of the system parameters and uncover parameter regions where full and partial relay synchronization occurs. Our results
may be useful for understanding remote synchronization in brain networks.
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Summary. Mechanical ventilators are medical devices used to assist patients to breathe. The aim of this paper is to develop a control
approach that compensates the pressure drop over the hose that connects the ventilator to the patient. In [1], a similar strategy is
considered assuming a linear system model, which is valid in a small operating range. To achieve the desired performance in the entire
operating range, the quadratic nature of the resistance of an actual hose is considered in this paper. Using a quadratic hose model and
a recursive least-squares estimator, the control law proposed in [1] is significantly improved. Through an experimental case study, a
significant gain in pressure tracking performance is shown.

Background

Mechanical ventilation is commonly used in Intensive Care Units (ICUs) to save lives of patients who are unable to
breathe by themselves. To assist these patients a mechanical ventilator is used. A schematic overview of a mechanical
ventilator, with a single-hose setup, and a patient is depicted in Figure 1.
In this paper, the ventilation setup as depicted in Figure 1 and Pressure Controlled Ventilation (PCV) of sedated patients is
considered. In PCV, the goal is to ensure that the pressure near the patients airway, i.e., paw, follows a reference as shown
in Figure 2. This reference has two different pressure levels to ensure that air flows in and out of the lungs. Therewith,
inspiration and expiration of the patient are supported. In practice, damage to the lung tissue should be prevented, e.g., by
overshoot in pressure. Therefore, the pressure tracking performance should be accurate.

Previous work and open challenges

The control goal is to ensure that the airway pressure paw, see Figure 1, tracks the target pressure ptarget. This is achieved
by controlling the blower outlet pressure pout. The airway pressure near the patient’s mouth is defined as paw = pout−∆p,
with ∆p the pressure drop over the hose. In [1], a novel adaptive control law is proposed that compensates for this pressure
drop. A block scheme of this control law is shown in Figure 3. During ventilation, a linear hose resistance, i.e., R̂lin,
is estimated using a recursive least-squares estimator. This estimate in combination with the measured flow is used to
compute an estimate of the pressure drop over the hose, i.e., ∆p̂ = R̂linQout. Then, ∆p̂ is used to increase the blower
outlet pressure, i.e., pout = ptarget +∆p̂. Theoretically, this results in perfect tracking, independent of the patient, leak,
or hose parameters, for time-varying target pressures.
Although the results in [1] are promising for use-cases with relatively small flow variations, in an experimental case study
it is observed that for large flows performance deteriorates. This is caused by the typically non-linear hose characteristics,
see Figure 4. This figure shows that the linear model 1 is an accurate representation of the hose resistance for the low flow
regime. However, for large flow variations the linear models show a significant deviation from the measured values. It is
clearly shown that a quadratic hose model is a better representation of the measured hose characteristics. This quadratic
hose model is defined as follows:

∆p = RlinQout +RquadQout|Qout|, (1)

where Rlin and Rquad are unknown. Combining this non-linear hose resistance model with a linear model for the patient
lung dynamics results in a non-linear dynamical model of the patient-hose system. The exact model is omitted for brevity.
In the following sections, it is shown how the quadratic hose parameters are estimated online and, subsequently included
in the control law to accurately compensate for the pressured drop over the hose and therewith improve performance.

pout paw plung

Qleak

QpatQout

paw pilot line

Rhose
Rlung

Rleak
Clung

Hose-filter system Patient

paw sensor

Blower

Figure 1: Schematic representation of the blower-hose-
patient system of the considered ventilation system.
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Figure 2: Airway pressure (paw) during one breathing cy-
cle of pressure controlled ventilation.
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Proposed control strategy

In this paper, the following quadratic-hose model is included in the control law depicted in Figure 3:

∆p̂ = R̂linQout + R̂quadQout|Qout|. (2)

To complete the adaptive control law an estimator is used to obtain estimates R̂lin and R̂quad of the two hose parameters.
These parameters are obtained using a Recursive Least Squares (RLS) estimator with exponential forgetting factor, see
[2]. The considered estimator dynamics are given by:

˙̂
θ(t) = P (t)

∆p(t)− θ̂(t)φ0(t)
m2

φ0(t), and Ṗ (t) = βP (t)− P (t)φ0(t)φ
T
0 (t)

m2
P (t), (3)

where θ̂(t) =
[
R̂lin(t)

R̂quad(t)

]
, ∆p(t) = pout(t)− paw(t), P (t) =

[
P11(t) P12(t)
P21(t) P22(t)

]
, φ0(t) =

[
Qout(t)

Qout(t)|Qout(t)|

]
, m is the

scalar normalization parameter, and β is the scalar exponential forgetting factor.

Experimental results

The overall approach is implemented on an experimental ventilation setup, schematically depicted in Figure 1, and the
obtained results are shown in Figures 5a and 5b. In Figure 5a, it is clearly seen that the tracking performance upon
convergence is improved significantly. Furthermore, Figure 5b shows that the oscillations in the estimates are reduced.
Concluding, performance is significantly increased by compensating for the non-linear hose characteristics.

Conclusions

This paper clearly shows that extending the adaptive control strategy in [1] with a non-linear (quadratic) hose model can
significantly improve pressure tracking performance. This means that pressure support of mechanically ventilated patients
can be improved by compensating for the non-linear hose characteristics.

(a) Resulting airway pressure of the controller in [1]
and the controller of this paper.

(b) Resistance estimates of (1), using the controller in
[1] and the controller of this paper.

Figure 5: Experimental results showing the tracking performance and estimated parameters of the controller proposed in
[1] ( ) and the controller proposed in this paper ( ). Clearly showing improved tracking of the reference pressure
( ) by including the non-linear hose characteristics.
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Summary. This work presents a novel approach towards synchronization analysis of nonlinear systems, diffusively coupled via
a networked communication channel. The system under consideration is a two-agent nonlinear system, under the constraint that
information is transmitted between the two systems using an aperiodic communication strategy. The system setting is remodelled as
the feedback-interconnection of a continuous-time system, and an operator that captures the perturbations introduced by communication
constraints. By studying the properties of the remodelled system, i.e., the feedback-interconnection, in the framework of Dissipativity
Theory, we provide a novel stability criterion that guarantees exponential synchronization.

Introduction

In many natural and practical circumstances, the phenomenon of synchronization has caught the attention of researchers
and scientists from various fields. Typical examples include flashing fireflies, firing neurons, etc. In control theory,
synchronization is a topic of interest in areas such as master-slave synchronization of nonlinear systems [Nijmeijer and
Mareels, 1997]. In practical applications such as cooperative control of multi-agent systems [Olfati-Saber et al., 2007],
synchronization can be analyzed with a control theoretic approach for networks of nonlinear systems [Pogromsky et al.,
2002]. In such contexts, synchronization problems become more complex due to uncertainties introduced via the net-
worked communication channel. For example, delays introduced in the network increase the complexity of synchroniza-
tion problems [Steur and Nijmeijer, 2011]. In addition to delays, individual systems could be connected via sampled-data
coupling.
In recent years, master-slave synchronization problems of linear sampled-data systems have been studied, and different
approaches have been proposed to study the relation between sampling period, coupling strength, and synchronization
[Hua et al., 2015]. In existing results, it is typically considered that individual systems have the same sampling frequency.
However, in practical scenarios, individual systems usually transmit information at different frequencies over a network,
depending upon the communication channel, data traffic, etc. In this work, we consider a bidirectionally coupled, sampled-
data, two-agent nonlinear system, wherein individual systems transmit information over a networked communication
channel, at possibly different, aperiodic frequencies.

Problem Statement

We consider a two-agent interconnected system as shown in Figure 1a, wherein the dynamics of individual sub-system
Σi, i = 1, 2, is of relative degree one, and is given by

ẋi(t) = f(xi(t)) +Bui(t),
yi(t) = Cxi(t), i = 1, 2,

(1)

where xi ∈ Rn, ui, yi ∈ Rm are the state, input, and output, respectively. The function f : Rn 7→ Rn is a sufficiently
smooth vector field, and B and C are matrices with appropriate dimensions, with CB =: b ∈ Rm×m, b being positive
definite and without loss of generality, diagonal. The ith output is transmitted to the jth sub-system only at instants given
by the sequence sik+1 = sik + hik, h

i
k ∈ [hi, h̄i], k ∈ N, i = 1, 2. Without loss of generality, we consider si0 = 0, i = 1, 2.

Assumption 1: The ith sub-system has access to local output information at time instants t = sjk, j ̸= i, k ∈ N.
The aforementioned assumption reflects a practical scenario wherein individual systems can be sampled locally at a high
frequency, but data transmission over a networked communication channel occurs at a lower frequency, depending on
network induced constraints or requirements. Exploiting this assumption, we have that Σi, i = 1, 2, has access to local
information at instants sjk, j ̸= i. Consequently, the synchronizing coupling is designed as

u1(t) = −σ(y1(s2k)− y2(s2k)), ∀t ∈ [s2k, s
2
k+1),

u2(t) = −σ(y2(s1k)− y1(s1k)), ∀t ∈ [s1k, s
1
k+1),

(2)

where σ ∈ R+ is the constant coupling strength. Since CB > 0, there exists a coordinate transformation so that the ith

sub-system dynamics are given by

Σi :

{
żi(t) = q(zi(t), yi(t)),

ẏi(t) = a(zi(t), yi(t)) + bui(t), i = 1, 2,
(3)
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(a) Bidirectionally coupled systems Σ1 and Σ2 under asynchronous
sampled-data transmission.

(b) System shown in Figure 1a represented as a
feedback-interconnection.

Figure 1: (a) Systems Σ1 and Σ2 coupled via a networked communication channel and, (b) an equivalent feedback-
interconnection representation.

where zi ∈ Rn−m, ui, yi ∈ Rm, q : Rn−m × Rm 7→ Rn−m, and a : Rn−m × Rm 7→ Rm.
Assumption 2: The solution of the closed-loop system (3), (2) is ultimately bounded.
Definition 1: The bidirectionally coupled system given by (3), (2) is said to synchronize if lim

t→∞
‖e(t)‖ → 0, where

e(t) =
[
eTy (t) eTz (t)

]T
, and ey(t) = y1(t) − y2(t), ez(t) = z1(t) − z2(t), for any initial conditions (z1(0), y1(0)) and

(z2(0), y2(0)).
Assumption 3: (Demidovich Condition [Pavlov et al., 2005]) There exists a positive definite matrix P ∈ R(n−m)×(n−m),
such that the internal state dynamics given by żi(t) = q(zi(t), yi(t)), i = 1, 2, satisfies

P
∂q

∂zi
(zi, yi) +

∂qT

∂zi
(zi, yi)P ≤ −δIn−m, P = PT > 0, δ > 0. (4)

In this work, we provide conditions that guarantee exponential synchronization of the coupled system (3), (2).

Main Result

The system (3), (2) shown in Figure 1a is remodelled such that the effects introduced due to aperiodic sampling are de-
coupled from the continuous-time network, as shown in Figure 1b. In Figure 1b, the operator G represents the dynamics
of the system (1) in the absence of sampling, i.e., G represents a ‘continuous-time’ version of the system (3), (2). Ad-
ditionally, the operator ∆ captures the error induced in the system due to asynchronous sampling. Consequently, the
feedback-interconnection shown in Figure 1b represents the bidirectionally coupled, sampled-data system configuration
shown in Figure 1a, by considering the effects of sampling as a perturbation to the continuous-time system operator G.
By studying the properties of the feedback-interconnection G − ∆, we provide conditions that guarantee exponential
stability of the error dynamics e(t), i.e., exponential synchronization of the system (3), (2). We adapt the result provided
in [Omran et al., 2016], wherein a dissipativity based framework was employed to prove asymptotic stability of nonlinear
systems with aperiodic sampled-data control. The properties of operator ∆ are characterized by a function S that satisfies∫ t

0

S(θ, ey(θ), φ{y1(θ), y2(θ), z1(θ), z2(θ)}, w(θ))dθ ≤ 0, ∀t ≥ 0, (5)

where
S(t, ey(t), φ{y1(t), y2(t), z1(t), z2(t)}, w(t))

:= wT (t)Rw(t)− γ2(φ(y1(t), y2(t), z1(t), z2(t))− 2bσey(t) + bσw(t))TR(φ(y1(t), y2(t), z1(t), z2(t))
−2bσey(t) + bσw(t)),

(6)
with γ2 =

4(h̄2
1+h̄

2
2)

π2 ,w(t) = (∆ėy)(t), and φ(y1(t), y2(t), z1(t), z2(t)) = a(z1(t), y1(t))−a(z2(t), y2(t)). For a positive
definite storage function V , if the condition

V̇ (e(t)) + αV (e(t)) ≤ e−αtS(t, ey(t), φ{y1(t), y2(t), z1(t), z2(t)}, w(t)), ∀t ≥ 0, α > 0, (7)
holds, then the system setting given by (3), (2), synchronizes exponentially with a decay rate of at least α/2.
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Constrained input modulation for impulse-based motion control

Michael Ruderman
Department of Engineering sciences, University of Agder, 4604, Norway

Summary. We revisit the impulse-based motion control, introduced in [9], from a viewpoint when the control signal is constrained
by the actuator limits. We demonstrate how the impulsive control [9] is modulated for the weighted input impulses, and what the
consequences it has for the control performance. In addition, the state transients as a jumping map are discussed, when the amplitude-
bounded (modulated) impulses can no longer guarantee the asymptotic convergence, and the stable limit cycles can appear instead.

Introduction

Hybrid control systems (see for example [6, 7] and references therein) allow for both continuous and discrete dynamics,
while the discrete control actions may appear in form of the continuously or event- or state-depended switching of the
bounded control value or, alternatively, in form of the discrete impulses with finite energy content. Intensive research
on the possibly uniform and generalized description of the hybrid dynamical systems and, especially, on their stability
analysis and stabilization was performed already one and half decades ago. Here we exemplary refer to the several
available seminal (correspondingly tutorial) works like [4], and special issues like introduced in [1].
Impulsive dynamics (see e.g. [3] for basics) appear quite often in evolution of the natural processes, where some short-
term perturbations (or generally stimuli) act instantaneously in the form of impulses and, thus, give rise to instantaneous
jumps of the thereby affected dynamic states. A classical academic example is the bouncing ball (see for example in [4]),
while in engineering, the various vibro-impact [3] systems can be found, for example, in the mechanical play-pairs also
known as backlash [10]. When it comes to impulsive control actions, then the input impulse, or impulsive force cf. [3],

p0 = lim
∆t→0

t0+∆t∫

t0

u(τ)dτ (1)

at the controlling instant t0 is, to say, scaling the Dirac measure δt0 , so that the impulsive control effort u = p0 δt0
cannot be a function of time. Analysis of such control systems may require to properly denote and handle the impulsive
differential equations (see e.g. [5]). At the same time, introduction of a supplementary jump (or jumping) map (cf. the
unified modeling framework provided in [2]) of the state transitions at all t = t0 enables the further use of conventional
system notations for all t ̸= t0 by means of e.g. ODEs or, correspondingly, state-space equations. In applications, one
cannot expect that the impulse magnitude will keep a well-specified control action u(·) always below some finite actuator
constraint. Therefore, once the input signal is inherently bounded |u(·)| < U by some positive system constant U , an
impulsive control cannot be directly implemented, no matter which particular control strategy is lying behind.
Hybrid impulsive motion control, addressed in this work, was introduced in [9] while some preliminary formulation,
including an experimental case study, was demonstrated before in [11]. The impulsive control was proposed for systems
of the second order with uncertain upper-bounded damping, while the state axes represent the guard conditions that trigger
a dedicated impulsive control action as soon as one of the both is crossed. One can notice that other impulsive controls
were also proposed formerly in [8] and [12], for the mechanical systems with friction. In either approach, however, an
impulsive action occurs first when a motion trajectory falls on the position axis, which implies several zero velocity (and
subsequent re-acceleration) phases before it converges to the origin. In the following, we will briefly summarize the
impulse-based control [9], for convenience of the reader, and then address the impulse modulation for bounded inputs.

Impulse-based motion control

The impulse-based motion control [9] is given by

mẍ+ dẋ+ kx = −α sign(ẋ)
d

dx
sign(x)− β sign(x) d

dẋ
sign(ẋ)

︸ ︷︷ ︸
≡u

, (2)

where the continuous system dynamics is shaped by the inertial massm > 0 and uncertain (or in the worst case unknown)
stiffness and damping constants k, d > 0, respectively. Note that the upper-bound of the damping coefficient d < D needs
to be known. The discrete control value u is parameterized by α, β > 0 and is acting only when the motion trajectory
crosses one of the state axes, i.e. at (0, ẋ0) or (x0, 0). This provides a disjoint jump set D = Ẋ0 ∪ X0 = {(x, ẋ) ∈
R2 |x = 0 ∪ ẋ = 0} and makes both control actions (on the right-hand side of (2)) respectively disjunctive and, therefore,
simultaneously appearing only in zero equilibrium (x, ẋ) = 0, while sign(0) = 0 is defined. The proposed control
system (2) is well fitting into the autonomous-impulse hybrid systems framework [2] and, thus, can be fully described by
ẋ = f(x) if x ∈ C and x+ ∈ J(x) if x ∈ D, where the flow and jump maps are f and J , respectively. The belonging
flow and jump sets are disjoint so that C = R2\D. The parametric conditions for the gains are 0.5m|ẋ0| ≤ α < m|ẋ0|
and β = 0.5|x0|D, while a state value during last crossing of the orthogonal axis is denoted by the subindex zero, i.e. x0
and ẋ0 correspondingly. For further details on and analysis of the impulse-based motion control we refer to [9].
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Modulation of bounded control input

The impulsive control action in (2) requires a control effort |u| = 2αδ(ẋ0) ∨ 2βδ(x0), where δ(·) is the Dirac delta
function, cf. with eq. (1). Recall that the Dirac delta function can be seen as distributional derivative of the sign-function,
weighted by factor 2, and can then be defined and constrained to satisfy the identity as follows:

δ(y) =

{
∞, if y = 0,
0, if y ̸= 0;

∞∫

−∞

δ(y)dy = 1; δ(y0) = lim
∆t→0

p∆t(t0). (3)

Note that the last expression is (3) relates the Dirac delta function to the square pulse p of duration ∆t and amplitude
(∆t)−1, cf. with an impulsive force in (1). Since the square pulse has unity ’strength’ (or ’weight’), it is evident that for
a constrained actuator (with maxu = U ) the pulse duration T ≡ ∆t is required to be T = 2(α ∨ β)U−1. That leads to
an inevitable modulation of the discrete (impulsive) control as u 7→ u[x0, ẋ0](t0 ≤ t ≤ t0 + T ). In order to analyze the
impact of such control modification on the convergence performance of (2), cf. [9], one needs to evaluate

x+ = exp
(
A(t0 + T )

)
x0(t0)∓

t0+T∫

t0

exp
(
A(t− τ)

)
B Udτ, (4)

which provides inhomogeneous (particular) solutions for x0 = [0, ẋ0]
T ∨ [x0, 0]

T at the time instant t0 of the control
pulse. Here A ∈ R2×2 and B ∈ R2×1 are the associated system matrix and input distribution vector resulting from
the left-hand side of (2). Note that the sign before the integral in (4) changes depending on the quadrants in which the
trajectory undergoes zero-crossing. The ”−” sign captures either x = 0 crossing from the II-nd to the I-st quadrant or
ẋ = 0 crossing from the I-st to the IV-th quadrant. And the + sign appears for the corresponding zero-crossings from the
IV-th to the III-rd or from the III-rd to the II-nd quadrant. For an asymptotic convergence of the state trajectory towards
zero equilibrium, driven by a sequence of the control impulses u(t0,n) with n = 1, . . . , N where N →∞, it is sufficient
to demonstrate constant decrease of Euclidean norm of the state vector after each executed pulse, i.e. ‖x+‖2 < ‖x0‖2.
A symbolic solution of (4) is computable, yet cumbersome, so that solely several numerical observations are shown and
discussed below. For the sake of simplicity, no linear damping is assumed, i.e. d = D = 0, so that the left-hand side
of (2) represents a harmonic oscillator for the assigned m = 0.1 and k = 10. The initial values are assigned to be
[x, ẋ](t = 0) = [−0.001, 0.1], and the forward Euler solver with ∆t = 0.0001 sec is used. The difference between the
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converging unbounded control and that U -bounded, which runs into stable limit cycles, is demonstrated in the diagrams
(a) and (b). An avoidance of limits cycles and, thereupon, further convergence towards zero equilibrium is demonstrated in
the diagram (c) with variation of the α-parameter. A more detailed analysis of the parametric conditions of the occurrence
or escape of the limit cycles calls for an explicit solution of (4), equally as for periodic solutions with impulses at t0,n.
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The FutureForge Manipulator and an Approximate Analytical Solution
Algorithm for its Nonlinear Dynamics
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Abstract. This paper examines a linearisation algorithm developed for the nonlinear dynamics of the FutureForge
manipulator - part of a state-of-the-art forging platform being built in Glasgow, Scotland. Building on previous work,
the authors investigate means of obtaining approximate analytical solutions for the highly nonlinear system with a view to
developing a practical control system in future work. This is done by a combination of algebraic approximation methods,
a practical understanding of the machine’s operating characteristics, as well as the application of a perturbation method.
The devised method is verified by comparing the resulting approximate analytical solutions with numerical solutions to
the nonlinear problem.

Keywords: Linearisation, Industrial Manipulators

1 Introduction
This work follows on from a previous piece of work involving many of the same authors [1]. Previously, the authors
examined the design of a large-scale industrial manipulator for the FutureForge project commissioned by the Advanced
Forming Research Centre (AFRC) in Glasgow, Scotland. The manipulator’s intended purpose is to handle metallic
workpieces through their treatment in a 2,000-tonne hydraulic press: carrying them to and from the press, positioning
them in the press appropriately, and ensuring their precise placement throughout these movements. Since this earlier
work’s publication, the manipulator has been successfully installed at the AFRC and a working control system has been
implemented by Clansman Dynamics Ltd. The work we describe in this paper contributes to the development of a digital
twin of the manipulator that will be used to train operators in a virtual reality environment.

Figure 1: A schematic diagram of the FutureForge manipulator, depicting its configuration in its 2D planar workspace. This image
previously appeared in the preceding work by Cartmell et al. [1].

Interestingly, the manipulator we are considering is rather unique in the field of industrial robotics. At first glance, it
appears to be a serial system since the end-effector’s position is governed by the positioning of three – apparently sequential
– parallelogram linkages. Definitionally, serial manipulators are open kinematic chains of links, and, in many industrial
examples, the motion of their end-effectors is actuated by revolute or prismatic actuators located at the joints between links
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[2]. For configurations such as this, many powerful techniques have been developed to the end of solving the dynamics and
kinematics involved. Such methods include Meldrum, Rodriguez, and Franklin’s recursive approach to matrix inversion
[3] and Saha’s approach to decomposition of the inertia matrix [4]. Furthermore, several control approaches are based
on this type of configuration also. These include Gazit and Widrow’s “Back Propagation Through Links” method [5];
Ouyang and Zhang’s virtual velocity-based method [6]; and, Talebpour and Namvar’s application of adaptive control to
serial manipulators in the context of satellite testing [7]. However, this manipulator may not be regarded as serial. Instead,
the end-effector’s position is driven by two actuators at its base. Therefore, the FutureForge manipulator might be thought
of as a hybrid between a serial and a parallel manipulator. To be clear what we mean by this: the end-effector’s position,
in the planar workspace, is the result of a series of parallelogram configurations, these individually being closed-chain
mechanisms; and, the configurations of each parallelogram are dictated by the parallelograms preceding them. We consider
the linkage ordering as flowing from base to end-effector. In this way, the manipulator benefits from having a large
workspace relative to its size and footprint [8]. Additionally, the parallelogram structure of the linkages allows it to carry
heavier workpieces with greater accuracy [9]. The trade-off in realising these benefits is that the resulting system is
significantly more complex to model analytically.

1.1 Summary and Influence of Previous Work
In the work preceding this [1], the authors discussed how the manipulator was intended to operate. Due to its novel design,
actuating the hydraulics connected to link AD moves the end-effector purely horizontally. Similarly, the hydraulic actuator
connected to point K causes vertical motion in the end-effector. One significant point to note, however, is that this “vertical
actuation” does involve some variance in the end-effector’s horizontal position such that its path is somewhat curved due
to physical constraints of the mechanism. The authors derived the governing dynamics of the manipulator via Lagrangian
mechanics and were able to solve this model numerically.

The model that resulted is expressed as a system of two governing equations: one for actuation of the cylinder connected
at K (the “vertical case”); and, one for actuation of the cylinder connected to AD (the “horizontal case”). The generalised
coordinates in the equations are the angles controlled by these two actuating cylinders: α(t), for the vertical actuation
angle; and, β(t), for the horizontal actuation angle. Thus, later in this present work when we refer to the “vertical actuation
problem”, we simply mean the ODE which is derived from the Lagrange equation

d

dt

(
∂L

∂α′(t)

)
− ∂L

∂α
= Qv (1)

where Qv is the generalised force applied through this cylinder at K. Similarly, the “horizontal actuation problem” refers
to the ODE resulting from

d

dt

(
∂L

∂β′(t)

)
− ∂L

∂β
= Qh (2)

in which Qh is the generalised force applied through the cylinder connected to AD. Note that, in the above equations and
throughout this paper, we use the prime notation to denote differentiation with respect to time, staying consistent with the
previous work mentioned, thus α′ = d

dtα(t), and β′ = d
dtβ(t).

The ODEs that result from these two applications of Lagrange’s equation are highly nonlinear and exhibit coupling between
the two actuation coordinates α(t) and β(t). Moreover, they are incredibly cumbersome to manage analytically to the
point of being intractable - the curious reader is referred to Eqs (44) and (79) in [1]. As such, the present work was begun
to attempt a linearisation strategy which could yield approximate analytical solutions to the underlying dynamics. The
resulting linearised model will then be used in a control system for the manipulator – to be implemented in a virtual reality
(VR) model of the manipulator. Since the manipulator’s operation will always be controlled by a human operator, it is
the role of this mathematical model and control system to replicate effectively the physical behaviour of the manipulator
as accurately as possible where the physical machine must be capable of submillimetre accuracy in end-effector placement.

At the end of the previous work, we outlined a means of simplifying these aforementioned equations. Firstly, the two
governing equations are simplified by collecting their terms into the following groups (and arranging them in this order
in Eqs (3) and (4)): linear and nonlinear inertia, linear and quadratic damping, nonlinear restoring force, and excitation.
Applying these groupings, we simplify the equations considerably. For the vertical actuation problem, the resulting form
of the governing equation is

a1α
′′ + a2 cos(2α)α′′ + a3α

′ + a4 sin(2α)(α′)2 + a5 cos(α) + a6 sin(α) = Qv, (3)

and the horizontal actuation problem is

b1β
′′ + b2 cos(2β)β′′ + b3β

′ + b4 sin(2β)(β′)2 + b5 cos(α) + b6 sin(β) = Qh, (4)
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where the design specifications of the manipulator contribute to the constant a-terms in Eq (3) and b-terms in Eq (4).
These specifications detail the individual component masses, lengths, and mass moments of inertia. From this point, the
previous work introduced a small perturbation parameter, ε, into the governing dynamics via these constant terms. A
development of this small parameter’s introduction is elaborated on in Section 2.1. Then, we continue through Sections
2.2-2.4 to describe the linearisation process we have adopted. Finally, we discuss our results and conclusions in Sections
3 and 4 respectively.

2 Linearisation of the Governing Equations

2.1 Introduction of the Small Parameter
In the original governing equations, Eqs (3) and (4), the constant a and b-terms are functions of the design specifications
of the manipulator: component lengths, masses, mass moments of inertia, and geometric offsets. By computing these
specifications to find the numerical values of all a and b-terms, we can compare their magnitudes to introduce a small
parameter, ε. This parameter is introduced to constants deemed significantly smaller than others. By this, we mean terms
which are at least 100-times smaller than the largest constant in the same equation. Based on this approach, for Eq (3) we
find that

a2 = εa2, a3 = ξjf + εξaf , a4 = εa4, and a6 = εa6. (5)

Additionally, for Eq (4) we find

b2 = εb2, b3 = εξjf + ε2ξaf , b4 = εb4, and b6 = εb6. (6)

In the previous work by Cartmell et al., the linear damping was manually introduced into the governing equations to
account for both the viscous joint friction and aerodynamic drag in a single “lumped”-parameter [1]. Now notice that we
have also expanded the definition of these linear damping coefficients a3 and b3. These expanded definitions split the
two sources of drag so that they may be treated independently and can contribute to the O(ε0) and O(ε1) perturbation
equations more appropriately. Notice the key difference between the substitutions in (5) and (6) is that the linear damping
coefficient contributes to a higher order of perturbation equation for the horizontal problem than in the vertical problem.
This is consistent with our strategy for introducing ε, however, it may be desirable to electively allow linear damping to
contribute to the generating, O(ε0), problem for the horizontal actuation problem.

2.2 Transcendental-Algebraic Conversion
Referred to as the “TAC”, the transcendental-algebraic conversion step is intended to pave the way for the substitution
of asymptotic expansions of α and β. In this step, each transcendental term is replaced with an algebraic approximation
derived via appropriate Taylor Series expansions. For the vertical actuation problem, we compute Taylor Series expansions
of cos(2α), sin(2α), cos(α), and sin(α). The centres of these expansions are at α = 0 radians, the centre of the operational
range of α, to benefit from the expansions’ accuracy in both the positive and negative α directions. A MATLAB algorithm
has been constructed to determine the minimum order of approximation required to ensure a maximum error of 0.1% in
these approximations versus their respective target functions. Based on discussions with our industrial collaborators (the
AFRC), this error requirement may be tightened or relaxed. Regardless, the method progresses in an identical fashion.
The same approach is implemented for the horizontal problem, this time with the expansions centred at β = π

2 radians,
the centre of the operational range of β.

To study the errors introduced by this step, we compute the numerical solutions of Eqs (3) and (4) and compare them to
the numerical solutions of the approximated equations given by the TAC step. The impact of this approximation can be
seen in each of the cases examined in Section 3 and is referred to in the included graphs as “Num (post-TAC)”. Given α ∈
[−0.305, 0.305] radians and β ∈ [π3 ,

2π
3 ] radians, the errors depicted in Figures 2-17 are very small indeed. Nonetheless,

given how these errors grow with time, the orders of approximations may require further considerations if very long
durations of manoeuvres are to be simulated

2.3 Exploitation of the Excitation Function
Until this point, the excitations applied to the vertical and horizontal cases were defined as constants,Qv andQh respectively.
Here we define them as nonlinear functions of both the relevant actuation angle and time. This approach is not dissimilar
to Hsu’s exploitation of strategically tuned excitation functions, according to the brief description in Hsu’s work in [10]).

For the manipulator to resist falling under its own weight, part of the total excitation must go towards balancing the
gravitational restoring force. This component of the excitation is denoted by Rv(α) and Rh(β) for the vertical and
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horizontal problems respectively. However, for there then to be motion, there must also be an excitation beyond this
gravity-balancing component. We represent this with a time dependent component in the two cases as Fv(t) and Fh(t)
respectively. Thus, the revised definitions of the excitations are

Qv = Rv(α) + Fv(t) (7)

for the vertical problem, and
Qh = Rh(β) + Fh(t) (8)

for the horizontal problem. Note that, to carry out its intended role, Rv(α) must equal the vertical restoring force.

Rv(α) = a5 cos(α) + a6 sin(α) (9)

The same is similarly true for the horizontal equivalent,Rh(β), and the restoring force in the horizontal problem. Therefore,
these two components of the excitations will balance any occurrence of the restoring forces throughout the perturbation
equations, not just in the generating problem. This is also true for the horizontal case. Additionally, the time-dependent
excitations, Fv(t) and Fh(t), will only contribute to the generating solutions. Note that other authors have previously
adopted methods that involve assuming the absence of a gravitational restoring force [11]. In this section, we have provided
a justification for this from an operational standpoint, rather than simply stating it as an a priori assumption.

2.4 Extraction of the Perturbation Equations from the Simplified Model
With the governing equations now suitably prepared, we can introduce one final pair of substitutions, the asymptotic
approximations of α(t) and β(t)

α(t; ε) ≈ α0(t) + εα1(t) (10)
β(t; ε) ≈ β0(t) + εβ1(t). (11)

Substituting these into the revised governing equations and collecting the O(ε0) and O(ε1) terms, we find the following
equations:

a0,2,1α
′′
0 + a0,1,1α

′
0 = a0,0,1Fv (12)

a1,2,1α
′′
1 + a1,1,1α

′
1 =
(
a1,0,1 + a1,0,2α

2
0

)
α′′
0

− a1,0,3α′
0 +

(
a1,0,4α0 + a1,0,5α

3
0

)(
α′
0

)2 (13)

b0,2,1β
′′
0 = b0,0,1Fh (14)

b1,2,1β
′′
1 =

(
b1,0,1 + b1,0,2β0 + b1,0,3β

2
0

)
β′′
0

+ b1,0,4β
′
0 +

(
b1,0,5 + b1,0,6β0 + b1,0,7β

2
0 + b1,0,8β

3
0

)(
β′
0

)2
.

(15)

Eqs (12) and (14) are the generating problems for the vertical and horizontal cases respectively. Similarly, Eqs (13) and
(15) are the O(ε1) dynamics of the vertical and horizontal cases. Note the subscripts utilised for the a and b constants in
Eqs (12) to (15). These are used to usefully identify components of the solution and to identify their origin in the problem.
This method of encoding the constants’ origins and occurrences is inspired by [12] but is distinct from this approach as
our work is significantly more limited although serving our purpose adequately. The three numbers used have different
functions: the first refers to the ε-order of the problem that the constant first appears in; the second refers to the order
of derivative multiplying the constant; and, the third is a simple counter. For example, the constant a0,2,1 (i.e., with the
subscripts 0, 2, and 1) is found in theO(ε0) problem, is the coefficient of the 2nd derivative of the dependent variable, and
is the 1st coefficient with these previous two designators. By contrast, the constant b1,0,5 is the 5th constant to occur in the
O(ε1) horizontal problem on the right-hand side of the equation. Note this feature of the “0”-designator in our notation:
since we have removed all occurrences of the gravitational restoring force from all levels of the manipulator’s dynamics,
the “0”-designator is not reserved for the coefficients of the dependent variables and can be freely used for terms arranged
on the right-hand sides of Eqs (12)-(15).

As was mentioned briefly previously, a key difference between the horizontal and vertical problems is the relative insignificance
of linear damping in the former. The result of this is seen in comparing the two generating problems. For the sake of
illustration, we continue this paper with the assumption that linear damping should not contribute to the horizontal problem
at the O(ε0) level. If this assumption needed to be changed, then the solution process for the horizontal case precisely
follows the algorithm of the vertical case. From this point, the solution of the linearised system is relatively simple to
compute analytically. As intended, both O(ε0) problems may be solved independently of their O(ε1) counterparts.
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3 Results
To inspect the quality of our proposed linearisation algorithm, we compare the approximate analytical (AA) solutions to
the numerical solutions of the governing equations at three points in the process. These three points for finding numerical
solutions are: before any linearisation takes place, Eqs (3) and (4); immediately after the TAC step is undertaken; and,
once the governing problems are stated as perturbation equations. We undertake four cases to examine, these are detailed
in Table 1. Cases 1 and 2 consider relatively slow motions of the end-effector; while, Cases 3 and 4 consider faster, more
abrupt motions. At the time of writing, we are seeking data from our industrial collaborators that describes manoeuvres
undertaken in physical testing of the machine. When this becomes available, we will compare the model against this.
However, for now we are only concerned with the efficacy of the linearisation process.

Case ε
Initial Conditions Vertical Actuation Horizontal Actuation

α(0)
(rad)

α′(0)
(rad/s)

β(0)
(rad)

β′(0)
(rad/s)

Fv (kN) tv (s) Fh (kN) th (s)

1 0.001 -0.3054 0 1.0472 0 3 3 5 3
2 0.001 0.3054 0 2.0944 0 -3 3 -5 3
3 0.001 -0.3054 0 1.0472 0 30 1 50 1
4 0.001 0.3054 0 2.094 0 -30 1 -50 1

Table 1: Cases examined to test the suitability of the linearisation algorithm in the absence of physical test data.

Using the kinematic equations of the earlier work [1], we can inspect the impact of the errors found on the accuracy of
the end-effector’s placement. Using the expressions for the end-effector’s Cartesian position, we can see that changes of
over 1.8×10−4 radians in β result in the end-effector motion exceeding 1mm. Given our previously stated intent that the
control system we will go on to implement should be accurate on a sub-millimetre scale, we can acknowledge that the
absolute error in β should be less than this value. For α, the equivalent condition on the error is found as±3×10−4 radians.
This is also why the initial positions in Table 1 are rounded to 4 decimal places (since 0.0001 is less than either the α or
β tolerance stated).

3.1 Case 1
In Case 1, we see the following approximations of the vertical actuation problem arise from our linearisation process. Note
that the numerical values included in the equations listed in the following equation, and the rest of Section 3, are rounded
to 5 significant figures since this is consistent with the initial conditions.

α(t) ≈− 88.573− 1.1043× 10−8e−0.1699t + 6.0005× 10−8e−0.13595t − 1.1744× 10−7e−0.10196t

+ 3.5945× 10−7e−0.067974t + 88.2694e−0.033987t − 0.0017626e−0.033987t + 3.0000t

− 1.8765× 10−9te−0.13595t + 8.7830× 10−9te−0.10196t − 5.7442× 10−9te−0.067974t

− 3.0007× 10−5te−0.033987t − 1.9186× 10−9t2 − 1.2755× 10−10t2e−0.10196t

+ 5.7531× 10−10t2e−0.067974t − 7.6792× 10−10t2e−0.033987t

+ 1.7371× 10−11t3 − 4.3351× 10−12t3e−0.067974t + 8.7297× 10−12t3e−0.033987t

− 7.3669× 10−14t4 − 1.4734× 10−13t4e−0.033987t

(16)

Figure 2: Approximate solutions of the vertical problem for
Case 1. Note the operational limits of α marked at ±0.3054.

Figure 3: The absolute error for each approximation in Fig 2
versus “Num (Original)” as a reference.

As can be seen, with a cursory glance at Fig 2, as well as in Fig 3, the approximate analytical solution and two numerical
solutions are extremely close to the numerical solution of the original problem. The reason for the numerical solution
of the linearised problem, “Num (Linearised)”, having a slightly larger error versus the target solution is simply that the
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numerical method used naturally introduces numerical errors where the analytical method does not.

For the horizontal actuation problem, we initially see another very close resemblance between the four illustrated solutions
in Fig 4. Note that the approximate analytical solution for this is given by

β(t) ≈1.0472 + 0.040710t2 − 2.5948× 10−4t3 − 2.1092× 10−4t4

+ 3.7226× 10−6t6 + 9.6805× 10−8t8 − 1.6916× 10−9t10.
(17)

Figure 4: Approximate solutions of the horizontal problem
for Case 1. Note the operational limits of β at π

3
and 2π

3
.

Figure 5: The absolute error for each approximation in Fig 4
versus “Num (Original)” as a reference.

However, under closer inspection, we see that the absolute error in each of these is significantly higher than in the vertical
problem. There are two factors that contribute to this reduced accuracy through the linearisation process. The first, most
significant, of these is the order of Taylor Series approximation used in the TAC step. This will have a significant impact
on the horizontal actuation problem since the operational range of β is significantly larger. The second of these reasons is
the lack of linear damping included in the generating problem. Although these two factors clearly contribute to reduced
accuracy of the model, only a comparison with physical testing data will rule whether they are acceptable trade-offs or
not. If they are found to be unacceptable, we can simply increase the approximation order at the TAC stage or be sure to
include linear damping in the generating dynamics.

3.2 Case 2
Similarly to Case 1, we see greater accuracy in the vertical actuation problem than in the horizontal problem although the
latter may still be satisfactorily accurate. The vertical approximate analytical solution for this is simply the solution for
Case 1 multiplied by (−1). Whereas, that of the horizontal actuation problem is

β(t) ≈2.09440− 0.040710t2 + 2.5949× 10−4t3 + 2.1092× 10−4t4

− 3.7226× 10−6t6 − 9.6805× 10−8t8 + 1.6916× 10−9t10
(18)

where we note that β(0) is simply the new initial condition and all other terms are the negatives of those in Case 1.

Figure 6: Approximate solutions of the vertical problem for
Case 2. Note the operational limits of α marked at ±0.305.

Figure 7: The absolute error for each approximation in Fig 6
versus “Num (Original)” as a reference.
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Figure 8: Approximate solutions of the horizontal problem
for Case 2. Note the operational limits of β at π

3
and 2π

3
.

Figure 9: The absolute error for each approximation in Fig 8
versus “Num (Original)” as a reference.

3.3 Case 3
Case 3, as previously stated, is intended to be a more aggressive version of Case 1. What we are interested in here is
how the approximations behave with a reduced duration of manoeuvre and with higher driving forces. The approximate
analytical solution for the vertical actuation problem is as follows.

α(t) ≈− 883.29− 0.0011043e−0.16993t + 0.0059833e−0.13595t − 0.011665e−0.10196t

+ 0.035894e−0.067974t + 882.69e−0.033987t + 0.26223e−0.033987t

+ 30.012t− 1.8765× 10−4te−0.13595t + 8.7596× 10−4te−0.10196t − 5.6412× 10−4te−0.067974t

− 0.0010491te−0.033987t

− 1.9138× 10−4t2 − 1.2755× 10−5t2e−0.10196t + 5.7412× 10−5t2e−0.067974t

− 7.6558× 10−5t2e−0.033987t

+ 1.7344× 10−6t3 − 4.3351× 10−7t3e−0.067974t + 8.6763× 10−7t3e−0.033987t

− 7.3669× 10−9t4 − 1.4734× 10−8t4e−0.033987t

(19)

Figure 10: Approximate solutions of the vertical problem for
Case 3. Note the operational limits of α marked at ±0.305.

Figure 11: The absolute error for each approximation in Fig
10 versus “Num (Original)”.

We see, for the vertical problem, that the resulting errors are all extremely small as in previous results. Note that the only
difference in this case is that the numerical solution of the fully linearised problem is now lower than the approximate
analytical solution. The errors depicted here are so low, however, that we are not concerned with this subtle change.

Interestingly, the horizontal results are very similar to those of Case 1 too. This reinforces the idea that these errors can
be reduced by a higher-order approximation in the TAC step – since the accuracy of this step is dependent on the physical
range, in β, of the manoeuvre rather than on its duration directly. The analytical approximation for this is found to be as
follows.

β(t) ≈1.0472 + 0.40710t2 − 0.0025948t3 − 0.021092t4

+ 0.0037226t6 + 9.6805× 10−4t8 − 1.6916× 10−4t10
(20)
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Figure 12: Approximate solutions of the horizontal problem
for Case 3. Note the operational limits of β at π

3
and 2π

3
.

Figure 13: The absolute error for each approximation in Fig
12 versus “Num (Original)”.

3.4 Case 4
For Case 4, both vertical and horizontal actuation problems give very similar results to Case 3. The approximate analytical
solution for the vertical actuation problem for Case 4 is equal to that of Case 3 multiplied by (−1); whereas, the horizontal
problem is

β(t) ≈2.0944− 0.40710t2 + 0.0025948t3 + 0.021092t4

− 0.0037226t6 − 9.6805× 10−4t8 + 1.6916× 10−4t10
(21)

where the constant term is the value of the initial β-condition for Case 4 and the rest of the approximation is identical to
that of Case 3 multiplied by (−1).

Figure 14: Approximate solutions of the vertical problem for
Case 4. Note the operational limits of α at ±0.305.

Figure 15: The absolute error for each approximation in Fig
14 versus “Num (Original)”.

Figure 16: Approximate solutions of the horizontal problem
for Case 4. Note the operational limits of β at π

3
and 2π

3
.

Figure 17: The absolute error for each approximation in Fig
16 versus “Num (Original)”.

From the graphs illustrating the absolute errors in the horizontal problems for Cases 1 and 2, all errors are less than the β
tolerance value (1.8 × 10−4 radians) up to 0.7 seconds. And, for Cases 3 and 4, all errors are less than this value up to
0.25 seconds. Through all of the examined cases, the error in α is below 5 × 10−5 radians throughout the time domains
- well within the previously stated tolerance of 3 × 10−4 radians. These observations can be used to show that that the
linearisation algorithm supports the requirement of submillimetre accuracy in end-effector placement – particularly given
the sharp, abrupt motions involved in manoeuvring a workpiece through the active forge.
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4 Conclusion and Comments for Continuing Work
In this work, we have presented an algorithm for the linearisation of the governing dynamics of a large-scale industrial
manipulator. The manipulator - as part of the FutureForge project commissioned by the AFRC - has a unique design
that rules-out many established techniques which are designed around serial or parallel manipulators. Previous work
led to the derivation of the nonlinear governing equations we have considered, and continuing collaboration with our
industrial partners will see the presented algorithm undergo further fine-tuning. The presented algorithm sees a small
perturbation parameter, ε, introduced to the governing dynamics via the relative magnitude of the constant coefficients.
Then, the transcendental terms are approximated via algebraic expressions using appropriately ordered Taylor Series
expansions. Observations about the machine’s practical operations are then made to remove the restoring forces from
consideration at all levels of the resulting perturbation problems. We then inspected the results achieved by comparing
our approximate analytical solutions against numerical solutions to the original, nonlinear governing dynamics. By
comparison with these numerical solutions, we also illustrated the errors introduced at the TAC stage and at the conclusion
of the linearisation process. We found that the approximate analytical solutions for the vertical actuation problem are
well-within the acceptable range of accuracy for the context of our work. The errors found in the horizontal actuation
problem are notably larger, but these may still be acceptable pending comparison with physical test data from our industrial
collaborators. In the instance that they are above the acceptable limits of error, we have noted suitable courses of action
in Section 3.

Going forward, we are actively seeking to compare our simulations against the physical test data gathered by our industrial
collaborators. In parallel with this, we are in the process of designing a suitable, robust control system for implementation
in the digital twin model of this manipulator.
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Summary. This extended abstract presents an innovative method for scour monitoring, based on the dynamic response of a bridge
pile embedded in the riverbed. Apart from the mechanical and physical characteristics of the pile itself, soil-structure interaction (SSI)
affects the dynamical behaviour of the system. This may result in a sensibility of the eigenfrequencies of the pile to soil conditions.
As a consequence, analytical and numerical developments are carried out for an Euler-Bernoulli beam model (representing the pile),
which is embedded in a Pasternak soil ( springs with a shear layer) for SSI. Using Hamilton’s Principle and endowing the non-linear
boundary conditions, system frequencies are derived by seeking for non-trivial roots of the characteristic equation of the system.

Introduction

A majority of bridge collapses are due to hydraulic risks [1], among which scour. Today, several scour monitoring
techniques exist [2], as for example:

• Water depth-measuring devices,

• Analyzing changes in dynamic behavior of structural elements (bridge pier or instrumented rod).

In this study, we will consider both technologies in order to characterize scour.

Evaluation of natural frequencies of the system

Let us consider an Euler-Bernoulli Beam partially embedded in a Pasternak-modelled Soil [3] (see Fig. 1): Hamilton’s
principle with specific boundary conditions leads us to a non-linear formulation. In fact, because of the external environ-
ment change, the formulation makes us deal with non-linear boundary conditions, in particular at the end of the pile in the
soil.
In our investigation, we treat the general nonlinear problem in two sets of linear problems with two constitutive dynamical
equations:

• An equation for the free part of the beam x < 0:

EI
∂v4

∂4x
(x, t) + ρA

∂v2

∂2t
(x, t) = 0,

• and an equation for the embedded part of the beam x > 0:

EI
∂v4

∂4x
(x, t)− g ∂v

2

∂2x
(x, t) + kv(x, t) + ρA

∂v2

∂2t
(x, t) = 0.

v(x, t)

0
x

y

Geometrical parameters :

(E, I, ρ, A)

Pasternak soil

Euler-Bernoulli Beam

(k, g)

Figure 1: Mathematical model of the considered sysetm.

In our study, we focus on the modal analysis of the structure. Then, using modal projection and by solving equation of
eigenfrequencies numerically (Newton method), the response of frequency as a function of scour depth is plotted. This
response is also compared with finite difference method. The first step of our investigation permits us to see that reaching
to correct numerical results can be elaborating for being sure that the system is not attracted by another root. Even if it
converges, this method may be long.
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Equivalent cantilevered beam of the system

The straightforward method of the previous section is costly. When we plot the natural frequency as a function of scour-
depth (Fig. 2), variations are similar to a behaviour of cantilevered beam of a given length. This observation results in the
development of the concept of added free length ”ϵ" in the cantilevered beam (see Fig. 3): an equivalent length can be
defined.
This means that we can include a modification of the length, adding "ϵ", to have the same frequency.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

"free length" 

2

4

6

8

10

12

F
ir
s
t 
fr

e
q
u
e
n
c
y
 (

H
z
) Embeded Beam

Equivalent Cantilevered Beam

Figure 2: Variation of the first frequency with the normalized free length

The next step in our investigation is to introduce analytically this equivalent length to fix the same eigenfrequencies for
the scour-depth sensor of a given length: this equivalent length can be obtained as a result of an asymptotic approach of
the non-trivial function of which natural frequencies are solutions. The precision of this method depends on the depth of
foundation and a coefficient which is linked to the SSI.

”Free length” ”Free length”

ǫ

Same frequency

Figure 3: Equivalent cantilevered beam

Conclusions

Comparison between our analytical and numerical model and experimental results [4] are carried out to obtain the valida-
tion of the equivalent length as parameters of an inverse problem. It is shown that for deep foundations where the flexural
rigidity of the beam is higher than the soil rigidity, the analytical model matches with the experimental results: depth
sensor measures accurately the progression of scour depth. In the other case, non-linearities can no longer be treated with
this method: the soil reaction itself has a nonlinear behavior.
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Transient deformation of a beam travelling on a moving rough surface

Yury Vetyukov∗ and Jakob Scheidl∗
∗Institute of Mechanics and Mechatronics, TU Wien, Vienna, Austria

Summary. In this paper we study the quasi-static deformation of a beam pressed against a moving rough surface by the field of gravity.
While the beam is transported in the axial direction together with the travelling foundation, it deforms and slides in the lateral direction
because of the misaligned linear bearings at the boundaries of the control domain. Considering small deflections and a geometrically
linear beam model, we present a numerical approach to analyse the time evolution of the deformed state of the beam. Analytical
solutions are obtained for several specific cases of the boundary conditions and validated against the numerical results.

Introduction

Lateral deformation of axially moving slender structures with frictional contact is usually undesired in technical appli-
cations such as rolling mills [1] or transport belts [2, 3]. The highly nonlinear frictional response encountered in these
problems induces dynamical behaviour even at slow quasi-static motion, when inertial effects are negligible. Numerical
simulation tools, created to investigate the mechanics or to develop a model-based controller design, rely on the mathe-
matical models of moving contact of deformable bodies at non-material kinematic description. Simplified semi-analytical
approaches allow, however, to better understand the nature of the arising phenomena and to validate the complicated
numerical schemes. Thus, an analytical study of the motion of an endless beam, transported by a moving rough surface
across a control domain, has been presented in [4]. The beam is forced to enter the control domain and to leave it through
a pair of linear bearings, which are laterally misaligned relative to each other. The analysis shows, that, as long as the
misalignment is small and the maximal friction force is sufficiently large, the stationary deformed configuration of the
beam becomes self-similar with infinitely many segments of sliding friction in alternating directions.
It should be noted, that the time evolution of the deformation of the beam on a rough foundation because of the bending
moment on a free end has been thoroughly analysed earlier in [5], where the appearance of self-similar solutions was
demonstrated as well. A similar formulation with thermally induced bending moments and self-similar deformation
pattern studied in [6] relates to the cool down of railway rails after hot rolling. Nevertheless, the presently considered
moving contact problem with transport conditions is a novel formulation, described by a different mathematical model.

Problem formulation

In the present paper we extend the results of [4] by investigating the transient deformation of the beam owing to a given
law of the lateral motion of the bearing at the entry to the control domain. The model problem is depicted in Fig. 1. The
linear bearings, which constrain the motion of the beam at the boundaries, are considered as prismatic joints, such that the
deflection w takes on given values and the slope vanishes there, w′ = 0. The joint at the entry moves in lateral direction
over time t according to a given law w0(t). Under the condition of perfect adhesion, the beam would be transported along
the axial coordinate x with the velocity v of the travelling foundation and its deformed shape would become

w(x, t) = w0(t− x/v). (1)

However, the boundary conditions at the exit prismatic joint and the bending stiffness of the beam trigger sliding, thus
creating a system with a non-trivial dynamic behaviour.
In the geometrically linear setting, small lateral deflections do not affect the axial velocity of a particle of the beam, which
thus always coincides with the transport speed ẋ = v. The lateral component of the velocity of a particle

ẇ(x, t) = ∂tw + vw′ (2)

comprises the local (Eulerian) time derivative ∂tw, computed at a given axial position x = const, and a convective term
featuring the derivative with the spatial coordinate w′ = ∂xw. The relative velocity ẇ between the particle and the
foundation determines the Coulomb’s dry friction force q according to

ẇ > 0 : q = −q0, ẇ = 0 : −q0 < q < q0, ẇ < 0 : q = q0 (3)

Figure 1: Flexible beam transported across a control domain by a moving rough surface: 3D perspective and view from above
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Figure 2: Time evolution of the segments of sliding (gray areas), parameters: a = 1, q0 = 1, v = 1, unit length of the control domain;
left: linear growth with w̄0 = 1/300 and t0 = 0.2; right: harmonic excitation at the entry with w0 = sin(4πt)/300

with q0 being the sliding friction force, which bounds the static friction force. Now we demand that the beam is in static
equilibrium at all times:

aw′′′′ = q (4)

with a denoting the bending stiffness of the beam. Complemented with specific boundary conditions, the equations
determine the time evolution of the zones of stick and sliding friction as well as the motion of the beam.

Discussion of the solution strategies

The main difficulty in obtaining the solution in terms of w(x, t) and q(x, t) is that the nonlinear equations cannot be
resolved for the time derivative ∂tw, which would otherwise facilitate the direct time integration of the evolution law. A
regularization with a small inertial term and second-order time derivative would prohibit an analytical solution and require
a computationally costly numerical time integration with small time steps. The above outlined quasi-static problem may
be tackled numerically in a very efficient manner using the non-material finite element formulation with the transport
condition for the deflection field as discussed in [4].
While the stationary solution with ∂tw = 0 in case of constant deflections at the boundaries of the control domain is
extensively analysed in [4], the present study focuses on the transient behaviour in response to two distinct cases of the
imposed deflection at the entry w0(t):

• Linear growth followed by constant deflection:

w0 =

{
w̄0t/t0, t < t0
w̄0, t ≥ t0 (5)

Sliding is inevitable during the growth stage t < t0, as the boundary condition w′ = 0 at x = 0 contradicts the full
adhesion solution (1). One expects, that a "wave" of the length vt0 shall be transported by the travelling foundation
until it reaches the exit prismatic joint. However, a more complicated process with reverse sliding is suggested
by numerical analysis at higher values of the amplitude w̄0, see left part of Fig. 2. The stationary solution with
alternating segments of sliding friction and a self-similar deformed configuration establishes over time during the
subsequent transient stage.

• Harmonic excitation:
w0 = w̄0 sinωt. (6)

As long as the amplitude w̄0 is small, sliding shall again take place only in the vicinity of the entry point. The
length of the segment of sliding shall change in time according to a complicated law, which can approximately be
established in an analytical solution. Numerical analysis suggests, however, that higher values of w̄0 result into
more segments of sliding near the entry point, see right part of Fig. 2. Finding an estimate for the critical value of
the amplitude, at which the solution changes qualitatively, is a challenging mathematical task.
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Influence of Gyroscopic Effects on Nonlinear Dynamics of High-Speed Planetary Gears
Having an Elastic Ring

Chenxin Wang and Robert G. Parker
Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA

Summary. Numerical simulations show that gyroscopic effects can significantly influence the nonlinear dynamics (resonances and
parametric instabilities) of planetary gears having a deformable ring at high speed. Analytical solutions at resonances and parametric
instabilities that include the gyroscopic effects are derived and used to explain the numerical results.

Introduction

Vibrations of planetary gears arise primarily from periodically changing sun-planet and ring-planet tooth mesh excitation
as the gears rotate. A resonance occurs when a harmonic L of the mesh frequency Ωm approaches a natural frequency
ωq (i.e., LΩm ≈ ωq). A parametric instability occurs when LΩm ≈ ωp + ωq , where ωp and ωq can be the same. Near
resonances or parametric instabilities, vibrations can become large enough that nonlinear tooth separation occurs. The
ring has substantial elastic deformation when it is designed to be thin for weight saving. Gyroscopic (i.e., Coriolis) effects
become significant for high-speed systems, but their influence on the nonlinear dynamics of planetary gears having an
elastic ring are not yet known.
This work derives closed-form solutions for the nonlinear dynamics of planetary gears with a deformable ring using
the model in [1]. The model includes speed-dependent gyroscopic and centripetal effects. The tooth mesh excitation
is modeled as time-varying stiffnesses that include tooth separation nonlinearity. Numerical integration of the dynamic
model shows the significant impact of gyroscopic effects on the resonances and parametric instabilities at high speed.

Numerical results

Fig. 1 shows the RMS of dynamic ring-planet mesh deflection from numerical integration of a planetary gear system
having a deformable ring without (black dashed line) and with (green dotted line) gyroscopic effects. The differences
highlight the significant influence of gyroscopic effects. One resonance (Ωm ≈ ω4) and one parametric instability (Ωm ≈
ω1 + ω2) are present for the system without gyroscopic effects. When gyroscopic effects are included, an additional
resonance at Ωm ≈ ω3 occurs. For the resonance Ωm ≈ ω4, the peak amplitude decreases and the peak resonant frequency
shifts to the right with inclusion of gyroscopic effects. The parametric instability Ωm ≈ ω1 + ω2 is absent for the system
with gyroscopic effects.
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Figure 1: RMS (mean removed) values of dimensionless ring-planet mesh deflection from numerical integration of a planetary gear
system having a deformable ring without (black dashed line) and with (green dotted line) gyroscopic effects over a range of dimension-
less mesh frequencies. These RMS results are identical for every planet. The arrows indicate results from increasing and decreasing
speed simulations. The thick (red) and thin (blue) solid lines are the analytical results from Eq. (1) for the two resonances Ωm ≈ ω3

and Ωm ≈ ω4 and Eq. (3) for the one parametric instability Ωm ≈ ω1 + ω2 for the system without and with gyroscopic effects.

Analytical explanation

Resonances
The amplitude-frequency relation for a resonance LΩm ≈ ωq (whether the system is gyroscopic or not) is derived as

Ωm =
ωq
L

+
ωq
Laq

(
2R1 +R2aq ±

√
4|R3|2 − (νqaq)2

)
, (1a)

R3 = N
(
k
(L)
s1 ∆̄

[q]
s1 ∆s,0 + k

(L)
r1 ∆̄

[q]
r1 ∆r,0

)
, (1b)
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where aq is the real-valued amplitude of the resonant mode, νq is the modal damping ratio, R1 and R2 are real-valued

terms associated with tooth contact loss, N is the number of planets, k(L)j1 for j = s, r are the L-th harmonic coefficients
(complex-valued) of the first sun-planet and ring-planet mesh stiffness variations, ∆j,0 are the static sun-planet and ring-

planet mesh deflections (real-valued and identical for every planet) due to the applied torque, ∆[q]
j1 are the first sun-planet

and ring-planet modal mesh deflections (complex-valued), and the overbar denotes complex conjugate. Vanishing of the
square root term in Eq. (1a) gives the peak resonant amplitude

aq,p = 2|R3|/νq. (2)

Eqs. (1b) and (2) explain why the resonance Ωm ≈ ω3 does not occur for the system without gyroscopic effects but occurs
for the system with them (Fig. 1). In the absence of gyroscopic effects, mode 3 is a mode where the modal sun-planet and
ring-planet mesh deflections vanish (i.e., ∆[3]

sn = ∆
[3]
rn = 0 for n = 1, 2, . . . , N ) [2], such that the R3 for this mode and

the peak amplitude a3,p in Eq. (2) vanish. When gyroscopic effects are included, mode 3 becomes a mode with nonzero

∆
[3]
sn and ∆

[3]
rn [3]. This leads to nonzero R3 in Eq. (1b) and nonzero a3,p in Eq. (2) and therefore the occurrence of the

resonance Ωm ≈ ω3 for the system with gyroscopic effects in Fig. 1.
Eq. (1) shows that gyroscopic effects shift the resonant frequencies by changing the natural frequencies. The ω4 increases
when gyroscopic effects are included, so the resonant frequency for Ωm ≈ ω4 shifts to the right. This prediction matches
the numerical results in Fig. 1.
Eqs. (1b) and (2) reveal that gyroscopic effects affect the peak amplitudes of resonances by changing vibration mode
quantities. Gyroscopic effects change the modal mesh deflections ∆[4]

sn and ∆
[4]
rn . At high speed, this change is significant.

This alters the values of R3 in Eq. (1b). R3 changes significantly for mode 4, which affects the associated peak amplitude
a4,p. As shown in Fig. 1, the analytical predictions capture this effect.

Parametric instabilities
The boundaries of the range of mesh frequencies for a parametric instability LΩm ≈ ωp + ωq to occur are derived as

Ω{L,p,q}
m =

(ωp + ωq)

L
± νpωp + νqωq

L

√
|D(L)

pq |2/(νpνq)− 1, (3a)

D(L)
pq = N(k

(L)
r1 ∆̄

[p]
r1 ∆̄

[q]
r1 + k

(L)
s1 ∆̄

[p]
s1 ∆̄

[q]
s1 ). (3b)

Eq. (3a) gives that a parametric instability is eliminated by damping when

|D(L)
pq | <

√
νpνq. (4)

Eqs. (3) and (4) apply to both non-gyroscopic and gyroscopic planetary gears having a deformable ring.
Eqs. (3b) and (4) show that gyroscopic effects change the occurrence of a parametric instability by changing modal
mesh deflections. The parametric instability Ωm ≈ ω1 + ω2 for the system without gyroscopic effects has |D(1)

1,2| =
0.0211 >

√
ν1ν2 = 0.02. Therefore, this parametric instability is present in Fig. 1. When gyroscopic effects are

included, the modal mesh deflections ∆[1]
j1 and ∆

[2]
j1 for j = s, r change so that |D(1)

1,2| decreases (see Eq. (3b)). This leads

to |D(1)
1,2| = 0.0172 <

√
ν1ν2 = 0.02. The parametric instability Ωm ≈ ω1 + ω2 is absent in Fig. 1 in the presence of

gyroscopic effects.

Conclusions

Gyroscopic effects alter the occurrence of resonances, shift resonant frequencies, and change resonant amplitudes asso-
ciated with nonlinear behavior induced by contact loss. These influences are significant for high-speed planetary gears
having an elastic ring. A closed-form amplitude-frequency relation derived for the resonances of planetary gears with-
out and with gyroscopic effects reveal how these effects change the resonant behavior by their influence on the natural
frequencies and vibration modes. For example, changes of modal mesh deflections of a resonant mode can change the
resonant amplitude and, sometimes, change whether a resonance occurs or not.
The influence of gyroscopic effects on parametric instabilities of planetary gears having an elastic ring is similarly sub-
stantial. The analytical results reveal that gyroscopic effects change the occurrence/absence of parametric instabilities
and the mesh frequency range where a given instability occurs. These effects arise principally from changes to the modal
mesh deflections of the participating modes.
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Prediction of Limit Cycles of Lateral Oscillations in Dril ling Processes:  
Numerical Analysis and Experimental Validation 
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*Institute of Applied Dynamics, Technical University of Darmstadt, Darmstadt, Germany 
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Darmstadt, Darmstadt, Germany 
  
Summary. Several experimental investigations have shown that drilling processes are likely to develop limit cycles at approximately 
integer multiples of the tool rotation frequency. As a consequence, the whirling oscillations generate N-lobed holes. In literature, linear 
models are presented to explain the onset of the instability and to analyze the exponential growth or decay of this whirling phenomenon. 
However, to predict the orbit of the limit cycles, more involved models are required, which take the relevant nonlinearities into 
account [1,2,3]. This work deals with a nonlinear drilling model. The cutting forces involve the so-called regenerative effect, which leads 
to a delay differential equation (DDE). Nonlinear rubbing effects, which occur at the contact under the cutting edge, are considered. Also, 
the contact at the bore hole wall is taken into account and its stabilizing effect on the drilling process is shown. The presented drilling 
model is able to predict the bore hole shape as well as the circularity of a real drilling process with high accuracy. The model can be used to 
optimize the drilling parameters and the shape of the tool in order to improve real drilling processes. 

Motivation 

Basically, two phenomena are distinguished in cutting tool vibrations: (i) Chatter which appears approximately at the 
tools torsion natural frequency and (ii) lateral oscillations at odd multiples of the tool rotation frequency. 
Currently, often two machining steps are necessary to create bore holes with high precision: Drilling and finishing 
afterwards, for example by reaming, to reach the required accuracy. 
To analyze and clearly understand the physical effects occurring in drilling processes and to optimize these processes 
(i.e. reducing the amplitudes of the lateral oscillations by optimization of the tool shape and cutting parameters), a 
nonlinear two degree of freedom model is applied in the current work. The model yields a system of coupled delay 
differential equations, which is solved numerically. 

Physical Model 

The drilling model includes the mass, structural damping and stiffness of the tool as well as external forces due to the 
contact with the workpiece. The external forces consist of the cutting force, the rubbing force and the contact force at 
the bore hole wall. 
The cutting force is assumed to be proportional to the uncut chip area and obtained experimentally similar to an 
experimental setup introduced by Bayly et al. [1]. Since the uncut chip area depends on the current position of the tool 
and the position at the previous cutting-edge passage, a time delay is generated in the differential equations. 
Rubbing occurs due to material compression under the cutting edge. Chiou and Liang [4] suggested a linear rubbing 
force model for turning processes. Their approach is extended to a nonlinear model and adapted to oblique cutting, 
which leads to a dependence on the feed rate, cutting velocity, current tool vibrations and tool wear. 
Previous experimental investigations by Volz et al. [3] have shown a strong correlation between the land width of the 
tool, which supports it against the bore hole surface, and the amplitude of the lateral oscillations. Therefore, a model for 
the wall contact is introduced. On one hand, this contact model takes elastic effects into account. On the other hand, a 
nonlinear damper - similar to the rubbing force model - is integrated, which incorporates the energy dissipation in the 
contact. 

Experimental Investigations 

The cutting force model is based on experimental data. The drilling tests were conducted in aluminum alloy 
(AlSi7Mg0.3) using a 10 mm diameter sold carbide twisted drill with four lands, a TiAlN top coating and a ZrN deck 
layer. Since the uncut chip area increases linearly with the feed rate, cutting force tests with different feed rates were 
performed. The measured cutting forces are plotted over the corresponding uncut chip areas and the slope of this plot 
yields the approximately linear relation of the change in force per change in uncut chip area. In the numerical 
simulations, this slope is used as proportionality factor to calculate the cutting force on cutting lip segments with the aid 
of the current and the delayed tool position. 

Simulation 

The DDE is discretized with an implicit integration scheme, namely with a variable-step size, variable-order BDF 
solver. In order to handle the time delay, the following strategy has been applied.  
The simulation time is split into equal intervals, where the interval length corresponds to the time delay. In each interval 
the simulation results (displacements and velocities) from the previous interval are known and used to take the delay 
part in the equations of motion into account, which may then be interpreted as an external time function. The problem is 
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the initialization of the simulation, because the initial conditions must be known as a function of time over one delay 
period. Therefore, the simulation is firstly started with the trivial solution of the DDE. In a second step, a rectangular-
shaped external force is applied in order to initialize the lateral vibrations. 

Results and Conclusions 

In the simulations, the contact stiffness parameters used in the bore hole wall contact model as well as for the rubbing 
force model are adopted from a turning test presented by Chiou and Liang [4]; the parameters have been slightly 
modified and adapted to fit the drilling process. The feed rate, cutting velocity and pre-hole diameter are varied and the 
damping is increased successively to describe the behavior of chip flow and coolant water in the drilling process. The 
damping has no significant influence on the amplitude of the appearing limit cycles, but on the frequency of the 
oscillation and therefore on the bore hole shape. 
A comparison between a simulation and measurements is depicted in Figure 1. In this case, the ratio between the limit 
cycle frequency and the tool rotational frequency is approximately three.  A transformation from the tool tip movement 
to the outer cutting edges represent the emerging bore hole contour as a three-lobed hole. The shape and magnitude of 
the simulated bore holes (blue) show a high accordance with the experimental results (red) with respect to the 
circularity. For a better visualization, the plot is stretched by the factor 41 around the gauss circle of the simulated data 
(black solid line). The drilling experiments have been carried out with a pre-hole diameter of 4 mm. Note that the 
circularity is defined as radial distance between the outermost (outer blue dashed line) and innermost (inner blue dashed 
line) circles. 
  

Figure 1: Left: Simulated (blue) vs. measured (red) bore hole shape at a specific bore hole depth. Right: Simulated (blue) vs. 
measured (red) circularity over bore hole depth and a common tolerance for drilling processes (green). 

 
Summarizing: The presented drilling model is able to predict the circularity of drilling processes with a special 
consideration of lateral oscillations of the drilling tool tip. Within the validation of the implemented model, a high 
agreement of the results from the simulation with those from the machining tests could be achieved. 
In a following step, a great range of parameter studies, including the cutting parameters and the shape of the tool, can be 
conducted with the numerical model to identify the most important parameters for improving the drilling process. 
Possibly the process can be optimized to reach a specified tolerance without an additional reaming step. 
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gyetem rkp. 3., D building Hungary)

09:50 - 10:10
[no show] Broadband Stabilization with Combined Anti-Resonances
KRAUS Zacharias∗, BARAKAT Ahmed, HAGEDORN Peter
∗Dynamics and Vibrations Group, Technical University of Darmstadt (Dolivostraße 15, 64293 Darmstadt Germany)

792



ENOC 2020+2, July 17-22, 2022, Lyon, France

A Koopman View on the Harmonic Balance and Hill Method

Fabia Bayer∗ and Remco I. Leine∗
∗Institute for Nonlinear Mechanics, University of Stuttgart, Germany

Summary. The Koopman operator provides a way to approximate the dynamics of a nonlinear system by a linear time-invariant system
of higher order. In this paper, we aim to study nonlinear time-periodic systems and propose a specific choice of Koopman basis func-
tions combining the Taylor and Fourier bases. This basis allows to recover all equations necessary to perform the Harmonic Balance
Method as well as the Hill analysis directly from the linear lifted dynamics. The Mathieu equation and a more general Hill equation
are used to exemplify these findings.

Introduction

In the recent years, the Koopman framework and especially its data-driven counterpart, the Extended Dynamic Mode
Decomposition, have gained immense popularity [10, 3, 11, 7, 2]. This is due to its auspicious promise: Global rep-
resentation of a nonlinear system by a linear operator. To this end, in the Koopman framework, the dynamical system
is defined through the propagation of functions on the state space, also called observables, over time. While the corre-
sponding operator is linear in its argument, the considered function spaces are usually infinite-dimensional. Therefore, in
practice, a linear approximation is considered which is restricted to a finite-dimensional space spanned by a finite number
of predefined basis functions. It is well-known that the approximation quality of this restriction strongly depends on the
choice of basis functions.
Classically, the Koopman framework is applied to time-autonomous systems ẋ = f(x) and the approximate linear dy-
namics obtained by the Koopman lift then takes the form ż = Az. The incorporation of a time-dependent input v(t)
into the dynamics, i.e. ẋ = f(x,v(t)) or simply ẋ = f(x, t), generally poses problems in the Koopman framework as
the system can only be approximated by a linear time-variant system ż = Az +Bu(t) if products of state and input are
neglected.
In this paper we focus on nonautonomous systems for which the input is time-periodic, i.e. v(t) = v(t+T ). In particular,
we propose a specific choice of observable functions which contains observables depending both on state and time.
We demonstrate that this representation contains all frequency information of the system up to some chosen frequency
order Nu. This means that this basis is a good choice for a Koopman lift, as it retains structural information.
After a short overview about Koopman theory, the specific periodic basis is introduced together with a matching inner
product. It is demonstrated how all equations necessary for the Harmonic Balance Method as well as the Hill method
follow from the Koopman lift in these specific observables. This means that the (approximate) stability information for
the system is retained in the Koopman lift. The findings are illustrated using two variants of the Hill equation.

Koopman theory overview

Consider a nonautonomous time-periodic finite-dimensional dynamical system governed by ẋ = f(x, t), where t ∈ R is
the time, x(t) ∈ X ⊆ Rn is the state trajectory starting at x(t0) = x0 and f : X ×R→ X is a smooth vector field which
is T -periodic in t. The family of maps φt(x0, t0) = x(t) characterizes the flow of the system and assigns to each (initial)
configuration (x0, t0) the resulting state after time t has passed.
The Koopman framework [10] considers output functions g(x, t), also called observables. Any spaces of functions over
the complex or real numbers are permitted in the general Koopman framework. In this work, we consider in particular the
space F of complex-valued functions g : X ×R→ C which are real analytic on X and T -periodic in the last argument t.
Given any function g, it may be of interest how its function values evolve along the trajectories of the system. For instance,
in the Lyapunov framework, it is desired that function values of a Lyapunov candidate decrease over time for any starting
point. The operator Kt : F → F ; g 7→ g ◦ φt performs this shift along the trajectory for arbitrary functions g from the
considered function space. The family of all these operators for any t is called the Koopman semigroup of operators.
It is easy to see that for suitable F , this Koopman semigroup contains all information about the system without explicitly
knowing the vector field f or the flow φt. In particular, if F is chosen such that the identity function id is contained in the
vector space, then the flow can be recovered easily by simply evaluatingKt(id). As a trivial counterexample, consider the
one-dimensional vector space of constant functions. Any constant function will not change while being evaluated along
an arbitrary trajectory of x. Therefore, in this case, the Koopman operator semigroup is well-defined, albeit trivial. No
information about the underlying system is retained. This example shows that an appropriate choice of function space is
a crucial part of the Koopman framework.
Under the aforementioned assumptions for the particular function space F and the vector field f , there also exists the
operator L : F → F , g 7→ ġ mapping an observable g to its total time derivative ġ with

ġ(x, t) =
∂g(x, t)

∂x
f(x, t) +

∂g(x, t)

∂t
. (1)
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This operator is called the infinitesimal Koopman generator. Again, for suitable F , this representation alone is a sufficient
way to describe the behavior of the dynamical system. In particular, if id ∈ F , the vector field f is easily recovered.
In addition, the Koopman generator and the Koopman semigroup of operators are linear in the argument g, even if the
governing differential equation is nonlinear. This comes at the cost of dealing with a mapping on an (infinite-dimensional)
function space instead of the (finite-dimensional) state space.

On a finite-dimensional subspace FN̂ ⊂ F spanned by N̂ linearly independent basis functions {ψl}N̂l=1, any projection
ΠN̂ : F → FN̂ defines a finite-dimensional approximation L̂ : FN̂ → FN̂ of L on FN̂ by LN̂ := ΠN̂L. The
approximation process and the subsequent approximation error are visualized in Figure 1. As the subspace FN̂ generally
is not closed w.r.t. L, the result of Lg must be projected back to FN̂ , introducing some approximation error. Again, the
choice of basis functions for FN̂ is crucial. Since FN̂ is finite-dimensional, elements of FN̂ can be represented by a

Figure 1: Schematic drawing of the infinitesimal Koopman generator L, its finite-dimensional approximation LN̂ and the
matrix representation Â.

column vector of coefficients ẑ ∈ CN̂ . In Figure 1, this is visualized by the map Γ : FN̂ → CN̂ . This map can be
extended to observables g ∈ F \ FN̂ . In this case, the resulting vector ẑ represents ΠN̂g, which is the projection of g
onto FN̂ .

The matrix representation of LN̂ is Â ∈ CN̂×N̂ with ΓLN̂g = ÂΓg. This matrix also defines a linear time-invariant
autonomous differential equation, namely

˙̂z = Âẑ . (2)

This linear system is called the Koopman lift and describes the dynamics represented in LN̂ , i.e. it is a finite-dimensional
linear approximation of the original system dynamics. The Koopman lift matrix Â can be derived from the original
nonlinear dynamics manually by using a column vector Ψ :=

(
ψ1, . . . , ψN̂

)T of the basis functions ofFN̂ , computing dΨ
dt

and identifying terms linear in elements of Ψ after applying the projection ΠN̂ . If this projection is orthonormal, the

matrix entry Âi,j at i-th row and j-th column is given by Âi,j =
〈

dψi

dt , ψj

〉
, where 〈., .〉 denotes the corresponding inner

product.

Koopman lift for time-periodic systems

For smooth autonomous systems in the Koopman framework, it is customary to consider as basis functions a finite set of
monomials ψβ(x) = xβ, where β ∈ Nn is a multi-index and standard multi-index calculation rules (see, for example,
[14, p. 319]) apply. As time-periodic functions are considered in the presented case, we propose in this paper to include
as basis functions combinations of polynomial terms as well as Fourier terms of the correct base frequency, i.e. basis
functions of the form ψβ,k := xβeikωt, where ω = 2π

T . The functions {ψβ,k|k ∈ Z,β ∈ Nn} are an orthonormal system
within the initially considered vector space F w.r.t. the inner product

〈g, h〉 :=
∫ T

0


 1

(β!)2

∑

β∈Nn

∂βg

∂xβ

∣∣∣∣
0,t

∂βh̄

∂xβ

∣∣∣∣
0,t


 dt . (3)

By slight abuse of notation, the inner product is extended to vector-valued functions g ∈ F l, h ∈ Fm element-wise via

〈g,h〉 :=



〈g1, h1〉 . . . 〈g1, hm〉

...
. . .

...
〈gl, h1〉 . . . 〈gl, hm〉


 . (4)

Let Nβ, Nz, Nu ∈ N be integers which describe the assumed maximum polynomial order of the state and maximum
frequency order of the state and input, respectively. Let {βl}Nβ

l=1 be a set of multi-indices with 0 /∈ {βl}Nβ

l=1. For the
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sake of brevity, define N = Nβ(2Nz + 1). Consider now the specific finite-dimensional subspace FN ⊂ F spanned by
Ψ = (ΨT

z ,u
T)T with

Ψz(x, t) := (xβ1eiωNzt, . . . ,xβ1e0, . . . ,xβ1e−iωNzt,xβ2eiωNzt, . . . ,xβNβ e−iωNzt)T (5)

u(t) := (e−iωNut, . . . , e0, . . . , eiωNut)T . (6)

It is reasonable to include the state x itself in the basis such that there is a selector matrix Cz ∈ Rn×N containing some
rows of the identity matrix with CzΨz(x, t) = x. There exist other options to recover x if Cz is allowed to be time-
dependent. However, for the considerations of this paper, choosing Cz to be constant is sufficient. Using the projection
defined by the inner product (3), the Koopman lift approximation of the nonlinear system with respect to the basis Ψ is
governed by

˙̂z :=

(
ż
u̇

)
=
〈
Ψ̇,Ψ

〉
ẑ =

(〈
Ψ̇z,Ψz

〉 〈
Ψ̇z,u

〉
〈
u̇,Ψz

〉 〈
u̇,u

〉
)(

z
u

)
=:

(
A B
∗ ∗

)(
z
u

)
, (7)

where A ∈ CN×N and B ∈ CN×(2Nu+1) are constant matrices. The dynamics of u is approximated by the lower rows
of the large matrix in (7). Since u is state-independent and its time history in (6) is known a priori, the lower rows of (7)
are superfluous and the original nonlinear system is approximated by the LTI system ż = Az+Bu.

Koopman-based Harmonic Balance Method
In the standard Harmonic Balance Method (HBM), a periodic solution is approximated by its Fourier expansion up to
order Nu with unknown parameters via

xp(t) =

Nu∑

k=−Nu

pke
ikωt =: Phbu (8)

with u as in (6) and Phb = (p−Nu
, . . . ,pNu

). The coefficients pk are then determined by equating the Fourier expansions
of dxp

dt from the definition (8) and f(xp, t) for every order up to Nu. With (2Nu + 1) frequencies considered in total, this
results in a system of n(2Nu + 1) equations for the coefficients in Phb. While the left-hand side of the equation as well
as linear components of f are easy to handle, the nonlinear components can usually not be expressed analytically. The
individual equations for each order are thus usually determined and simultaneously solved using the fast Fourier transform
with an alternating frequency and time (AFT) scheme for nonlinear components of f [4]. However, the equations for each
order can also be isolated by projecting onto the corresponding basis function from the collection in u through the inner
product (3). Hence, the HBM approximates a periodic solution by solving the 2Nu + 1 equations collected in

〈dxp
dt

,u
〉
=
〈
f(xp(·), ·),u

〉
. (9)

With this notation, it is remarked that the numerically cumbersome task of calculating the Fourier coefficients of the
nonlinear components of f is hidden in the definition of the inner product.
For Koopman-based HBM, again, a periodic orbit with unknown coefficients as in (8) is assumed. Now, the dynamics
of a perturbation around this periodic orbit is regarded, i.e. the shifted system with state y = x − xp is considered.
Analogously to the original system, the shifted system can be lifted using the methodology as introduced above. This
Koopman lift is of the form (7), with the A and B matrices depending on the parameters pk. Now evaluating only those
rows of z which directly approximate the state y ≈ Czz and using the linearity of the infinitesimal Koopman generator
yields

ẏ(t) ≈ Czż(t) = CzAz(t) +CzBu(t) = CzAz(t) +
〈
f − dxp

dt
,u
〉
u(t) . (10)

As z = 0 implies y = 0 and thus x = xp, we have to require that ẏ = 0 in this case. As the rows of u are linearly
independent, it follows from (10) that all entries of the inner product, or equivalently of the matrix B, must then be zero.
Thus, by comparing (9) and (10), the HBM equations are exactly given by CzB = 0 for the Koopman lift as introduced.

Stability Analysis

When a periodic orbit xp is found (via HBM or otherwise), the next interesting question is that of its stability properties;
that is, whether trajectories that start sufficiently close to the periodic orbit will approach it, stay close to it or tend away
from it with increasing time. To evaluate the stability properties, the dynamics of a perturbation y = x − xp from the
periodic solution is considered. Substitution of this definition into the original system yields

ẏ = f(xp + y)− ẋp := J(t)y +O(‖y‖2) , (11)
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where J(t) = ∂f
∂x

∣∣
t,xp(t)

is the system Jacobian. This system has an equilibrium at zero, which corresponds to the
periodic orbit of the original system, and the stability analysis of the periodic orbit reduces to the stability analysis
of this equilibrium. To make qualitative (stability/instability) statements around the origin, it is usually sufficient to
discard higher-order terms and only regard the linearized time-varying perturbation equation ẏ = J(t)y. This will be the
convention for the remainder of this paper unless stated otherwise.
The fundamental solution matrix Φ(t) is the solution to the variational equation

Φ̇(t) = J(t)Φ(t) ; Φ(0) = I (12)

and any state can be obtained via y(t) = Φ(t)y0. In particular, the fundamental solution matrix Φ(T ) := ΦT is called
the monodromy matrix of the system and its eigenvalues {λk}nk=1 are called Floquet multipliers [15]. The Poincaré map
yk+1 = ΦTyk provides snapshots for the evolution of the perturbation y, spaced at a time distance of T . Therefore,
stability analysis of the linear time-periodic system reduces to stability analysis of the Poincaré map. Hence, if all Floquet
multipliers are of magnitude strictly less than one, the equilibrium of the LTV system and thus the periodic solution of the
original system are stable; if at least one eigenvalue has a magnitude strictly larger than one, they are unstable.
Alternatively to the Floquet multipliers, the stability properties of a time-periodic linear system can be characterized by the
Floquet exponents. In the linear system as above there exist n solutions yk(t) = pk(t)e

αkt, where pk is T -periodic [15].
Hence, stability is characterized by the real parts of the Floquet exponents {αk}nk=1. If at least one Floquet exponent lies
in the open right half plane, i.e. if at least one real part is larger than zero, the equilibrium is unstable. These Floquet
exponents are not uniquely defined. It is easy to see that if pk(t), αk generate a solution yk(t), the same solution is
generated by α̃k = αk + ilω and p̃k(t) = pk(t)e

−ilωt with l ∈ Z. Hence, in total, there are infinitely many valid Floquet
exponents, which can be categorized into n distinct groups. As all entries of one group have the same real part, it is
sufficient for stability analysis to know any one entry from each of the n groups.

Hill method
When a periodic orbit is determined using the purely time-domain-based shooting method, the monodromy matrix is
a direct byproduct of the continuation method [13]. In this case, the numerically obtained monodromy matrix can be
evaluated directly to obtain the Floquet multipliers and their stability information.
When the Harmonic Balance Method is computed in the standard way, however, stability information about the identified
limit cycle is unclear without further investigation. The Hill method offers a frequency-domain-based way to approximate
the Floquet exponents of the linearized perturbation equation.
The Floquet exponents are eigenvalues of the infinite Hill matrix H∞ [8], which is constructed from the Fourier coeffi-
cients of J(t) =

∑∞
k=−∞ Jke

iωkt and reads as

H∞ =




. . .
...

...
... . .

.

. . . J0 + iωI J−1 J−2 . . .

. . . J1 J0 J−1 . . .

. . . J2 J1 J0 − iωI . . .

. .
. ...

...
...

. . .




. (13)

This infinite-dimensional eigenproblem has infinitely many discrete eigenvalues. They correspond identically to the
Floquet exponents α̃ for all l ∈ Z as introduced above and can be sorted into n groups, where the entries of each group
differ by multiples of iω [12]. However, in practice, only the eigenvalues of a finite-dimensional matrix approximation of
H∞ can be computed numerically. The matrix

H =




J0 + iNωI J−1 . . . J−2N

J1 J0 + i(N − 1)ωI . . . J−2N+1

...
...

. . .
...

J2N J2N−1 . . . J0 − iNωI


 (14)

of size N × N (recall N = n(2Nu + 1)) consists of the N most centered rows and columns of H∞ and approximates
the original infinite-dimensional matrix. In the absence of truncation error, the eigenvalues of H are some subset of
the eigenvalues of H∞, i.e. the Floquet exponents. Due to the inevitable error which generally comes with truncation,
however, this does not quite hold. The N eigenvalues of H will be called Floquet exponent candidates below.
The matrix H has a block Toeplitz structure and for sufficiently large Nu, the bands near the diagonal dominate as the
Fourier coefficients of J tend to zero for Nu large enough. Loosely speaking, this means that some eigenvalues affiliated
most with the central rows of H are less impacted by the truncation and provide a better approximation to the Floquet
exponents than others. The search for a selection criterion which determines the best approximation to the Floquet
exponents from the Floquet candidates has received much attention in the literature [5, 16, 8, 12].
For sufficiently large Nu, it is proven that the candidates with lowest imaginary part in modulus converge to the true
Floquet exponents [16]. An alternative criterion selects those candidates whose eigenvectors are most symmetric [8, 6], as
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they should correspond most to the middle rows of the block Toeplitz matrix H. Even though there currently is no formal
convergence proof for this symmetry-based sorting method, numerical results indicate faster convergence than with the
aforementioned eigenvalue criterion [1].
For both these criteria, all eigenpairs of the large matrix have to be computed first and then most of them are discarded.
As the cost of solving an eigenvalue problem is of the order O(N3), the computational cost of the approach is usually
dominated by determining the eigendecomposition of a large matrix.

Koopman-based Hill method
Consider again the lifted perturbation dynamics (10) around a periodic solution. As explained above, for a periodic
solution, the matrix B should vanish and the autonomous system ż = Az remains. After the coefficients pk of the
periodic solution are substituted into A, it is a matrix with purely numerical entries. Let CH denote the real selection
matrix sorting all terms in Ψz which are linear in x such that

CHΨz(y, t) =
(
yTeiNωt,yTei(N−1)ωt, . . . ,yTe−iNωt

)T
. (15)

Entries in CHΨz are of the form ye−ikωt and are sorted by ascending k ranging from −N to N . Note that ∂(CHΨz)
∂t =

ΩCHΨz with Ω = diag (iNω, i(N − 1)ω, . . . ,−iNω). The matrix CHACT
H can be rearranged using the definition (7).

After block-wise differentiation of CHΨz, the Jacobian J is expressed by its Fourier expansion. Finally, after identifying
terms corresponding to (CHΨz) in the first argument of the inner product, it follows that

CHACT
H =

〈
d (CHΨz)

dt
CT

H,Ψz

〉
=

〈(
∂CHΨz

∂y
Jy +

∂CHΨz

∂t

)
,CHΨz

〉
= H . (16)

Thus, all stability information obtained for a time-periodic system by the Hill method is also contained in the Koopman
lift of the system. In particular, if Ψz only contains terms that are linear in x and not of higher polynomial orders, then
CH is quadratic and orthogonal. This makes (16) a similarity transform and it can be concluded that the eigenvalues of
A are identical to those of H, i.e. the Floquet candidates.

Examples

Two variants of the Hill equation ẍ + g(t)x = 0 with g(x) being 2π-periodic are used to exemplify and illustrate the
properties discussed above. First, the Koopman lift for the scalar Mathieu equation with g(t) = a + 2b cos(2ωt) is
provided explicitly for the lowest possible Nu as an example for the structure both in the A and the B matrix. The
stability properties of the Mathieu equation are then investigated using both a HBM variant and the Floquet exponents
retrieved from the Koopman lift. Finally, a more complicated expression for g is analyzed to illustrate the impact of the
choice of Nu.

Mathieu equation
As an example, consider the scalar Mathieu equation ẍ + (a + 2b cos(2t))x = 0. In the (a, b)-space, regions of stability
and instability are separated by branches of nontrivial periodic solutions [9], which are visualized in a so-called Ince-Strutt
diagram.
For treatment in the Koopman framework, the system is brought to first-order form with x = (x, ẋ)T. The first-order
dynamics is then of the form

ẋ = J(t)x =

(
0 1

−a− 2b cos(2t) 0

)
x =

[(
0 1
−a 0

)
+

(
0 0
−b 0

)(
eiωt + e−iωt

)]
x . (17)

The Fourier decomposition of J(t) can be read directly from (17). Assume a periodic solution xp = x−Phbu with u as
in (6) and Phb collecting the pk from HBM column-wise. Choose a vector of basis observables Ψz which only contains
terms linear in x. For readability of the result, assume that Ψz is already sorted as in (15). Hence, in this case, CH is the
identity matrix. The selection matrix Cz is of the form

Cz =

(
0 . . . 0 1 0 0 . . . 0
0 . . . 0 0 1 0 . . . 0

)
(18)

with a 2 × 2 identity matrix in the middle, surrounded by blocks of zeros with 2Nu columns each. Performing the
Koopman lift (7) on y = x− xp yields for Nu = 1 the linear time-invariant system

ẏ ≈ Cz(Az+Bu)=Cz




iω 1 0 0 0 0
−a iω 0 0 −b 0
0 0 0 1 0 0
0 0 −a 0 0 0
0 0 0 0 −iω 1
−b 0 0 0 −a −iω



z+


A3:4



p−1

p0

p1


 A5:6



p−1

p0

p1


 A1:2



p−1

p0

p1




u, (19)
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Figure 2: Ince-Strutt diagram for the Mathieu equation. Stable (unstable) regions determined by Koopman-based Hill
method of order 4 in white (gray). Transition curves, i.e. parameter combinations which admit nontrivial periodic solu-
tions, determined by Koopman-based HBM (solid red) and numerically using a shooting procedure (dashed blue).
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(a) Nu = 2
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(b) Nu = 10

Figure 3: Stability charts for the more complicated Hill’s equation (20). Stable (unstable) regions determined by
Koopman-based Hill method in white (gray). Transition curves determined by direct numerical integration of the varia-
tional equation (12) in blue.

where Ai:j denotes the i-th to j-th rows of A. Hence, all rows of A reoccur in CzB. The entries in A do not depend on
pk in this special case. This is because the original dynamics of the Mathieu equation is linear in the state. As the linear
time-varying system has an equilibrium at x = 0, the HBM equations coded in CzB are a homogeneous linear equation
system for the parameters pk. The system only has nontrivial periodic solutions on the stability boundary curves. If the
dynamical system has a nontrivial periodic solution, then the linear equation system resulting from HBM must have one
as well. This means that the determinant of this linear equation system, or equivalently that of A, must vanish. This is
an approximate algebraic condition for the transition curves which separate stable and unstable regions in the Ince-Strutt
diagram based on the HBM using the Koopman lift of the system.
In the A matrix, the 2 × 2 block Toeplitz structure of (14) is clearly visible. With the Hill method, this can also be used
to approximate the stability regions using the Floquet candidates found as eigenvalues of A. Here, the eigenvalues of
A with lowest imaginary part in modulus were used as Floquet exponent approximations. For the case Nu = 4, the
stability regions and transition curves found by the Koopman-based HBM and Koopman-based Hill method are pictured
in Figure 2. In the white regions, the two eigenvalues of A with imaginary part closest to zero both have a real part of zero,
while in the gray regions, one has a real part larger than zero and the other has a real part smaller than zero. A comparison
with numerically obtained transition curves using a shooting procedure based on [9] shows good approximation quality
for the first instability tongues already for small Nu.
Below, we consider the more complicated Hill’s equation

g(t) = a+ b(sin(t) + sin(8t) + cos(5t) + cos(3t)) . (20)

In contrast to the previous Mathieu equation, higher frequencies are part of the dynamics. This means that the matrix A
of the Koopman lift (or, equivalently, the H matrix of the Hill method) exhibits a diagonal band structure only if Nu is
chosen larger than before. Additionally, block symmetry in A is lost. As expected it is visible in Figures 3a and 3b that
low orders of Nu are now not sufficient to capture the dynamics. Higher orders of Nu, however, do capture the stability
regions accurately.

Conclusion

In the Koopman framework, the choice of observables plays a crucial role for the accuracy of the final finite-dimensional
Koopman lift. In this work, the connection between a specific choice of Koopman observables based on Taylor as well
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as Fourier monomials and established frequency domain tools for the analysis of time-periodic nonlinear systems is
highlighted. This connection motivates the use of this type of observables in a Koopman-based setting and provides some
legitimization. In further research, this connection could be utilized to carry over structural insights from the original
nonlinear system into its frequency representation.
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An extreme time-periodic oscillator.

Alvaro Anzoleaga Grandi∗, Suzie Protière∗ and Arnaud Lazarus∗
∗ Institut Jean Le Rond ∂’ Alembert, CNRS UMR7190, Sorbonne Université Paris, France

Summary. Parametric instabilities are dynamical instabilities possibly arising when the mechanical state of a structure is periodically
modulated in time. It is sometimes seen as a phenomenon to avoid for example with sailing ships (parametric rolling) but it can also be
exploited to study vibrating fluids (Faraday waves [1]) or Nano-Electro- Mechanical Systems [2]. One well-known limitation in fully
exploiting classic parametric instabilities based on small periodic modulation of a mechanical state is that inherent friction forces rapidly
cancel sub harmonic parametric resonances. To overcome this drawback, we propose to "extremely" modulate the mechanical state of
the system in order to enhance parametric instabilities and therefore allow for new promising dynamic functionalities. This original
way of enhancing and controlling parametric instabilities is illustrated here through the numerical and experimental implementation of
an electromagnetic pendulum. We find that it is possible to greatly enhance the number of sub harmonic instability regions and also
that the width of these regions can be controlled.
Keywords : Parametric instabilities, structural vibrations, experimental vibrations, Meissner Equation, Floquet theory.

Experimental system under study

Our goal is to periodically vary a mechanical system between two very different states in order to enhance parametric
instabilities, even in the presence of classic internal friction forces. For illustrative purposes, we set up in the lab the proof
of concept shown in Fig.1a). The experiment consists of a magnetic pendulum that is symmetrically placed between
two attracting electromagnets. When the electromagnets are off, the system is a simple pendulum characterized by a
natural frequency ω0 ≈ 9 rad/s as illustrated in the experimental plot of Fig.1c). When turning the electromagnets on
through an electrical current I , the state of the pendulum can be drastically modified. In our example of Fig.1, when the
control parameter I is slightly below Imax, our system is naturally oscillating with a slower natural frequency. Above
I = Imax, our system is no more oscillating but diverging: attracted to the right or left electromagnet depending on the
imperfections in our experiment. This mechanical system is therefore a simple first realization of what we coined an
extreme parametric oscillator: with a single parameter, in this case I , we are drastically and easily changing the state
of our system. In classical parametric oscillators, this extreme modulation is hardly reachable because the geometrical
mechanical modulation parameters that come into play (the length of the pendulum or the effective gravity for example)
are not easily varied on such scales [1][2].

Figure 1: The electromagnetic parametric oscillator under study. a) A pendulum whose mass is made of steel, is symmetrically placed
between two identical attracting electromagnets that are periodically turned on (red energy states in b)) and off (blue energy states in
b)). b) Simplified "Particle in a time-varying potential well" model. c) Evolution of the natural frequency of the pendulum for various
value of the electrical current I in the two electromagnets when the laters are separated by L = 6 cm. Below I < Imax, the pendulum
is naturally oscillating if perturbed. Eventually, for I close to the diverging limit Imax , the natural frequency goes down. Above Imax
the mass is no more oscillating but diverging.

To investigate the dynamic behavior of our extreme parametric oscillator, we periodically turn the electromagnets on or off
with a period T , in a square wave fashion making the system modulate bewteen two states (see Fig.2a)). Fig.2b) represents
the experimental stability diagram of the pendulum in the modulation parameter space (T , I). For some (T, I), the system
is dynamically stable (blue triangles), i.e. the pendulum is slightly vibrating (because of small imperfections) but stays
close to the trivial vertical state. The crosses indicate the modulation parameters for which the mass was parametrically
unstable, i.e. dynamically impacting the electromagnets. The color legend indicates the number of cycles the pendulum
is doing in the emerging nonlinear vibrational regime. Modes with an integer number of M represent T -periodic unstable
regions when the other M numbers represent 2T unstable regions. At relative low modulation amplitude, I < 1 A,
the pendulum is often stable, except eventually for the first or second parametric instability regions. For "extreme"
modulation amplitude such as I ≈ Imax, it is possible to trigger highly sub-harmonic instability regions, here up to the
58th instability region (M = 29) when the current record demonstrated in a micro electromechanical device is found to
be the 28th instability region [2].
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Figure 2: a) The electromagnets are turned on and off in a square wave fashion with period T . The amplitude of modulation is the
electrical current I when the electromagnets are on. b) Experimental stability chart of the pendulum in the modulation parameter space
(T, I). Blue triangles represent stable states where the mass stays close to the middle of the electromagnets. Crosses represent unstable
states where the pendulum dynamically diverges and eventually impact the electromagnets.

Model of an extreme time-periodic oscillator

The aforementioned experimental mechanical system can be seen as a non-damped pendulum that oscillates periodically
between a natural frequency ω0 and ωexp following a square wave function. Based on the theoretical study of the Meissner
equation[3] a linear theoretical model for the stability of the vertical pendum can be obtained:

θ̈(τ) +
(
α2 + β2sgn(cos(τ))

)
θ(τ) = 0 (1)

with α2 and β2 two dimensionless parameters. Fig.3 represents the stability of Fig.2b) represented in the analytical space
(α2, β2). With this experimental setup we are able to observe extreme periodic instability for the first time ( large values
for α2 and β2). For small values of α2 and β2 the model represents correctly the evolution of the experimental system.
The alternation between stable and unstable analytical regions shows a good agreement with those found experimentally.
In conclusion it is possible to trigger extreme parametric oscillations experimentally and to develop a corresponding linear
theoretical model. This new approach could be promising for very large-band energy harvesting devices.

Figure 3: Analytical stability chart with experimental results presenting several instability regions. The numerical results represent the
evolution of the real part of the Floquet exponent of equation (1) [4]. If it is equal to zero than the movement of the system is stable.
Values larger than zero mean the solution of the system increases exponentially so the system is unstable. The blue triangles correspond
to the experimental stable states and the red crosses correspond to the unstable ones. The red curve (α2 = β2) represents the limit
between systems that are naturally stable and systems naturally unstable (over the limit).
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Asymptotic description of the wear process in dry-running reciprocating compressors
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Summary. The dynamics of sealing elements within a reciprocating compressor is considered in a 2D model as described in [1].
Linear elastic effects of the sealing ring, periodically changing gas pressure loads driven by the external piston movement and dry wear
at the moving contact surface between the ring and the piston rod are explicitly included. Two governing equations for the dynamical
quantities of interest are specified, together with three small, non-dimensional parameters characterizing the problem. Following [3], an
asymptotic analysis is sketched, involving two time scales, where rapid changes due to the compression cycle as well as slow changes
due to wear are considered.

Introduction

We consider the dynamics of sealing elements typically used in industrial reciprocating compressors or pumps. So called
packing elements seal the higher gas pressure in the compression chamber against the lower ambient pressure. These
elements consist of one or more packing rings held in so called cups within a packing housing. The ring seals the gas
pressure dropping from P1 on the cylinder side to P2 on the crank side by being pressed against the facing side of the cup
on the right and to the moving rod below, see Figure 1, taken from [1]. Depending on the sealing efficiency, there is an
(undesired) gas flow from left to right.
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Figure 1: Gas pressure and contact forces acting on a sealing ring, taken from [1].

The rod is connected to a piston in the compression chamber and moves periodically in horizontal direction, driven
externally by a motor running at a fixed frequency, creating a desired delivery pressure. This gives rise to a periodically
changing pressure P1 in the cup. Due to the dynamic contact between ring and rod, the process is subject to dry wear
leading to material loss on the inner side of the ring.

Problem formulation and model

We completely adapt the analytical axisymmetric 2D model for the sealing ring from [1], see Figure 1. The ring material
is described by Hooke’s law and is assumed to be in a state of plane strain. Stresses and strains are functions of the radial
coordinate r only. The contact force from the rod is uniformly distributed in (axial) z-direction, giving rise to a contact
pressure Pc, and a ring wear that does not depend on z. In contrast to [1], we assume a periodically changing pressure P1

on the upper side of the ring and a periodically moving rod on the lower side. Gas pressure effects over the contact surface,
friction forces and inertial effects are ignored. Depending upon the contact pressure Pc, ring material is worn away over
a large time compared to the compression period length. Archard’s wear law is used to describe the wear process, where
the long term wear rate and the course of the contact pressure Pc are the quantitites of interest.
Due to the wear process the inner radius R(i) of the ring grows, and so does the displacement u(i) in radial direction as
to fulfill the contact condition R(i) + u(i) = D/2 with D being the rod diameter. Combined with Archard’s law, a gov-
erning equation forR(i) as a function of time may be derived, where the gas pressure P1 is acting as an external excitation.
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Asymptotic description

Writing down the equations in non-dimensional form, one can identify two small, non-dimensional parameters governing
the problem:

ε :=
KV0PD
(D/2)ω

, δ :=
PD
E
. (1)

K is the wear coefficient from Archard’s law, V0 is a reference velocity (amplitude) of the rod movement, the discharge
pressure PD is serving as a reference pressure, ω is the angular frequency of the piston movement, and E is Young’s
modulus of the ring material.According to [1], for practical cases the relationship ε = O(δ) is valid, i.e. ε being much
smaller than δ.
Asymptotic investigations of the problem were already performed in [3], where the parameter ε (though defined slightly
different) was identified. In [3], a somewhat idealized physical situation was investigated and analyzed by the method of
multiple scales.
Introducing the non-dimensional quantity ρ := R(o)/R(i) being the quotient of the constant outer ring radius R(o) to the
time-dependent inner ring radius R(i), the following governing equation may be derived:

dρ

dt
= −ε ṗ1pcρ

1 + δ ro
ρ

1−ρ2 (pc − p1)
. (2)

Here t is the dimensionless time, p1 is the dimensionless gas pressure, pc the dimensionless contact pressure, and ro
the dimensionless outer ring radius. The gas pressure in equation (2) may be considered as a given periodic excitation
function with the (constant) frequency of the piston movement. Equation (2) is supplemented by a non-linear, algebraic
equation resulting from the contact condition between ring and rod, involving the dynamical quantities ρ and pc. Thereby,
the quantity ρ is directly related to the wear rate.
The parameter δ expresses the relative size of the involved gas pressures compared to the material stiffness of the ring,
being of the order of 10−2 in practical situations. The much smaller parameter ε characterizes the wear process taking
place on a much slower timescale compared to the dynamics arising from the compression cycle. We address to tackle
the problem by performing a coupled asymptotic expansion of the equations with respect to ε and δ, taking into account
that ε = O(δ). In in analogy to [3], we introduce two timescales t and εt to seek for a solution within a multiple scales
analysis.

Summary and conclusions

We considered the dynamics of a sealing element within a reciprocating compressor, being subject to dry wear on the
moving contact between sealing ring and piston rod. Based upon previous works [1]-[3], we have specified two governing
equations for the dynamical quantities ρ (a dimensionless inverse inner ring radius) and the dimensionless contact pressure
pc. These quantities are affected by rapid changes due to the piston movement and slow changes due to the wear process.
A small parameter ε distinguishes between the two time scales and may serve as an asymptotic parameter for a calculation
of perturbations to solve the governing equations.
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Attractor Targeting by Dual-frequency Driving
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Summary. A control technique to continuously drive a non-linear, harmonically excited oscillator between different kinds of periodic
orbits is presented. The basis of the method is a temporary dual-frequency driving of the system. Results show that two periodic orbits
existing at two different frequency values (single frequency driving) having arbitrary periodicity can be smoothly transformed into
each other. The method is a proper tuning of the excitation amplitudes of a dual-frequency driving combining the two corresponding
frequencies. The requirements are the suitable choice of the frequency pair and the matching of the torsion numbers of the bounding
bifurcation points of the periodic orbits.

Introduction

In non-linear systems, multiple domains of periodic attractors might exist in a given parameter space [1]. These domains
can overlap each other meaning that at their union, the system is even multi-stable [2]. The different stable solutions
usually represent different system performances; for instance, a chemical reactor can have different chemical yield.Thus,
it is important to be able to drive a system onto a desired stable state in its parameter space. The main aim of this study is
to propose a technique that is suitable to smoothly drive a system from one periodic domain to another.
The method works for harmonically driven non-linear oscillators in the parameter plane of its driving amplitudeA1 and
frequencyω1. The technique is based on the addition of a second harmonic component to the driving with amplitudeA2

and frequencyω2. With a proper tuning of the driving amplitudes, a periodic attractor exists atω1 with A2 = 0 can be
smoothly transformed onto another periodic orbit exists atω2 with A1 = 0. That is, the beginning and the end of the
transformation is a single frequency driven system, and theintermediate states have dual-frequency driving. Throughout
the rest of the paper, the requirements of the transformation possibilities are discussed in general; and an example is
presented based on the Keller–Miksis equation that is a second order ordinary differential equation describing the radial
pulsation of a single spherical bubble [3].

The control technique

For simplicity, let us consider dual-frequency driven second order non-linear oscillators written as

ẋ1 = f(x1, x2), (1)

ẋ2 = g(x1, x2) +A1 cosω1t+A2 cosω2t. (2)

Assume that at fixed frequencyω1, there is a domain (section) of periodic solution with period p1 in theA1 parameter line
(the amplitude of the second component isA2 = 0). Similarly, assume that there is another segment of periodic solution
with periodp2 in theA2 parameter line (A1 = 0) at frequency valueω2 different fromω1. Both periodic segments
are bounded by bifurcation points having torsion numbersq [4]. The schematic draw in Fig. 1A demonstrates such an
example in the parameter plane of the excitation amplitudesA1 andA2. There are two requirements for the existence of a
set of solutions that connects the two segments of these periodic orbits (blue and red lines in Fig. 1A). Without a detailed
derivation, the first condition is that the ratio of the periods and ratio of the employed frequencies must be equal:

p1
p2

=
ω1

ω2
. (3)

It must be stressed that periods of the obitsp1 andp2 are defined according to the period of the single frequency excitation
T1 = 2π/ω1 andT2 = 2π/ω2, respectively. If the condition given by Eq. (3) holds, the periods of the two kinds of orbits
presented in Fig. 1A by the blue and red lines become equal viaemploying the period of the dual-frequency drivingT as
a global Poincaré section. In this case, codimension-2 bifurcation curves might exists that connect the bifurcation point
pairs(q11, q21) and(q12, q22) (see the black curves in Fig. 1A). For such an existence, the connected torsion numbers must
be equal representing topologically the same local flow of the vector field along the black codimension-2 curves:

q11 = q21, (4)

q12 = q22. (5)
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Figure 1: Panel A: Schematic draw of the transformation possibility between two periodic orbits with arbitrary periodicity in the
parameter plane of the amplitudes of the dual-frequency driving. Panel B: Transformation between period-3 and period-5 orbits through
the yellow surfaces. The employed model is the dual-frequency driven Keller–Miksis equation being a second order ordinary differential
equation.

The control technique is demonstrated in Fig. 1B employing the Keller–Miksis equation being a second order non-linear
oscillator. For the details of the equation, the reader is referred to the review paper [3]. The frequency combination
used isωR1 = ω1/ω0 = 5 andωR2 = ω2/ω0 = 3, whereω0 is the linear resonance frequency of the system. The
periods of the orbits studied arep1 = 5 andp2 = 3. Thus, the condition given by Eq. (3) holds. In this figure, the
saddle-node and the period doubling bifurcation points aremarked bySN andPD respectively. Their torsion numbers
are all equal:q11 = q12 = q21 = q22 = 1 fulfilling also the second requirement defined via Eqs. (4)-(5). The periodic
orbits corresponding to the single frequency driving are highlighted by the blue (period-5 atωR1 = 5) and red (period-3
atωR2 = 3) curves. The yellow surfaces represent a set of periodic orbits connecting the period-3 and the period-5 orbits.
Therefore, with a proper tuning of the amplitudesA1 andA2 of the dual-frequency driving, the system can be smoothly
transformed between the period-3 orbits lying on the red curves and the period-5 attractors represented by the blue curves.
Observe that the dual-frequency driving is temporary and that the initial and final state of the transformation relate to
single frequency driving with different frequencies. It must be emphasized that with a different choice of frequency pairs,
transformation can be achieved between other pairs of periodic orbits.

Conclusions

The main significance of the proposed control technique is that a given system can be driven to a desired periodic solution
in excitation-amplitude–frequency-parameter plane. Theadvantage of the method is that direct attractor selection is pos-
sible meaning that the final state of the trajectory is not incidental (as in case of many control of multistability techniques).
The disadvantage is that a detailed knowledge of the bifurcation structure of the periodic orbits is required to controlthe
system confidently. It is worth mentioning that the technique is first identified in the previous paper of the authors [5];
however, only for a specific pair of periodic orbits and a generalisation was not discussed.
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Summary. The study of anti-resonances in parametrically excited systems in the recent years was focused mainly on bimodal systems.
Assuming it to be strictly a bimodal coupling phenomenon, anti-resonances in systems with multiple degrees of freedom (DoF) were
seen as a generalization without added effects. Recent findings, however, hint at an interesting behavior when multiple anti-resonances
arise in close vicinity of each other. In the present contribution, these effects will be discussed and assessed with perturbational methods,
aiming at understanding the underlying phenomenon, which is expected to be advantageous especially in enhancing the robustness and
intensity of vibration mitigation.

Introduction

Ever since the discovery of anti-resonance by Tondl [8], further research by Schmieg [7], until recent investigations
conducted by Dohnal [1, 2] and finally comprehensive semi-analytical describtion by Karev [3, 4, 5], anti resonance was
interpreted as coupling between two modes. However, recent findings suggest that multiple anti-resonances can not be
viewed in isolation in all cases. Following [6], Lyapunov characteristic exponents (LCEs) are used to gain insight into the
system’s behavior. Floquet theory is applied to the parametrically excited system with excitation period time T , resulting
in Floquet multipliers ρi, from which the LCEs λi can be derived by

λi =
1

T
ln |ρi|. (1)

Numerical Observations

In [6], it was shown that in systems with multiple degrees of freedom (MDoF), under the right conditions anti-resonances
may appear at multiple excitation frequencies Ω. This is illustrated in Fig. 1, using the system introduced in [2, 9] and
studied further in [6] as an example. The anti-resonances are approximately at the combination frequencies Ω = Σ21 =
ω1 + ω2 and Σ32 = ω3 + ω2.

ω1 ω2 ω3100 300 500

−20

−10

0

∆21 ∆31∆32 Σ21 Σ31 Σ32
Ω [ rads ]

λ [1s ]

Figure 1: LCEs λi of example system [6] over excitation frequency Ω for κ = 1, εp = 0.15. Two sepearte anti-resonances are visible.

The numerical results obtained by applying Floquet theory indicate that for a certain amplitude εp of parametric excitation,
while having asymmetrically skewed excitation terms by a factor κ in a MDoF (see (2)), a minimum of the largest of the
LCEs involved in anti-resonances max(λi) can be achieved. This leads to the anti-resonances laying on top of each other,
as visible in Fig. 2.
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Ω [ rads ]
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Figure 2: LCEs λi of example system [6] over excitation frequency Ω for κ = 0.729, εp = 0.158. Two anti-resonances occur at the
same frequency.

The exact relation between the values of all LCEs λi and the equivalent damping of the system is yet to be fully understood.
Thus, numerical simulation of the system’s amplitudes after an initial displacement is used to clarify the effects of the
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two combined anti-resonances shown in Fig. 2. Fig. 3 shows the summed squares of amplitudes of all DoF of the
example system. With the dashed line indicating the reference time at which the unexcited system’s amplitudes become
negligibly small, it is apparent that a stabilizing effect is not only caused around the frequency of anti-resonances but for
all frequencies apart from resonances.

ω1 ω2 ω3 400 600
0

1

2

∆21 ∆31∆32 Σ21 Σ31 Σ32
Ω [ rads ]

t [s]

Figure 3: Summed squares of amplitudes in all DoF after initial pertubation recorded over time t and with respect to the parametric
excitation frequency Ω. Reference time where unexcited system reaches negligible small amplitudes shown with dashed line ( ).
Lighter shade means larger amplitudes.

Perturbation analysis

In order to get a better insight into the observed phenomenon, the system is to be analyzed analytically. As a first step, the
system model is reduced for the sake of generalizing the studied system, which leads to a three-dimensional equation of
motion

ü+ ε



µ1 0 µ13

0 µ2 0
µ13 0 µ3


 u̇+





ω2
1 0 0
0 ω2

2 0
0 0 ω2

3


+ . . . (2)

. . .+ (1− κ)




0 k12 k13
k21 0 k23
k31 k32 0


+






0 f12 f13
f21 0 f23
f31 f32 0


− κ




0 f21 f31
f12 0 f32
f13 f23 0




 εp cos (Ωt)


u = 0,

with the displacement u, damping µi, eigenfrequencies of the undamped unexcited system ω2
i , off-diagonal stiffness

terms kij , parametric excitation coefficients fij and frequency Ω, small parameter ε, amplitude of parametric excitation
εp = O(ε) and asymmetry parameter κ.

The findings are to be analyzed using multiple scales. For this purpose, the displacement u and asymmetry parameter κ
are perturbated, described by a power series with respect to the small parameter ε:

u = u0 + εu1 + ε2u2 +O(ε3), (3)

κ = 1 + εκ1 + ε2κ2 +O(ε3).

The ongoing study aims then at using the outcomes of the multiple scales analysis in understanding the reason behind the
stabilizing effect of coinciding anti-resonances at approximately all excitation frequencies. In this way, a generalization
of this phenomenon can be achieved for a 3 DoF system and, moreover, extended to generic MDoF systems. Such an
effect could be a powerful tool in mitigating vibrations in industrial applications.
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Bifurcations of an Optically Excited Achiral Nano-Ellipsoid in a Stationary Fluid 

 

Tomer Berghaus*, Touvia Miloh *, Gregory Ya Slepyan**, Oded Gottlieb*** 

*School of Mechanical Engineering, Tel Aviv University, Israel 

**School of Electrical Engineering, Tel Aviv University, Israel 

***Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Israel. 
  
Summary. We derive and investigate a system of equations describing the three-dimensional dynamics of a prolate and oblate achiral 

ellipsoidal particle subjected to a linearly polarized, electromagnetic excitation. A half-wave plate rotates the polarization direction of 

the transmitted light by an angle Ω and the linearly polarized electric field induces a dipole moment in the particle that depends on the 

product of the polarizability tensor and the electric field. To minimize energy, the induced dipole moment tends to align with the field 

yielding an optical torque. The basic assumption in the development of the equations of motion was that the given ellipsoid rotates 

around its center of mass with negligible inertia due low Reynolds number. The nanoscale dimensions of the given particle enable 

problem formulation in the Rayleigh regime which yields a set of three nonlinear equations for the angular velocities in terms of Euler 

angles. Transformation of the equations of motion to an autonomous dynamical system enabled a linear stability analysis of multiple 

coexisting equilibria corresponding to stable and unstable periodic orbits in the lab frame. A set of Hopf bifurcations in the autonomous 

system revealed existence of nonstationary quasiperiodic and chaotic motions in the lab frame governed by three nondimensional 

parameters. 

 

Introduction 

The advent of the laser sparked numerous research areas and one of these has been and manipulation of matter by light. In 

1986 Ashkin and co-workers showed that a single tightly focused beam could be used to hold, in three dimensions, a 

microscopic particle near beam focus, which is now known as optical tweezers. The potential uses of contact free control of 

microscopic and nanoparticles has maintained high scientific interest for more than three decades. Major advances in the field 

have been coupled with technological innovations such as dynamic control using holographic optical tweezers, engineering 

of beam shapes and ultraprecise tracking techniques. Optical trapping at the micro [1] and nano [2] scales is well documented 

in several reviews. We note that the dynamics of tri-axial ellipsoids in shear flow reveal existence of periodic [3], quasiperiodic 

[4] and chaotic [5] solutions. However, to date ellipsoids immersed in a fluid and excited by a modulated optical field, have 

been shown to be periodic or quasiperiodic [6]. Thus, our aim in this work, is to provide a sptio-temporal physical model of 

the rotational dynamics of a triaxial nano-ellipsoid (Fig.1 left), to validate the existence of periodic and quasiperiodic rotations 

documented for long cylindrical achiral nanorods [7] and to determine existence of nonstationary chaotic rotations. We 

consider an achiral ellipsoidal particle with principal axes  ��, �, �� and permittivity ��	� suspended in a liquid of permittivity 

(
��. A rotating frame of reference is attached to the particles mass center where the Eulerian angles (�, , �) correspond to 

pitch, yaw and roll (Fig.1 left). The ellipsoid is nonmagnetic so the relative magnetic permeability can be considered as a 

unity.  

 

 

 

 

 

 

 

 
 

Fig.1: Definition sketch of a nanoscale ellipsoid (left) and the bifurcation diagram for a spheroidal particle (right).  

 

A linearly polarized impinging electric field goes through a half-waveplate that rotates the polarization direction. This 

exciting electric field induces a dipole moment that depends on the product of the polarizability tensor and the electric field. 

To minimize energy, the induced dipole moment tends to align with the field yielding an optical torque. The basic 

assumption in the development of the equations was that the given particle is trapped, i.e., not subjected to gradient force 

and rotates around its center of mass. Since the dimensions of the ellipsoid are significantly small compared to the 

wavelength of the exciting field, the phase is considered constant over the particle. Moreover, since the half wave plate 

rotates at an angular frequency which is much slower than the angular optical frequency the total torque is averaged over 

one optical cycle.  Under the assumption of low Reynolds number, inertial terms are neglected [8], which means that the 

angular drag is equal to the total optical torque on the particle. For example, it has been shown that for planar rotational 

dynamics of dielectric nanorod, close to a critical frequency, the optical torque is a factor of much higher than the 

corresponding rotation due to Brownian motion during a given time interval [6]. Furthermore, we note that the bifurcation 

structure of a nano-spheroid (a>b=c) includes periodic rotations (Fig.1 right-Ω � 1) or quasiperiodic motions (Fig.1 right-

Ω � 1) which have been demonstrated experimentally for a long cylinder [6].    

  

 

�� 

�� 
 〈��〉 

Ω 
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Results 
The non-dimensional equations governing the motion were constructed in the theoretical framework of Newtonian rigid 

body dynamics yielding a third-order autonomous system controlled by nondimensional parameters that depend on the 

particle material properties, and the angular drag coefficients (�, �) and an additional parameter that depends on the slow 

half wave plate rational frequency and the electric field magnitude (Ω). An investigation of the nonlinear dynamical response 

of ellipsoidal particles, with varying dimension and material properties, was carried out using linearization methodology 
yielding an eigenvalue problem. The analysis reveals a diverse local bifurcation structure (Fig.2 left) that includes coexisting 

bi-stable equilibria and a narrow range of limit cycle oscillations (Fig.2 right) due to subcritical Hopf threshold (depicted 

by the red line in Fig.2 left).  

 

 

 

 

 

 

Fig.2: Stability map for a gold nano-ellipsoid with exciting frequency  � as a function of a material parametre � (left) and time 

histories of limit cycle oscillations in the Eulerian frame where Φ=ϕ-Ωτ(right).   

 

Discussion 
The classification of different solutions is portrayed in the Cartesian physical state space (Figs. 3,4). It is shown that 

equilibrium in the Euler angle autonomous system corresponds to a periodic solution in Cartesian space, whereas a 

periodic solution corresponds to a quasiperiodic Cartesian state space (Fig.3 blue triangles). Furthermore, nonstationary 

chaotic solutions were found between two secondary bifurcation thresholds (Fig.3 red squares). Moreover, additional 

quasiperiodic solutions were found for Ω � 1 for which no equilibrium is reached in the Eulerian state space.  It is 

noteworthy that the limiting case of a nano-spheroid is governed by a single non-dimensional parameter (Ω) and its 

bifurcation structure at steady state (Fig.1 right) does not include chaotic rotations. We note possible excitation with two 

frequencies may yield a region of chaotic interactions for incommensurate frequency ratios.  
 

 

  

 

 

 

Fig. 3: Bifurcation diagram for a hybrid nano-ellipsoid where Ω = 0.5, � = 1. 

 

 

 

 

 

 

 

 

 

 

Fig.4: Poincare’ maps overlaid on the lab frame physical state space (Z(X,Y)) of periodic (left) and quasiperiodic (center) solutions. 

Poincare' map of a chaotic solution (right). 
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VSIV Experimental Analysis of a Catenary Riser Model in the Modal Space

Rafael Salles, Celso P. Pesce
Offshore Mechanics Laboratory, Escola Politécnica, University of São Paulo, Brazil

Summary. Vortex Self-Induced Vibration (VSIV) is a highly nonlinear fluid-structure interaction that can occur in catenary risers
when there is an imposed motion at the structure hang-off point. The fluid-structure coupling shows persistent response, i.e. there
is no lateral vibration mitigation after a post-critical in-plane induced oscillatory flow. The present study aims at analyzing multi-
modal response of a small-scale catenary riser model using Garlerkin’s decomposition. The frequency ratio parameter, as the one
used in linear oscillator resonance analysis, shows to be a strong control parameter altogether with the modal Keulegan-Carpenter
number.

Vortex Self-Induced Vibration (VSIV) phenomenon

The Vortex Self-Induced Vibration (VSIV) belongs to the class of Flow Induced Vibration (FIV) phenomena in fluid-
structure nonlinear dynamics study field. Generally, the VSIV occurs always on slender flexible structures, as risers and
umbilical cables, that are launched in catenary-like configuration, so that an imposed movement at their top end, as those
caused by gravitational waves, causes an oscillating movement at their configuration plane (henceforth called in-plane
movement). As a result of such in-plane oscillations, vortex shedding is established and it induces lift forces that causes
out of plane oscillating vibrations.
Some intermittent vibrations were firstly reported in experimental tests conducted within large-scale models of steel
catenary risers (SCR) in Grant et al. [1], which later were further exploited by Le Cunff et al. [2] in their experimental
campaigns with small scale SCR model. Initially, Le Cunff et al. [2] described the VSIV as Heave Induced Lateral Motion
(HILM) and later experimental campaigns conducted by Fernandes et al. [3] broadened the scope of HILM renaming the
phenomenon as VSIV. Fernandes et al. [3] also points out that the VSIV were observed in real riser structures of Petrobras
P18 platform.
Over the last decade, the VSIV was observed and reported in small scale SCR models, as in Rateiro et al. [4] and Pesce
et al. [5], in which multi-modal out of plane responses occurs due to in-plane movement caused by harmonic vertical
displacements imposed at the top. Their experimental campaign shown that the structure dynamic response is highly
nonlinear, coupling VSIV with internal resonance phenomenon and even parametric instabilities amid the multi-modal
responses. VSIV was also reported in some recent papers Fu et al. [6].
The VSIV presents some idiosyncratic features: the synchronization amid in-plane and out-of plane oscillating movements
is persistent, not occurring the structural and fluid oscillators decoupling as when the VIV reaches the post-critical regime;
several lateral amplitude response peaks are observable and they are related to the cycle number control parameter, N =
ƒb/ƒn (ƒb is the out of plane response frequency and ƒn, the in-plane one), which always assumes integer values; the cycle
number N values depends on the Keulegan-Carpenter number (KC), assuming larger values as the KC increases; and a
jump phenomenon that decreases the N value as the in-plane movement velocity increases.
As a result of all features aforementioned, the out-of-plane response never fades away and can assume fairly large values
of the structure diameter, O(D). Besides, the VSIV bares a close similarity to the responses observed in rigid cylinder
subjected to oscillating flow, as shown in classical results obtained by Sarpkaya and Rabaji [7] and Sumer and Fredsøe
[8]. This similarity is pointed out in several of VSIV idiosyncratic features, specially when regarding KC and N as strong
control parameters to the cylinder persistent lateral response, which later in the present study will be complemented by
the frequency ratio, ƒ ⋆ = ƒb/ƒN (ƒN is the natural frequency of the considered out of plane mode).

VSIV acting upon a small scale flexible cylinder model experimental response: modal approach

Experimental set-up
The small-scale flexible cylinder experimental model used in the present analysis is the same one already thoroughly
discussed in Rateiro et al. [4] and Pesce et al. [5]; see Figure 1a. The experimental tests were conducted at the Institute for
Technological Research (IPT) towing tank and the 3D model Cartesian displacement response was directly measured using
underwater optical target tracking cameras; see [4]–[5]. The estimated measurement precision isof the order O(1mm);
see Salles and Pesce [9]. In addition the effective traction at hang-off point is also obtained using a load cell; Figure 1b.
Considering the displacement results at local reference frames comprised of the tangent and normal versors, ~t and ~n,
respectively, which spans the catenary plane and the orthogonal binormal versor, ~b, Figure 1c shows the multi-modal
binormal dynamic response, due to the in-plane movement caused by the hang-off imposed motion. Particularly, in this
selected case, the second out of plane mode shows up as the dominant response mode.

Galerkin’s decompostion and VSIV modal response
Galerkin’s decomposition acts as a spacial filter, grouping the nonlinear dynamic responses into a small number of modal
series. The chosen modal basis was determined using a discrete beam model and a finite element solver. Considering
the dominant in-plane modal series as an input for the multi-modal response out-of-plane, it is possible to broaden the
concept of the Keulegan-Carpenter parameter, considering it as a modal value.
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Figure 1: Flexible cylinder tests subjected to imposed movement at the top: a) experimental set-up; b) as-built model
hang-off, displaying the actuator and a load cell; c) lateral amplitude spectrum of a selected case frequency response,
showing multi-modal response, particularly with dominant second out of plane mode.

The frequency ratio amid dominant frequency response in-plane and the natural frequencies out-of-plane shows to be a
strong control parameter, recovering a classical result of linear oscillators resonance response. The present study aims
at analyzing the relation observed within all lateral modal peak-to-peak displacement, 2A(k)⋆

b
for all in-plane modal

frequency ratios; see illustrative results in Figures 2a–b. By working on the modal-space, grouping the results into small
ranges of modal-KC numbers, strongly similar modal responses are revealed, enlarging the analysis contained in [2]–[6],
made in the configuration space, and broading Sumer’s & Fredsøe’s [8] experimental results, obtained with a rigid cylinder
mounted on linear springs in a given direction and forced to oscillate in the orthogonal direction. During the conference
and in a full paper yet to come, much more results will be shown and discussed, as synchronisms, internal resonances and
maps of typical orbits in the modal space.

(a)
(b)

Figure 2: Modal space VSIV results for 30.2 ≤ KC(d) ≤ 34: a) Peak lateral modal displacement (each lateral mode is
depicted as a different colored marker) as a function of frequency ratio parameter considering the first in-plane mode; b)
Modal orbit of selected out-of-plane mode against dominat in-plane modal response.
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Dynamics and stability of a planar three-link swimmer  
with passive visco-elastic joint in Ideal fluid  
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*Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel. 

  
Summary. We study the nonlinear dynamics of a three-link swimmer model in ideal fluid, where inertial forces due to added mass are 
dominating while viscous drag forces are negligible. We consider an underactuated swimmer where one joint is periodically actuated while 
the other joint is passive and viscoelastic, with torsional spring and damper. The swimmer’s motion depends significantly on the amplitude 
and frequency of the actuated joint angle. Optimal frequency is found where the swimmer’s net displacement per cycle is maximized, under 
symmetric periodic oscillations of the passive joint. In addition, upon crossing critical values of amplitude and frequency, the system 
undergoes a bifurcation where the symmetric solution loses stability and asymmetric solutions evolve, for which the swimmer moves along 
an arc. We analyze these phenomena using numerical simulations and analytical methods of Floquet theory and Hill’s determinant. The 
results demonstrate the important role of parametric excitation on stability of motion for flexible underactuated locomotion. 

Introduction  

Autonomous swimming robots have a promising potential for various applications such as surveillance and protection in 
marine environment, search and rescue missions, and maintenance operations within pipe systems of complex 
infrastructures [1], [2]. A common model assumes ideal fluid [3], [4], where the viscosity is negligible and the swimmer-
fluid interaction is induced by reactive forces that represent added mass effect. Our previous work [4] used this model to 
study multi-link swimmers under kinematic input prescribing all joint angles, numerically, analytically and 
experimentally (Figure 1b). Inspired by biological swimmers in nature that utilize body flexibility, the recent work [5] 
studied a modified model of planar three-link swimmer having one passive viscoelastic joint (torsional spring + damper) 
and one actuated joint with oscillating angle 𝜃ଶሺ𝑡ሻ = 𝜀 cosሺ𝜔𝑡ሻ , see Figure 1a. Unlike [4], in the semi-passive model [5] 
the excitation frequency 𝜔 and amplitude 𝜀 of the active joint have a significant effect on the response of the passive 
elastic joint and the resulting motion. 

 

 

Results 

In this work, we revisit the model in [5] and study its nonlinear dynamics and stability, both numerically and analytically. 
Numerical simulations of the system’s nonlinear dynamics result in symmetric periodic motion, in which the passive joint 
angle 𝜃ଵሺ𝑡ሻ is oscillating symmetrically about zero while the swimmer’s net motion is translation along a straight line 
(Figure 2, blue curves). For a fixed amplitude 𝜀, An optimal frequency 𝜔 is found where the net displacement per cycle 
is maximized (Figure 3, top left). Analyzing stability of periodic solutions reveals a bifurcation point depending on input’s 
amplitude and frequency, where the symmetric periodic solution loses stability and a pair of stable asymmetric solutions 
evolve, which involve oscillations of 𝜃ଵሺ𝑡ሻ about nonzero mean angle, resulting in net rotation such that the swimmer 
moves along an arc (Figure 2, red curves). Asymptotic analysis of the symmetric solution under small-angle assumption 𝜀≪1 enables obtaining explicit expressions for the optimal frequency and displacement. Analyzing small variations about 
the symmetric periodic solution gives a Hill-type equation (linear time-periodic 2nd- order ODE) whose stability can be 
approximated using truncated Hill’s determinant [6]. We obtain analytic conditions for the stability transitions depending 
on input’s amplitude and frequency, which agree with the numerical simulations (Figure 4). Finally, we conduct additional 
numerical simulations in order to analyze added effects of nonzero initial momentum, drag forces, and tension spring 
mechanism at the passive joint. 
  

(a) 

(b) 

Figure 1: (a). Swimmer model – ሺݔ, -ሻ are the position of the body-fixed reference frame origin. 𝛽 is the rotation angle of the bodyݕ
fixed reference frame. ܽ𝑖 and ܾ 𝑖 are the major and minor radii of the elliptic links. 𝜃𝑖 are the relative angles between links. (b). Our 
previous experimental robotic swimmer with two actuated joint angles [4] 

ENOC 2022, July 17-22, 2022, Lyon, France

813



 

ENOC 2020+2, July 17-22, 2022, Lyon, France 
 

 

 
 

 
 

 
 

References 
 

[1] B. Kwak and J. Bae, “Design of a robot with biologically-inspired swimming hairs for fast and efficient mobility in aquatic environment,” IEEE Int. 
Conf. Intell. Robot. Syst., vol. 2016-Novem, pp. 4970–4975, Nov. 2016, doi: 10.1109/IROS.2016.7759730. 

[2] G. Li, Y. Deng, O. L. Osen, S. Bi, and H. Zhang, “A bio-inspired swimming robot for marine aquaculture applications: From concept-design to 
simulation,” Ocean. 2016 - Shanghai, Jun. 2016, doi: 10.1109/OCEANSAP.2016.7485691. 

[3] E. Kanso, J. E. Marsden, C. W. Rowley, and J. B. Melli-Huber, “Locomotion of articulated bodies in a perfect fluid,” J. Nonlinear Sci. 2005 154, vol. 
15, no. 4, pp. 255–289, Aug. 2005, doi: 10.1007/S00332-004-0650-9. 

[4] E. Virozub, O. Wiezel, and Y. Or, “Planar multi-link swimmers: experiments and theoretical investigation using ‘perfect fluid’ model,” no. 2021776, 
2017, [Online]. Available: http://arxiv.org/abs/1710.06645. 

[5] R. Abrajan-Guerrero and S. D. Kelly, “Elastic compliance versus joint actuation in an articulated swimming robot,” IFAC-PapersOnLine, vol. 51, no. 
13, pp. 167–173, Jan. 2018, doi: 10.1016/J.IFACOL.2018.07.273. 

[6] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations. 2008. 

Figure 2: Transient simulations – Left: trajectories in joint-angles plane. Right: trajectories in x-y plane. Blue: symmetric solution, 
Red: asymmetric solution. Simulations with the same amplitude and initial condition and different frequencies result in 
significantly different solutions trajectories. 

Figure 3: Steady state solution parameters in 𝜔 and 𝜀  – Optimal frequency 
is found where the net displacement per cycle is maximized. A bifurcation 
point depending on input’s amplitude and frequency occurs, where the 
symmetric solution loses stability and a pair of stable asymmetric solutions 
evolve. Stability transitions involve Floquet multipliers crossing |𝜆𝑖|=1. 

Figure 4: Stability and instability regions and transition curves in 
frequency-amplitude plane – The analytic stability transition 
condition of Hill’s determinant predicts the first and second 
stability transitions. A third transition at higher amplitudes is not 
captured by the asymptotic analysis.  
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Effect of Piezoelectric Coupling on Dynamical Transitions of a Flexible Beam in
Viscous Flow
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∗Department of Applied Mechanics, IIT Madras, India
†Department of Aerospace Engineering, IIT Madras, India

Summary. The effect of the piezoelectric coupling on the dynamical transition of a bimorph cantilever beam in free stream flow at low
Reynolds number is numerically investigated in the present study. The results are simulated numerically by using an in-house three-
way coupled Immersed Boundary Method (IBM)-based Fluid-structure Interaction (FSI) solver. The effect of piezoelectric coupling
at low mass ratios is found to be negligible, as they exhibit periodic dynamics irrespective of the presence of piezoelectric. Without
piezoelectric coupling effect, at higher mass ratio of 5.0, the system retains the periodic dynamics. Interestingly, when the piezoelectric
coupling effect is introduced, the system transitions from periodic to aperiodic state at the same mass ratio. This study is of importance
as it gives insights on the effects of mass ratio at which the efficient energy harvesting of such systems from the piezoelectric material
can be possible.

Introduction

The recent advances in the research of alternate energy harvesters, in view of the global depletion of conventional energy
resources, is not limited to the large scale solar power or wind energy harvesters. The small scale energy harvesters,
powering micro electronic devices to automating small bio-mimetic robots have also been gaining attention from a range
of research fields. The energy harvesting strategy from flow induced vibration of flexible flappers, using piezoelectric
materials, is one such area, where the system requires a study in fluid structure interaction (FSI), vibration energy har-
vesters, as well as non linear dynamical characterization of the multiple parameters involved in it. A number of studies in
the past and recent times, have contributed towards the development of these flow harvester models, from rigid cylinders
with piezo patches in Zhu et al.[1] to more complex bluff body-flexible splitter plate models of Akaydin et al. [2]. In
the current study, a flexible cantilever beam model, layered with PZT-5A on both sides (bimorph), has been placed in a
viscous fluid, with an oncoming free stream velocity taking the beam to flutter for certain parametric regime. A study on
the flutter condition by varying the stiffness and inertia parameters, for an FSI problem was presented in Akcabay et al.[3]
and the energy harvesting potential was discussed. However, the authors have not commented on the effect of piezoelec-
tric coupling in the dynamical transition of the system. Therefore, the present study intends to give a comparative analysis
on the effect of the presence of piezoelectric coupling on the flutter conditions and energy harvesting capability.

Computational Methodology

A flexible beam layered with PZT-5A on both sides considered in the present study is inextensible where the length of
the beam is Ls = 1.0. The leading-edge of the beam is fixed and the rest of the body is free to oscillate in the fluid. The
non-dimensional governing equation of motion for the flexible beam is given by [3]

β
∂2X

∂t2
=

∂

∂s

(
Ts
∂X

∂s

)
− ∂2

∂s2

(
γ
∂2X

∂s2

)
+ νV

d

ds
[δ(s)− δ(s− L)] + F, (1)

where X = (X(s, t), Y (s, t)) is the instantaneous position of the beam, s is the arc length, δ is a Dirac-Delta function,
β = ρsq/ρfLs is the mass ratio (ρs, ρf and q are the structural density, fluid density and thickness of the beam, respec-
tively). ρfU2

∞Ls is used to non-dimensionalize tension coefficient (Ts), ρfU2
∞L

3
s is used to non-dimensionalize bending

stiffness (γ), t is the non-dimensional time, V is the voltage output non-dimensionalized by LsU∞(ρf/ǫ)
1/2, ν is the

piezoelectric coupling term non-dimensionalized by LsU∞(ρf ǫ)
1/2 and F is the Lagrangian forcing acting on the solid

body non-dimensionalized by ρfU2
∞. The non-dimensional energy equation for bimorph is given by,

1

2

∂V

∂t
+
qqp
Rb

V (t) = −
∫ 1

0

ν
qqp(1− qp)

2

∂3x

∂t∂s2
, (2)

where qp is ratio of the thickness of one piezoelectric layer with the total thickness of the beam (piezo+substrate), Rb
is the non dimensional resistance of the piezoelectric circuit. The structural equation (eq.1) and the energy equation
(eq.2) have been discretized by using finite difference method (FDM), details of which can be found in [6]. The viscous
flow around the flexible beam is governed by the unsteady Navier-Stokes equations. The momentum conservation and
continuity equations in non-dimensional form can be written as,

∂u
∂t

+∇. (uu) = −∇p+ 1

Re
∇2u + f; (3)

∇.u− qs = 0. (4)

Where u is the flow velocity vector non-dimensionalized by U∞, Re = ρfU∞L/µ is the Reynolds number and pressure
p is non-dimensionalized by ρfU2

∞. The momentum forcing term f is added throughout the solid domain to ensure no
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slip and no penetration boundary condition is satisfied at the solid boundary and mass conservation is satisfied by adding
a mass source/sink term (qs) to the continuity equation [4]. The fluid, structure and energy equations are coupled in
staggered manner where they exchange their information at every time-step.

Results and Discussions

The bimorph flexible beam has been kept in the free stream flow and the simulations are carried out for cases where,
γ = 10−2 and Re = 200 are kept constant. The model has been tested with and without piezoelectric coupling for a wide
range of β values, and the case where the dynamical transitions due to electrical coupling is tangible, has been presented
in this section. At the mass ratio of β ∈ (0.05, 1.0), the system either settles to zero oscillation or shows a periodic
flutter, which is unchanged with or without the piezoelectric coupling. However, for mass ratio as high as β = 5.0, the
piezoelectric coupling plays a crucial role in the dynamical transitions. In the absence of piezoeletric coupling, the system
exhibits periodic dynamics as shown in Figs. 1(a)-1(c). The tip displacement time history shows no modulation in the
amplitude, signifying periodic dynamics (see Fig. 1(a)). The corresponding structural envelope shows mixed mode shape
oscillations i.e. 1st and 2nd modes; see Fig. 1(b). The flow field shows the effect of periodic vibration giving rise to a
2p periodic vortex street (Fig.1(c)). However, the system transitions to an aperiodic state in the presence of piezoelectric

(a) (b) (c)

(d) (e) (f)

Figure 1: Time histories of beam-tip, beam envelopes and corresponding flowfields without piezo-coupling ((a)-(c)) and
with piezo-coupling ((d)-(f)), respectively.

coupling as shown in Figs. 1(d)-1(f) where tip displacement time history shows modulation in the amplitude (Fig. 1(d))
and in the corresponding flow field the vortices are not well-organised (Fig. 1(f)), signifying the characteristics of aperiodic
state. The irregular bending is also reflected in the the structural envelope (Fig. 1(e)). The effect of different coupling
strengths (ν) are also being investigated currently in our group, to understand the effect of the different piezoelectric
materials and will be presented in the the full length paper.

Conclusions

The effect of piezoelectric coupling in the dynamical transition of the three-way coupled FSI system is investigated in the
present study. The system evinces periodic dynamics at the higher mass ratio of β = 5.0 in the absence of piezoelectric
coupling. On the contrary, the system transitions to the aperiodic state in the presence of piezoelectric coupling. This
study is of importance to identify the proper parametric regime in terms of mass ratio, piezoelectric coupling and bending
rigidity in which the energy can be harvested efficiently. The authors are further investigating the effect of different
dynamical state on the energy harvesting efficiency of the system.
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Summary. Applying the Extended Hamilton’s Principle for nonmaterial volumes, a nonlinear reduced-order planar model of a can-
tilevered pipe conveying fluid is developed, consistently considering the effects of axial extensibility and conservation of mass asso-
ciated to the internal flow. Unlike the corresponding inextensible pipe models, in which the term of transport of kinetic energy in
the Extended Hamilton’s Principle cancels out, in the present model such a term is not identically zero since the velocity of the flow
along the pipe length is a function both of the generalized velocities and coordinates of the problem. The system dynamics is then
investigated, assessing how extensibility and mass conservation affect dynamic bifurcations, by comparing root locus diagrams, and by
simulating the resulting nonlinear model in some selected scenarios.

Introduction

One of the classical problems of Fluid-Structure Interactions (FSI) is the pipe conveying fluid, which is usually modeled
as a flexible tube, with the use of the plug flow hypothesis for the velocity profile of the fluid. In general, the dynamic
response is characterized by two types of motion depending on the internal flow velocity: stability around the static
equilibrium position or dynamic Hopf bifurcations. As an open system, a proper mathematical formulation should be
grounded on consistent variational principles, taking into account momentum and kinetic energy transport terms.
Benjamin [1] was responsible for the earlier investigations in this topic and considered the problem as a chain of articulated
rigid pipes conveying fluid. He derived specific versions of Euler-Lagrange Equations and Hamilton’s Principle for this
system. Later, McIver [2] developed an extended form of Hamilton’s Principle for open systems and confirmed Benjamin’s
work. In both studies, a term related to the transport of momentum appears.
Recently, the generalized forms of these principles were obtained by Irschik & Holl [3] and Casetta & Pesce [4]. In their
derivation, an additional term related to the transport of the kinetic energy of the fluid through the nonmaterial surfaces
appears, which was not present in McIver’s formulation. When the inextensibility condition is assumed, the velocity of
the internal plug flow relative to the pipe remains constant. Kheiri & Païdoussis [5] proved that, in this case, the term
related to the transport of kinetic energy is identically zero, recovering McIver’s formulation. However, when the axial
extensibility of the pipe is considered, this term is not zero in the nonmaterial surface at the free end. Therefore, further
discussion is needed to assess its theoretical and practical importance.
The present work proposes the formulation and analysis of a 2D reduced-order model for the cantilevered pipe conveying
fluid, in which the extensibility is treated consistently, accounting for the conservation of fluid mass inside the pipe.
Moreover, from Argand’s type diagrams (root loci graphs) obtained through Lyapunov’s indirect method, instabilities of
the oscillatory modes are assessed. After these investigations, the nonlinear response in some selected scenarios is further
analyzed through numerical simulations.
This introduction is followed by four sections, with the last of them bringing concluding remarks. The second section re-
views the Extended Hamilton’s principle for open systems. The third section describes the extensible pipe conveying fluid
model, highlighting how the flow velocity expression is obtained by the application of the integral form of the conservation
of mass, and deriving the equations of motion based on the definition of dimensionless variables and Galerkin’s projection
scheme. In the fourth section, some results are shown in the form of root loci diagrams obtained by a linearization around
the static equilibrium, and on numerical integrations of the nonlinear equations of motion.

Hamilton’s Principle for Open Systems or Nonmaterial Volumes

In the field of Continuum Mechanics, a material volume is understood as a volume whose closed boundary is moving
with the material particles located in it. Because no transport of matter may occur, it can be also called a closed sys-
tem. Whereas a nonmaterial volume - or a control volume in the terminology of Fluids Mechanics - is a fictional body
which instantly coincides with a region defined by material particles; however, its control surface moves arbitrarily with
respect to the material boundary, so that the particles accounted within the nonmaterial volume are not always the same,
characterizing an open system. Although Hamilton’s Principle and the Euler-Lagrange Equations are well formulated for
material volumes or closed systems, the use of these variational approaches in problems where material transport exists is
not straight-forward and needed further discussion.
According to Meirovitch [6], Hamilton’s Principle for closed systems can be derived through the principle of virtual work
for material volumes (D’Alembert’s Principle). Assuming that δ denotes a variation in the context of Variational Calculus
and d( )

dt is the material derivative with respect to time t, it follows,

δT + δW − d

dt

∫

V

ρ (v · δp) dV = 0, (1)
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where V is the the material volume and T = 1
2

∫
V
ρ(v·v) dV is the kinetic energy associated with the material particles of

mass density ρ, position p with virtual displacement δp - which satisfies any imposed constraints - and velocity v = dp
dt .

δW is the virtual work of the conservative and nonconservative forces.
By integrating (1) over the time interval t1 ≤ t ≤ t2 and considering that the configuration of the system is prescribed at
the limit points (thus, δp(t1) = δp(t2) = 0), Hamilton’s Principle for material volumes is obtained

∫ t2

t1

[δT + δW ] dt = 0. (2)

McIver [2] was one of the first authors who derived an extended form of Hamilton’s Principle for nonmaterial volumes
by using Reynolds’ transport theorem in the form below, developing the third term of Equation (1) in the form,

d

dt

∫

V

ρ (v · δp) dV =
d

dt

∫

Vu

ρ (v · δp) dVu +

∫

∂Vu

ρ (v · δp) (v − u) · n d∂Vu. (3)

Consider Vu as the the nonmaterial volume whose surface ∂Vu, with external normal unit vector n, is moving according
to a velocity field u. Thus, McIver’s statement of the principle of virtual work for open systems is obtained and the
corresponding Hamilton’s Principle can be derived through a similar mathematical procedure as described for material
volumes,

∫ t2

t1

[
δTu + δW −

∫

∂Vu

ρ (v · δp) (v − u) · n d∂Vu

]
dt = 0. (4)

McIver revealed an extra term related to the transport of momentum through the open boundary which is not present
in closed systems, as observed when compared to Equation (2). Also, the author implicitly utilized δT = δTu with
δTu = 1

2

∫
V
ρ(v · v) dV as the kinetic energy of the material particles within the nonmaterial volume Vu.

Later, it was found out that McIver’s derivation does not recover the extended Euler-Lagrange equations for open systems
obtained by Irschik & Holl [3]. In their paper, the authors derived the extended equations using the abstract concept of
fictitious particles, which was first introduced in Truesdell & Toupin [7] for the generalization of Reynolds’ transport
theorem. These fictitious particles have some of same properties of their material counterparts like kinetic energy density,
but their velocity is u, the same of the control surface ∂Vu. Consider that r represents their position and δr is the
corresponding virtual displacement. Therefore, u = dr

dt . Further investigation of Hamilton’s principle for nonmaterial
volumes was then necessary.
This inconsistency was addressed in a paper by Casetta & Pesce [4]. Applying the concept of fictitious particles, the
following mathematical statement can be proven

δT − d

dt

∫

V

ρ (v · δp) dV = δTu +

∫

∂Vu

1

2
ρ (v · v) (δp− δr) · n d∂Vu

− d

dt

∫

Vu

ρ (v · δp) dVu −
∫

∂Vu

ρ (v · δp) (v − u) · n d∂Vu.

(5)

Replacing the first and the third terms of Equation (1) with Equation (5), a consistent form of the principle of virtual work
for open systems is written. By integrating with respect to t over t1 ≤ t ≤ t2, the appropriate Hamilton’s Principle was
derived and Irschik & Holl [3] extended Euler-Lagrange Equations could be obtained. In this case, Hamilton’s Principle
for nonmaterial volumes is written as follows, [4]:

∫ t2

t1

[
δTu + δW −

∫

∂Vu

ρ (v · δp) (v − u) · n d∂Vµ +

∫

∂Vu

1

2
ρ (v · v) (δp− δr) · n d∂Vu

]
dt = 0. (6)

In contrast to Equation (4), not only a term for the transport of momentum appears, but also one related to the flux of
kinetic energy through the control surface. Respectively, the third and fourth terms.
Whenever the last term of Equation (6) is equal to zero, McIver’s form - Equation (4) - is recovered, which has been
extensively utilized for the modeling of the pipe conveying fluid. In fact, take a system described by a set of a finite
number of generalized coordinates qi. Assume ˙( ) = ∂( )

∂t . The following identities are valid: δp = ∂p
∂qi
δqi =

∂v
∂q̇i
δqi and

δr = ∂r
∂qi
δqi =

∂u
∂q̇i
δqi. In the case of an extensible pipe, from those identities, it can be proved that the last term in Eq (6)

is nonzero, as outlined in the next section.

Extensible Pipe Conveying Fluid

Imagine a cantilevered, slender, cylindrical and flexible pipe constituted by an elastic linear material, that is subjected
to large displacements and small strains in a 2D plane. Therefore, it can be considered as a Euler-Bernoulli beam with
geometric nonlinearities. Its undeformed configuration is vertical. An internal axial, steady and incompressible flow is
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(a) Extensible pipe conveying
fluid.

Cross section AA

(b) Infinitesimal volume of the tube with length
ds.

Figure 1: The 2D model.

present and its velocity profile is modeled as a plug flow. No external fluid or hydrodynamic loads exist. The pipe is
considered slender, so a singular position could be described by the centerline. The system is depicted in Figure 1a.
The fixed point of the centerline is adopted as the origin of a coordinate system (x, z) with corresponding unit vectors
(e1, e2), defining an orthonormal basis. The x-coordinate is parallel to the length of the tube in the reference position and
aligned with the local gravitational field. Thus, its undeformed configuration is denoted by (x0, z0) = (x0, 0), with x0 = 0
being the fixed end and x0 the free end. The associated position vector is R = (x, z), displacements are u = x− x0 and

w = z − z0 = z, s is the arc length coordinate along the centerline and κ =
∣∣∣∂R2

∂s2

∣∣∣ is the curvature.

The unstretched pipe length is L, its bending stiffness is EI , axial stiffness EA, Poisson’s ratio ν (volume change rate
b = 1 − 2ν) and linear mass m. Consider E as the Young’s modulus, A as the sectional area (Ai is the internal area)
and I as the area moment of inertia around the z-axis. The fluid linear mass is M and the flow has a velocity Uτ , in
which τ = ∂R

∂s is the instantaneous tangent unit vector. The gravitational acceleration is g. The nonmaterial volume is
constituted by the open surfaces Sae ∪ Sas and the closed boundary Sf .

On the modeling of the internal flow velocity
If the pipe is considered inextensible, the velocity field U is equal to the constant U0. When the extensibility condition is
utilized, Ghayesh, Païdoussis & Amabili [8] proposed an expression for U along the pipe length based on the conservation
of the volumetric flow rate inside the pipe

U = U [qi] =
1 + ε[qi]

1 + bε[qi]
U0, (7)

where ε is the axial strain. As ε is a function of the generalized coordinates of the problem, so is U .
In the present work, the authors adopt the conservation of mass for incompressible flows applied in an infinitesimal volume
of the tube (Fig. 1b) to obtain an generalized form for U . Consider that its length is ds and the velocities upstream and
downstream are U and U + dU = U + ∂U

∂s ds, respectively. Using the definition of ∂U
∂s ds = ∂U

∂s
∂s
∂x0

dx0 = ∂U
∂x0

dx0,

ε = ds−dx0

dx0
and area variation due to Poisson effect through the volume change rate b, it can be proven that

U = U [q̇i; qi] = U0 −
∫ x0

0

b(1 + ε[qi])

1 + bε[qi]

∂ε[qi]

∂t
dx0. (8)

Notice that the expression above is a function of both the generalized coordinates and velocities of the problem.

Derivation of the equations of motion
The equations of motion in the continuum are formulated up to polynomial cubic-order terms with Equation (6) and
discretized with Galerkin’s method, originating ODEs. The kinetic energy Tu accounts for the tube and fluid particles, so

Tu =
m

2

∫ L

0

Ṙ · Ṙ dx0 +
M

2

∫ L

0

(
Ṙ+ Uτ

)
·
(
Ṙ+ Uτ

)
dx0. (9)

Suppose, for the sake of simplicity, that the work of the nonconservative forces is identically null, thus W = −V , in
which V is the potential energy related to the deformation of the pipe and the gravitational field
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V =
EA

2

∫ L

0

ε2 dx0 +
EI

2

∫ L

0

(1 + ε)2κ2 dx0 − (m+M)g

∫ L

0

x dx0. (10)

Considering the nonmaterial volume, we can write v = Ṙ + Uτ and u = Ṙ, therefore, δp =
(
∂Ṙ
∂q̇i

+ τ ∂U
∂q̇i

)
δqi and

δr = ∂Ṙ
∂q̇i

δqi. The transport terms are nonzero only if x0 = L, so

∫

∂Vu

ρ (v · δp) (v − u) · n d∂Vµ = MU

[(
Ṙ+ Uτ

)
·
(
∂Ṙ

∂q̇i
+ τ

∂U

∂q̇i

)]
(τ · τ ) δqi

∣∣∣∣∣
x0=L

, (11)

∫

∂Vu

1

2
ρ (v · v) (δp− δr) · n d∂Vu =

M

2

∂U

∂q̇i

[(
Ṙ+ Uτ

)
·
(
Ṙ+ Uτ

)]
(τ · τ ) δqi

∣∣∣∣
x0=L

. (12)

A discussion about the term related to the flux of kinetic energy - Eq. (12) - is also found in Kheiri & Païdoussis [5].
This term relies on the value of δp− δr = τ ∂U

∂q̇i
δqi. If the pipe is ideally inextensible, U = U0 and ∂U

∂q̇i
= 0. When the

extensibility condition is utilized as in Ghayesh, Païdoussis & Amabili [8], Equation (7), the velocity U is not a function
of the generalized velocities, therefore, it still cancels out. The present research proposes Equation (8) as an expression
for U . Under this condition, ∂U∂q̇i ̸= 0.
The polynomial cubic-order equations of motion in the continuum are derived following Variational Calculus techniques.
Considering established dimensionless quantities well defined in the literature listed in Table 1, the PDEs can be rewritten
and discretized via Galerkin’s method.

Table 1: Dimensionless quantities.

Dimensionless parameter Symbol Definition

Undeformed coordinate ξ
x0
L

Axial coordinate and displacement x̂, û
x

L
,
u

L

Transversal coordinate and displacement ẑ, ŵ
z

L
,
w

L

Time τ

(
EI

M +m

)1/2
t

L2

Axial and flexural stiffness ratio α
EA

EI
L2

Internal flow velocity v

(
M

EI

)1/2

U0L

Quotient between linear masses β
M

M +m

Gravitational and flexural stiffness ratio γ
M +m

EI
gL3

For the proposed discretization, the ODEs are obtained assuming

û[ξ; τ ] ∼=
N∑

k=1

ψk[ξ]ûk[τ ], (13)

ŵ[ξ; τ ] ∼=
N∑

k=1

ψk[ξ]ŵk[τ ], (14)

in which ψk represents the family of projection functions

ψk[ξ] =
√
2

(
1− cosΛkξ

Λk

)
. (15)

Each value Λk results from the characteristic equation cosΛk = 0. With these definitions, fixed end boundary conditions
û[ξ = 0; τ ] = 0, ŵ[ξ = 0; τ ] = 0 and ∂ŵ

∂ξ [ξ = 0; τ ] = 0 are satisfied.
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Results

Through a process of linearization of the corresponding nonlinear ODEs around the static equilibrium configuration -
using v as a control parameter - root loci diagrams can be obtained and the stability of the system evaluated with the
determination of the critical velocity vcrit by assessing the real part of the eigenvalues, following Lyapunov’s indirect
method. Numerical integration is utilized to verify the dynamic behavior observed in the Argand’s type diagrams.
The nonlinear equations of motion of the inextensible pipe conveying fluid obtained by Semler, Li & Païdoussis [9] are
also discretized with Equation (14) and analyzed. These results are compared with the proposed extensible model, which
is consistent with the continuity equation, and the extensible system found in Ghayesh, Païdoussis & Amabili [8].
Two distinct scenarios of Table 3 are investigated with N = 8. The values are commonly used in the technical literature.

Table 2: Chosen scenarios.

Scenarios β α ν b γ

S1 0.2 1000 0.5 0 0

S2 0.2 1000 0.5 0 100

It is important to note that the static equilibrium configuration for the transversal displacement is equal to zero because
no external forces are assumed. For the extensible models, the axial static displacement is a function of γ and v, and is
depicted with a graphic of u × v for some cross sections of the pipe; while the static displacement is identically zero in
the inextensible case.

Root loci of the linearized models
The root loci diagrams show how each period Ti evolves with v, also displaying a color scale related to the value of
the real part of the corresponding eigenvalue λi , i.e., characterizing the stability of the system in the neighborhood of
the static equilibrium points. The eigenvalues and periods related to the transversal modes are shown in the inextensible
diagrams. In the extensible ones, the associated axial quantities are perceived.
Figures 2 and 3 illustrate the stability analysis of S1. According to Figures 2, 3b and 3d, a Hopf bifurcation in the second
transversal mode occurs at approximately the same value, defining the critical velocity vcrit ≈ 5.6. The curves associated
with the transversal modes are similar, with discrepancies for higher values of v in the post-critical interval, related to the
order of the terms utilized in the derivation of each set of equations of motion and their linearizations. The axial periods
present in the extensible diagrams remain almost constant. The main difference between the extensible models can be
found in the axial static equilibrium configuration of Figures 3a and 3c: with the increase of v, a contraction is present
in all the cross sections of the proposed extensible model, while in the results from Ghayesh, Païdoussis & Amabili [8],
there is no static displacement.

0 2.5 5 7.5 10 12.5 15 17.5 20
0.001

0.010

0.100

1

10

v

Τ i=2
π/|Im

[λ i]|

v crit = 5.6

Re[λi]

≤-2

-1

0

1

≥2

Figure 2: Root locus of the inextensible model for Scenario S1.

The stability analysis of Scenario S2 is presented in Figures 4 and 5. The gravitational effects associated to γ ̸= 0 are well
documented in the literature, thus, a higher critical velocity is expected and noticed. In all the models, a Hopf bifurcation
happens in the third transversal mode. For the inextensible model and the extensible model formulated in [8], Figures 4
and 5d, vcrit ≈ 10.5, whereas in the proposed extensible model, Figure 5b, vcrit ≈ 11.3, a significantly different value.
The periods related to the axial modes are still relatively constant with v.
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The behavior of the axial static configurations of Figures 5a and 5c are remarkably distinct: as γ > 0, there is a pipe
elongation present in both of the graphs at v = 0, but a contraction in all the cross sections exists for the proposed
extensible model and the elongation becomes higher in the case of the model based on [8].
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(a) Axial static equilibrium configuration of the proposed ex-
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(d) Root locus of the model derived in [8].

Figure 3: Stability analysis of the extensible models for Scenario S1.
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Figure 4: Root locus of the inextensible model for Scenario S2.
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Figure 5: Stability analysis of the extensible models for Scenario S2.

Numerical integration
Numerical integration of the nonlinear equations of motion of Scenario S2 at v = 11 is done to verify the different
behaviors foreseen from the root loci: for the ideally inextensible model and the extensible model of Ghayesh, Païdoussis
& Amabili [8], there is a dynamic instability denoted by limit cycles; for the extensible model proposed in this work,
the root loci indicate stability in the vicinity of the static equilibrium points. The free end (ξ = 1) axial and transversal
displacements are shown in the Figures 6 and 7.
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Figure 6: Numerical integration of Scenario S2 at v = 11 of the inextensible model shows dynamic oscillatory instability.
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Figure 7: Numerical integration of Scenario S2 at v = 11 of the proposed extensible model shows stability around the
static equilibrium, while Ghayesh, Païdoussis & Amabili [8] extensible model displays a post-critical oscillatory regime.

The results obtained in time domain are consistent with those predicted by the linear analysis. Post-critical oscillatory
regimes are noticed in the graphics of the inextensible and Ghayesh, Païdoussis & Amabili [8] models, whereas the
proposed extensible model - which satisfies the conditions of the conservation of mass - shows stability.

Concluding Remarks

In this paper, a 2D reduced-order model for the cantilevered extensible pipe conveying fluid problem is proposed, in
which the necessary conditions for conservation of mass (continuity equation) are satisfied. This model is obtained using
the Extended Hamilton’s Principle for nonmaterial volumes as formulated in Casetta & Pesce [4], with a cubic-order
polynomial truncation and approximation followed by a discretization procedure based on Galerkin’s method.
Although the formulation of the extensible model has similarities with nonlinear models of large displacements and small
strains much discussed in the technical literature, the main difference is the consistent consideration of the conservation
of mass in the internal flow. With such a hypothesis, a closed-form expression along the pipe length for the internal
velocity U can be derived, which is a function of both the generalized coordinates and velocities of the problem (Eq.
(8)). Previously, an extensible model discussed in Ghayesh, Païdoussis & Amabili [8] utilized Equation (7), in which the
internal velocity U only depends on the generalized coordinates.
These distinct expressions for U have implications in the term related to flux of kinetic energy present in the Extended
Hamilton’s Principle, the fourth term of Equation (6). Under the assumption of an ideally inextensible pipe or Ghayesh,
Païdoussis & Amabili [8] extensible model, this term is identically zero and the Hamilton’s Principle for nonmaterial
volumes is reduced to a form first obtained in McIver [2], Eq. (4). With the consideration of the proposed extensible
model, the term associated with the transport of kinetic energy is nonzero and scenarios are investigated to study its
influence on the dynamic response of the system.
Two tools are utilized for the comparison of the inextensible equations of motion of Semler, Li & Païdoussis [9], the
extensible model described in this work and the extensible one obtained in Ghayesh, Païdoussis & Amabili [8]: (i) root
loci diagrams calculated in the neighborhood of the static equilibrium configuration with v as control parameter and the
characterization of the stability condition through Lyapunov’s indirect method; (ii) numerical integration of the discretized
nonlinear equations of motion to verify the dynamic behavior predicted by the root loci diagrams.
The analysis indicate a similar response for Scenario S1 for all the models, with a Hopf bifurcation associated with the
second transversal mode determining a critical velocity of vcrit ≈ 5.6. The axial static equilibrium configuration of the
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extensible models are distinct: for the proposed model, there is a contraction with the increasing of v, whereas for the
extensible one derived in [8], the static displacement is zero.
For Scenario S2, a Hopf bifurcation occurs at the third transversal mode, but for the consistent extensible model vcrit ≈
11.3, and for the others, vcrit ≈ 10.5. The root loci diagrams show a deviation of the present critical velocity with the
numerical integration, confirming the expected response at v = 11 for the models. The axial static equilibrium remains
different for the two extensible pipes.
Thus, extensibility effects may have substantial practical implications in the dynamics of this kind of system. The results
obtained with the proposed extensible model reveal a higher critical velocity in a given scenario and different axial static
configurations when compared to the cited previous models.
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Summary. We develop two frameworks for “freezing” modulationally unstable wave packets of gravity waves over an uneven bottom
modeled by a finite-depth third-order non-linear Schrödinger equation. We compare with experimental results in a 30 m wavetank
featuring a sharp depth transition and propose a theoretical route for stabilizing of the modulated wave packets over an “adaibatic”
depth variation.

Theoretical framework and experimental setup

We consider the stabilization of modulationally unstable wave packets within the framework of the nonlinear Schrödinger
equation (NLS) in variable water depth [1].

i
∂U

∂ξ
+ α(kh)

∂2U

∂τ2
− β(kh)|U |2 U = −iµ0

∂(kh)

∂ξ
U (1)

This is possible thanks to the simultaneous dependence of the parameters α and β in Eq. (1) on the adimentional depth
(kh), and has also been verified in an optical fiber experiment [4], where there is even more freedom to change the
parameters.
We provide two frameworks for the understanding and development of the stabilization, or “freezing”, of highly mod-
ulated waves. The first theoretical framework is to connect a solution related to modulationally unstable waves, such as
the Akhmediev breather (AB), to a solution like the dnoidal function which is related to a stable wavepacket. The second
consists in reducing the phase space to that of a carrier wave of frequency ω0 and the first two sidebands at ω0 ± Ω (the
so-called three wave picture). In this context, “freezing” the wave packet corresponds to an expansion of a homoclinic
orbit and its transformation into an elliptic fixed point through the simultaneous variation of the NLS parameters α and β.
We experimentally demonstrate this process in a 30× 1 m2 water wave tank with a fake bottom floor as shown in figure
1 (a), and provide a rigorous theoretical description of this process for a sharp change in bathymetry [3]. We also provide
a stabilization route when the bathymetry change is very slow [2]. The theoretical predictions in the three-wave picture
and the measurements show that the relative phase among the side-bands locks to π and their relative amplitude oscillates
around a finite value (fig 1, panels on the right). As shown in figure 1, apart from a 10% conversion to higher-order
side-bands, this implies that the breathing stage of modulation instability (MI) is indeed frozen. We confirm that this
complex wave dynamics is robust and such control of MI processes is feasible in a realistic experimental system. Our
results highlight the influence of topography and how waveguide properties can influence and manipulate the lifetime of
nonlinear and extreme waves.

Conclusions

We study the nonlinear stage of evolution of modulational instability in surface gravity waves over a water body of
increasing depth. We show that this stage can be stabilized and results in a uniform train of pulses on a background.
The initial condition does not need to be restricted to an exact NLS solution (as ABs), since we have shown that freezing
occurs also in a three-wave system.
We have found a theoretical condition to dynamically stabilize unstable nonlinear waves. While the approach applies
to any system described by the NLS equation, and could therefore be easily generalized to other dynamical models, we
have experimentally confirmed our finding for the specific case of wave hydrodynamics. A sharp change in water depth
simultaneously modifies the dispersion and nonlinearity experienced by surface gravity wave packets, thus dramatically
modifying their dynamical behaviour. In the case of ABs, the separatrix expands and ends up enclosing the system
trajectory, which is stabilized around an elliptic fixed point. This jump can be described as the optimal matching of an
initial AB solution to a steady dnoidal solution of the universal NLS equation, illustrating the generality of this wave
control process.
Although the flexibility available to vary parameters in the hydrodynamics of surface water-waves is much less than
in other physical systems, such as optical fibers, our results help to clarify the possibility to dynamically control the
breathing evolution of water wave-packets and to understand the impact of bathymetry on the persistence (or lifetime) of
rogue waves.
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Figure 1: Left: (a) Water wave flume with artificial floor setup (cyan line), and the constant floor setup (dashed coral line). (b) Wave
height at each recorded position for the experiment with variable bathymetry, multiplied by a factor 20; the gray stripe indicates the
position of the step. (c) Wave height at each recorded position for the experiment with constant bathymetry, multiplied by a factor 20.
(d)–(k) Sideband evolution of the AB-type surface water wave over the adopted bathymetry with the depth step (d),(e),(f),(g), and the
constant flat bottom h0 (h),(i),(j),(k). Here the initial condition for the envelope is of the form U(ξ, τ = 0) = u0e

iϕ0 + u1e
iΩϕ1 +

u−1e
−iΩϕ−1 , the sideband fraction ηj = |uj |2/(|u0|2 + |u1|2 + |u−1|2) and the relative phase ψ = (ϕ1 + ϕ−1)/2 − ϕ0. (d)–(h)

Sideband dynamics as identified from the eight gauge measurements, connected by a linear interpolation; (g)–(i) corresponding NLS
equation-simulated evolution. (d),(e),(h),(i) Sideband fractions η0, η1, η2 of modes at detuning 0 (carrier), Ω, and 2Ω, respectively.
(f),(g),(j),(k) Phase ψ of first-order sidebands (modes at ±Ω) relative to the carrier frequency .

Figure 2: Evolution of the envelope amplitude (shown in meters on the colorbar) from a perturbated plane wave initial condition to a
stabilized modulated wave packet over a constant slope from 2 m to 5 m.
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Experimental Investigation of Flexible Cantilevered Pipes Aspirating Water under VIV 
 
Wagner Defensor, Celso Pesce, Guilherme Franzini, Guilherme Vernizzi, Vitor Maciel, Renato Orsino 

Offshore Mechanics Laboratory, Escola Politécnica, University of São Paulo, Brazil 
  
Summary. An innovative hydrodynamic campaign investigated three immersed flexible cantilevered aspirating pipes under VIV in a 
towing tank. Three experimental conditions have been considered: (i) aspirating flow; (ii) pure towing; (iii) combined aspirating and 
towing. Hopf bifurcations appeared in the aspirating case. Effects of supercritical internal flow on VIV were assessed and found small. 

The experimental methodology and some results 

The present extended abstract brings some experimental results concerning a hydrodynamic test campaign held at the 
Technological Research Institute (IPT) towing tank facility. The campaign showed ‘weak’ instabilities, of the Hopf 
bifurcation type, followed by fluttering of aspirating cantilevered flexible pipes, [1], [2], [3], and verified their small 
influence on VIV. Three flexible pipes, made of reinforced rubber hoses, with brass ballasts attached to the free end, 
were designed and built to respond, at the same towing speed, but each one at a distinct mode of vibration, the 1௦௧, 2ௗ  
or 3ௗ  (Figure 1, above, left). The motions of the pipes were tracked down by an underwater optical system. The 
ballasted-hose concept and the desired natural mode of vibration were identified by the acronyms BH-𝑘;  𝑘 = 1,2,3. An 
in-house mathematical model [3] was specially derived and implemented to guide the design. Argand’s like diagrams 
predicted instabilities for all modes at very small internal aspirating flow velocities, (example for the BH-2 model in 
Figure 1, above-right). Aspirating flows up to 2𝑣௧  were assessed, isolated and combined with towing (up to the modal 
reduced velocity 𝑈௬∗ = 𝑈 𝑓௬𝐷⁄ ≈ 14; 𝑛 = 1,2,3). Data analysis employed Galerkin’s projection techniques in time 
domain, with modal functions obtained in the deformed configurations (also provided by the in-house model), followed 
by an innovative filtering procedure that uses the Empirical Mode Decomposition ([4], [5]), to remove very low 
frequency contents outside VIV’s range (Figure 2, charts below). Such slow motions occurred in the streamwise 
direction, as consequence of drag fluctuations due to the model deflection and the emission of tip vortices structures. 
 

  

  
Figure 1: Above: left, ballasted-hose models; right, root-loci diagram, model BH-2. Below: aspirating case at 𝑣 = 2𝑣௧ .; left to 

right: spanwise trajectories projections, amplitude spectra and coordinate scalogram, in the crosswise direction w.r.t. towing. 
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Figure 2: Model BH-2. Above, left to right: spanwise trajectories projections, amplitude spectra and coordinate scalogram, in 

crosswise direction. Below. EMD filtering of modal amplitude time series of the 1௦௧  and the 2ௗ mode shapes in streamwise (left) 
and crosswise (right) directions. Towing at modal reduced velocity 𝑈ଶ௬∗ = 8.37 (𝑈 = 0.33 m/s). 

  
Figure 3: Model BH-2. Dimensionless modal amplitudes 𝐴௫∗  and 𝐴௬∗  and dimensionless dominant oscillation frequencies 𝐹௫∗  and 𝐹௬∗  of the 𝑛௧ vibration mode contributions, as function of modal reduced velocity 𝑈ଶ௬∗ , in streamwise (left) and crosswise (right) 

directions. Empty markers: towing only. Filled markers: towing and aspirating at 𝑣 = 2𝑣௧ . 
In pure aspirating conditions, at 𝑣 = 2𝑣௧, a 1௦௧ natural mode instability is depicted in the spanwise amplitude spectra 
at 𝑓௬∗ ≈ 1.25 and in the scalogram, coordinate shifting between positive and negative values along time (Figure 1, 
below, left and right, respectively). An expected behavior showed up in the pure towing case, the 2ௗ  natural mode 
shape dominating the dynamics (Figure 2, above). An example of the EMD filtering procedure is presented in Figure 2 
(below). VIV is practically not altered by the aspirating flow, even at 𝑣 = 2𝑣௧ (Figure 3). Aside a small decrease in 
amplitudes and in the respective dominant frequency values, no significant differences in modal responses were 
observed, compared to the pure towing case. Moreover, the aspirating flow mitigated the low frequency content in the 
streamwise oscillation, possibly by changing the tip vortex field structure. A more detailed analysis shall be presented in 
the full paper. 
Acknowledgements: To Shell Brazil, for the financial support through the ANP R&D levy regulation. To CAPES-PhD and FUSP DR-C project nº 
3456 scholarships. To CNPq for the research grants 308230/2018-3 and 305945/2020-3. To IPT, for the use of the towing tank facility. To FAPESP 
for supporting the development of the basic mathematical formalism which set the fundamental grounds for this work (grants 2016/09730-0 and 
2013/02997-2) and for supporting the Conference attendance, grant 2022/04072-5. To Prof. Dr. Gustavo Assi and Dr. Pedro C. de Mello. 
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Flow-induced vibrations of two circular cylinders in tandem in a cross flow

Jisheng Zhao∗†, Mark C. Thompson† and Kerry Hourigan†

Fluids Laboratory for Aeronautical and Industrial Research (FLAIR),
Department of Mechanical and Aerospace Engineering,
Monash University, Clayton, Victoria 3800, Australia

Summary. This study reports on the dynamic response of two elastically-mounted circular cylinders in tandem undergoing transverse
flow-induced vibration (FIV) in a free-stream flow. The results show that the FIV responses of the two cylinders are affected signifi-
cantly by the cylinder-cylinder spacing ratio. This study suggests that there exist a variety of FIV response regimes as a function of the
flow reduced velocity and the spacing ratio.

Introduction

The dynamics in flow-induced vibration (FIV) of structures is of substantial continuing interest, due to its intrinsic nature
in science and importance in a large variety of engineering applications, such as offshore structures in ocean currents, and
high-rise buildings and bridges in winds. In the past six decades, numerous studies have been motivated to fundamentally
characterise FIV of bluff bodies and to provide insights into mechanisms of the fluid-structure interaction. This has led
to a large body of work with a focus on FIV problems of a single body, e.g. two typical body oscillator phenomena of
FIV, vortex-induced vibration (VIV) of a circular cylinder and galloping of a non-circular cylinder that is susceptible to
an aerodynamic instability induced by the body movement (see [1]). On the other hand, considerable studies have also
been conducted on flow past two fixed cylinders in tandem (see [2]), and transverse wake-induced vibration (WIV) of a
free cylinder in the downstream of a fixed cylinder (e.g. [3]). These studies have shown that the spacing between two
cylinders in tandem is a key parameter affecting the flow pattern and thus the fluid forcing on the bodies, resulting in
complex nonlinear dynamics and structural response. However, much less work has been conducted on the FIV responses
of two freely-vibrating cylinders in tandem; this is particularly so for cylinders with low mass ratio (the ratio between the
total oscillating mass to the displaced fluid mass) at moderate Reynolds numbers. Thus, this study aims to gain a better
understanding of the influence of the cylinder spacing on the FIV responses of two freely-vibrating cylinders in tandem
in a free-stream flow, and to analyse the nonlinear dynamics of the fluid-structure interactions and the interaction between
the two cylinders, through an experimental investigation of the fluid-structure system with low mass ratio at moderate
Reynolds numbers.

Experimental method

The present FIV problem was modelled on two low-friction air-bearing systems (see [4]) in conjunction with the free-
surface recirculating water channel of the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Monash
University. This water channel facility has a test section of 600mm in width, 800mm in depth and 4000mm in length.

The cylinders were vertically mounted onto two separated air-bearing systems. These cylinders, which were precision
made from aluminium tubes and anodised against water corrosion, had an outer diameter of D = 40± 0.010mm and an
immersed length of L = 614mm, giving an aspect ratio of = L/D ≈ 15.4. For each cylinder, the total oscillating mass
was m = 1473.1 g, and the displaced mass of the fluid was md = 770.3 g, giving a mass ratio of m∗ = m/md = 1.91.
The natural frequencies of the two hydro-elastic systems were measured by conducting free decay tests individually in
air (fna) and in quiescent water (fnw). The structural damping ratio with consideration of the added masss (mA) was
determined by ζ = c/2

√
k(m+mA), with mA = ((fna/fnw)

2 − 1)m. As shown in table 1, the natural frequencies
were almost identical for the two circulars, while the difference in ζ was sufficiently small to have negligible effects.
The FIV responses of the two cylinders were investigated for the spacing ratio (denoted by S∗ as the streamwise spacing
between the cylinder centres, S, normalised by the cylinder diameter, D, namely S∗ = S/D) ranging from 1.25 to 15.0
over a wide reduced velocity range of 3 6 U∗ = U/(fnwD) 6 30 and a corresponding Reynolds number range of
1570 6 Re = UD/ν 6 15 700, where U is the free-stream velocity, fnw is the natural frequency in water of the upstream
cylinder and ν is the kinematic viscosity. More experimental details can be found in [4].

Results and discussion

Figure 1 shows the normalised amplitude responses as a function of the flow reduced velocity for the two cylinders with
various spacing ratios. The amplitude response is denoted by A∗

10, which represents the mean of the top 10% amplitude

Cylinder m [g] md [g] m∗ fna [Hz] fnw [Hz] ζ

upstream 1473.1 770.3 1.91 0.432 0.343 2.02× 10−3

downstream 1473.1 770.3 1.91 0.430 0.345 1.78× 10−3

Table 1: The present experimental parameters of the two (upstream and downstream) cylinders in tandem.
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Figure 1: The normalised amplitude responses of the two cylinders in tandem as a function of the reduced velocity for various spacing
ratios. The amplitude responses of the upstream and downstream cylinders (UC and DC) are plotted in (a) and (b), respectively.

peaks normalised by D.

As can be seen, the spacing ratio plays an important role affecting the amplitude responses of the two cylinders. For
the cases of S∗ 6 2.00, the vibration of the upstream cylinder (UC) can be significantly enhanced in terms of the peak
amplitude and also the U∗ range exhibiting large body oscillation amplitude, as compared to that of a typical three-branch
VIV response of a single circular cylinder (not shown here). For example, the A∗

10 response of S∗ = 1.25 displays an
initial branch for low reduced velocities (U∗ < 5), which is similar to that of the single cylinder case, but as U∗ is further
increased it exhibits a largely fluctuating variation to reach a peak value ofA∗

10 ≃ 1.99 at U∗ = 21.2 (an increase of 234%
against that observed in the VIV upper branch of the single cylinder case), prior to a gradual decrease trend to A∗

10 ≈ 1.0
for U∗ > 25. As S∗ is increased to 1.60, after reaching a peak value of A∗

10 ≃ 1.12 at U∗ = 8.0, the A∗
10 response

shows a gradual decrease trend with increasing U∗, distinctly different from those of the lower S∗ cases. As S∗ is further
increase to 2.0, the A∗

10 response exhibit a variation profile similar to the typical three-branch VIV response of a single
cylinder, but with much larger vibration amplitudes. Furthermore, for the cases of S∗ > 5.00, the A∗

10 responses appear
to be highly similar to the single cylinder case, indicating that the upper cylinder vibration is negligibly influenced by the
perturbation of the downstream cylinder.

On the other hand, the A∗
10 response of the downstream cylinder (DC) is also influenced significantly by S∗. As a result

of the strong interaction between the two cylinders, the A∗
10 response of the downstream cylinder tends to increase with

U∗, but with large fluctuations at high reduced velocities (U∗ > 7), for the cases of S∗ 6 2.00. As S∗ is increased to
5.00, the A∗

10 response sees a fairly stable increase trend for U∗ > 7. However, for the cases of S∗ > 10.00, the A∗
10

response tends to decrease gradually with U∗ increasing beyond 7.

Conclusions

The transverse FIVs of two circular cylinders in tandem have been investigated as a function of U∗ for various spacing
ratio of 1.25 6 S∗ 6 15.00. It was found that for S∗ 6 2.00 the FIV responses of the two cylinders exhibit complex
variations due to their strong interaction, where their vibration could be largely enhanced as compared to VIV of a single
cylinder. Enhancement of the A∗

10 peak of the upstream cylinder diminished for S∗ > 5.00, whereas the downstream
cylinder displayed a decrease trend in A∗

10 with increasing U∗ beyond 7 for S∗ > 10.00. The present results indicate that
there exist a variety of FIV response regimes that would be of great interest for further investigations.
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Fluid dynamics effect in large array

Ande Raghu, Mathieu Sellier and Stefanie Gutschmidt
Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand

Summary. Fluid dynamics investigation of coupled oscillators and arrays of beams are important for several applications in biology,
medicine, and especially and increasingly for MEMS and NEMS sensors. The most available literature on oscillators is either a single
beam or small-sized arrays. Limited literature is available concerning the dynamics of large-sized arrays of beams. Our group has
dedicated its research goals to understanding coupled MEMS oscillators and array dynamics to enhance technologies such as fast-scan
AFM, nanometrology, and precision lithography. Some of these applications require knowledge of arrays in a fluidic environment.
Before investigating fluid-structure interactions of such large-array a sound understanding of the fluid motion is required, which is
the focus of this work. We investigate a large array of beams using the boundary integral technique, where the flow is governed by
unsteady Stokes and Continuity equation. The analysis is performed for all beams that are equally excited in phase for different gap
sizes between the beams at different Reynolds numbers, including the comparison of an increasing array size with the same and varying
array lengths. Results include the onset of array effects, added mass, and viscous dissipation for a critical number of beams M , the gap
between the beams and Reynolds numbers. The analysis suggests an increase in interactions between the neighbor and non-neighbor
beams with an increase in array size at the same array length. The work guides for the design of arrays in fluids for different spacing
and Reynolds numbers.

Background

Tuck [1] and Green [2] present an extensive work of dynamics for an individual beam, whereas Basak [3] and Manick-
avasagam [4] conducted investigations on small arrays of beams (number of beams less than five). Much lesser work can
be found on a large array in general. No details are available for the large array of beams oscillating in fluids. In this
work, we focus on the fluid dynamics of the large arrays [5].

Methodology

We base our analysis on the well established Boundary Integral Method (BIM) applied to unsteady Stokes and continuity
equations. By applying the BIM, we have deduced the partial differential equations into integral form to calculate the
fluid properties over the beams within the array using the analytical equation 1.

f(Re, x) =
i

Re

(
1

x
+ (1i ·

√
iRe · sgn(x) ·K1(

√
iRe · abs(x) · (−1i)))

)
(1)

The closed-form analytical equation is extended for M number of beams by following the technique used by Basak [3]
and Manickavasagam [4]. We investigate the velocity configuration of all beams active in-phase, where x = (ξ′j - ξk), ξ′j
is an node on the beam surface, ξk is the midpoint between any two nodes, ξk = 1

2 (ξj′ + ξj′+1), Re is the corresponding
Reynolds number and K1 is the modified bessel function of first kind.

ξ′j = (2 + 2ḡ)m− (3 + 3ḡ)− cos

(
πj

N

)
[m = 1, 2, 3, ...,M ], (2)

To mitigate the singularities at the edges, the beam is discretized into unequal segments by using a generalized equation
2, which is applicable to all array of beams if the number of beams M in an array is greater than or equal to two as shown
in Figure 1a and ḡ is the nondimensional gap.

Analysis and Results

The following investigations are considered for a velocity configuration of all beams active with a gap between the beams
ḡ of 0.1 as shown in Figure 1a, which is below the critical gap theoretically [6] at Reynolds number 0.1. The input
velocity of the beams and the matrix obtained from the analytical equation yields the hydrodynamic force over the array.
Absolute, real, and imaginary hydrodynamic forces give us new insights into the large-array in fluids [5]. In Figures 1b
to 1d horizontal axis presents the normalized beam number, the absolute A(F), imaginary I(F) (added mass), and real part
R(F) (viscous dissipation) of the hydrodynamic force [7] are normalized corresponding to its respective width of the beam
and plotted on the vertical axis.
From Figure 1b, it is observed that at the same array length and different array size there is an increment in the added
mass and viscous dissipation which is due to the array effect which can be observed with an increase in the number of
beams in an array, whereas with varying array length and increase in array size there is little effect on the dissipation as
shown in the Figure 1c and drastic increment in the added mass due to increase in the array length as shown in the Figure
1d. The interaction between neighbor and non-neighbor increases with an increase in array size and at the same array
length. If the distance between the beams is below a critical gap where the interaction of beams in an array is high due
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Figure 1: (a) Array of beams in non-viscous fluid (b) Absolute pressure for different array sizes (c) Real pressure and (d)
Imaginary pressure for 50 beams array at ḡ = 0.1 and Re = 0.1.

to the overlapping of viscous layers, we can observe the array effect for varying the gaps between the beams for different
Reynolds numbers. The hatched area in Figures 1c and 1d represents the increase in viscous dissipation and decrease in
added mass with an increase in array size at the same array length.

Conclusions

It is important to understand the fluid dynamics of a large array of beams oscillating in the unbounded fluid environment to
be able to accurately predict the full dynamics of such systems, and in turn to effectively develop future array technologies
like AFM, lithography, and nano-metrology. In this work, we have extended the BIM of 2 beams by Basak [3] and small-
sized arrays of beams by Manickavasagam [4] for any arbitrary number of beams to understand the associated array
effects originating from the fluid environment. We have analyzed M equal to 5, 11, 25, 50 beams exciting in-phase in a
non-viscous fluid to calculate the hydrodynamic forces of large arrays of beams for different gaps between the beams and
Reynolds numbers. New insights from A(F), I(F), and R(F) reveal critical design-relevant parameters for the development
of future array technology. In addition, this work can be extended by oscillating the large array of beams close to a rigid
surface and analyzing the influence of rigid surface on viscous damping and added mass.
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Topology of exotic wakes
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Summary. The formation of vortices in the flow around an oscillating cylinder is shown to be a complex set of topological bifurcations
as the amplitude of the cylinder oscillations is varied. We show that the transition from a wake where two vortices are shed per cycle,
to a configuration with three vortices are shed, goes through intermediate stages, where secondary vortices are created but disappear
again.

Introduction

The wake behind a transversely oscillating cylinder allows a remarkable richness of flow structures. Vorticity created
at the cylinder surface is advected downstream and organizes into distinct vortices. For a stationary cylinder in the
periodic regime, two vortices of opposite circulation are shed per cycle forming the famous von Kármán vortex street.
This is also denoted a 2S wake, where S means the shedding of a single vortex [6]. When the cylinder oscillates, this
pattern may be modified depending on the frequency and amplitude of the forced oscillation. Patterns such as 2P, P+S,
2P+2S have been observed – here P means the shedding of a pair of vortices from the same side of the cylinder. These
configurations are known as exotic wakes [5]. Bifurcation diagrams in the frequency-amplitude parameter plane (f, A)
have been established, both experimentally and computationally, by many researchers, e.g. [6, 3].
The purpose of the present paper is to study the bifurcations which lead from one pattern to another. We primarily consider
the case where the oscillation frequency of the cylinder is chosen as the Strouhal frequency, that is, the frequency of the
vortex shedding for a fixed cylinder. For low values of the amplitude of the oscillating cylinder the wake is of type 2S, but
for the dimensionless amplitude A around 1, the pattern changes into P+S. In the entire parameter range we consider the
flow is periodic. The Reynolds number is 100, where it is reasonable to assume the flow is two-dimensional. Simulations
are performed using the oomph-lib finite-element library [1].
In this study we characterize a flow configuration by the topology of the vorticity field, and define a vortex as a local
extremum of vorticity. An extremal point of vorticity can be created together with a saddle point in a forward cusp
bifurcation [2]. Similarly, an extremum and a saddle may merge and annihilate in a backward cusp bifurcation. We note
that there are alternative definitions of a vortex, for instance the Q-criterion, which has also been of use in identifying
creation and destruction of vortices [4].

Results

The results are summarized in Fig. 1. We focus on the negative vortices formed at the top of the cylinder. For the
dimensionless amplitude A less than about 0.85, a positive and a negative vortex on each side of the cylinder are formed
in the shear layers a few diameters downstream. Once created, the vortices persist and are advected downstream. This
is a classical 2S wake. See Fig. 1(a) for a typical example. Increasing A to 1 as in Fig. 1(b), the filaments of vorticity
(shear layers) emanating from the vortices may turn into individual vortices through a forward cusp bifurcation. These
secondary vortices disappear again after a few cycles in a backward cusp bifurcation. This intermediary pattern cannot
simply be described by the symbols P and S. Increasing A the secondary vortices persist for longer and longer times. For
A = 1.08, Fig. 1(c), the secondary vortices never disappear again, and a full P+S wake is formed.
Hence, the transition process from a 2S to a P+S wake does not occur at a specific value of A, but is a sequence of
bifurcations, possibly infinitely many, over a quite large interval of the parameter.

References

[1] A. Hazel and M. Heil. oomph-lib – an object-oriented multi-physics finite-element library. In M. Schäffer and H.-J. Bungartz, editors, Fluid-
Structure Interaction, pages 19–49. Springer, 2006.

[2] M. Heil, J. Rosso, A. L. Hazel, and M. Brøns. Topological fluid mechanics of the formation of the Kármán-vortex street. Journal of Fluid Mechanics,
812:199–221, 2017.

[3] J. S. Leontini. Wake state and energy transitions of an oscillating cylinder at low Reynolds number. Physics of Fluids, 18(6):067101, 2006.

[4] A. R. Nielsen, M. Heil, M. Andersen, and M. Brøns. Bifurcation theory for vortices with application to boundary layer eruption. Journal of Fluid
Mechanics, 865:831–849, 2019.

[5] F. Ponta and H. Aref. Numerical experiments on vortex shedding from an oscillating cylinder. Journal of Fluids and Structures, 22(3):327–344,
2006.

[6] C. H. K. Williamson and A. Roshko. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 2(4):355–381, 1988.

ENOC 2022, July 17-22, 2022, Lyon, France

835



ENOC 2020, July 5-10, 2020, Lyon, France

(a)
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Figure 1: Snapshots of vorticity topologies for various values of the forcing amplitude A. (a): A = 0.8. (b): A = 1. (c): A = 1.08.
(d): Bifurcation diagram showing the downstream distance x where forward or backward cusp bifurcations occur, at some time instant
during the cycle. The shaded area shows the region where the shear layers are so thin that it is not possible to identify isolated extrema
of vorticity.
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 Control optimization of digital hydraulic drive for knee exoskeleton  
 

Rituraj Rituraj *, Rudolf Scheidl * 
*Institute of Machine Design and Hydraulic Drives, Johannes Kepler University, Linz, Austria 

  
Summary. A successful knee exoskeleton device must follow the periodic motion of the gait cycle in an energy efficient manner. This 
work investigates an optimal control strategy that can allow the periodic behavior of such a device with minimum error while also 
consuming minimum energy. Using a multi-objective optimization technique, a trade-off between the periodicity error and energy 
consumption is demonstrated. From the pareto front, an optimal control variable set is determined which allows an acceptable 
periodic behavior of the knee exoskeleton with negligible energy consumption. 

Introduction 

Exoskeletons are wearable devices that provide additional strength to the wearer’s limbs. These devices are commonly 
used in physical rehabilitation to assist in the recovery of a limb’s motion and strength. Furthermore, they are used by 
factory workers, military personnel, and firefighters for carrying heavy equipment over long distances. Most of these 
devices currently use electromechanical drives for motion actuation. However, in recent years, hydraulically driven 
exoskeleton devices have gained interest among the researchers [1–3] due to their capabilities of high force density, 
easy energy recuperation, motion locking, and damping. The advent of digital hydraulic technology in the last decade 
has strengthened the case for hydraulically driven exoskeleton devices due the added advantages of high energy 
efficiency, power density, precision, and robustness.  
Inspired by these benefits, the authors have recently developed a novel design of digital hydraulically driven knee 
exoskeleton [4]. A novel control strategy is also proposed in an upcoming work [5]. However, a key challenge with this 
exoskeleton device is its motion repeatability over multiple gait cycles. The device should track the desired knee motion 
in the same periodic manner as observed in typical gait cycles. Furthermore, to keep the power source light, the device 
should consume as little energy per gait cycle as possible. In this work, a control optimization study is conducted to 
determine the optimal sets of control variables that can allow the desired periodic behavior of the knee exoskeleton 
device with minimal energy consumption. 

Knee exoskeleton design and control strategies 

Figure 1 shows the knee exoskeleton design, its hydraulic drive, and the control strategies in different phases of the gait 
cycle. The comprehensive details are present in [4,5]. In brief, the exoskeleton device is actuated by two hydraulic 
cylinders. The hydraulic chambers of each of the cylinders are connected to the pressure source and tank via 2/2-way 
valves. The motion control is achieved via three different control strategies during different phases of the gait cycle. In 
the stance phase, where an inverse relation between the knee angle and knee torque exists, an elastic control is 
employed, which allows the hydraulic chambers to act as elastic elements. Next, a simplified form of the model 
predictive control (MPC) strategy is used to ensure proper tracking of the knee motion. Finally, a pressurization control 
strategy is employed for a brief period where hydraulic chambers are pressurized to the appropriate levels needed for 
the next gait cycle. 

 
Figure 1: (a) Knee exoskeleton design, (b) hydraulic system, (c) phases in the gait cycle and control strategies used. 

Control optimization study 

The numerical simulations of the knee exoskeleton device show that the duration of each of the aforementioned control 
strategies and the time step involved in MPC significantly influence the accuracy of the periodic behavior of the device 
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motion over multiple gait cycles as well as the energy consumed per cycle. Thus, in the optimization study, the duration 
of the elastic control phase, the duration of the pressurization phase, and the time step in MPC algorithm are considered 
as the optimization variables.  
The first optimization objective is to minimize the difference between the values of the state variables of the system at 
the beginning (    ) and at the end of two gait cycles (    ). The state variables are the knee angle ( ), knee angle 
derivative (  ), and pressures in the four hydraulic chambers of the cylinders (  ). Thus, the objective function is  
 Minimize:                     (1) 

where,              ,                 ,                  , and    are appropriately chosen weights. 
The second objective is to minimize the energy consumed over two gait cycles. The energy consumption is determined 
as       , where,    is the amount of fluid volume delivered by the pressure source and    is its pressure level. 
This multi-objective optimization problem is solved using NSGA-II algorithm. The initial design space is populated 
with 1000 designs and the optimization algorithm is executed for 50 generations. 

Results and discussion 

Figure 2(a) shows the results obtained from the optimization study where the approximate pareto front is shown in red. 
Computational expensiveness limits the number of optimization generations and thus, the accuracy of the pareto front. 
Nevertheless, a trade-off between the periodicity error ( ) and the energy consumption ( ) is observed. The negative 
energy consumption observed in the pareto front is the result of two factors. Firstly, the natural knee motion is 
inherently an energy delivering system over a complete gait cycle [6]. Secondly, several control variable sets save 
energy by supplying lower amount of high pressure fluid to the actuators. However, as observed in the figure, most of 
such sets exhibit high periodicity error. 

 
Figure 2: (a) Results from the optimization study with the pareto front shown in red, (b) Knee angle and energy consumption for a 

pareto optimal variable set (indicated as large black dot in Figure (a)) 
 

Figure 2(b) shows the simulation results obtained using a pareto optimal variable set (highlighted in large black dot in 
Figure 2(a)) for two gait cycles. The knee angle is tracked with reasonable accuracy and the energy consumption at the 
end of the gait cycle is almost zero. However, it is important to note that the losses due to internal friction were not 
considered in the energy calculation. 

Conclusions 

An investigation of the optimal control strategy for hydraulically driven knee exoskeleton is presented in this work. A 
multi-objective optimization study is conducted aimed at minimizing the error in the periodic behavior of the 
exoskeleton motion and the energy consumption per gait cycle. A trade-off between the two objectives is observed and 
using a pareto optimal variable set, it shown that a periodic behavior (with acceptable accuracy) could be achieved with 
theoretically zero energy consumption. 
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Non-linear Vibrations in a Coiling Process with Periodically Changing Radius

Helmut J. Holl
Institute of Technical Mechanics, Johannes Kepler University, Linz, Austria

Summary. The mechanical model of a winding process has to consider the coupling of the vibrations of the strip and the coiling drum
due to non-steady state operation conditions. In the mechanical model of this variable mass system additionally variable parameters
are present and result in non-linear equations of motion. The longitudinal and transversal motion of the axially moving strip and the
bending deflection of the coiling drum are considered by Rayleigh-Ritz approximations which involve the application of the extended
equation of Lagrange. A periodically changing radius is a potential source of vibration excitation. A time integration algorithm with
small time steps has to guarantee a converged solution for the long computation time. Simulation results of steady state and non-steady
state operation conditions are computed and show the coupling of the vibrations and the excitation due to the periodic radius function.

Introduction

A suitable mechanical model is necessary for the simulation of the vibrations in a coiling process. In the coiling process
an axially moving strip moves continuously towards a rotating drum where it is coiled. Between two successive coiling
processes the strip passes through a Steckel mill where the thickness is reduced. The mechanical model starts at the exit
of the Steckel mill and considers the axial motion of the strip with the transversal oscillations. Then the strip is coiled
where the strip is attached on the drum, contributes to the bending stiffness and increases the mass of the drum. The
resulting mechanical model is a non-linear dynamic model with varying mass and system parameters, which are defined
by the variable outer radius of the drum, the variable bending stiffness of the drum and a variable eccentricity of the
rotating drum. Due to the coiled material the mass of the coiling drum increases or decreases continuously. For the
outer radius of the coiling drum an Archimedian Spiral and a periodic step function is assumed, which gives an outer
radius and bending stiffness depending on the coiled strip length. For the simulation of the coiling process with the long
computation time a integration algorithm was implemented. For the derivation of the equations of motion Rayleigh-Ritz
approximations are used to get only a few degrees of freedom in the mechanical model. The application of the extended
equations of Lagrange, see [1], is necessary as the mass in the system is not constant, which is a restriction for the well-
known equations of Lagrange, see [2]. In the extended equations of Lagrange the control volume concept with the surface
integrals with partial derivatives as a kernel are present. In [3] additionally some literature with examples on dynamic
systems with variable mass is discussed. In [4] an alternative approach for the influence of the variable mass is considered
using reactive forces, where also some examples are shown. The coupled vibrations are analysed and numerical studies
are performed in order to increase the knowledge about the complicated variable mass non-linear dynamic system of the
coiling drum with an outer radius involving a periodic excitation and the axially moving strip. For the dynamic system the
initial and boundary conditions are defined and with the given operation conditions a time-integration algorithm computes
the solution.

Mechanical modelling of the coiling drum and the moving strip

Figure 1: Mechanical model of the rotating drum with the axi-
ally moving strip

The mechanical model includes the coiling drum on elas-
tic bearings and the moving strip, see Fig. 1. Rayleigh-
Ritz approximations and the extended equations of La-
grange have been used for the derivation of the mechan-
ical model. For the derivation of the equations of mo-
tion it is important to distinguish between the material
control volume and the spatial control volume. The me-
chanical model has five degrees of freedom, the horizon-
tal and vertical deflection x, y and the rotation angle ϕ of
the coiling drum, the transversal deflection of the moving
strip q and the entrance speed of the strip sL. The strip
tension force FB is given as a predefined time-dependent
value at the entrance of the system and the torque at the
coiling drum MT is computed. The coiling drum is mod-
eled as a beam with different stiffness in longitudinal
direction. The outer radius of the drum increases and

an Archimedian spiral r = r0 +
hϕ

2π
as well as a step-

function r = r0 + h floor
( ϕ
2π

)
have been analysed. For

the computation of the actual stiffness it is assumed that
the coiled strip is attached to the drum and contributes to
the stiffness.
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The model of the coiling drum and the moving strip is described and derived in [5]. The coupling between the coiling
drum and the moving strip is modelled considering the strain in the strip εS = εxx− zw′′ + 1

2w
′2. The horizontal motion

of the strip in longitudinal direction at the right position where it touches the coiling drum considers the shortening effect
of second order, see [5]. ϕ ist the rotation angle and x is the horizontal deflection of the center of the rotating drum.

Computed Results

Figure 2: Amplitude and velocity of
transversal motion of the strip

For the derived mechanical model the solution was computed and a parametric
study has been performed. The parameters of the coiling drum based on the
computations presented in this contribution are L0 = 5m, r0 = 0.45m, h =
10mm, b = 0.5m, E = 105kN/mm2, cC = 107kN/m, ρ = 7800kg/m3, m0 =

1200kg. For a strip tension force of FB = FB0

(
1 + sin(πt/2)

2

)
with FB0 =

50kN the computation is carried out. From the results of the amplitude of the
transversal strip vibrations in Fig. 2 the non-linear coupling effect with the
varying frequency and amplitude is shown.
When a step-function of the outer radius of the coiling drum is used, the com-
puted resulting vibrations are shown in Fig. 3 and Fig. 4 for a constant strip
tension force at the entrance of the system in Fig. 1. It can be seen that the
effect of the step function in the outer radius gives an impact-like excitation
which occurs after every revolution. For successive rotations the vibration am-
plitudes are computed with a small time step to get a convergent result as the
step-function of the radius gives a modification in the kinematics of the system.
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Figure 3: Horizontal Position and speed of the Center of the
Coiling Drum
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Figure 4: Rotation angle and speed of the coiling drum

Conclusion

A mechanical model with a variable mass and varying parameters and a periodic function for the outer radius of a coiling
process was derived. The simulation results show a production process for a constant axial speed. For a defined variation
of the strip tension force at the entrance the vibration amplitudes of the coordinates show non-linear coupled vibrations and
the frequency and amplitude for the transversal strip oscillation depend on the strip tension force. For the step-function of
the outer radius the computation needs a higher effort and shows an excitation after every revolution of the coiling drum.
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Summary. Mathematical models for wave energy converters (WECs) are naturally germinated from the models in classical offshore
engineering applications, where the assumption of linear kinematics and dynamics is commonplace. However, while the assumption of
linear, small amplitude, motion fits traditional offshore problems (it is desirable to stabilize ships, boats and offshore platforms), it is
not representative of the expected (and desired) motions of a WEC, since the main objective is to enhance the response and maximize
power extraction. The inadequacy of linear models for many wave energy applications has led to an increasing number of publications
and codes implementing nonlinear hydrodynamics. However, nonlinear kinematics has received little attention, since few models yet
consider six degrees of freedom (DoFs) and large rotations. This paper implements a nonlinear kinematic model for one of the most
well established WEC concepts: an axisymmetric heaving point absorber with single taut line mooring. The influence of the nonlinear
kinematics are demonstrated and potential sources of numerical instability in yaw are discussed. Finally, the model is also used to
articulate parametric resonance in roll/pitch.

Introduction

The kinematics and dynamics of floating bodies is traditionally related to offshore engineering problems, such as: naval
applications and the design of large oil and gas platforms [1]. For these applications, the main objective is usually
to stabilize the motion of the floating objects, therefore the resulting small amplitude motions are within the limits of
where linear theory is sufficiently accurate for modelling the system. However, contrary to these conventional offshore
applications, wave energy converters (WECs) are designed and controlled with the objective of enhancing the wave
induced motion to maximize power absorption [2]. Therefore, it is often the case that linear models become inapt to
accurately predict the behaviour of a WEC . The fidelity of mathematical models is crucial for a reliable estimation of the
cost of electricity and for the effectiveness of model-based control strategy [3], which are essential for achieving economic
viability [4, 5]. Including nonlinearities in energy-maximising control strategies is both essential and possible [6].
As the wave energy field grows in experience and maturity, the necessity of nonlinear models, for a comprehensive
design of most WEC types, becomes increasingly apparent [7, 8, 9]. While fully-nonlinear models, such as the ones
solving Navier-Stokes equations, achieve high accuracy, they are not computationally viable for control or optimization
applications. Considering the more computationally convenient partially-nonlinear models based on potential theory, most
of the research is focusing on nonlinear hydrodynamics, namely on the modelling of nonlinear Froude-Krylov, radiation,
or diffraction forces, or on viscous effects [10, 11, 12, 13]. However, little effort is found towards modelling nonlinear
kinematics [14].
The consideration of nonlinear kinematics is usually necesssary for systems with large amplitude motion and multiple,
coupled degrees of freedom. The inclusion of nonlinear kinematics is shown to be important in applications such as
biomechanics [15, 16], robotics [17, 18], transportation [19, 20], tracking control [21, 22] and design of manipulators
[23, 24], to name a few. However, for wave energy applications, numerical models employed to simulate the dynamic
behavious of WECs generally assume the motion to be planar, in the direction of wave travel, with up to 3 DoFs considered
(horizontal translation, vertical translation and rotation in the resulting plane: surge, heave and pitch, respectively) [25].
Moreover, the rotational displacement and velocity are normally assumed to be small. Few nonlinear studies are performed
in 6-DoFs, especially considering roll/pitch parametric resonance or yaw instability [26, 27]. Parametric resonance is
usually detrimental, but the ability to model it can enable more efficient harvesting instead [28, 29].
This paper presents a nonlinear model relevant for wave energy applications, including both nonlinear kinematics and
nonlinear hydrodynamics. Typical WEC modelling approaches are challenged, discussing potential issues arising from
employing the usual simplifying assumptions. In particular, potential numerical instability may arise from neglecting the
mooring line torsional stiffness and viscous dissipation.

Mathematical model for a moored axisymmetric floater

The case study, schematically shown in Figure 1, is the archetype of the popular WEC concept known as a “point absorber”
(since its dimensions are small compared to the wavelength such that it can be virtually approximated by a single point).
Consequently, a natural choice is to design point absorbers to be independent of the incoming wave direction, so they are
normally axisymmetric. The energy extraction results from the relative movement between the buoy and a fixed point on
the sea floor. The buoy is attached to the sea floor by a single taut mooring line.
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Figure 1: Cylindrical point absorber, with a single taut mooring line tethered to the sea floor (at depth h). Both the inertial frame
(x, y, z) and the body-fixed frame (x̂, ŷ, ẑ) have their origin at the still water level (SWL). The floater is shown at rest (in transparency)
and displaced. The mooring line has axial stiffness Kmoor , initial length L0 and elongation ∆L. The device can rotate with respect to
the mooring line.

Reference frames
Two right-handed frames of reference are defined, as schematically shown in Figure 1. The first one (x, y, z) is world-
fixed, inertial, with the origin at the still water level (SWL) and on the centre of the buoy at rest, with the x−axis along
and in the same positive direction of the wave propagation, and the z−axis pointing upwards. The inertial frame is used
to describe the body displacements (ζ), divided into translations (p) and rotations (Θ):

ζ =

[
p
Θ

]
, p =



x
y
z


 , Θ =



φ
θ
ψ


 , (1)

The second right-handed frame of reference is (x̂, ŷ, ẑ), body-fixed, hence non-inertial, with the origin at the center of
gravity of the floater. This is used for writing the dynamic equation of the system, since the inertial matrix remains
constant. Therefore, both forces and velocities are represented in the body-fixed frame, along the axis of the buoy.
Velocities (ν), divided into translation (v) and rotations (ω), are defined as:

ν =

[
v
ω

]
, v =



u
v
w


 =



˙̂x
˙̂y
˙̂z


 , ω =



p
q
r


 . (2)

Kinematic mapping
It is worth remarking that forces and velocities are along time-varying axes, while displacements are along fixed axes. In
linear hydrodynamic models there is no difference between such axes, based on the assumption of small displacements.
However, in a nonlinear approach, a mapping from body- to world-frame velocities should be applied, at each time step,
in order to obtain the correct displacements. One possible mapping is the following:

ζ̇ =

[
ṗ

Θ̇

]
=

[
RΘ 03×3

03×3 TΘ

] [
v
ω

]
= JΘν, (3)

where RΘ is the rotation matrix, depending on the Euler angles Θ, defined according to the 3-2-1 convention as:

RΘ = Rẑ,ψRŷ,θRx̂,φ =



cψ −sψ 0
sψ cψ 0
0 0 1





cθ 0 sθ
0 1 0
−sθ 0 cθ





1 0 0
0 cφ −sφ
0 sφ cφ


 , (4)
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with c and s standing for cos() and sin() trigonometric operators, respectively. RΘ is applied to translational velocities.
TΘ is applied to rotational ones, and is defined as follows:

TΘ =




1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ


 , (5)

where t stands for the tan() trigonometric operator. Note that the singularity of TΘ in ±π/2 is usually not an issue in
wave energy applications, since the amplitude of the pitch angle is, by design, always expected to be smaller than π/2.

Coriolis and centripetal forces
Another consequence of using a body-fixed frame are Coriolis and centripetal forces, which are normally neglected under
the assumption of small rotational velocities. Let us define, for convenience of notation, the skew-symmetric operator
S : R3 → R3×3 as

S :



λ ∈ R3

∣∣∣∣∣∣
S(λ) ∆

=




0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0





 . (6)

Using such a notation, it is possible to define Coriolis and centripetal forces as:

FCor = −CCorν = −
[

MS(ω) −MS(ω)S(rg)
MS(rg)S(ω) −S(Irω)

] [
v
ω

]
, (7)

where M is the mass of the body, rg is the vector from the origin of the body-fixed frame (reference point) to the centre
of gravity, and Ir is the matrix of the moments of inertia with respect to the reference point. If the reference point is
coincident with the center of gravity, then rg is the null vector and Ir is a diagonal and minimal matrix, with Ix, Iy , and
Iz on the diagonal. Consequently, the Coriolis and centripetal force in (7) becomes:

FCor = −




M (qw − rv)
M (ur − pw)
M (pv − qu)
qr (Iz − Iy)
rp (Ix − Iz)
pq (Iy − Ix)




(8)

Hydrodynamic forces
The wave-structure interaction is modelled using the partially nonlinear hydrodynamic model detailed in [30]. This
model decomposes the force from the fluid on the floater into several compoents: the Froude-Krylov (FK) force FFK , the
diffraction force Fd, the radiation force Fr and the viscous force Fv . The model is labelled ”partially nonlinear” since
the diffraction and radiation forces are modelled linearly, whereas the viscous and FK force terms are nonlinear. The
viscous force is described by an integral quadratic representation, and the nonlinear FK force is calculated by integrating
the undisturbed pressure field from the incident wave over the instantaneous (updated at each time step) wetted surface of
the floater. Full details of the nonlinear FK force representation are given in [31] for axisymmetric floaters, and in [32]
for prismaric floaters. An open-source toolbox for the implementation of the nonlinear FK method is provided in [33].

Mooring force
The mooring system applies a force, Fm, to the attachment point at the bottom center of the floater. The mooring force is
modelled here as a linear spring.

Equation of motion
Finally, the dynamical equation in 6 DoFs for the floater becomes:

{
ζ̇ = JΘν

Mν̇ + FCor = FFK + Fd + Fr + Fv + Fm
(9)

where M is the inertial matrix,

ENOC 2022, July 17-22, 2022, Lyon, France

844



ENOC 2022, July 17-22, 2022, Lyon, France

Coupling between DoFs

For the case of linear hydrodynamics, incoming unidirectional waves induce a planar external excitation on axisymmetric
floaters (surge, heave and pitch). However, when considering nonlinear FK forces, a coupling can manifest under certain
conditions, due to an internal excitation of the sway and roll DoFs [31]. In particular, when the excitation frequency is
about twice the natural frequency in roll, a Mathieu-type of instability induces parametric resonance [34].
In these regions of parametric instability, a nonlinear FK model can provide 5 DoFs of excitation. Note, there is no
means of exciting the yaw DoF. Even when considering the mooring system, the single mooring line does not provide any
coupling between the excited DoFs and yaw [35]. However, if nonlinear kinematics effects are introduced, the Coriolis
and centripetal forces, as well as the kinematic mapping JΘ, have the mathematical structure to provide a coupling with
yaw. The following sections will show that, if these forces and the kinematic mapping are not appropriately taken into
account, then the model can exhibit numerical instability.

Kinematic mapping
The last row of equation (3) represents the mapping from the body-fixed rotational velocities, ω, to the rate of change of
the yaw displacement, ψ̇:

ψ̇ = q
sinφ

cos θ
+ r

cosφ

cos θ
(10)

If φ is not exactly zero, Equation (10) shows that, ψ̇ will be greater than zero. For the case of 3-DoF excitation (linear
FK model or nonlinear FK model away from the parametric instability region), φ is not excited and simply decays from
a small initial value φ0; consequently ψ̇ ≈ 0. On the other hand, when 5-DoF excitation occurs (nonlinear FK model in
the parametric instability region), roll is internally excited and eventually the term q sinϕ

cos θ is non negligible, nor ψ̇ anymore
either.
Therefore, it results that the yaw DoF is coupled with other rotational DoFs, either weakly (in the 3-DoF case) or strongly
(in the 5-DoF case). However, if there is no excitation of the yaw DoF, the yaw displacement is bounded, since ψ̇ is of
the same order of magnitude of q: ψ̇ = O(q). Nevertheless, under certain conditions, yaw may also be weakly excited by
Coriolis and centripetal forces, potentially inducing the system to be unstable and generate an unbounded yaw response.

Coriolis and centripetal forces
As shown in Equation (8), the surge component of FCor is:

FCor(1) = −M (qw − rv) (11)

It is worth to notice that, in the simple 3-DoF case, the product rv ≈ 0, so that FCor(1) ≈ −Mqw. Therefore, the mean
of FCor(1) depends on the phase difference between pitch and heave, which are both externally excited. In particular,
a zero mean is obtained if the phase difference is 90◦, while strongly negative or positive means are obtained for phase
differences of 0 or 180◦, respectively. In a linear hydrodynamic model, the surge exciting force has zero mean, so that
the resulting surge displacement is bounded to have the same sign of the mean of FCor(1), and magnitude depending
on the mooring restoring force [35], since no hydrostatic force is present in surge. On the other hand, if a nonlinear
hydrodynamic model is used, second order drift effects shift the mean of the surge exciting force to positive values, so
that the resulting mean displacement is a combination of both the wave and the Coriolis and centripetal forces.
The yaw component of the FCor around the center of gravity, as shown in (8), is the following:

FCor(6) = −pq (Iy − Ix) (12)

Since pitch is externally excited, q is never zero. Since roll is either internally excited (5-DoF case) or in a simple decay
(3-DoF case), p is either significantly large or relatively small, respectively, but never exactly zero. It follows that FCor(6)
is exactly zero if and only if Ix = Iy .

Numerical yaw instability

Generally, both intuition and experience teach that no significant yaw response is expected from an axisymmetric sys-
tem. Physically, the only restoring force in yaw is provided by moorings. For the mooring system shown in Figure 1,
the restoring is provided by the torsional stiffness of the mooring line, which is normally small and usually neglected
[36]. Consequently, no yaw restoring term is usually implemented in the numerical model. In addition, no dissipative
mechanism are usually implemented in yaw, because radiation damping is ideally zero and viscous losses are reasonably
negligible, due to the smooth axisymmetric geometry. However, neglecting dissipative and restoring terms in the yaw
DoF can lead to unexpected yaw responses, and potentially generating conditions for numerical instability.
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Initial conditions
Let us assume that the initial conditions, (ζ0), are not exactly zero, but a small fraction of their expected steady state
response, so that ζ0 can be considered ‘almost’ zero. Such an assumption is consistent with the common application
where, a mathematical model is coupled with a physical system, taking measured displacement and/or velocity signals
as inputs (either in an experimental test-rig [37] or in real-sea deployment [38]). Furthermore, it is common practice to
assume almost-zero initial conditions in nonlinear hydrodynamic models, in order to provide some initial energy to all
DoFs and study the effect of instability [39, 40]. In absence of external-internal excitation or strong coupling, the small
initial conditions rapidly decay. In the following discussion, the initial roll displacement, (φ0), is slightly greater than zero
(say, 0.5◦), so that φ, φ̇, and p are non-zero.
Furthermore, let us assume that the initial yaw displacement ψ0 is zero. Although this is an unnecessary assumption, it
will highlight that a response in yaw (with no external nor internal hydrodynamic excitation) can appear solely due to the
nonlinear kinematics.

Transversal moments of inertia
Theoretically, the two transversal moments of inertia, Ix and Iy , should be identical. However, numerically, the geomet-
rical properties of the buoy will be reproduced with finite accuracy, thus Ix and Iy may be not exactly the same as each
other. In this study, as an example, Iy has been considered to be 99.9%Ix.

Excitations
Table 1 summarizes all possible conditions that can arise.

Table 1: Characteristic of the yaw oscillatory response, ψ. Considering no viscous nor restoring terms in yaw and a small perturbation
of the initial condition in roll and pitch. Two transversal moment of inertia cases are considered: ideal (Ix = Iy) and almost-ideal
(Ix ≈ Iy), in combination with two hydrodynamic excitation conditions: 3-DoF (linear FK model or nonlinear FK model away from
the parametric resonance region) and 5-DoF (nonlinear FK model close to the parametric resonance region).

Hydrodynamic excitation
3-DoF 5-DoF

Ix = Iy Decay Sustained, O(θ)
Ix ≈ Iy Unstable Unstable

Let us consider the two hydrodynamic excitation conditions:

• 3-DoF excitation, where the excitation is external only.

• 5-DoF excitation, where 3-DoF are external excitation and 2 DoF are internal excitations present in the nonlinear
FK model close to the parametric resonance region.

In the ideal case (Ix = Iy), there is no forcing term in yaw, so that the yaw response will follow roll and pitch angles,
according to equation (10). In particular, in the 3-DoF excitation condition, yaw will follow the decay of roll; in the 5-DoF
excitation condition, the oscillatory part of yaw will follow the pitch sustained response, modulated by the sine of the roll
response. A slowly increasing mean of yaw is also present, due to the absence of a restoring force.
However, in the almost-ideal case (Ix ≈ Iy), equation (12) shows that there is a forcing term of the yaw DoF, much
smaller in a 3-DoF scenario than a 5-DoF scenario, but never exactly zero. Consequently, due to the lack of viscous and
restoring terms, the yaw DoF is not restrained and becomes unstable, so that its response diverges at a rate proportional to
the difference between Ix and Iy . Therefore, when implementing Coriolis and centripetal forces in a 6-DoF model, it is
important to include a yaw restoring term, which prevents the numerical instability from appearing.

6-DoF response

A nonlinear 6-DoF model has been implemented, including nonlinear kinematics, Coriolis and centripetal forces, nonlin-
ear Froude-Krylov forces, and 6-DoF quadratic viscous forces, as in [2]. The nonlinear hydrodynamics of this model is
able to articulate parametric resonance in roll and pitch, which is a Mathieu-type of instability, arising when the period of
the excitation force is about half the natural period in roll and pitch (Tn,5). Such an instability is mainly induced by the
heave displacement causing, among other effects, a time-varying metacentric height (GM ), thus hydrodynamic stiffness
in roll and pitch.
In order to highlight such a behaviour, the floater, whose schematics is shown in Figure 1, is inspired by the cylinder
studied in [41, 42], which is a renown example of parametrically unstable floater, due to the 2:1 ratio between natural
periods in pitch/roll and heave. However, a notional single mooring line has been included, in order to consider the full
6-DoF model. For simplicity, the mooring restoring force has been assumed to be linear and with no coupling between
DoFs. Note that, in order to avoid numerical instability in yaw, a torsional stiffness of the mooring line has been included.
Furthermore, a 0.1% perturbation of one of the two transverse moments of inertia has been considered, in order to highlight
the lack of instability thanks to the torsional stiffness.
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Finally, note that all parameters and results here presented are normalized, enabling application to structures of varying
size, such as the large spars in [41, 42], and to smaller WEC-like structures, as in [43]. The relevant common feature is
to realize a 2:1 ratio between pitch and heave natural periods. Table 2 shows the ratio between the natural period in each
DoF and Tn,5.

Table 2: Natural periods normalized by the pitch and roll natural periods [-].

Surge & Sway Heave Roll & Pitch Yaw
7.7 0.5 1 5.1

Figure 2 shows the amplitude of the response to regular waves, as a function of wave periods (Tw) and wave heights (Hw).
Periods are normalized by Tn,5, while the wave height and linear displacements are normalized by the metacentric height
(GM ). The dashed and dash-dotted red lines correspond to Tw = 1

2Tn,5 and Tw = Tn,5, respectively. As expected, a roll
and sway response is localized around an excitation period equal to 1

2Tn,5. At the same period, there is a clear reduction
of heave response, due to an internal exchange of energy between DoFs. Finally, under the 5-DoF excitation condition,
there is a small response in the yaw DoF, made possible by the nonlinear kinematics and the perturbation of the transverse
moment of inertia. However, due to the restoring term in yaw, numerical instability is avoided and the yaw response is
contained below 1 degree.

Figure 2: Amplitude of the response as a function of Tw and Hw. Periods are normalized by Tn,5, while the wave height and linear
displacements are normalized by the metacentric height GM . The dashed and dash-dotted red lines correspond to Tw = 1

2
Tn,5 and

Tw = Tn,5, respectively.

While Fig. 2 is obtained with a regular (monochromatic) waves, it is interesting to verify the development of parametric
resonance and dynamic instability to more realistic irregular (panchromatic) waves. The most interesting condition is at
the parametric resonance period, so that a peak period (Tp) of half Tn,5 is considered. Since the severity of the instability
is proportional to the significant wave height (Hs) a medium-high value is considered, based on Fig.2, equal to GM .
A typical Jonswap spectrum is considered, with the enhancing factor (γ) of 3.3. Figure 3 shows the dynamic response
of the floater for a long realization of the resulting stochastic process. It is clear that the parametric resonance in roll is
excited, but reaching a lower steady state amplitude than in the monochromatic condition, since the frequency-dependent
instability is weaker.

Conclusions

This paper proposes a model in 6 degrees of freedom for axisymmetric floaters, including nonlinear kinematics, Coriolis
and centripetal forces, and nonlinear Froude-Krylov forces. Although their physical impact is negligible, it is crucial to
include damping and restoring terms in the yaw degree of freedom in the numerical model. In fact, if yaw is unrestrained,
unstable and unbounded yaw responses may appear if there is a perturbation of the inertial properties of the system (likely
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Figure 3: Dynamic response to a realization of a panchromatic wave with peak period Tp = Tn,5/2 and significant wave height
Hs = GM .

if the mathematical model is coupled to a physical system). However, even with ideal inertial parameters, sustained
bounded yaw response may be obtained if all other 5 DoFs are excited. This particular scenario arises due to parametric
resonance conditions of the roll DoF, namely when the excitation force frequency is about twice the roll natural frequency.
The proposed model, thanks to the nonlinear FK formulation, is also able to articulate parametric resonance.
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On periodic solutions and modal energy transfer of mechanical systems with
state-dependent impulsive stiffness excitation

Thomas Pumhössel
Institute of Mechatronic Design and Production, Johannes Kepler University Linz, Austria

Summary. In the present contribution, mechanical systems with impulsive stiffness excitation are investigated. It is shown that

periodic solutions exist, which result in a repeated transfer of vibration energy from lower to higher modes and vice-versa. This allows

that the structural damping of the mechanical system can be utilized more effectively, resulting in a faster decay of transient vibrations

compared to the case where no impulsive excitation is present.

Introduction

The transfer of vibration energy, either in the modal space, or spatially to an attached system, allows to reduce transient

vibrations after some initial disturbance. In the first case the enhanced damping properties of higher modes can be utilized

more effectively, see. e.g. [1], whereas in the second case energy is transferred in a one-way, irreversible manner to a

nonlinear coupled additional system, denoted as nonlinear energy sink (NES), see [2], for example.

In the present contribution, mechanical systems with state-dependent impulsive stiffness excitation are investigated. It

is shown that, in the conservative case, periodic solutions exist which result in a periodic exchange of vibration energy

across modes. By taking structural damping into account, the effect on the total energy content of mechanical systems is

demonstrated.

Periodic solutions and energy transfer

In the following, mechanical systems with impulsive stiffness excitation described by equations of motion of the form

Mẍ(t) +Cẋ(t) + (K+

K∑

k=1

εk(xk, ẋk)Gδ(t− tk))x(t) = 0, (1)

are investigated. Therein, M, C and K represent the constant (n×n)-dimensional mass-, damping- and stiffness-matrix.

Impulsive parametric excitation is introduced at equidistant instants of time tk by using Dirac-delta functions δ(t − tk),
where the state-dependent strength of the impulses is denoted as εk(xk, ẋk). It was shown in [3], that the state of the

system r(t) = [x(t) ẋ(t)]T just after an impulse at tk, i.e. at tk,+, can be related to the state after the preceding impulse

at tk−1,+ by

r(tk,+) = Jk(εk)e
A∆T r(tk−1,+), (2)

where

Jk =

[
I 0

−εkM−1G I

]
, A =

[
0 I

−M−1K −M−1C

]
, (3)

and ∆T = tk− tk−1 holds. The matrix Jk was denoted as jump-transfer matrix by Hsu, see [3]. If the impulsive strength

εk is selected to be state-dependent according to

εk = (
n∑

i=1

gTi xk−ẋi,k−)/(
1

2

n∑

i=1

(gTi xk−)
2/mi), (4)

see [4], neither energy is extracted from, nor fed to the mechanical system by an impulse, i.e. the impulse is energy-neutral.

In this case, Jk becomes a constant matrix and Eqn. (2) can be written in the form

r(tk,+) = JeA∆T
︸ ︷︷ ︸
Q(∆T )

r(tk−1,+) = Qk(∆T )r0 = ΨΛkΨ−1r0, (5)

where r0 = r(t0 = 0). The matrix Ψ is comprised of the eigenvectors of Q, and Λ = diag(λi), i = 1, 2, . . . 2n, of the

corresponding eigenvalues. Following the notation in [5], a periodic solution with period R is given by a sequence of R
distinct points r∗ in the state-space according to

r∗(tm+r,+) = Qrr∗(tm,+), r = 1, 2, . . .R− 1, (6)

r∗(tm+R,+) = QRr∗(tm,+) = r∗(tm,+), (7)

denoted as P -R solution. It can be seen from Eqn. (5), that the last condition (Eqn. (7)) is fulfilled if there exists a

timespan ∆T between adjacent impulses, for which ΛR = I holds, where I represents the identity matrix. With a simple

example, the existence of such cases is demonstrated in the following.

The investigated mechanical system comprises two masses connected by stiffness and damping elements and is pinned

on one end, see Fig. (1), where the stiffness k01 = k̄01 + εkg01δ(t − tk), i.e. consists of a constant and an im-

pulsive part. At equidistant instants of time tk, stiffness impulses with a strength according to Eqn. (4) are applied.

Hence, the equations of motion are of the form of Eqn. (1). As system parameters m1 = 1, m2 = 0.5, k̄01 =
1, k12 = 2, and a stiffness-proportional damping C = αK, α = 0.01, were used for the numerical calculations.
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Figure 1: Sketch of investigated mechanical system.

Figure (2a) shows the eigenvalues λi, i = 1, . . . 4, of the mapping

matrix Q in the undamped case (α = 0), for different values of

the timespan ∆T between adjacent impulses. One notes that within

the investigated interval of ∆T , two real and two complex conju-

gate eigenvalues exist. Exemplarily, the case ∆T = 6.68672 where

λ12 = ±1 and λ34 = ±i, see the dotted unit-circle in Fig. (2a), is

investigated in more detail. Applying the mapping matrix Q four times gives λR1,2 = 1 and λR3,4 = 1, i.e. the mechan-

ical system attains the initial state again after applying four impulses. Hence, we have a P -4 solution with a period of

4∆TP−4. Figure (2b) depicts the corresponding 4-periodic timeseries of the impulsive strength εk. The effect of the

impulsive excitation on the modal coordinates y1 and y2 is shown in Fig. (2c). As a first mode deflection according to

y(t = 0) = [1 0]T and ẏ(t = 0) = [0 0]T was used as initial condition, the mechanical system does not show any second

mode vibrations initially. This changes with the application of the first impulse, as energy is transferred from the first to

the second mode. In the following, the system exhibits first and second mode vibrations simultaneously, until after one

period the energy content of the second mode vanishes again. Thereafter, one observes a periodic exchange of energy

from the first to the second mode and vice-versa. Including structural damping (α = 0.01) allows to exploit the enhanced

damping properties of the second mode, see Fig. (2d). During the phases where the second mode contains vibration en-

ergy, the total energy content E of the mechanical system decreases faster compared to the phases where only first mode

vibrations occur. This results in a globally faster decay of the vibration energy E compared to E0 (energy content where

no impulsive excitation is present).

4 TD
P-4

4 TD
P-4

4 TD
P-4

4 TD
P-4

Figure 2: Eigenvalues λi, i = 1, . . . 4, of mapping matrix Q for different values of the timespan ∆T between adjacent impulses -
undamped case α = 0, (a). Impulsive strength (b), and modal displacements y1 and y2 (c) for the case ∆T = ∆TP−4 = 6.68672 and
α = 0. Modal energy contents E1 (dotted) and E2 (dashed), total energy content of the mechanical system E, and total energy content
E0 of system without impulsive excitation for the damped case (d).

Conclusions

It was demonstrated that conservative mechanical systems exhibited to impulsive stiffness excitation of energy-neutral

kind can show a periodic behaviour, which can be utilized effectively to enhance the damping of transient vibrations.
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 An alternative grinding wheel regenerative mechanism: distributed grit dullness 
 
 Máté Tóth*, David Curtis** , and Neil D Sims* 

*Department of Mechanical Engineering, The University of Sheffield, Sheffield S1 3JD, UK 

** Advanced Manufacturing Research Centre, Wallis Way, Rotherham S60 5TZ, UK 
  
Summary. This work focuses on the dynamics and stability of grinding operations. Surface regeneration, which is a well-known and widely 
accepted cause of regenerative chatter in machining, affects grinding in a unique way as it can occur not only on the workpiece but on the 
wheel as well. The vast majority of relevant publications consider only distributed radial wear or physical surface waves around the 
circumference of the grinding wheel in order to account for surface regeneration on the wheel. This research presents an alternative 
regenerative mechanism, namely the distributed dullness of the cutting edges captured by the specific energy, which is a fundamental quantity 
in grinding, similar to the cutting-force coefficient in conventional machining. The new chatter theory, which is validated experimentally, 
predicts stable grinding conditions with respect to wheel regeneration for a certain set of cutting parameters. This is atypical as far as the 
relevant literature is concerned, i.e., grinding is reported to be typically unstable with regard to wheel regeneration. 

Introduction 

Grinding is a widely used machining process with a significant 20-25% share of the manufacturing sector in developed 
countries [1]. The main difference between grinding and conventional machining lies in their respective cutting tools. 
While conventional processes (e.g. turning and milling) employ geometrically well-defined machine tools, grinding relies 
on a geometrically ill-defined wheel for material removal. Owing to its unique cutting tool, grinding has a number of 
advantages and disadvantages. Abrasive processes are known for producing excellent surface quality and dimensional 
accuracy, cutting difficult-to-machine materials with relative ease, and achieving high material removal rates. The 
downside of abrasive machining is excessive tool wear, significant heat generation, and – from a theoretical point of view 
– the complexity of process modelling and prediction due to the inherent randomness of the wheel geometry. This last 
disadvantage makes it especially complicated to accurately capture an already intricate phenomenon in grinding, which 
harmfully affects virtually all machining operations, namely regenerative machine tool vibration or chatter. The 
consequences of self-excited relative vibration between the workpiece and the cutting tool are serious: inadequate surface 
finish, inaccurate dimensions, reduced tool life, unpleasant noise, etc. Since machining under unstable conditions is highly 
unfavourable, chatter is to be avoided for the sake of product quality and manufacturing efficiency. 

Literature review 

Chatter modelling in conventional machining has been the topic of extensive research since Taylor published his famous 
work at the beginning of the 20th century, asserting that chatter is the most obscure of all machining problems, and there 
are probably no rules that can guide the machinist in maximising productivity and avoiding chatter at the same time [2]. 
Taylor’s initial concerns have been allayed in the world of conventional processes by chatter theories that are capable of 
accurately predicting the onset of unstable vibrations [3,4]. However, grinding has been lagging behind the results of 
conventional theories, because the inherently random nature of its cutting tool makes regenerative chatter more difficult 
to model and predict. Nevertheless, grinding chatter has been the subject of active and diligent research since the middle 
of the 20th century [5,6]. 

Grinding is often a finishing operation responsible for the final surface quality and dimensional accuracy of the 
machined part. Therefore, in the case of grinding, unstable relative vibration between the wheel and the workpiece can 
be especially detrimental, because it can destroy a product on which a number of costly machining operations have already 
been performed. The uniqueness of grinding lies not only in its cutting tool but also in the fact that surface regeneration 
can occur not only on the workpiece but on the grinding wheel as well, introducing the possibility that the two phenomena 
happen simultaneously and influence one another in real time. This idea is often referred to as double regeneration in the 
literature, and has been meticulously studied ever since wheel-related instability was first measured in practice [7]. 

Surface regeneration on the grinding wheel has usually been modelled as distributed radial wear or physical 
surface waves around the circumference of the grinding wheel. While this is a perfectly reasonable approach to 
considering wheel-related instability, Li and Shin claimed that such a description is incomplete, as distributed radial wear 
alone cannot account for a number of experimental observations reported in the literature [8]. Therefore, they formulated 
a new theory based on a regenerative mechanism that combines distributed radial wear with distributed grit dullness (i.e. 
the distribution of the dullness of the cutting edges around the circumference of the grinding wheel). They characterised 
grit dullness by the specific energy, which quantifies the amount of grinding energy required to remove a unit volume of 
workpiece material, or equivalently, the amount of grinding power necessary to sustain a unit material removal rate. That 
is because a sharper/duller grain corresponds to a lower/higher specific energy, respectively. Therefore, Li and Shin 
considered not only physical surface waves but also specific energy waves on the grinding wheel. 

Nevertheless, the current literature tends to model wheel regeneration as a result of uneven radial wear alone. 
The present study seeks to overcome this by investigating the approach taken by Li and Shin from an analytical and 
experimental perspective. 
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Model 

A two-dimensional, single-degree-of-freedom model of single-pass surface grinding has been developed by the authors, 
where the distributed dullness of the cutting edges is quantified by the variation of the specific energy around the 
circumference of the wheel. The governing equation of motion of the system is linear in its primary variable, which is the 
specific energy (u), and contains two time delays – a point delay (Tg) and a distributed delay (τ, between 0 and τc,0): ݑሷ ሺݐሻ + ʹ𝜁𝜔ݑሶ ሺݐሻ + 𝜔2ݑሺݐሻ = ሷݑ ݐ) − 𝑇𝑔) + ʹ𝜁𝜔ݑሶ ݐ) − 𝑇𝑔) + 𝜔2ݐ)ݑ − 𝑇𝑔) − 𝜇ೣ𝛿0௪𝐶௩2ೢ 𝜏𝑔𝜏,0௩𝑔 ∫ ݐሺݑ − 𝑇𝑔 + 𝜏𝑐,0 − 𝜏ሻ𝜏,00 ݀𝜏. 
The point delay is equal to the rotation period of the grinding wheel, and the upper limit of the distributed delay describes 
the total time necessary for an individual grit to pass through the grinding zone. It can be seen that Tg is significantly 
larger than τc,0 for practical values of the nominal depth of cut (δ0). The mathematical complexities of the stability analysis 
introduced by these two time delays are dealt with in the frequency domain. Taking the Laplace transform of the equation 
of motion, the open-loop transfer function between the nominal depth of cut and the resulting wheel vibration reads 𝑇ሺݏሻ = 𝜇ݔ𝛿Ͳݓ𝐶݀ݓʹݒ𝜏𝑔݁−𝑇𝑔ݏሺ݁𝜏ܿ,Ͳݏ − ͳሻ݉𝜏ܿ,Ͳݒ𝑔ݏሺͳ − ݁−𝑇𝑔ݏሻሺݏʹ + ʹ𝜁𝜔݊ݏ + 𝜔݊ʹሻ. 
Having transformed the two time delays into a number of complex exponentials, it is possible to apply the Nyquist 
criterion to the open-loop transfer function above, in order to determine the stability properties of the system. 

Results 

The proposed theory predicts stable machining conditions for a certain, practically feasible set of grinding parameters 
(see black lines in Fig. 1). This is an unusual yet fascinating result, as grinding is reported to be typically unstable with 
respect to wheel regeneration in the literature [5,6]. Furthermore, a number of grinding trials have been performed by the 
authors as well, which present a strong case for the validity of the new model (see coloured circles in Fig. 1). The primary 
aspects of comparison were stability diagrams and, in the case of instability, chatter frequencies, which indicate a good 
correspondence between the theoretical predictions and the experimental data. 

 
Figure 1: Comparison between theoretical and experimental stability boundaries with a good agreement between the two 

Conclusions 

The new chatter model proposed in this work is not only reliable in its own right, but also has a much broader area of 
application, calling for the alternative wheel regenerative mechanism of distributed grit dullness to be included in 
sophisticated grinding chatter models. Practically speaking, the new theory suggests that previously unknown regions of 
stability exist and can be utilised in the pursuit of avoiding chatter vibrations in grinding processes, which is the main and 
most promising outcome of this research. 
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Summary. In this paper, the problem of the active vibration control of a thin and flexible disc is addressed. The mechanical structure
tackled here is equipped with two piezoelectric circular patches: one of them works as a sensor and the other is used as an actuator.
Both are fixed on the disc, one on each side, and centered according to its axis of symmetry. The model of this system is obtained
from a finite element analysis, leading to a linear state space model. The design of the proposed control scheme is based on delayed
proportional actions. As a matter of fact, recent works emphasized the stabilizing effect of delayed feedback if a real multiple spectral
occurs in the closed-loop called multiplicity-induced-dominancy (MID) property allowing to an assignment approach. The purpose of
this work is to investigate the properties of the proposed MID-based output feedback controller in terms of vibration damping.

Introduction

This work focuses on the effect of multiplicity of spectral values on the exponential stability of a sixth-order retarded
differential equation. An efficient way to study time-delay systems solution’s stability is the frequency domain approach
since in the Laplace domain, where a number of effective methods have been proposed, the stability analysis amounts
to studying the distribution of the characteristic quasipolynomial function’s roots, see for instance [10, 6, 7]. It is worth
noting that the rightmost root for a quasipolynomial function corresponding to stable time-delay systems is actually the
exponential decay rate of its time-domain solution, see for instance [9] for an estimate of the decay rate for stable linear
delay systems. The dominancy induced from of a given multiple spectral value property called in the sequel multiplicity-
induced-dominancy or MID for short is studied and analytically shown in scalar delay equations in [4], then in second-
order systems controlled by a delayed proportional is proposed in [2] where its applicability in damping active vibrations
for a piezo-actuated beam is proved. An extension to the delayed proportional-derivative controller case is studied in [3, 5]
where the dominancy property is parametrically characterized and proven using the argument principle. Further, in [1]
some sufficient conditions are established showing that such MID property holds for arbitrary-order dynamical system.

Problem statement

System description
The system considered here is described in Fig. 1. It is
a composite membrane composed by a brass disc with a
clamped circular edge. This disc is embedded into a mobile
support moving only along the z axis. The moving support
is subjected to an unknown acceleration, noted w(t) in the
sequel. This flexible membrane is equipped with two PZT-
based piezoelectric patches: one used as an actuator and the
other used as a sensor. The sensor’s thickness is 0.7mm.
It is greater than the actuator’s thickness which is 0.4mm.
An explanation about why should the thickness of a piezo-
electric sensor must be greater than the actuator’s one can
be found in [11]. These circular patches are supposed to
be rigidly bounded on the disc, one on each side, and cen-
tered according to the axis of symmetry. All the physical
parameters of the materials used here can be found in [8].

Membrane

xy

z

ed = 0.4mm

D
a
=
2
3
m
m

Piezoelectric circular
patch (one on each side)

D
d
=
1
5
0
m
m

Figure 1: Axisymmetric composite membrane (dimensions on the
right) inserted in the device which is subjected to vibrations (Com-
puter Aided Design figure on the left)

The main dimensions of the composite membrane are given in Fig. 1. The controlled input noted u(t) is the voltage applied
across the piezoelectric actuator. The measured output noted y(t) is the electric voltage delivered by the piezoelectric
sensor. The disturbance input w(t) is the total acceleration applied to the clamped circular edge of the structure. The
controlled output that we consider, noted z(t), is the z component of the acceleration of a point located at the center of
the disc and on the upper side of the sensor.
The input-to-output transfer functions of finite order are derived from a Finite Element modelling of the axisymmetric
membrane, following the steps described in [12].

Control approach

An interesting control objective is to damp the peaks of resonance of the first three bending modes, by using an output
feedback controller, without affecting the vibrating modes that are neglected in the model considered here.
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Figure 2: Feedback control structure.

By using the same notations as in [12], the piezo-actuated system is in-
serted in the output feedback control structure of Fig. 2, with a zero-
reference signal and an input disturbance w corresponding to a rectan-
gular impulse signal. The control problem consists in damping the vi-
brations due to the first three modes when the mobile support is sub-
jected to a shock like disturbance. We define the output feedback control
law u(s) = C(s, τ) y(s) involving the following Multiplicity-induced-
dominancy (MID) controller given in Laplace domain by

C(s, τ) :=
N(s, τ)

D(s, τ)
where N(s, τ) := n0 + nr0 e

−τ s

and D(s, τ) := d0 + dr0 e
−τ s.

(1)

By applying inverse Laplace transform, it can be easily shown that this
control law is given in time domain by

u(t) = −dr0
d0
u(t− τ) + n0

d0
y(t)− nr0

d0
y(t− τ) (2)

which is an output feedback control law based on proportional actions plus delayed proportional actions.

Simulation results

The MID method gives the following numerical values for the parameters of the controller in (1) that assigns λ0 =
−600 as a rightmost root of multiplicity equal to 3: n0 ≃ 7.478025835, nr0 ≃ 69.88393518, d0 ≃ 1.626843813,
dr0 ≃ 5.858004955 and τ ≃ 0.0001904171687. To show the efficiency of the proposed MID-controller, we propose
to compare, in Fig. 3, the time responses of both output signals in open-loop (blue) and in closed-loop (red) when the
disturbance w is a rectangular impulse (black), say like a shock. We also put the time response of the control signal u that
exhibits a peak of magnitude roughly equal to 12 V which is reasonable for this application.

Figure 3: Time responses of the measured output y on the left, of the controlled output z on the middle and of the closed-loop control
signal u on the right. Conclusions

We have just shown a work dealing with the active vibration control of an axisymmetric membrane piezo-actuated, using
closed-loop pole placement approach in order to design an efficient MID-based controller satisfying the control problem.
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Summary. Analysis of a nonlinear two degree of freedom model of a cutting process is presented in the paper. Classical regenerative 

mechanism of chatter is enriched in an additional friction phenomenon which generates frictional chatter. A goal of the paper is to detect 

a mutual interaction between the regeneration and frictional effect. The nonlinear model is solved by means of the multiple time scale method. 

Stability of cutting process is checked in order to determine stability lobes diagrams and to find an influence of friction on the process. 

Nonlinear behaviour is also examined for different variants of stiffness ratio with the help of bifurcation diagrams where cutting velocity 

is chosen as the bifurcation parameters. Finally, the maps of chatter amplitudes are presented and new frictional stability lobe diagrams are 

proposed to analyse an influence of friction. 

Introduction 

Nowadays, cutting process is still one of the most popular manufacturing method. During machining operations, 

vibrations called chatter may occur between the workpiece and the tool. This phenomenon generates dimensional and 

geometrical inaccuracies, a poor surface finish, faster tool wear and reduction of spindle life. Therefore, it is necessary to 

understand and control chatter vibrations. The regenerative effect is related to the wavy workpiece surface generated by 

the previous cutting tooth pass. While, the frictional mechanism results from friction force occurring between the tool 

and the workpiece. Although, trace regeneration and friction are the most important in practical operations there are little 

papers which consider regenerative and frictional mechanisms together. Friction always exists in real cutting process 

therefore, excluding this phenomenon is rather a big simplification. Generally, chatter is a dynamic instability that can 

limit material removal rates, cause a poor surface finish and even damage the tool or the workpiece. Usually in the 

literature the problem of the regenerative and frictional chatter mechanisms are investigated separately, although friction 

phenomena exist always in case of a contact problem. Therefore, this approach describes the model of orthogonal cutting 

both with regenerative and frictional effect. The model of frictional chatter, presented in [3], is completed with 

regenerative effect. In order to get knowledge about an influence of frictional chatter on regenerative one and complete 

an mathematical approach, the mathematical model of cutting is developed and solved with the help of the method of the 

multiple time scales [1, 2]. An explanation of mutual interaction between frictional and regenerative mechanisms is the 

main purpose of the paper. 

Mathematical model 

To analyse regenerative and frictional mechanism of chatter, two degree of freedom model of orthogonal cutting is used 

(Fig.1a). Figure 1b presents the force distribution on the tool edge separately for the rake face and flank face. This 

is a quite new approach because classical analysis takes into account only the rake face forces or resultant force acting on 

the tool. Here, the resultant cutting force is distributed on the normal force on the rake N1 and face N2 force. The normal 

forces together with friction between the tool and the workpiece cause the friction force F1 and F2 on the rake and the 

flank face, respectively. This approach of cutting force distribution is presented more detailed in the paper [3]. The normal 

and the friction force are defined as follows: 

 
  

   
11 2

1 1 2 2

2
1 1 ( ) ( ),    ( ),

3 3sgn( ) ,    sgn( ) ,

o p p r con p p

f f fx y

N Q a c v H a H v N K a H ar

F N v v v F N v v vx x r y r y r     

   

     
  (1) 

where, Qo represents the specific cutting force modulus, ap is the instantaneous penetration of the tool into the workpiece 

(depth of cut), c1 is a constant controlling the dependence of the cutting force on the relative velocity between the tool 

and the workpiece vr, Kcon is the contact stiffness and H represents the Heaviside function. Note that the H(vr) models the 

loss of contact between the tool and the chip while H(ap) accounts for the tool coming out of the workpiece. In the friction 

forces μx, μy denote the static coefficient of friction between the tool and the workpiece, and the tool and the chip, 

respectively, αx, αy, βx, βy are constants which regulate the nonlinear characteristics of the friction forces between the 

respective surfaces in contact. vr and vf are the relative velocities between the tool and the workpiece, and the tool and the 

chip, respectively and sgn represents the sign function. The instantaneous penetration of the tool into the workpiece or 

the cutting depth ap can be written in terms of the specified depth of cut apo, the tool motion y and the tool motion one 

rotation before y(t-τ) as: 

 ( ),p poa a y y t       (2) 

where, δ equals 0 or 1 when the regenerative effect is switched off or on. Time delay τ is connected with a spindle 

or a workpiece speed Ω by equation τ=2π/Ω. The relative velocities between the tool and the workpiece vr, and the 

tool and the chip vf are related to the nominal cutting speed vo, the shear angle of the workpiece material φ and the tool 

velocities by: 

 , tan .r o f rv v x v v y       (3) 
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a) 

 

b) 

 

 

Figure 1: Two degrees of freedom model of orthogonal cutting (a), force distribution on tool edge (b) [3] 

 

The non-dimensional equations of motion is defined in the form: 

 2 , 2 ,x x y yx z x x f y z y y f            (4) 

where: 

 2 2 2
, , , , ,

2 2x yx

k k ck cy y yx xz z
x yk m m m mx x y

             (5) 

and the forces are given by: 

 
    

    1

1

2 31 1 ( ) ( ) ( ) sgn( ) ,

2 3( ) 1 1 ( ) ( ) sgn( ) .

o p p r con p p y

f f fcon p p o p p r x
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f k a H a q a c v H a H v v vr x xy

v

v

  

  

     

     
  (6) 

Analytical and numerical results 

The nonlinear model described by Eq.4 is solved by means of the multiple time scale method. Next to verified analytical 

result the numerical simulation was performed by using Matlab-Simulink software. Both results are presented as stability 

lobes diagrams (Fig.2), where cutting velocity vo, proportional to the spindle speed Ω, is on the horizontal axis and on the 

vertical axis is cutting resistance qo. Unstable areas (gray color in Fig.2a) were obtained analytically, while the amplitude 

value (gray scale in Fig.2b) was also numerically determined. In both cases, a characteristic stable area was observed in 

the middle of the graph. 
a) 

 

b) 

 
Figure 2: Stability lobes diagram obtained analytically (a) and numerically (b) 

Conclusions 

The paper presents the results of analytical and numerical analysis of a two degree of freedom nonlinear model. 

An analytical solution of the model near the primary resonances are obtained by using the method of multiple time scales. 

The frictional and regenerative mechanisms of chatter are important both acting together and separately. The regenerative 

effect is stronger for small velocities (rotational speeds) while the frictional one for higher velocities. However, it depends 

on the workpiece stiffness ratio as well. Friction causes a stabilising effect when regenerative chatter dominates. 

Regardless the chatter mechanisms the chatter free region can be found in the middle range of analysed velocities. 
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Summary. Normal form analysis is carried out at a degenerate parameter point of the low degree-of-freedom non-collocated delayed force 
control model. It is shown that around the degenerate point where both the derivative of the real part of the eigenvalues and the first Lyapunov 
coefficient are zero, neutral stable periodic orbits arise and a specific transcritical bifurcation of limit cycles takes place.  

Introduction 

Force control is a relevant task of human motion control when an operator touches an object or the environment, and it is 
often studied as important part of the efforts for understanding human behavior. Due to the processing time of the sensory 
signals in the neural system, and also to the reaction time of the muscles, delay is one of the essential parameters in force 
control. This study will present bifurcation analysis at a degenerate parameter point of a non-collocated force control 
model in the presence of human reaction time delays. 

Mechanical model 

A basic model of delayed force control with non-collocated force sensor configuration is considered. A block of mass m 
is in contact with the rigid environment via a spring of stiffness 1k  along a horizontal axis as shown in Figure 1. The 
contact force can be obtained by a force sensor, which is a serially connected spring of large stiffness 2 1( )k k located 
at the contact point to the rigid environment. The sensed signal is fed back to the control force Q of the human actuation. 
The governing equation takes the following form: 

 1 1 1 2

1 1 2 2 2

( )

0 ( )

mq Q k q q

k q q k q

  
  

  (1) 

where 1q  and 2q  are the absolute positions of the block and the end point of the spring that detects the force, 
respectively. With a simple control strategy and with saturation of the control force into consideration, the actual control 
force Q at time instant   is given by  

 2 2 2 2

1
( ) tanh ( ( ) ) ( )S d

S

Q t F P k q t F k q t
F

 
 

      
 

  (2) 

where P  is the feedback gain,  is the reaction time of the actuator, and SF  can describe the level of the actuator 

force saturation. By shifting 1( )q t  by the equilibrium position 10q  of the block m, i.e., by introducing the coordinate 

1 10( ) ( )x t q t q  , using the assumption 2 1k k , and introducing the dimensionless coordinates 1/ ( / )Sx x F k  and 

/t t  , the Newtonian equation (1) is transformed to: 
 
 2 2 2( ) ( ) ( ) ( ) ( 1) ( ) tanh( ( 1))n n nx t x t x t Px t           . (3) 

 

 
Figure 1: A basic model of non-collocated delayed force control 

Linear Analysis 

By means of analyzing the characteristic equation of the linear part of Equation (3), the stability chart in the parameter 
plane ( , )nP    is obtained as shown in Figure 2. The stability boundaries and regions are determined according to the 

number of characteristic roots with positive real parts.  

m 
0 q10 q1 

k1 k2 0 q2 P, 
τ 
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Figure 2: Stability chart in the parameter plane ( , )nP   . Shaded regions refer to stability. Numbers indicate the number of 

characteristic roots with positive real parts. Black stability boundaries refer to supercritical Hopf bifurcations and red ones refer to 
subcritical Hopf bifurcations. The blue point at (π, 1) is the degenerate parameter point. 

The 5th order Normal Form at the degenerate parameter point 

According to [1], the black stability boundaries refer to supercritical Hopf bifurcations and the red stability boundaries 
refer to subcritical Hopf bifurcations in Figure 2. At the blue point (π, 1), the sense of Hopf bifurcations changes and the 
stability of the equilibrium swaps, which indicates that both the first Lyapunov coefficient and the derivative of the real 
part of the eigenvalues at the critical parameters are zero. To study this special degenerate parameter point, normal form 
up to the 5th order is carried out via symbolic calculation [2]. Let 1P   , then the normal form reads 
 
 2 2 2 2

1 1 2 3 2
3

1cy i y S y S y y y S y y y y          (4) 

 
where 1Re( ) 0S  , 1Re( ) 0  , 2

2Re( ) / 4S  , 2
3Re( ) / 2S   and 2

2Re( ) / 4  . Therefore, the neutral stable 

bifurcated periodic vibration has amplitude  

 2 1     (5) 

as shown in Figure 3.  

 
Figure 3: Bifurcation diagram of periodic motions with respect to feedback gain P at n   . Red line refers to unstable 

equilibrium. 

Conclusion 

The normal form up to the fifth order is obtained at the degenerate parameter point where both the derivative of the real 
part of the critical eigenvalues and the first Lyapunov coefficient at the critical parameters are zero for the simple non-
collocated force control model. The nonlinear analysis shows that neutral stable periodic orbits arise around this point. 
This is not a standard fold bifurcation, but transcritical bifurcation of limit cycles, which happens around this degenerate 
parameter point. 
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Summary. In this study, we consider the PDµ control of the inverted pendulum with different delays in the proportional and the
fractional derivative terms. This concept gives a transition between several special cases already investigated in the literature. The main
question is whether the critical delay can further be extended by employing fractional-order feedback combined with delay detuning.

Introduction

Time delay in state-feedback systems sets a strong limitation in the stabilization of unstable plants. If the feedback delay
is larger than some critical value, then the system cannot be stabilized. This feature can well be demonstrated by the
inverted pendulum paradigm [3, 4]. Stabilization of an inverted pendulum by proportional-derivative (PD) feedback is
possible if and only if the feedback delay τ is smaller than a critical delay given by

τPD
crit =

T

π
√
2
, (1)

where T is the period of the oscillations of the pendulum hung downwards [4]. If τ > τcrit, then one cannot find
proportional and derivative gains that stabilizes the inverted position of the pendulum.
The critical delay can be increased by employing control laws other than PD feedback. For instance, if the feedback
involves acceleration (PDA feedback), then the critical delay can be increased to τPDA

crit =
√
2 τcrit,PD [3]. Alternatively,

if the delay of the proportional and the derivative terms are detuned, then the critical delay increases to τdPD
crit ≈ 1.47 τPD

crit

[3]. Another alternative way to increase the critical delay is the application of fractional-order control: in case of PDµ

feedback, τPDµ

crit ≈ 1.12 τPD
crit [1].

Introducing fractional-order derivative in the feedback loop allows us to exploit the time history starting from some initial
time to the current time instant. This can be seen from the most frequently used definitions of fractional derivative: the
Riemann-Liouville fractional derivative, the Caputo fractional derivative and the Grünvald-Letnikov fractional derivative.
All of these definitions of the fractional derivative resembles a distributed delay term that converts into a point delay term
if the order of the derivative is an integer [2].

Problem statement

The characteristic function of the system under investigation reads

D(s) = s2 − a0 + kpe
−sτp + kds

µe−sτd , (2)

where a0 > 0 is the open-loop system parameter, τp > 0 and τd > 0 are the feedback delays and 0 < µ < 2 is the order
of the fractional derivative. This system can also be interpreted as a control system with a single latency τ with some
additional delays (delay detunings) δp ≥ 0 and δd ≥ 0 in both terms such that τp = τ + δp, τd = τ + δd.
The D-subdivision method can also be applied to fractional-order systems. Substitution of s = 0 and s = ±iω, ω > 0
into D(s) = 0 gives the D-curves

s = 0 : kp = a0 , kd ∈ R , (3)

s = ±iω, ω > 0 :





kp =
(
a0 + ω2

) sin(µπ2 − τdω)
sin
(
µπ
2 − (τd − τp)ω

) ,

kd =
(
a0 + ω2

) sin(τpω)

ωµ sin
(
µπ
2 − (τd − τp)ω

) .
(4)

The D-curves bounds the parameter regions in the plane (kp, kd) where the number of unstable characteristic roots is
constant. Stable regions (zero unstable characteristic roots) can be determined numerically using the argument principle.
When the delays increase then the stable regions typically shrink and disappear. There is a critical delay τdPDµ

crit : if
min(τp, τd) > τdPDµ

crit then the system cannot be stabilized by any triplet (kp, kd, µ). The goal of this study is to determine
the stabilizability boundaries in the plane (τp, τd) and to find τdPDµ

crit .

Special case: PDµ controller with a single delay

Stabilizability was already investigated if the delays in the proportional and fractional derivative terms are the same
(τp = τd = τ ). In the case of a PDµ controller with a single delay, the stabilizable region was derived in [1] in the plane
of the dimensionless parameters a = a0τ

2 and µ (see the left panel in Figure 1).
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Using the D-subdivision technique, we can observe four types of loss of stabilizability. These geometric conditions can
be directly translated into the multiplicity conditions shown in the right panel of Figure 1. This gives a more uniform
description of the stabilizability boundaries compared to that of [1]. Conditions detJ = 0 corresponds to the singularity
of the Jacobian matrix of the other three (four) equations with respect to kp, kd, ω1 (and ω2). The geometric interpretation
of this condition is the tangency of D-curves at the limit of stabilizability.
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mi Ω2
=1,

detHJL=0

Figure 1: Stabilizable region of (2) if τp = τd = τ with a = a0τ
2 (left). The stabilizability boundaries and multiplicity conditions in

the plane (µ, τ) if a0 = 2 (right).

Main results: stabilizability diagrams in the plane (τp, τd)

Using a similar technique described in the previous section, we can construct stabilizability diagrams for the case τp ̸= τd.
First, we need to detect the geometric conditions at the limit of stabilizability using D-subdivision. These geometric
conditions can be translated into multiplicity conditions. From the multiplicity conditions, we obtain a nonlinear system
of equations, which can be reduced after solving for kp and kd. Finally, the reduced equations can be solved using
pseudo-arclength continuation.
Figure 2 shows the stabilizability boundaries in the plane (τp, τd) for different values of µ. The stabilizable region can
be extended compared to the detuned PD controller (µ = 1) by choosing an appropriate value of the fractional order µ.
The largest admissible delay is obtained for µ = 0.999637. In this case the critical delay is τdPDµ

crit = 1.00778τdPD
crit (see

the right panel of Figure 2). Hence, an extremely small but still finite extension of the critical delay can be achieved by
employing detuned fractional-order control.
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Figure 2: The stabilizability boundaries in the plane (τp, τd) if µ ≤ 1 (left) and µ ≥ 1 (middle) with a0 = 2 (stabilizable regions are
to the left of the curves). The path of the critical point associated with the maximal allowed delay in the plane (τp, τd) if µ ≤ 1 (right).
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A Reynolds’ Limit Formula for the Shear Stress in Dorodnitzyn’s Boundary Layer

Carla V. Valencia-Negrete∗
∗ Department of Physics and Mathematics, Universidad Iberoamericana, A. C., Mexico City, Mexico

Summary. Shear Stress growth is an indicator of Boundary Layer separation. The main difficulty to obtain clear descriptions of its
behavior lies in Navier-Stokes Equations’ non-linearity. On the other hand, Dorodnitzyn stated a Gaseous Boundary Layer problem,
valid in atmospheric conditions, and deduced a second-order quasi-linear problem for a transformation of the Shear Stress. This article
presents a mathematical formalization of this last problem and a Reynolds’ Limit Formula for it, deduced with Bayada and Chambat’s
change of variables. For general compressible Reynolds’ equations, the problem was solved by Chupin and Sart in 2012. Undoubtedly,
there is a mathematical formalization for Dorodnitzyn’s model previous from the one that is given here, but the author has not been
able to find it in the literature. In earlier work, the author verified his first step simplification. Now, the formalization is extended to
Dorodnitzyn’s second-order quasi-linear problem. Then, the small parameter problem is deduced, and a bound, independent of the
parameter, is found in the corresponding Sobolev Space to prove the existence of a Reynolds’ Limit Formula for Dorodnitzyn’s Shear
Stress problem.

Abstract

The Earth’s Global Mean Temperature is going to increase by, at least, 1.5◦C in the next 10 to 33 years [3, p. 6]. As a
consequence, there will be an increment in the number of severe droughts and flooding [3, p. 9]. Its origin, atmospheric
convection, could be studied as a boundary layer separation problem. To identify its sources and sinks, the suggestion is
to study shear stress growth deduced from approximate gaseous boundary layer models in atmospheric conditions.

Figure 1: Dorodnitzyn’s Rectangular Domain R= (0, L)× (0, h) ∈ R2

In 1942, Dorodnityzn stated a Gaseous Boundary Layer problem [2] in a rectangle R = (0, L) × (0, h) ⊂ R2, where
L >> h > 0 [2], of three simplified stationary Conservation of Mass, Conservation of Momentum, and Conservation of
Energy laws, Eq. (1), (2) and (3),

∂ (ρ u)

∂x
+
∂ (ρ v)

∂y
= 0 ; (1)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= − ∂p

∂x
+

∂

∂y

(
µ
∂u

∂y

)
; y (2)

ρ

[
u
∂ (cp T )

∂x
+ v

∂ (cp T )

∂y

]
=

∂

∂y

[
κ
∂T

∂y

]
+ µ

(
∂u

∂y

)2

+
∂p

∂t
, (3)

where one can assume that the stationary density ρ ∈ L2 (R; (0,∞)); that the horizontal velocity component u ∈ L2 (R)
has generalized derivatives ∂u/∂x, ∂u/∂y, ∂2u/∂y2 ∈ L2 (R); the vertical velocity component v ∈ L2 (R); the absolute
temperature T ∈ L2 (R; (0,∞)) with ∂T/∂y, ∂2T/∂y2 ∈ L2 (R); the dynamic viscosity µ ∈ L2 (R), the pressure
p ∈ L2 (R), the thermal conductivity κ ∈ L2 (R), all of them with first order generalized derivatives in L2 (R); and both
products ρ u, ρ v ∈ L2 (R). This is, assume ρ, u, v, T , µ, p and κ are elements of the space W 1,2 (R), so that a Leibnitz
Rule for product differentiation is valid in the non-empty open domain R ⊂ R2 when both factors and all the generalized
derivatives involved are elements of L2(R) [4, p. 11]. The value cp is the specific heat at constant pressure for dry air,
and we have four Ideal Gas Thermodynamic Laws, Eq. (4), (5), (6), (7): the Prandtl number Pr = 1,

Pr =
cp µ

κ
= 1; (4)

the Equation of State for the Universal Gas Constant R∗, a volume V =
∫∫∫

B
dx dy dz of a ball B(r,x0) ⊂ R3 of

positive radius r > 0 and center x0 = (x0, y0, z0) such that (x0, y0) ∈ R and R × {0} ⊂ B, and the number of moles n
of an ideal gas corresponding to the volume V ,

p V = nR∗ T ; (5)
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the adiabatic polytropic atmosphere [7, p. 35] where b = 1.405 and c are constants,

p V b = c; (6)

and the Power Law [6, p. 46]

µ

µh
=

(
T

Th

) 19
25

. (7)

The boundary conditions, Eq. (8), (9), (10), (11), (12), (13), are given by the free-stream velocity U > 0, the no slip
condition,

(u, v)|{(x,h) : 0≤x≤L} = (−U, 0), (8)

(u, v)|{(x,0) : 0≤x≤L} = (0, 0), (9)

the free-stream temperature Th > 0, the free-stream dynamic viscosity µh > 0,

T |{(x,h) : 0≤x≤L} = Th > 0, (10)

µ|{(x,h) : 0≤x≤L} = µh > 0. (11)

periodic conditions for all y ∈ [0, h]:
(u (0, y) , 0) = (u (L, y) , 0) ; (12)

and a Neumann condition:
∂T

∂y

∣∣∣∣
{(x,0) : 0≤x≤L}

= 0. (13)

As Busemann previously did in 1935, Dorodnitzyn expressed T in terms of u, but considers the Conservation of Energy
Law in terms of the total energy per unit mass, E = cpT + u2/2, in the form presented by Luigi Crocco in 1932. Addi-
tionally, he includes a pressure variation term, ∂p/∂x, and so allows the possibility of a Boundary Layer separation. By a
successive substitution of T (u), this system of seven equations is reduced to a system of just two with inherited boundary
conditions in terms of a stream function defined, in the formalisation, by means of a generalized Green’s Theorem [5, p.

121] that is valid for elements of the Sobolev Spaces W 1,2(R). Moreover, he defined a diffeomorphism R
s

//Π that
allows writing von Kármán’s Integral Formula for a compressible fluid in an incompressible form in a polygonal domain

Π = s(R) where (x, y) ✤
s

//(ℓ, s) , ℓ (x̂, ŷ) ✤ //

∫ x̂
0
p (x, ŷ) dx and s (x̂, ŷ) ✤ //

∫ ŷ
0
ρ (x̂, y) dy . This way, he opens

the road to adapt Blasius’ method to state the stream function problem as an Ordinary Differential Equation.

In order to do this, he applies a subsequent diffeomorphism Π
z

//S that takes the polygon Π into a strip band of infinite

positive heights S = z(Π) with (ℓ, s) ✤
z

//(ℓ, z) and z (ℓ, s) ✤ //s/
√
ℓ . In terms of z, the shear stress τ = µ ∂u/∂y

becomes τs(z) = (a x1/2 τ) ◦ s−1 ◦ z−1(z) for a constant a. If we denote us(z) = u ◦ s−1 ◦ z−1(z), i0 = cp T0
and σ0 = 1 −

(
U2/2i0

)
where T0 = Th + U2/(2cp) is the absolute temperature value at height y = 0 in R, then

(u, v, T, p, ρ, µ, κ) is a classical solution of Eq. (1), (2), (3), (4), (5), (6), (7) with boundary conditions (8), (9), (10), (11),
(12), (13) if and only if τs ∈ C1(0,∞) satisfies the second-order quasi-linear problem:

τs
∂2τs
∂u2s

= − A us

(
1− u2s

2i0

)−6/25

, (14)

with inherited boundary conditions and A = 1/2 · (n R∗ T0)/V · T
2b

b−1

0 · σ1− b
(b−1)

0 . Bayada and Chambat’s change of

variables R
ϕǫ

//Rǫ for ǫ = h/L > 0 with (x, y)
✤

ϕǫ

//(x/L, y/ (Lǫ)) provides a small parameter problem [8] for the
sequence (vǫ)ǫ = (uǫ, vǫ)ǫ where uǫ = 1

L u and vǫ = 1
Lǫ v. This way, there is a inherent adimensional problem for

the sequence (τ ǫs ) so that the existing bound found for (uǫ) in [8] is valid for (τ ǫ), and we can derive a Reynolds’ Limit
Formula for Dorodnitzyn’s Shear Stress problem.
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Summary Present study concerns the dynamics of special localized solutions emerging in the mass-in-mass anharmonic oscillatory 
chain in the state of acoustic vacuum. Each outer element of the chain incorporates an additional, purely nonlinear mass attachment. 
Analytical study of the later, revealed the distinct types of stationary discrete breather solutions. Along with the analytical description 
of their spatial wave profiles we also establish their zones of existence in the space of system parameters. Stability properties of these 
solutions are assessed through the linear analysis (Floquet). All analytical models are supported by the numerical simulations of the 
full model.   

Introduction 

Emergence of spatially localized, time-periodic solutions in the conservative nonlinear system, are known since the 
pioneering work by Ovchinnikov [1] at 1968. Special localized solutions which are usually referred to as discrete 
breathers (DBs) remain a subject of broad research interest in the various aspects of modern physics and mechanics. In 
fact DBs have a well-developed analytical methods when applied to the classical, nonlinear discrete models such as 
Discrete Klein-Gordon chains (DKGs), Fermi-Pasta Ulam (FPU) models, as well as the Discrete Nonlinear Schrodinger 
(DNLS) model [2].Formation of spatially localized solutions in all these classical nonlinear models has quite a broad 
range of applications, including Josephson junctions, nano-mechanical systems, Bose-Einstein condensates, carbon 
nanotubes, (see for example [3]). Of late, formation of localized excitations as well as nonlinear normal modes in highly 
nonlinear discrete models admitting a state of acoustic vacuum e.g. purely cubic FPU chains [4], uncompressed granular 
crystals [5-6], has become a subject of intense research.  

Some recent studies, have considered both analytically and numerically the formation of DBs in the two different 
configurations of locally resonant granular crystals i.e. weakly nonlinear, compressed granular chain [31] as well as the 
uncompressed ones [32]. Both configurations comprised the chain of granular elements incorporating the internal, linear 
oscillating inclusions. These numerical and analytical studies unveiled the stationary and mobile DBs and presented a 
detailed analysis of their stability properties as well as the corresponding bifurcation structures. The system under 
consideration in the present study qualitatively differs from the previously considered ones by its internal nonlinear, 
local substructure as well as the special dynamical state of acoustic vacuum. In this study, we focus on the analytic 
description of stationary discrete breather solutions as well as the prediction of zones of their existence in the space of 
system parameters.  

Model  

System under consideration is an infinite, locally resonant chain of elements inter-coupled by linear springs. The 
governing non-dimensional equations of motion read: 

 
3 3 3

1 1

3

( ) ( ) ( )

( )
n n n n n n n

n n n

       

   
       

  
 (1.1) 

  
Analysis 

Given the homogeneous structure of the system under consideration it is quite natural to study the dynamics and the 
bifurcation structure of the corresponding standing wave solutions by exploiting the well-known method of separation 

of variables ˆ ˆ( ) ( ),  ( ) ( )n n n nu v         . Where    ˆ ˆ,n nn Z n Z
u u v v

 
   are real sequences and ( )   is a 

time-dependent modal coordinate. Introducing this change of coordinates in (1.1) and applying some trivial algebraic 
manipulations, we obtain the following system of algebraic equations 

    
 

3 3

1 1

3

n n n n n n

n n n

u u u u u v

u v v



 

     

 
 (1.2) 

In the present study we construct the analytical description of the spatial profiles of DBs and derive the parametric 
zones of their existence. These solutions assume the out-of-phase oscillations between the adjacent outer as well as the 
outer and inner elements.  Apparently, analysis of DBs may become extremely cumbersome, if one tries to tackle the 
system (1.2) as a whole. However, system (1.2) can be considerably simplified if one manages to reduce it from the 
system involving the amplitudes of vibrations of outer and inner masses    ,n nn n

u v
 Z Z

 into the one containing only 
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the motion of the outer elements  n n
u

Z
). Fortunately, any solution of system (1.2) can be effectively represented by 

the following reduced system 

 
     

 

33 3 [ ]
1 1

[ ]

( )

31 3 2
2 cos arccos ,  0,1,2

3 3 2 3

nm
n n n n n n

m i
i

u u u u u t u

u m
t u m



 
 

     

  
         

 (1.3) 

where 0,1,2m  corresponds to a certain branch assigned to each one of the cells. In the present study we present the 

asymptotic description of DBs and establish analytically their zones of existence. Passing to the quasi-continuum limit 
we obtain the following essentially nonlinear ODEs for each one of the branches, 

 
   32 3 [ ]

max

8 1
0,  

3 6
m

xx
u u u t u u u u       

  (1.4) 

It can be easily shown that the out-of-phase oscillations, can be obtained on the two branches only, namely (0,1m ).  

Comparison of exact spatial wave profiles of DBs computed from (1.3) with these obtained from QCA (1.4) are 
presented in Fig. 1 (a) and (b) panels accordingly. In Fig. 1 (c) and (d) we illustrate their zones of existence obtained 
analytically. 
 

   
(a)                                               (b)                                         (c)                                          (d)    

 
Figure 1 (a, b) Spatial wave profiles of DBs corresponding to the homogeneous configurations. QCA is denoted with 
the bold solid line while exact solutions are denoted with ‘cross’ markers for site-centered breathers and ‘o’ markers for 
the bond-centered breathers. (a) 0m  (b) 1m . System parameters: 0.1, 0.1   . (c, d) Zones of existence of 

a discrete breather (DB) corresponding to the homogeneous configurations i.e. m=0,1. (c) ( 0m ) (d)  ( 1m ).  
 
Conclusions 
In the present study we analyze the special family of discrete breather solutions. Results of analytical study enable to 
describe the spatial wave profiles and establish their zones of existence. Separate linear stability analysis of DBs performed 
in this study revealed their stability zones in the plane of system parameters.  
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Asymptotic analysis of transient behavior of two coupled exciters
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Summary. A model of two coupled exciters is considered to investigate transient behavior of self-synchronizing systems with non-
negligible damping. An averaging method for partially strongly damped systems is used for asymptotic analysis. Stationary solutions
of the system are derived. Attraction domains of different types of solutions are identified and depicted in phase space.

Introduction

Application of multiple exciters and utilization of self-synchronization in mechanical systems led to development of a new
generation of vibratory machines including self-synchronous vibrating feeders, conveyors, screens, grinders and so on.
Such systems replace kinematic connections like gears or chains with self-synchronization to generate required excitation
forces. They also have the advantage of distributing and decreasing the load on bearings, if instead of just one big exciter,
multiple smaller exciters are used.
The synchronization theory of mechanical exciters was first proposed by Blekhman [1]. Since then, many different
synchronous systems are investigated. Previous works mostly just analyze synchronous solutions, their stability and
existence with the assumption of negligible damping and that synchronization occurs far away from resonance. Goal of
this work is to analyze transient behavior of synchronizing systems, examine different types of solutions in phase space
and determine attraction domains of stable solutions.

Investigated model

Figure 1: Investigated model

Investigated model of two coupled exciters is shown in
Fig. 1. It consists of a carrier of mass M , which is elasti-
cally suspended with a spring-damper element of stiffness
c and damping d in horizontal direction. Two unbalanced
rotors of mass mi, moment of inertia Ji and eccentric-
ity ei, where i = 1, 2 is the index describing the num-
ber of rotors, are mounted on the carrier. They are driven
in the same direction by induction or DC engines of lim-
ited power with a linearized torque characteristic given as
Ti = Ui(ω

∗
i − φ̇i). The parameter Ui describes the slope

of motor characteristic and ω∗
i the nominal rotation speed.

The equations of motion read

ξ′′ + 2σξ′ + ξ =
2∑

i=1

µiνi(φ
′′
i sinφi + φ′2

i cosφi), φ′′
i = ε

(
si
νi
ξ′′ sinφi + ui(λi − φ′

i)

)
= εfφi

, i = 1, 2,

with the non-dimensional parameters and variables

µi =
mi

M∗ , νi =
ei
e∗
, εsi =

1

1 + Ji/mie2i
, e∗ = (e1 + e2)/2, ui =

Uisi
kmie2i

, λi =
ω∗
i

k
,

ξ =
x

e∗
, k2 =

c

M∗ , 2σ =
d

kM∗ , M∗ =M +m1 +m2, τ = kt.

The parameter ε is assumed to be small and the damping parameter σ is not small. The investigation is performed for a
system with two identical rotors with different nominal speeds, which means that parameters of both rotors are identical
except λ1 ̸= λ2.

Asymptotic analysis

The averaging method for partially strongly damped systems is applied, see [2, 3]. Motion of the carrier can be replaced
by its forced solution and the differential equation for ξ can be neglected in further analysis. Equations in standard form
for a second order approximation with

√
ε as the small parameter can then be acquired as

dδ
dψ

=
2
√
εv

p
,

dv
dψ

=
2
√
ε(fφ2

− fφ1
)

p
,

dp
dψ

=
2ε(fφ2

+ fφ1
)

p
, (1)

with the new variables ωi = φ′
i, ψ = (φ1 +φ2)/2, δ = φ2 −φ1, p = ω1 + ω2, v = (ω2 − ω1)/

√
ε. By averaging these

equations, a third-order system can be derived for the averaged variables δ̄, v̄ and p̄.
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(a) (b)

(c) (d)

Figure 2: Results: (a) Stable (full) and unstable (dashed) stationary solutions of the averaged system for different values
of damping, λ1 = 1.5, λ2 = 1.7, synchronization frequency λS = 1.6 derived according to [1]. (b) Two trajectories
in cylindrical phase space. (c) A section of the phase space showing attraction domains of overcritical (white) and syn-
chronous (hatched) solutions. (d) Same section of the phase space for smaller damping, where overcritical, synchronous
and capture into resonance (grey) solutions all coexist.

Results

From the equation for δ̄ in Eq. (1) follows, that all stationary solutions of the system, which can be obtained under the
assumptions made, are synchronous solutions (v̄ = 0, i.e. ω̄1 = ω̄2 = ω̄), including capture into resonance of both rotors.
The stationary solutions as a function of parameter u (u1 = u2 = u) corresponding to the slope of motor characteristic
and for different values of damping parameter σ are shown in Fig. 2a. First stable solution branch depicts capture into
resonance, where both rotors cannot cross the resonance frequency of carrier (ω̄ = 1). Second stable solution branch
depicts synchronous solution at synchronization frequency λS . So Figure 2a can be interpreted as existence conditions
of capture into resonance and self-synchronization as functions of engine power and damping. The overcritical solution,
where both rotors reach their nominal speeds is not shown in Fig. 2a, because it is not a stationary solution.
To depict the phase space of the averaged system, cylinder coordinates are chosen, where p̄ is the vertical, v̄ is the radial
and periodic variable δ̄ is the tangential coordinate. Since the variable v̄ can become negative an arbitrary radius is chosen
for v̄ = 0, see Fig. 2b. In the same Figure, two trajectories are shown, which start at resting position with different initial
phase differences. One trajectory ends with self-synchronization, which is a point at v̄ = 0 and the other one converges to
the overcritical periodic solution, which is a limit cycle in phase space. Lastly, sections of attraction domains of different
solutions at the surface v̄ = 0 are shown in Fig. 2c,d. The trajectories in Fig. 2b can be explained with the attraction
domains in Fig 2c. There is a narrow region, where the system can directly run-up to the synchronous solution form
resting position. If the damping is chosen smaller, the three solution types (capture, synchronous and overcritical) can
also coexist, see Fig 2d.

Conclusion

A model of two coupled exciters is investigated using an averaging method for partially strongly damped systems. Aver-
aged equations of second order approximation in

√
ε are analyzed. Stationary solutions and their existence conditions are

discussed. Phase space of averaged system is described. Attraction domains of different types of solutions are exemplary
depicted.
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Asymptotic formulation of bifurcation scenarios to post-buckling nonlinear vibrations
in thermomechanically coupled plates
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Summary. The nonlinear dynamics of composite plates with thermomechanical coupling is analytically addressed in order to describe
the main dynamical phenomena triggering the involved pre- and post-buckling response scenario. The statical buckling occurrence,
and two resonance conditions around the unbuckled and buckled equilibria are investigated by means of the asymptotic multiple scale
method. The resulting modulation equations and the steady state mechanical and thermal responses are determined and compared with
the numerical outcomes in order to verify the effectiveness of the adopted procedures.

Introduction

The nonlinear dynamical behavior of reduced order models of composite plates under different excitation conditions in
a thermomechanical environment has been the subject of recent papers aimed at highlighting the role of multiphysics
coupling and the main local and global features of the nonlinear response [1, 2]. The numerical analyses, carried out in
strongly nonlinear regime and under different mechanical and thermal conditions, highlighted a rich and involved scenario
characterized by multistability and possible chaos. Yet, the analytical treatment of the dynamical response can represent a
useful tool to predict, describe and possibly modify the behavior of the coupled system. To this aim, three main response
phenomena are detected in the weakly nonlinear regime, and the asymptotic multiple scale method [3] is applied in order
to investigate existence and stability of the mechanical and thermal responses of the system.

Asymptotic analysis

With reference to a reduced model of rectangular laminated plate with von Kármán nonlinearities, third-order shear
deformability and consistent cubic variation of the temperature along the thickness [4], the assumption of isothermal
edges and free heat exchange on the upper and lower surfaces leads to obtain the following nondimensional equations of
motion describing the plate dynamics around primary resonance:

Ẅ (t) + a12Ẇ (t) + (Ω2 − p)W (t) + a14W (t)3 + a15TR1(t) + a16TR0(t)W (t)− f cosΩt = 0

ṪR0(t) + a22TR0(t) + a23α1T∞ + a24W (t)Ẇ (t) = 0

ṪR1(t) + a32TR0(t) + a33Ẇ (t) = 0

(1)

W

(a)

W

(b)

Figure 1: Bifurcation diagrams, with detection of
the maximum and minimum values of the me-
chanical response as a function of p, at Ω = 1,
for f = 1 (a) and f = 0.1 (b).

in terms of the nondimensional reduced variables W (t) (deflection of the cen-
ter of the plate), TR0(t) (membrane temperature) and TR1(t) (bending tem-
perature). The mechanical excitations consist of a uniform compressive force
p on the plate edges and a distributed harmonic transverse mechanical excita-
tion of amplitude f and frequency Ω. The thermal excitation is represented by
the constant thermal difference between plate and environment T∞, while aij
are coefficients which incorporate the geometrical and physical properties of
the model.
Local and global nonlinear dynamics of the presented model have been in-
vestigated by parametrically accounting for the single and combined pres-
ence of thermal and mechanical excitations. In particular, the transition to
mechanically- or thermally-induced buckled responses has been analyzed,
and a variety of rich multistable scenarios have been detected, as exemplarily
shown in terms of numerical bifurcation diagrams as a function of the mechan-
ical pretension in Fig. 1(a). With the aim to unveil the bifurcation phenomena
triggering the development of such a rich scenario, identified in a strongly
non-linear regime, a lower harmonic forcing amplitude has been applied to
the system, with the relevant bifurcation diagram reported in Fig. 1(b). The re-
sults allow us to detect three main underlying dynamical features, i.e., a static
pitchfork bifurcation inducing the mechanical buckling, and two resonance
peaks occurring in the pre- and post-buckling branches. The first phenomenon
occurs when the mechanical pretension p nullifies the linear mechanical stiff-
ness, while the two peaks correspond to primary resonances of the pre- and
post-buckling system frequencies with the external harmonic excitation.
The static buckling analysis is performed by obtaining the equilibria e =
{We,TR0e,TR1e} of the coupled system (1), which have the following expres-
sions:
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T T

Figure 2: Comparison between numerical (gray) and analytical (red) bifurcation diagrams for Ω = 1 and f = 0.05.

e1 = {0,−a23α1T∞
a22

, 0}, e2,3 = {±
√
a22(p− Ω2) + a16a23α1T∞√

a14a22
,−a23α1T∞

a22
, 0} (2)

The e1 equilibrium corresponds to the pre-buckling configuration representing the mechanical rest position, while e2 and
e3 represent the two stable buckled non-trivial solutions arising after the pitchfork bifurcation. As already highlighted in
some previous works [1, 2], expressions (2) show that the thermal excitation T∞ plays the same role as the mechanical
pretension in governing the mechanical equilibria, so that it is possible to reproduce exactly the diagrams of Fig. 1 by
alternatively applying a properly scaled thermal excitation. The two resonance conditions are analytically investigated
by means of the asymptotic method of multiple scales, in order to study the system nonlinear dynamics around the
previously obtained e1 and e2 equilibria: W (t) = We + W̃ , TR0(t) = TR0e + T̃R0, TR1(t) = TR1e + T̃R1. The
perturbation equations around the pre-buckling equilibrium have the same structure of Eqs. (1) (with suppression of a23
term in the membrane thermal equation), with the system frequency (i.e., the time-independent linear stiffness) being
ω2 = Ω2−p−a16a23α1T∞/a22. Conversely, the analysis around the buckled position implies the presence of additional
terms in the mechanical and membrane thermal equations:

¨̃W + a12
˙̃W + ω2W̃ + a14W̃

3 +
3
√
a14√
2

ωW̃ 2 + a15T̃R1 + a16(
ω√
2a14

+ W̃ )T̃R0 − f cos (Ωt) = 0

˙̃TR0 + a22T̃R0 + a24
˙̃W (

ω√
2a14

+ W̃ ) = 0

˙̃TR1 + a32T̃R0 + a33
˙̃W = 0

(3)

with ω2 = 2(p+ a16a23α1T∞/a22 − Ω2). Consequently, the two asymptotic procedures require different choices in the
scaling of variables and parameters, and different expansions to higher orders to account for the main effects (e.g., the
occurrence of both quadratic and cubic nonlinearities, as in (3)). In both cases, anyway, they have been guided by the
previous numerical analyses, which have pointed out the contemporary presence of slow (thermal) and fast (mechanical)
dynamics, and have allowed to discuss the role of the coupling terms inside the three equations [5]. They result to be
crucial into the thermal equations in order to determine the temperature response, while having a marginal effect on
the mechanical equation, whose dynamics evolves much quicker than the coupled thermal one. The two procedures are
developed separately, and the Amplitude Modulation Equations are obtained together with the reconstructed steady state
mechanical and thermal responses. The outcomes reported in Fig. 2 show a good agreement between analytical (red) and
numerical (gray) results, also in the post-buckling scenario where the mechanical response is moderately severe.

Conclusions

The analytical treatment through the multiple scale method is developed to describe the main dynamical phenomena un-
derlying the rich multistable scenario characterizing the nonlinear behavior of thermomechanically coupled plates. The
obtained modulation equations together with the reconstructed responses can be used to parametrically discuss the occur-
rence and stability of the main periodic unbuckled and buckled responses as a function of the main system parameters.
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Axisymmetric, nonlinear capillary waves: dimple and jet formation

Lohit Kayal and Saswata Basak and Ratul Dasgupta
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Summary. We study axisymmetric, nonlinear capillary waves in confined cylindrical geometry. Extending our recent analytically
and computational studies[5, 2], we present a third order theory [6] which can describe dimple formation in nonlinear axisymmetric
capillary waves for moderately large values of the wave steepness parameter ϵ. For ϵ > 1.8, we show that the dimple produces a jet
which evolves self-similarly in a window of time and space. Analytical predictions are compared to numerical solutions.

Jet formation from an axisymmetric capillary wave

Jet formation from bursting bubbles have attracted persistent attention from the scientific community for more than half a
century [3]. In addition to scientific curiosity, the phenomena is also of significant meterological interest as the bursting of
bubbles on the open ocean surface (due to wave breaking) causes ejection of liquid droplets which are a source of sea-salt
aerosols and can serve as cloud condensation nuclei. In a series of recent studies [5, 2] it was observed that similar jet
ejection can also occur in apparently simpler conditions where the free-surface of quiescent liquid in a cylindrical container
of radius R0 is deformed as a an eigenmode of the linearised system viz. a Fourier-Bessel mode of the form a0J0(k0r).
It was shown that [5, 2] that the resulting surface oscillation due to the restoring force of gravity and capillarity produces
a trough whose subsequent evolution in time, closely resembles a collapsing cavity [4]. When the steepness parameter
ϵ ≡ a0k is sufficiently large (O(1)), a nonlinearity induced dimple like structure is produced at the base of the trough
leading to the formation of a jet at the axis of symmetry [2, 5], much analogous to what is observed in the bursting of a
bubble at a free-surface [8, 4]. While theO(ϵ2) non-linear theory presented in [2] was able to capture the inception of the
dimple, it was unable to describe the same at later times. An important conclusion from [2] was that the lengthscale of the
dimple rendered it completely dominated by capillary effects with the gravitational acceleration being insignificant. In
this study, we lend further insight into this dimple formation focusing our attention on pure capillary waves (no gravity)
[6]. A novel O(ϵ3) solution to the intial-value problem has been calculated [6] which significantly improves upon the
second order calculation presented earlier in [2]. Fig. 1a depicts the initial axisymmetric, surface perturbation of the form
η(r, 0) = ǫJ0(k0r) and fig. 1b shows the formation of the dimple for a moderately large ǫ = 0.8, and is described quite
accurately by our O(ǫ3) calculation. This is the solution to the initial-value problem using ǫ as a perturbation parameter
and the Lindstedt-Poincaré technique. It has the form

η(r, τ) =ϵ cos(τ)J0(r) + ϵ2
∞
∑

j=1

f (j)(τ)J0(αj,pr) + ϵ3





∞
∑

m=1

g(m)(τ)J0(r) +
∞
∑

j=1, j 6=p

h(j)(τ)J0(αj,pr)





Dimple

Figure 1: Comparison of the surface evolution of the interface at steepness ǫ = 0.8. Numerical solution to the Euler’s
equation ( ) using Basilisk [9], O(ǫ3) ( ), O(ǫ2) ( ). Third order theory captures the dimple very accurately. Here η
is non dimensional interface and r is non-dimensional radial distance.

-0.1 0 0.1

0

0.1

(a) A rising jet

-2 0 2

0.5

1.5

(b) Self-similar behaviour of jet

Figure 2: Panel (a), (b): Self similar behaviour of the jet at ǫ = 2.0 and cylinder radius R0 = 2.936 cm, where R0 is
the radius of the cylinder. Here t̂0 is the dimple formation time, η̂ is dimensional interface and r̂ is dimensional radial
distance, ẑd is the height of the jet base (all variables with hat are dimensional)

At larger values of ǫ = 2.0, a clear jet emerges from the dimple as shown in fig. 2a. At large steepness(ǫ > 1.8), we
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find that the jet evolution in time becomes self-similar. This is shown in fig. 2b where the length scale Ls = (t̂−t̂0)2/3

( ρ
T )

1/3

[7, 10] has been used to scale the vertical and radial coordinate. Note that ρ,T are density and surface tension and t̂0 is
the dimple formation time.

Modal analysis
In fig. 3, we plot the surface energy of the system from modal analysis [2]. The figure shows the Fourier-Bessel modes
which are excited at the chosen instant of time. For the case ǫ = 2.0, the time instant has been chosen to lie within the
self-similar window shown earlier in fig. 2b. Comparing ǫ = 2.0 with ǫ = 1.0, it is clearly seen that a large number

of modes are excited in the case of ǫ = 2.0 compared to ǫ = 1.0. Note that we have plotted
∣∣∣Ĥ(lj)

∣∣∣ which comes

from the coefficient of the Dini series and provides an instantaneous measure of the potential energy contained in various
wavenumbers [1] (lj is the jth nontrivial root of the Bessel function J1(·)).

0 20 40 60 80 100 120
0

0.015

Figure 3: The potential energy between ǫ = 1.0 ( ) and ǫ = 2.0 ( ) are compared at the same time instant t̂ = 0.0092
s. At this instant the ǫ = 2.0 simulation displays self similar collapse depicted earlier in fig. 2b. The simulation with
ǫ = 1.0 however does not show self similar behaviour at this instant or at later time.

Confinement and loss of self-similarity
We find that strong confinement (i.e. shrinking the radius of the container) leads to loss of self-similarity. This is shown
in fig. 4(a) and (b) where both panels represent simulations with ǫ = 0.2. In panel (a) the radius is small (R0 = 0.038
cm) and the evolution of the jet is not self-similar in marked contrast to panel (b).
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0.8

1.4

(a) R0=0.038 cm

-0.5 0 0.5

1.2

1.6

(b) R0=2.936 cm

Figure 4: Panel (a), (b): Effect of container radius on the self similar evolution of jet

Conclusions

We investigate dimple and jet formation from nonlinear capillary waves in axisymmetric cylindrical confined geometry.
The initial value problem has been solved toO(ǫ3) using the Lindstedt Poincarè perturbation technique and it is found that
the weakly nonlinear solution can predict the formation of the dimple quite well for moderately large value of ǫ. Using
simulations, we have shown that for ǫ > 2.0, the evolution of the jet happens in a self similar manner in a narrow window
of space and time. The physical reasons for this self-similarity as well as the eventual loss of the same will be discussed
at the meeting. All simulations have been performed using the open source Basilisk [9].
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Summary. Slack cables are pieces of conductors that are used in bretelles and Stockbridge dampers, to mitigate the wind-induced
vibration of overhead transmission lines. Under cyclic and dynamic excitations, inter-strand friction in slack cables makes their behavior
nonlinear and hysteretic. On the other hand, due to the low tension, their mechanical behavior is different from stretched cables. Thus,
it is important to develop a model that can predict their nonlinear behaviors under vibration. The main purpose of this study is to
reproduce this nonlinear behavior using a linear Euler-Bernoulli beam coupled with a Bouc-Wen hysteresis model. The parameters of
the Bouc-Wen model are identified based on the results of a characterization test on the slack cable of a Stockbridge damper, available
in the literature. Using this method, the local bending behavior of the slack cable is well-reproduced.

Introduction

When a system exhibits hysteresis behavior, it means the response of the system depends not only on its current state, but
also on the history of the previous states. Under cyclic loads, friction between the sliding wires of a slack cable makes
their mechanical behavior nonlinear and hysteretic. This characteristic is important since it governs the energy dissipation
of the system. In contrast to taut cables, the power dissipation of slack cables is significant, and they are used in bretelles
and Stockbridge dampers to mitigate the aeolian vibration of overhead transmission lines. Aeolian vibration represents
the major cause of fretting fatigue failure in transmission lines [1].
Due to hysteretic characteristics, the bending stiffness of a cable varies according to the curvature. In the literature, there
are several models for the study of the nonlinear bending stiffness of taut cables. These models allow for predicting
hysteresis load-deflection curves and calculation of the system energy dissipation. The model of Papailiou [2] describes
the secants bending stiffness as a function of curvature taking into account the inter-layer slippage and friction force
between the layers of a conductor. This model is validated through the results of quasi-static tests for high level of
tensions. The bending stiffness was shown to transmit smoothly from EImax to EImin, which corresponds to the full-
stick state and full-slip state, by the propagation of the wire slippage layer by layer towards the core. Dastous [3] converted
the model of papailiou based on the tangent bending stiffness method and implemented it in a finite-element formulation.
Hong [4] improved the model of Papailiou by reconsidering some simplifying assumptions, and introducing new criteria
for wire slippage regarding the radial pressure transmission between the layers. Paradis [5] used the criteria of Hong [4],
and developed a new model by considering the micro-slips in contact areas between the wires. Langlois [6] implemented
the model of Paradis, and reproduced the variable bending stiffness of tensioned conductors through a finite element
model.
To study specifically the hysteresis behavior of slack cables, Sauter [7] modeled the messenger cable of a Stockbridge
damper as a linear beam coupled with the Masing hysteresis model to describe the local moment-curvature relationship.
Parameters of the model were obtained locally, based on the results of quasi-static tests. It was shown that the behavior
of the slack cable during the bending process, varies spatially along the cable and during the bending cycle based on the
deformation history (loading-unloading). Foti et al. [8] reproduced the hysteresis moment-curvature of a damper cable
using a bilinear elastic-plastic model coupled with the classic Bouc-Wen model. Langlois [9], developed a finite-element
model of the messenger cable of a Stockbridge damper with variable bending stiffness by superimposing beam elements
with material nonlinearity. The constitutive parameters of the model were identified from the characterization test on
Stockbridge dampers such that the overall behavior was best reproduced. The model of damper later was added to a span
of conductor to study the aeolian vibration amplitude of a system of conductor-damper.
Low tension in slack cables makes their behavior different from tensioned cables, and very few researches are available
to study the nonlinear mechanical bending behavior of the slack cables. The main objective of this study is to develop a
nonlinear model that predicts the hysteresis behavior of a slack cable under different amplitudes and frequencies. For this
purpose, an analytical model of the slack cable by using a linear Euler-Bernoulli beam coupled with a nonlinear Bouc-
Wen model is developed. Bouc-Wen model is a hysteresis model that is based on the continuous change of the stiffness
with varying displacement, proposed by Bouc [10] and later improved by Wen [11]. The dynamic response of the system
under a low-frequency sinusoidal load is obtained and the moment-curvature hysteresis loop at different locations along
the slack-cable is calculated. The parameters of the Bouc-Wen model are obtained iteratively to reproduce the results of
the characterization test performed by Sauter [7] on a rigidly clamped slack cable of a Stockbridge damper. This model
can be coupled with a validated conductor model to predict the aeolian vibration amplitude of the system.
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Figure 1: Stockbridge damper [12].
Figure 2: Sketch of the experimental test on the messenger ca-
ble.

Properties of the Slack Cable

Slack cables are used in Stockbridge dampers shown in Fig. 1. It consists of a clamp, a short messenger cable, and two
inertial masses. This kind of damper is used to mitigate the aeolian vibration of transmission lines. The clamp of the
damper is rigidly connected to the conductor, and as the vertical movement of the conductor happens, the masses vibrate
and bend the messenger cable. This causes the relative movement of the wires of the messenger cable. Because of the
friction between the wires, they exhibit hysteresis behavior. This phenomenon makes the relationship between the load
and deflection rate dependent and hence, causes power dissipation in the system. This nonlinearity is shown in the load-
deflection curves of messenger cable from experimental tests [13, 14]. Bending tests are usually done to characterize the
dissipative behavior of the messenger cables. In these tests, a short length of messenger cable is clamped at one-end and
free at the other end, and subjected to a transverse force at the tip monotonically or cyclically varying. The load-deflection
curvature curves are usually obtained for different tip displacements.
In this study, the experimental validation of the models are done based on the characterization test of Sauter [7]. In
this test, a short slack cable with the length of 0.3 m was rigidly clamp at one-end, and the free-end was subjected to a
transverse cyclic displacement at a low frequency. The parameters measured are:

• The moment-curvature diagram at 25mm from the clamp end for cyclic transverse displacement of the free-end
(5mm to 30mm peak-peak)

• The local moment-curvature diagram at different points along the cable under the transverse displacement of 25mm
peak-peak.

The properties of the slack cable is presented in Table. 1. Figure 2 shows the setup of the test, and the locations for which
the local hysteresis were measured.

Governing Equations of the System

In this study, the slack cable is modeled as a simple cantiliver beam (Fig. 2), coupled with a Bouc-wen model. The bending
deflection v(x, t) of a Euler-Bernoulli beam under a sinusoidal load f(t) can be described by the following equation:

∂2

∂x2
(EI(x)

∂2v(x, t)

∂x2
) + f(t) = m

∂2v(x, t)

∂t2
+ c

∂v(x, t)

∂t
(1)

where m is the mass per unit length, c is the damping, EI is the bending stiffness.
The boundary conditions for the cantiliver beam are:

v(0, t) = 0, ∀t
v′(0, t) = 0, ∀t
v′′(l, t) = 0, ∀t
v′′′(l, t) = 0, ∀t

(2)

Where the prime denotes the derivative with respect to the space variable x, and l is the length of the slack cable.
As we are interested in the behavior of the system around the deformation of its first mode, the solution of the Eq. (1) can
be expressed in the form of:

v(x, t) = Γ1(x)g1(t) (3)

where Γ1(x) is the first natural mode of the system and g1(t) is the corresponding generalized coordinate. By solving the
eigenvalue problem related to the free response of Eq. (1), the first vibration mode of the beam Γ1(x) could be obtained
such that it satisfies the geometrical boundary conditions of the beam presented in Eq. (2).
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Table 1: Mechanical Properties of the Slack Cable [7]

Total diameter (mm) 10.15
Number of layers except core 2

Number of wires 19
Wire diameter (mm) 2

Young modulus (GPa) 210
Mass per unit length (kg/m) 0.498

Thanks to the orthogonality of modes, the equation of motion in temporal state after addition of nonlinear Bouc-Wen
model could be expressed as [10, 15, 16]:

g̈1(t) + 2ξω1ġ1(t) + αω2
1g1(t) + (1− α)ω2

1z(t) = F (t) (4)

ż(t) = ġ1(t)[1− |
z(t)

gy
|n (β + λsgn(zġ1))] (5)

Where the dots denotes the derivative with respect to time and ξ is the modal damping ratio, ω1 is the first angular
frequency, F (t) is the modal force and z(t) is the hysteresis parameter. The Bouc-Wen model is coupled with the equation
of the beam in temporal state through a superposition of a linear elastic force αω2

1g1(t) and a nonlinear hysteretic force
(1 − α)ω2

1z(t). The Bouc-Wen parameters, α is the post-elastic to initial stiffness ratio, gy is the generalized yield
displacement and β, γ, n are model parameters. The response of the system is calculated by direct integration of Eq.
(4) and Eq. (5) using "ode45" function in MATLAB. To be able to use this function, the Eq. (4) and Eq. (5) have to be
transformed into a system of first order as below:

Ẏ (1) = Y (2)

Ẏ (2) = −2ξω1Y (2)− αω2
1Y (1)− (1− α)ω2

1Y (3) + F (t)

Ẏ (3) = Y (2)[1− | Y (3)

gy
|n (β + λsgn(Y (3)Y (2)))]

(6)

The following initial conditions are considered for this system:

t = 0→
{
Y (1) = 0, Ẏ (1) = 0

Y (2) = 0, Ẏ (2) = 0
(7)

After obtaining the response of the system numerically, the moment-curvature relationship at each point throught the slack
cable could be obtained as [17]:

M(t) = αω2
1φ(t) + (1− α)ω2

1z(t) (8)

Where φ(t) is the curvature, and it is calculated directy from the derivative of Eq. (3) with respect to displacement. The
moment-curvature diagram is calculated for different excitation loads with a low frequency at the free-end of the slack
cable. The force is adjusted to have the desired tip displacements. It has to be noted that this model allows us to predict the
behaviour of the system for higher frequencies. The Bouc-Wen parameters of the model are adjusted through an iterative
process such that the experimental results is best reproduced.

Model Parameter Identification

The parameters of a messenger cable modeled by the Bouc-Wen model are identified from the experimental data of Sauter
[7]. The identification of the model was done iteratively using MATLAB. Five Bouc-Wen parameters, and the local
bending stiffness of the system EI are identified. Table 2 shows the identified parameters of the system. Parameters
λ and β control the shape and size of the hysteresis loops [11]. α is the post-elastic to initial elastic ratio, and gy is
generalizied yield displacement, and the parameter n is a nondimentional number that controls the transition from the
elastic to inelastic part of the loop. Increasing this parameter to higher values can sharpen the transition [16]. This value
is considered as 1 for all points.
Another parameter that has to be controlled is EI . Bending stiffness of a cable varies significantly with curvature during
the bending, however it changes between two limits of EImin and EImax that are related to the full-slip and full-stick
states, respectively. These parameters can be calculated as [1]:

EImin =
∑

i

EiI0i = 2.83N.m

EImax =
∑

i

Ei(I0i +Air
2
nsin

2(αi)) = 67.1N.m
(9)
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Table 2: Bouc-Wen parameters of the model

x (m) α β λ gy n
0.005 0.35 45 90 0.06 1
0.015 0.2 45 90 0.05 1
0.025 0.2 45 90 0.0045 1
0.035 0.2 45 90 0.0045 1
0.050 0.19 45 90 0.0045 1
0.070 0.19 45 90 0.0045 1
0.095 0.19 45 90 0.0048 1
0.12 0.19 45 90 0.0049 1
0.15 0.19 45 90 0.007 1
0.18 0.19 45 90 0.008 1

0.205 0.19 45 90 0.008 1
0.230 0.19 45 90 0.009 1
0.250 0.19 45 90 0.008 1

Where Ei is the modulus of elasticity, I0i is the moment of inertia of each wire around its axis, Ai is the area of each
wire, rn is the distance of the center of each wire from the center of the cable, and αi is the lay angle of each layer. Figure
3 demonstrates the local bending stiffness identified for the slack cable. In this model, the calculated value of EI for the
points close to the clamp is more than EImax. The reason could be due to the effect of the clamp on the cable. In the
zones far from the clamp, EI decreases to EImin, and from the middle to the tip it remains almost constant. All the wires
of the cable far from the clamp slip so fast, however because of clamp effects most of the wires near the clamp stay in
stick-state. This explains the variation of the local bending stiffness of the system.
Figures 4-7, show the results obtained from the Bouc-Wen model using the identified parameters (Table. 2) in comparison
with experimental results. Figure 4 shows the moment-curvature results of a point 0.025m from the clamp under different
tip displacements (5mm to 30mm, each 5mm). Figures 5-7, show the local moment-curvature loops for different points
along the cable (Fig. 2) under a constant tip displacement of 25mm. Using the identified parameters, the experimental
results are well reproduced in all cases.
As another validation, the displacement of the free end of the cable is measured under a given force. The results are
compared to the experimental results in Fig. 8. It should be noted that to compare the global behavior of the slack cable,
different sets of identified values are in the Table. 2 are tested, and the values for the point 35mm best reproduced the
global behavior. The limitation of this method is that there is no possibility to use different sets of Bouc-Wen parameters
at the same time for different points through the beam. However, by selecting a correct sets of values, correct global
behavior can be obtained.

Conclusions

The mechanical behavior of a slack cable is modeled using a linear Euler-Bernoulli beam coupled with a hysteresis Bouc-
Wen model. In this study, the response of the system is obtained based on the projection of the first mode. The validity of
this model is shown by comparing the present results with the experimental results of the slack cable. At both local and
global levels, this model reproduced the hysteresis behavior of the slack cable, adequately. The important advantage of this
model is providity a fast tool that can describe and predict the nonlinear behavior of the slack cables, without systematic
experimental tests. In addition, this model can be integrated into a conductor model, and it allows the assessment of the
aeolian vibration amplitude of transmission lines.
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Summary. A mechanical model is introduced in order to investigate the snaking/rocking motion of towed two-wheeled trailers. The
sense of the Hopf bifurcations related to the linear stability boundaries of the rectilinear motion are investigated numerically. The center
manifold reduction is also performed semi-analytically, by which the relevance of the pitch motion is identified.

Introduction

The instability of towed vehicles is a relevant safety risk on the roads. In case of a badly chosen towing velocity and/or
a badly loaded trailer, the vehicle may start a so-called snaking motion [1, 2]. The trailer may even start rocking on its
wheels, and the rollover of trailer can happen.
In-plane mechanical models of towed vehicles are deeply analyzed in the literature (see, for example, [3]) and it is
established that the Hopf bifurcation is subcritical at the linear stability boundary located at small towing velocities. Here,
the trailer is modeled with a spatial, 4 degrees-of-freedom (DoF) mechanical model given in [4], namely, the pitch and
roll motions are also considered when the nonlinear vibrations (e.g. the rocking motion) are analyzed semi-analytically
and numerically.

Mechanical Model

The mechanical model of the two-wheeled trailer can be seen in Fig. 1. The trailer is towed with constant velocity v in X
direction at the king pin. The motion of the trailer is described with the yaw angle ψ, the pitch angle ϑ, the roll angle ϕ
and the lateral displacement of the king pin u.

v=const

lateral 
displacement u

FR tyre,lat

FR tyre,z

X

Z

Y

R
T

Figure 1: The mechanical model of the trailer with the generalized coordinates and the tyre forces.

Since there are only geometric constraints, the system is holonomic. Thus, the equations of motion can be derived from
the Lagrange equation of the second kind (for details see [4]). The lateral tyre forces are considered as

Ftyre,lat = µ(α)Ftyre,z , (1)

where Ftyre,z is the vertical load on the tyre and µ(α) involves Pacejka’s Magic Formula [6]. The side slip angle α is
calculated by means of the longitudinal and lateral components of the velocity of the contact point T of the wheel:

α = − arctan

(
vT,lat
vT,long

)
. (2)

Linear Stability Analysis and Bifurcation Analysis

Based on the linear stability analysis of the rectilinear motion, it can be concluded that the linearised system can be
separated into two subsystems: the pitch motion can be decoupled as a 1 DoF subsystem, while remaining equations form
a 3 DoF subsystem. Thus, the pitch motion does not affect the linear stability of the rectilinear motion. But, it has effect
on the nonlinear vibrations.
Asymmetry is introduced into the system by the lateral tyre force characteristics formulated in (1). The vertical load
Ftyre,z on the tyres depends linearly on the pitch angle ϑ, as it can be seen in the left panel of Fig. 2. The coefficient µ(α)
is an even function (see the right panel of Fig. 2), thus, the lateral tyre force contains mixed second degree terms with
respect to the generalized coordinates and velocities. When the bifurcation analysis is carried out with center manifold
(CM) reduction, it can be identified that the pitch motion influences the sense of the Hopf bifurcation through these second
degree terms.
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Figure 2: The characteristics of the vertical tyre forces and characteristics of the lateral force defined by the Magic Formula in µ(α)
[6].

The stability of the periodic orbits were also investigated by continuation in DDE Biftool [5]. It was confirmed that
supercritical Hopf bifurcation exists at small velocities, while in-plane trailer models of the literature provides a subcritical
one. To check our hypothesis on the effect of the pitch motion, a reduced model was also analyzed in which the pitch
motion was blocked (ϑ ≡ 0).
The nature of the periodic solutions, namely, the sense of the Hopf bifurcations can be seen in Fig. 3 for the spatial,
4 DoF model and for the reduced model. In the stability charts, the blue continuous and red dashed lines correspond to
supercritical and subcritical bifurcations, respectively. In the figures, parameter f describes the vertical position of the
center of mass. As it can be observed in the left panel, the periodic solution is stable at smaller critical speed in case of
the 4 DoF model, thus, the bifurcation is supercritical. On the contrary, in the right panel, the periodic solution is unstable
(subcritical Hopf bifurcation occurs) for the same critical speed when the reduced model is considered.
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Figure 3: The stability of the periodic solutions a) for the spatial, b) for the reduced model.

Conclusions

Based on the semi-analytical bifurcation analysis, the effect of the pitch motion on the stability of the emerging periodic
solutions is verified. It is shown that the in-plane trailer models of the literature can provide different results with respect
to the sense of the Hopf bifurcation at small velocities.
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Summary. We study the nonlinear dynamics of one-dimensional slender structures such as beams and arches carrying a moving load.
At resonant speeds the vibrations of curved beams are significantly suppressed, but large deformations are found to have a detuning
effect. Arches are found to have different buckling (failure) modes depending on the depth of the arch and the speed of the traversing
load.

Modelling

We study the nonlinear dynamics of one-dimensional slender structures such as beams and arches carrying a moving load.
Geometrically-exact rod theory is used to model the structure, which is allowed to undergo arbitrary three-dimensional
flexural and twisting deformations.

Results and conclusions

The exact natural frequencies ωn (for symmetric or anti-symmetric modes) of a hinged curved horizontal beam with
subtended angle α are given by

ωn = µn

√
EI

ρAL4
, where µn =

nπ
∣∣(nπ)2 − α2

∣∣
√

(nπ)2 + (1 + ν)α2
(n = 1, 2, ...)

(ignoring rotational inertia). Here EI is the bending stiffness, A the cross-sectional area, ρ the density, ν Poisson’s ratio
and L the length of the beam. The critical resonance speed is defined as the speed at which the maximum midspan
deflection occurs when the load leaves the beam. It is given by

vcrit =
ω1L

π

(i.e., the fundamental period is twice the passage time).

We find that nonlinearity due to large deformations has a detuning effect on resonances, as can be seen in midspan
deflection plots for different values of α (see Figure 1).

At resonant speeds v we find cancellation of vibrations even at large deformations (see Figure 2).

Arches are found to have different buckling (failure) modes depending on the depth of the arch and the speed of the
traversing load.
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Figure 1: Detuning effect due to large deformations: (a) α = 50◦, (b) α = 90◦, (c) α = 120◦, (d) α = 150◦. The magnitude of the
moving load is F = 0.1 (in units of EI/L2). s is the instantaneous position of the load, normalised by L.
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Figure 2: Cancellation of vertical midspan deflection (left) and velocity (right) of a horizontal curved beam with moving load F = 1.0
(in units of EI/L2) at critical speeds v/vcrit. (a) α = 30◦, (b) α = 90◦, (c) α = 150◦.
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Nonlinear Dynamics of a Shearable-Extensible Beam with an Elastic Longitudinal
Support: Analytical Derivation, Numerical Simulation and Experimental Validation

Lukasz Kloda∗†, Stefano Lenci† and Jerzy Warminski∗
∗Department of Applied Mechanics, Lublin University of Technology, Lublin, Poland

†Department of Civil and Buildings Engineering and Architecture, Polytechnic University of Marche,
Ancona, Italy

Summary. Coupled axial-transversal nonlinear oscillations of a simply supported beam with an axial spring are studied in the paper.
The exact model of a planar beam with associated boundary conditions is derived, and then to analyze free and forced-damped dynamics
of the structure the perturbation method up to cubic nonlinearity is used. Next, a finite element model of the beam-spring system is
considered and then outcomes are compared. Experimental tests on a slender beam confirmed quantitatively analytical and numerical
models.

Introduction

In the classical beam theory for vibrations only transverse inertia forces and bending moment are considered [1], and the
shearing effect together with longitudinal deformations are neglected. Those assumptions are relatively correct for slen-
der structures with axially restrained ends. Large amplitudes of a thick beam require the Timoshenko’s shearing theory,
and for the beam unrestrained in axial direction longitudinal inertia terms can not be neglected [2]. The inertia changes
the dynamics of the structure, and as a consequence the simply supported beam has no longer a hardening nature but a
softening behaviour. An axial spring subjected to the unrestrained end allows to passively control hardening/softening
dichotomy [3, 4]. The goal of this paper is to investigate nonlinear dynamics of the beam-spring system and its sensi-
tivity on boundary conditions by considering nonlinear coupling between transversal and longitudinal modes. For model
validation a laboratory test is prepared.

Beam models

Analytic
In the paper two beam models are used, both of them assume linear elastic material properties as Young (E) and shear (G)
modules (Eqs. (1)). It means that nonlinearities arise only from geometrical and inertia coupling. In the reference (rest)
configuration the beam has length L and rectangular cross-section A. Normal, shearing and bending forces are propor-
tional to elongation ê, shear strain γ and curvature kg , respectively:

N = EAê, V = GAγ, M = EJkg. (1)

Note that the beam is extensible . W is the longitudinal displacement, and U is the transversal one. The geometrical
definition of curvature [5] is adopted in our study, see Eq. (2). θ describes the rotation of the beam’s cross-section (Fig.
1a) which contains the slope angle φ and γ. The deformations are given by

ê = S′ − 1, S′ =
√

(1 +W ′)2 + U ′2, kg =
θ′

S′ =
θ′√

(1 +W ′)2 + U ′2
, θ = φ+ γ. (2)

Decomposing strain forces into horizontal, vertical and rotational coordinates and supplementing them by inertia (ρAẄ ,
ρAÜ and ρJθ̈), damping (CW Ẇ , CU U̇ , Cθ θ̇) and external forces (PW , PU , Pθ) the following balance equations are
obtained

(N cosφ+ V sinφ)
′
= ρAẄ + CW Ẇ + PW (Z, T ), (3)

(N sinφ− V cosφ)
′
= ρAÜ + CU U̇ + PU (Z, T ), (4)

M ′ − V S′ = ρJθ̈ + Cθ θ̇ + Pθ(Z, T ), (5)

where dots (̇) are time derivative and primes ()′ depict partial derivative with respect to the coordinate Z. The stiffness of
the axial end spring ks is responsible for change of boundary conditions only in the longitudinal direction:

U(0, T ) = 0, U(L, T ) = 0, M(0, T ) = 0, M(L, T ) = 0, W (0, T ) = 0, (6)

N(L, T ) cosφ+ V (L, T ) sinφ+W (L, T )ks = 0. (7)

To solve the set of three equations (3)-(5) and associated boundary conditions (6)-(7) the multiple time scales method
(MTSM) is applied, and after cumbersome computations, the frequency response curves are drawn for different 0 < ks <∞
parameter [6].
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(a) (b)

ks

Figure 1: Kinematics of the beam segment in analytical approach (a) and finite element model of the hinged-simply supported beam (b).

Finite element
Numerical computations are made with the commercial software Abacus_CAE. Dynamical analysis is performed in two
modules: linear perturbation-frequency and transient in time dynamic explicit. The finite element model (FEM) presented
in Fig. 1(b) is composed of 100 segments B21-type plus one linear spring connector ks. Boundary conditions are consistent
with (6)-(7). Four different computational methods are applied: (i) linear modal analysis, (ii) free nonlinear dynamics,
(iii) following-path and (iv) shooting method. All four methods complement each other and allow a deep study of any
dynamical system for selected parameters to discover unexpected phenomena. However the computations in time domain
are very time consuming.

Results and conclusions

Comparison of backbone curves obtained by FEM and MTSM is presented in Fig. 2(a). After passing the transient vibra-
tions the simulation for steady states are in excellent agreement. For Timoshenko beam with partial tip reinforcement, the
structure has hardening behaviour. Due to technical limitations experimental tests have been simplified to a kinematically
excited slender beam presented in Fig. 2(c) and, then overlapped with numerical counterpart. The axially unrestrained
case represents softening phenomenon and again results shown in Fig. 2(b) are in very good agreement. We conclude that
analytical and numerical results are confirmed by experiments with excellent compliance.

(a) (b) (c)

Figure 2: Free nonlinear oscillations (a), forced damped oscillations (b) and experimental setup - side view (c).
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Summary. Numerous techniques exist to control vibrations and dissipate energy in pipes that are supported by rack structures. Impacts are 
often used as a means of dissipating energy. In this research, we optimize two design parameters, gap and coefficient of restitution (COR), 
of a pipeline supported in a rack that is allowed to hit bumpers. For a given loading characteristic, indeed, the energy dissipation from such 
a non-linear system is dependent on the gap and the COR. The ratio of the total energy dissipated through impacts to the energy dissipated 
by material and structural damping of the pipe-rack is used as a measure of the energy dissipation efficiency. However, excessive number 
of impacts of the pipe against the bumper can damage or produce dents in the pipeline. The objective functions are therefore conflicting 
because it is to be ensured that the optimized system provides the least number of impacts while dissipating the maximum amount of 
energy. A kriging metamodel is used to interpolate the experimental points that are calculated for the values of gap and COR that are 
chosen after application of the central composite design (CCD). Finally, the Pareto front of the two response surfaces is calculated.  

Introduction and problem statement 

There are various mechanisms to dissipate energy and control the response of pipeline systems. The use of tuned mass 
damper is probably the most commonly adopted approach. In this work, impact is used as an energy dissipation 
mechanism. As an example, this kind of systems were previously used in the Trans-Alaskan pipeline systems which 
passes through major seismic faults [1]. During impact, a part of the input energy is dissipated in the form of heat, sound, 
plastic deformation of the material, etc. The COR is a measure of this dissipation.  
 

 
Figure 1: Analytical model of a pipe in a rack 

 
In this study, a typical pipe-rack structure is analyzed and analytically modeled as shown in Figure 1. The pipe is 
allowed to hit bumpers placed at the center of each span. The energy dissipation in this case is dependent on two design 
variables, gap and COR.  
Let 𝑥 ∈ ℝ 𝑥 ଵ and �̇� ∈ ℝ 𝑥 ଵ be the displacement and velocity respectively of the pipe-rack system where 𝑛 is the total 
number of degrees of freedom. For a given seismic excitation of duration 𝑡ௗ, a given gap and COR, the net energy 
dissipated by virtue of the internal structural damping (non-conservative) at time 𝑡ௗ is given by, 𝐸ௗ𝑎𝑝𝑖𝑔ሺ𝑡ௗሻ = ∑ 𝑑𝑥𝑡𝑇 . 𝐶. �̇�𝑡𝑑

𝑡=𝑡𝑑
𝑡=  

 
where 𝐶 ∈ ℝ 𝑥  is the damping matrix of the system and 𝑑𝑥𝑡 =  𝑥𝑡 − 𝑥𝑡−ௗ𝑡. The energy dissipated through impacts 
during this duration is given by, 
 𝐸𝑖𝑝𝑎𝑡ሺ𝑡ௗሻ = ͳʹ ∑(�̇�+𝑖𝑇ܯ�̇�+𝑖 − �̇�−𝑖𝑇ܯ�̇�−𝑖)𝑁𝑑

𝑖=ଵ  

 
where �̇�+𝑖 and �̇�−𝑖 is the velocity after and before the 𝑖𝑡ℎ impact, which are related by the COR. ܯ is the mass matrix of 
the system and ܰௗ is the number of impacts in time 𝑡ௗ. At time 𝑡ௗ, two objective functions are defined for the design of 
the energy dissipation mechanism, as follows: 
 

i. Ratio of total energy dissipated through impact to the energy dissipated by the internal damping of the structure, 
given as,  
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ଵܱ = 𝐸𝑖𝑝𝑎𝑡𝐸ௗ𝑎𝑝𝑖𝑔 

 
ii.  The number of impacts required for dissipating unit amount of energy,  

 ܱଶ = ௗܰ𝐸𝑖𝑝𝑎𝑡 

 
In this study it is aimed to dissipate the maximum energy through impacts. However, when the number of impacts 
increases, there are more chances for the pipeline to suffer damage or dents. Hence, it is also aimed to achieve a desired 
energy dissipation with a minimum number of impacts. Thus, for a given seismic input, the function ܱଵ is maximized, 
or equivalently, − ଵܱ is minimized, whereas ܱ ଶ is minimized.  

Methodology and preliminary results 

Non-linear time history analyses are used to evaluate the objective functions ଵܱ and ܱ ଶ for a given input motion 
characteristic, and for given values of gap and COR. A CCD[2] provides the number of experiments that have to be 
carried out and also the corresponding values of gap and COR. The response surfaces, as shown in Figure 2, are 
subsequently evaluated by a surrogate kriging model that spatially interpolates the experimental outputs.  
 

  
Figure 3: Response surfaces for (a) Objective function 1 and (b) Objective function 2 

 
We finally find the Pareto front. The non-dominated particles, as shown in Figure 3, correspond to the solutions of this 
multi-objective optimization problem, for certain optimal values of gap and COR.  

  
Figure 4: Representation of the Pareto frontier 
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Summary. Geometrically nonlinear vibrations of the rectangular simply supported nanoplates are investigated. The governing equa-
tions are employed in mixed form and used the nonlocal elasticity theory as well as Kirchhoff’s hypotheses and the von Kármán theory.
Application of the Bubnov-Galerkin method with a double mode model allows to reduce the governing system of partial differential
equations (PDEs) to the system of the second-order ordinary differential equations (ODEs) . Analysing obtained ODEs the small-scale
effects and force influence are studied.
Particular interest in the study of nanostructures is associated with their wide application in high-tech industry due to
excellent mechanical, thermal, electrical properties. Theoretical and experimental research has allowed to observe the
small-scale effects that were not detected within the classical theory. This fact led to the development of non-classical
continuum theories for study the objects with sizes in nanoscale. The presented work is aimed at the study of geomet-
rically nonlinear vibrations of the small-scale plates. The formulation of the problem is performed based on Kirchhoff’s
hypotheses, the von Kármán theory. In order to take into account the appearance of the small-scale effects in nanoplates
the nonlocal theory of elasticity [1] is applied. It is based on the fact that the stress at a given point is a function of strains
at all other points in the body. According to this theory the constitutive relation in differential form [2] has the following
form (

1− µ∇2
)
σ = σ′, (1)

where σ′, σ are local and nonlocal stress tensors, µ is nonlocal parameter, and ∇2 is the Laplacian operator.
The nonlocal governing equations are taken in mixed form, introducing the Airy stress function F :

D∆2w =
(
1− µ∇2

)
(−N1

∂2w

∂x2
−N2

∂2w

∂y2
+ L (w,F )− ρh∂

2,w

∂t2
− δ0

∂w

∂t
+ q), (2)

(1− µ∇2)
1

E
∆2F = −h

2
L (w,w) , (3)

where differential operators are defined as

L (w,F ) =
∂2w

∂x2
∂2F

∂y2
+
∂2F

∂x2
∂2w

∂y2
− 2

∂2w

∂x∂y

∂2F

∂x∂y
, L (w,w) = 2

(
∂2w

∂x2
∂2w

∂y2
−
(
∂2w

∂x∂y

)2
)
, (4)

and ∆2 = ( ∂
2

∂x2 + ∂2

∂y2 )
2, D = Eh3

12(1−ν2) is flexural nanoplate rigidity, E is Young’s modulus, ν is Poisson’s ratio, w is
deflection of the plate, N1, N2 are in-plane uniform forces, q is transverse force, ρ is density, h stands for thickness of the
plate, whereas δ0 is damping coefficient. It is assumed that the plate satisfies the simply supposed boundary conditions.
The proposed approach is based on two mode presentation of the deflection w (x, y, t) of rectangular small-scale plate
with sides a and b as follows [3]:

w (x, y, t) = w1(t) sin
πx

a
sin

πy

b
+ w2(t) sin

2πx

a
sin

2πy

b
, (5)

where w1, w2 are bi-modal amplitudes, sin πx
a sin πy

b and sin 2πx
a sin 2πy

b are shape functions, that satisfy the chosen
boundary conditions. Substitution (5) into the equation (3) allows to obtain the stress function presentation:

F = f1 cos
2πx

a
+ f2 cos

2πy

b
+ f3 cos

4πx

a
+ f4 cos

4πy

b
+ f5 cos

3πx

a
cos

πy

b
+ f6 cos

πx

a
cos

3πy

b
+ p1x

2 + p2y
2,

(6)
where coefficients depend on the small-scale parameter µ. Applying the Bubnov-Galerkin method, one can get the
nonlocal system of ordinary differential equations. Size-dependent analysis of such system allows to study nonlinear
vibrations regimes of the considered system. The numerical calculations are performed for graphene nanoplate with
various excitation parameters.
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Summary. Nanomechanical resonators are prone to nonlinear dynamic behavior at forces that are only a few nN. In this work, we
introduce a novel design that allows us to engineer the dynamic range of a Si3N4 nonlinear string resonator using a pair of compliant
supports. The design comprises a suspended string and two support beams that act as the compliant supports and form an H-shaped
structure. By changing the support beams’ width and length, we are able to tune the state of stress in the string and thus control its
quality factor Q and Duffing constant γ. Our novel design allows engineering novel high-Q nonlinear resonators with large dynamic
range.

Introduction

Although the Duffing nonlinearity has been frequently observed in nanomechanical systems, the engineering of it by
geometric design has received little attention [1]. For studying and utilizing the nonlinear response of nano resonators,
it is essential to precisely predict or tune their dynamic range in a simple and robust design. In this work, we decouple
the stress-length dependence of high-stress Si3N4 nano strings [2] by introducing a pair of support beams. Our H-shaped
structure offers new knobs for engineering nonlinearity in string resonators while maintaining dynamic similarity with
doubly clamped strings. By changing the widths of support beams, we engineer the pre-stress of the string and thus
control its Q factor and Duffing constant γ in a large frequency range.

Experimental procedure

Our samples are fabricated from 340nm thick high-stress Si3N4 with initial stress around 1.1GPa, which is deposited by
low pressure chemical vapor deposition (LPCVD) on a silicon substrate. The scanning electron microscope (SEM) image
of our H-shape structure is shown in Figure 1(a) and our measurement set-up is shown in Figure 1(b). A piezo actuator is
used to drive the samples into resonance while a Polytec Laser Doppler Vibrometer is used to measure their out-of-plane
deflection, as shown in Figure 1(c). The measurement is performed at room temperature and to minimize the air damping,
the air pressure is pumped below 2×10−6 mbar.

Si3N4

Excitation
Signal

OFV 5000

MSA
Velocity Laser

Doppler
Vibrometer

Piezo actuator
+

-

x50

Phase
Lock
Loop

Si 

(a) (b)

(c)

50μm

Support beam width w
s

Central beam width w
b

Support beam length l
s

Central beam length l
b

Figure 1: Experimental characterization of the H-shaped resonators. (a) Scanning electron microscope images of an H-beam with
lb=200µm, wb=4µm, ls=31µm, ws=4.5µm. (b) Schematics of measurement set-up. (c) Fundamental mode shape of the H-beam in (a).

Modelling and the governing equation

Motion-induced tension modulation is the dominant source of nonlinearity in nanomechanical systems that gives rise to a
cubic spring constant (Duffing term in the equation of motion) as follows [3]:

ẍ+Q−1ω0ẋ+ ω2
0

(
x+ γx3

)
= f cosωt (1)

Here, x is the generalized coordinate associated with the fundamental mode which is shown in Figure 1(c), Q is the
mechanical quality factor, ω0 is the fundamental eigenfrequency, γ is the Duffing coefficient, f is the force per unit mass
acting on the nanoresonator of modal mass m and ω is the excitation frequency.
The critical vibration amplitude of the resonator associated with the onset of nonlinearity can be obtained as follows:
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ac =

(
64

27

)0.25
1√
Qγ

(2)

We note thatQ and γ in nanoresonators are functions of the pre-stress σ. Therefore, by controlling geometrical parameters
of the support beams in our design, we can engineer the pre-stress σ in the central string resonator, tune Q and γ, and thus
ac of the resonator.

Control of quality factor Q and Duffing coefficient γ

Quality factor Q
For each resonator, we perform frequency sweeps in linear regime and record the resonant frequency of the fundamental
out-of-plane mode by Lorentzian fits, as shown in Figure 2(a). After obtaining the fundamental resonant frequency, we
perform ring-down measurements and obtain Q factors, also shown in Figure 2(a). In Figure 2(b), the simulated Q factors
and the measurements on the H-beams with the same configuration are plotted against pre-stress σ in the string, which is
tuned by the widths of the support beams.

Duffing coefficient γ
In this work, we extract γ by driving the string resonator in the nonlinear regime and sweeping the frequency in the
spectral neighborhood of the fundamental resonance as shown in Figure 2c. By performing the experiments for multiple
drive levels we find the "backbone" curve of the resonator and extract the Duffing constant γ using the following simple
formula:

ω2
backbone = ω2

0

(
1 + 0.75γx2max

)
(3)

For the design with lb=200µm and wb=4µm, we are able to tune Q factor down by 49% and tune γ down by 75% by
varying ws from 6µm to 1µm. With this combined effort, we can tune the critical vibration amplitude ac of the resonator
up to nearly 300% compared to simple doubly clamped string resonators. This shows the potential of the new design in
enhancing the dynamic range of high-Q resonators, which is essential for sensing applications.
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Figure 2: (a) The Lorentzian response of the H-beam showed in the Figure 1(a) excited in its fundamental mode under 1.25×10−5mbar
air pressure and the ring-down measurement of it. The y axis is the normalized to the maximum amplitude. (b) Variation of Q factor
according to σ for H-beams with wb=2µm and different lb. Hollow circles and hollow diamonds with error bars are simulations and
experimental results of Q factor respectively. (c) The Duffing effect of a doubly clamped beam with lb=200µm and wb=4µm excited
by larger forces. The red line is the "backbone" curve.

Conclusions

We propose a new design for enhancing the dynamic range of high-Q Si3N4 string resonators by means of compliant
supports. By tuning geometrical parameters at the boundaries, we are able to engineer the state of stress in the string from
0.1GPa to 1.0GPa. As a result, we can engineer the Q factor and Duffing constant γ of the resonator , and thus control its
dynamic range.
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Summary. In this work, we consider a MEMS device made of mechanically-coupled microbeams under electric actuation. We conduct an 
experimental study to identify the occurrence of veering and then investigate its dynamic response for different electric actuations. A slight 
change in the DC voltage bias from the veering point is observed to affect significantly the frequency response. Indeed, jump to large orbits 
occurred when perturbing the applied DC voltage while operating near the cyclic-fold bifurcation point. We also develop and validate a 
mathematical model to simulate the response of the device. The model showed similarities in the softening effect of the DC voltage bias and 
an added mass when matching their induced shift in the natural frequency. As such, one can exploit mode localization and the significant 
and abrupt jumps in the deflection of the coupled microbeams to enhance the sensitivity of mass sensors.           

Introduction 

The deployment of MEMS devices comprising electrically actuated vibrating micro-beams for mass sensing has gained 
significant interest in the last few years thanks to their outstanding dynamic features in response to small variations in 
their effective mass. MEMS mass sensor converts the presence of a tiny element (biological entities such as cells and 
viruses, gas molecules…) into a resolvable electrical signal via a transduction technique (capacitive, piezoelectric...). A 
new generation of MEMS mass sensors has been recently proposed based on adopting the concept of mode localization 
[1-4]. These devices have demonstrated significant improvement in terms of sensitivity by up to four orders of magnitude 
in comparison to their conventional counterparts. Yet, distinctive merits of mode localized mass sensors have been 
demonstrated over several research studies in the last decade [1]. However, there is still room for improvement of this 
kind of sensors, especially when exploiting and tuning their associated nonlinearities to increase further their sensitivity 
and extend their operating range. In this work, we consider a MEMS device made of mechanically-coupled microbeams 
subjected to electric actuation. We study unconventional nonlinear mass detection mechanisms and assessed their 
capabilities to enhance the performance of the mass sensors.  

MEMS device description and experimental measurements 

We consider a MEMS device comprising two mechanically coupled microbeams with slightly different lengths: 𝐿ଵ =ͻͺ 𝜇𝑚 and 𝐿ଶ = ͳͲͲ 𝜇𝑚 (see Figure 1). A coupling beam with a length of 𝐿𝑐 = ͷ 𝜇𝑚 is placed at a distance 𝑥𝑐 =Ͷ.ͻ 𝜇m from the clamped end of the microbeams. The electrostatic actuation of the device is made by the application of 
combined DC and AC voltages via a stationary electrode placed underneath the short beam. The device was fabricated 
by using the Multi-User MEMS Processes (MUMPs®). The microbeams are composed of a polysilicon layer Poly2 
reinforced by a second polysilicon layer Poly1 at the fixed end. The measured gap between the cantilevers and the 
bottom electrode (Poly0) is around 𝑔 = 1.35 μm. The MEMS device is placed in a vacuum chamber at a pressure around 
0.3 mbar to minimize the damping effect and the actuation voltage is applied with a micro probe. The quality factor 𝑄 is 
found equal to 900. To measure the vibrations at the tip of each cantilever beam, a single point laser Doppler vibrometer 
is used in order to experimentally confirm the feasibility of the operating principle of the sensor. 
 

   
Figure 1: MEMS device and cross sections showing the layers of the MUMPS® process. 

Results and discussion 

We plot in Figure 2(a) the experimental frequency response of the MEMS device obtained at two different DC voltages. 
The results are shown for the short beam. We note that the electrostatic force is applied only to the short beam while 
operating at veering and setting the AC voltage at 30 mV. The needed DC voltage to reach veering is found experimentally 
equal to 7.73 V. Adding a DC voltage bias of 200 mV induces a significant jump in the beam deflection when operating 
at a suitable and a fixed excitation frequency near the cyclic-fold bifurcation, as indicated by the arrow at 𝜔 = ͳ.ͳͶͲ 
kHz in Figure 2(a). This jump is illustrated further in the time response shown in Figure 2(b). A DC voltage bias of 200 
mV is introduced at 𝑡 = ͳ s. The softening effect induced by the DC voltage is equivalent to that of an added mass 
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deposited on one of the microbeams as will be demonstrated next. As such, the observed jump to large orbits can be 
exploited for mass sensing purposes.     
 

  

(a) Frequency response (short beam) (b) Time response: sensitivity to DC voltage bias 

Figure 2: Dynamic response of the MEMS device for different DC voltages (experimental results). 
 
Following Euler-Bernoulli beam theory, we develop a nonlinear mathematical model governing the vibrations of the two 
mechanically coupled microbeams. The weak mechanical coupling is approximated by a torsional spring with rotational 
stiffness. We derive a reduced-order model using the Galerkin decomposition method [3]. In Figure 3(a), we compare the 
frequency response curves obtained using the developed nonlinear model (solid lines) against those measured 
experimentally (dotted lines). A good agreement between the numerical and experimental data is obtained. These 
simulation results demonstrate the capability of the nonlinear dynamic model to properly capture the dynamic response 
of the MEMS device. We show in Figure 3(b) the simulated frequency responses for different DC voltage biases (with 
respect to the veering DC voltage). We also plot the frequency response obtained when adding a mass of seven pg on the 
short beam. Of interest, the frequency response obtained for a DC voltage bias of 200 mV matches with that obtained for 
an added mass of seven pg. We note that increasing the applied DC voltage by 200 mV and adding a mass of seven pg 
lead to same shift in the natural frequency of the microsystem. As such, given these similarities, one can use the abrupt 
and significant jump to large orbits observed in mechanically coupled beams for mass sensing applications. 
 

  

(a) Model validation (short and long beams) (b) Simulated frequency responses 

Figure 3: Frequency responses of the MEMS device: (a) numerical simulations (solid lines) vs. experiments (dotted 
lines), (b) Simulated frequency responses.  
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Summary. We study the frequency stabilization of a MEMS self-sustained oscillator operating in internal resonance. We show, both
experimentally and theoretically, that coupling two vibrational modes with a frequency ratio of 1:3 through a nonlinear resonance makes
it possible to stabilize the oscillation frequency of MEMS oscillators beyond any currently known frequency stabilization technique.
Our analysis shows that this novel frequency stabilization stems from operation in a region of (nearly) zero frequency dispersion at
large amplitudes. The large amplitude improves signal quality and the internal resonance provides both the zero dispersion as well as
phase-locking between the modes, all of which are beneficial for noise reduction. Our findings provide a new strategy for engineering
low-frequency noise oscillators capitalizing on the intrinsic nonlinear phenomena of micro- and nano-mechanical resonators.

Introduction

MEMS oscillators, which offer the potential for reduced power consumption, on-chip integration with CMOS, and a small
footprint, are widely used for precision time keeping and as sensitive detectors. Therefore, their frequency stability is a
key figure of merit. However, due to the small size of the mechanical vibrating structures in these MEMS oscillators,
their vibrations are highly sensitive to noise and become nonlinear even for small amplitudes. Unlike linear vibrations,
in nonlinear vibrations, the resonant frequency has a strong dependence on the oscillation amplitude (frequency disper-
sion), and therefore, amplitude fluctuations translate into frequency fluctuations. This amplitude-to-frequency (A-f) noise
conversion considerably degrades the oscillator performance.
In this study, we show that a nonlinear resonance between a pair of modes that have a frequency ratio of 1:3 provides a
zero-dispersion domain over which, local to the operating point, A-f effects are eliminated and the system regains some
specific characteristics of linear vibrations, even though the operating point is well into the nonlinear regime. Moreover,
the inter-modal phase locking of the nonlinear resonance produces a frequency stabilizing effect similar to that observed
for pairs of synchronized oscillators. These effects both suppress frequency fluctuations in the primary mode, making the
considered oscillator cleaner than its linear counterpart (which is ideally the cleanest oscillator).

Experimental method and observations

The resonator (i.e., the mechanical vibrating structure) of our MEMS oscillator is fabricated from single-crystal silicon
and is composed of 3 beams connected at their centers to each other and to a pair of comb drives (see Refs. [1] for details).
The resonantly interacting modes are the fundamental flexural mode (eigenfrequency ω1) and the fundamental torsional
mode (eigenfrequency ω2 ≈ 3ω1); see the left panel of Fig. 1. The self-oscillation is achieved by a placing the resonator
in a feedback loop with an amplifier and a phase shifter whose tuning both destabilizes the thermal vibrations and controls
the amplitude and phase of the flexural mode. [4]

Figure 1: Device and experimental measurements. Left panel—the flexural (ω1) and torsional (ω2) modes from finite element models,
which interact resonantly when ω2/ω1 ≈ 3. Center panel—the operating frequency of the oscillator increases with the drive voltage,
due to the Duffing nonlinearity, until it saturates with zero-dispersion in the vicinity of the 1:3 internal resonance. Right panel—at the
internal resonance, the Allan deviation reduces dramatically, revealing the stabilizing effect of the nonlinear mode coupling.

The motion of the flexural (in-plane) mode is detected capacitively by one set of combs. The capacitance variation of the
voltage-biased comb-drive electrode generates a current that is introduced into a current amplifier to produce a voltage
output proportional to the oscillation amplitude of the flexural mode. This voltage is phase shifted and used to excite
the beam through the other set of combs. The motion of the torsional (out-of-plane) mode is detected by an optical
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interferometry method, with the laser spot focused on the outer-most position of the movable structure. The interference
signal is then amplified to produce a voltage output proportional to the oscillation amplitude of the torsional mode. The
frequency stability of the system was analyzed in terms of the Allan deviation from the signal of the flexural mode

[2] σy(τ) =
√

1
2(N−1)

∑N−1
i=1 (〈yτi+1〉 − 〈yτi 〉), where 〈yτi 〉 are the relative frequency fluctuations averaged over the ith

discrete time interval of τ . The center panel of Fig. 1 shows the zero dispersion by the flattening of the operating frequency
as a function of amplitude, and the right panel clearly shows the attendant frequency stabilization obtained in the internal
resonance by the reduction of the Allan variance at these amplitudes.

Analytical model and results

We consider the following closed loop system with a 1:3 internal resonance

ẍ1+2Γ1ẋ1+ω
2
1(1+η1)x1+γx

3
1+3αx21x2 = S cos(ω1t+φ1+∆)+ξ1, ẍ2+2Γ2ẋ2+ω

2
2(1+η2)x2+αx

3
1 = ξ2,

where Γ1,2 are the dissipation rates, ω1,2 are the modal eigenfrequencies (ω2 ≈ 3ω1), S is the drive level (set by the
amplifier), φ1(t) represents the phase of the flexural mode, ∆ is the imposed phase shift from the feedback loop, η1,2(t) are
the frequency noises, and ξ1,2(t) are the additive thermal noises. We have assumed that the coupling stems from a single-
term potential Ucpl = αx31x2, that the flexural mode nonlinearity is a simple Duffing type, γx31, and the torsional mode
operates in its linear range. Using the method of stochastic averaging [3], we derive a pair of Langevin equations for the
phase sum φ = φ1+φ2 and difference ψ = 3φ1−φ2 (φ2 is the phase of the torsional mode). Near a stable operating point,
it can be shown that diffusion of the phase difference remains constant and small. In contrast, the diffusion of the phase
sum is always strong and associated with a variance that increases linearly in time (〈φ2〉− 〈φ〉2 = Dϕt). However, in the
zero-dispersion domain, Dϕ reduces drastically due to elimination of the A-f noise conversion. Moreover, we can neglect
the diffusion of ψ, which is considerably smaller than the strong diffusion of φ, and then approximate, using the relations
φ1 = (φ + ψ)/4 and φ2 = (3φ − ψ)/4, the diffusion constants of the individual phases (〈φ21,2〉 − 〈φ1,2〉2 = DT1,2t)

as DT1
≈ (1/4)2Dϕ, DT2

≈ (3/4)2Dϕ. Therefore, the phase-locking mechanism (ψ̇ = 0) of the internal resonance
leads to a further reduction in the phase noise of the first mode (DT1 ). We note that the flexural mode is subjected to the
noises of the feedback circuitry while the torsional mode is largely isolated from such noise sources. Thus, if the second
mode (nearly purely mechanical) is significantly cleaner than the first mode, i.e., Dξ2 ≪ Dξ1 ≪ and Dη2 ≪ Dη1 , then
the cleaner second mode, which has a threefold stronger influence, cleans the noisy first mode and its diffusion constant
is reduced by a factor of 1/16, i.e., DT1

|Inside IR = (DT1
|Outside IR)/16. This cleaning effect can be readily seen in

Fig. 2, where in the zero-dispersion domain of the coupled-mode oscillator, the diffusion constant of the first mode is
significantly lower than the diffusion constant of even the highly ideal single-mode linear oscillator. Note that without the
phase cleaning effect, the diffusion constants would be (nearly) equal in the zero-dispersion domain.
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Figure 2: Operating frequency Ω (left panel) and total diffusion constant of the phase of the first mode (right panel) as functions of drive
level for single-mode linear (red), and coupled-mode (black) closed-loop oscillators, with ω1 = 1, ω2 = 3.06, γ = 3, α = 10,Γ1 =
10−3,Γ2 = 10−4∆ = π/2, Dη1 = 1, Dη2 = 0.1, Dξ1 = 0.4 and Dξ2 = 0.04. Only the stable states in which Ω < ω2/3 are
shown. The diffusion constant of the linear oscillator decreases as S−2, whereas the diffusion constant of the coupled-mode oscillator
has a dual local minima (denoted by the dashed vertical lines), the lower of which is the usual operating point for a Duffing oscillator
without zero dispersion. The cancellation of amplitude to frequency noise conversion at the zero-dispersion domain along with the
phase constraint yield a diffusion constant for the coupled-mode oscillator that is even smaller than that of the linear oscillator.
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Hopf Bifurcation in MEMS - (When) Do Such Exist?
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Summary. When considering MEMS/NEMS not just as interesting dynamical systems theoretically, but also for technological appli-
cations, a Hopf bifurcation could be a desired property for e.g. increasing sensitivities of a sensor. However, MEMS/NEMS are not
known to commonly experience a Hopf point. In this work we investigate a real MEMS system with integrated thermal actuation in
passive and active operation modes and investigate this Hopf in MEMS/NEMS question. We show that when the system is operated
actively, there are possible parameter ranges which include a Hopf bifurcation.

Background

MEMS are inherently nonlinear, which immediately provides additional
properties to be exploited for technological implementation. These advan-
tageous properties are associated with bifurcation points such as saddle-
node, transcritical, pitch-fork and Hopf bifurcations. While the former
three bifurcations are related to changes of fix-points (or real eigenvalue(s)
of the Jacobian) of a system for a selected control parameter, the latter bi-
furcation is associated with a changing complex-conjugated pair of eigen-
values crossing the complex plane from negative to positive [1, 2]. Further-
more, the former bifurcations have been reported extensively in the litera-
ture (for example, the well-known pull-in phenomenon is associated with a
saddle-node bifurcation) [3, 4], while the latter is less common, if not rare.
For example, in the book by Younis [5] the occurrence of Hopf bifurcations
in MEMS is not mentioned. The Hopf bifurcation is related to the damp-
ing properties of the system. A single degree-of-freedom (DOF) system
(e.g. MEMS/NEMS in their first vibration mode) would therefore require
negative damping properties. Furthermore, Gutschmidt and Gottlieb [6]
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Figure 1: SEM image of the self-actuation,
self-sensing cantilever (JEOL JSM-IT300).

and also Zehnder et al. [4] have observed Hopf (Neimark-Sacker) bifurcations in electrostatically coupled MEMS os-
cillators when operated near an internal resonance which is also known for parametrically excited systems in general [7]
(for micro and macro-scale alike). From other macro-scale examples it is further known that other coupling can also intro-
duce negative damping properties, especially when gyroscopic effects in addition to damping are present in a multi-DOF
system. However, for more common MEMS geometries and configurations such scenario are rather rare or not existing.

In this work we consider such an otherwise typical MEMS (Fig. 1), but with the ability to be operated passively and ac-
tively. Unlike other MEMS devices, the considered system has self-sensing and self-actuating capabilities [8] with which
a feedback scheme can be introduced and damping properties are altered.

Passive & Active MEMS Model and Dynamics

The motion of the cantilever is generated by the top layer of the composite structure being thermally actuated (see Fig. 1).
The deflection of the cantilever tip is monitored by an integrated piezo-resistive sensor located near the supported end
(base). Our analysis is based on our previous work [9] in which we derive the governing equations for this composite
MEMS system from basic principles. In this work we radically simplify these equations by considering only the first
vibration mode of the cantilever and dominating terms are as follows

q̈w + δq̇w + qw − αqθ = κext , (1a)

q̇θ + βqθ = γi2 . (1b)

qw and qθ are the nondimensionalised mechanical and thermal variables of the system representing the modal deflection
of the cantilever and the response of temperature difference, respectively. Parameters α, β, γ, δ are classic integration
constants originating from a modified Ritz discretization [9], wherein δ is related to the damping. The coupling between
the mechanical and thermal systems is determined by the strength of the coupling parameter α. κext is an external
periodic stimulus. The integrated thermal actuation is modelled as Joule heating, through which the feedback mechanism
is introduced with

i = iDC + aqw , (2)

where iDC is an off-set current with which to control equilibrium states and a is the feedback strength.
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Analysis & Results
The analysis emphasizes on the existence of a Hopf bifurcation for equilibrium solutions. However, Hopf (Neimark-
Sacker) bifurcations in the presence of external excitation of the system are also of interest. We consider the three
following systems: passive (decoupled from the thermal actuation, only Eq. (1a)), thermally coupled but passive Eq. (1),
and the actively operated system Eqs. (1) and (2), [10], with their Jacobian matrices accordingly being

Jpassive =

[
0 1
−1 −δ

]
, Jcoupled =




0 1 0
−1 −δ α
0 0 −β


 , Jactive =




0 1 0
−1 −δ α
ǫ 0 −β


 ,

with ǫ = 2γaiDC from substituting (2) into (1b). Investigating the roots λi for i = 1, 2, 3 of these systems (Fig. 2) reveals
the absence and existence of Hopf bifurcations. Figure 2a) depicts the roots of systems Jpassive and Jcoupled, respectively.
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Figure 2: Roots of the MEMS for different operation modes; a) passive & passive coupled systems with all positive system parameters;
b) active system with positive system and feedback parameters; c) active system with positive system and negative feedback parameters.

Note, the additional third root for system Jcoupled (green marker in Fig. 2a)). For positive values of δ (damping) there are
no Hopf bifurcations present in either passive or coupled systems, as expected and observed in literature. Figure 2b) por-
traits the roots of the active system Jactive (with feedback) for all system and feedback parameters having positive values.
We observe a saddle-node bifurcation [10] but no Hopf! Only for negative values of the feedback parameter ǫ, a Hopf bi-
furcation is present which can be introduced by a negative off-set current iDC or negative feedback strength a (see Eq. (2)).

Conclusions

In this work we investigate the existence of a Hopf bifurcation for equilibria of an ordinary MEMS structure as typically
found in modern technological applications. The analysis includes passive and active operation modes, and reveals the ex-
istence of Hopf points for only the active operation mode and when feedback parameters include also the negative range.
Although the emphasize is laid on Hopf bifurcations related to equilibria, the presentation will also include investigations
of the system subject to external stimuli and the existence of Neimark-Sacker bifurcations.
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Summary. We investigate the existence of internal resonances in magnetic resonance force microscopy asymptotically and numerically and 

demonstrate the possible existence of energy transfer from a directly excited mode to its out-of-plane counterpart. The reconstitution multiple-

scales method reveals the existence of non-stationary dynamics that yields coexisting periodic and quasiperiodic dynamics for small damping 

that may enable multi-functional detection of both electron spin and the sample magnetic properties. 

 
. 

Magnetic resonance force microscopy (MRFM) is an imaging technique that enables acquisition of three-

dimensional magnetic images at nanometer scales, and has been adapted for detection of magnetic spin of a 

single electron [1]. It is based on combining the technologies of magnetic resonance imaging (MRI) with 

atomic force microscopy (AFM). In conventional MRI devices the electronic spins are detected by measuring 

their magnetic induction using an inductive coil as an antenna. However, in MRFM the detection is 

implemented mechanically using a cantilever to directly detect a modulated spin gradient force between the 

sample spins and a ferromagnetic particle attached to the tip of the cantilever. While MRFM systems are 

receiving a growing amount of interest, to date, a comprehensive theoretical treatment is still lacking. Existing 

models are based on simplistic lumped-mass reductions that include linear estimates of cantilever stiffness and 

damping complemented by a nonlinear approximation of the magnetic force [2] and are unable to resolve the 

spatio-temporal complexity of the magneto-elastic sensor. 

 

We thus consistently formulate a nonlinear initial-boundary-value problem (IBVP) combining the three-

dimensional motion of a viscoelastic micro-cantilever and the dynamic interactions of the spin magnetic 

moments (see Figure 1-left). The MRFM cantilever IBVP incorporates the generalizes forces defined by the 

total magnetic field which are augmented by the time-dependent spin magnetic moment components in a 

rotating system of coordinates described by the Bloch equations [3]. We reduce the IBVP to a seventh-order 

nonlinear dynamical system and investigate the three-dimensional motion of the MRFM cantilever tip 

corresponding to adiabatic and non-adiabatic conditions. We emphasize that periodic base excitation of the 

vertical MRFM configuration here is not sensitive to a global homoclinic escape bifurcation threshold [4] 

typical of the traditional horizontal configuration of the cantilever sensor which is limited to operation below 

a jump-to-contact condition. 
 

 
 

Figure 1 – MRFM model definition sketch (left), frequency response for the case of a 1:1 internal resonance (center) and 

for the case of a 2:1 internal resonance (right).  

 

 

We use an asymptotic reconstitution multiple-scale analysis to accurately determine the MRFM system 

frequency response which enables estimation of the cantilever frequency shift corresponding to documented 

measurements. We investigate the stability of slowly varying evolutions for the conditions of both one-to-one 

(Figure 1-enter) and two-to-one internal resonances (Figure 1 – right) which reveal the existence coexisting 

periodic solutions and secondary Hopf bifurcations [5]. 
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Numerical integration of the dynamical system for different values of system parameters near its two-to-one 

internal resonance reveal symmetry breaking of a fundamental period-doubled solution (Figure 2) which 

evolves to an asymmetric period three ultra-sub-harmonic and culminates with non-stationary solutions 

depicted by a dense power spectra and corresponding poincare' map. 

 

 
 
Figure 2 – Numerical response for a 2:1 internal resonance which exhibits complex periodic ultra-sub-harmonic solutions. 

 

 

Numerical integration of the dynamical system for different values of system parameters near its one-to-one 

internal resonance (Figure 3) reveal quasiperiodic and chaotic like motion which in addition to identification 

of the spin gradient force may enable simultaneous multi-functional sensing of material properties of 

magnetized samples. 

 

 
 
Figure 3 – Numerical response for a 1:1 internal resonance which exhibits a quasiperiodic torus (left) and a strange 

attractor (right). 
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Summary. This work presents an approach to chaos generation that both preserves and leverages the rotating frame approximation
that is usually used to analyse nonlinear M/NEMS resonators. The approach relies on increasing the phase-space dimensions to meet
the Poincaré-Bendixon condition. Chaos generation is further constrained within the parameter space by relying on arguments from
Melnikov’s method. Experimental validation is performed using a GaAs piezoelectric nonlinear MEMS resonator.

Introduction and Theory

The relatively low-loss and weakly nonlinear properties of M/NEMS resonators have made the use of perturbation based
techniques to capture their dynamics a marking feature of this field of research. These perturbation techniques include
multiple scale analysis and the rotating frame approximation, and assume that the dynamics take the form of a “slow-flow”
envelope superimposed on an otherwise sinusoidal carrier. These same physical properties that make M/NEMS devices
desirable and perturbations techniques possible are usually counterproductive when it comes to generating chaos, since
this latter is not a perturbation phenomenon.
Mathematically this effect can be understood by looking at the governing Duffing equation, written in a non-dimensional
form as:

ẍ+ γẋ+ x+ αx3 = F1cos(ω1t) + F2cos(ω2t) (1)

where x is the displacement, γ and α correspond to the non-dimensional dissipation and nonlinearity terms, and F1,
F2, ω1 and ω2 are the magnitudes and frequency of externally applied forcing terms. Note that for the rotating frame
approximation to apply, the frequency difference between (ω1 − ω2)≪ 1
The application of the rotating frame approximation to equation (1) gives:

Ẋ = −δY +
3α

8
(X2 + Y 2)Y − 1

2
(F2sin(Θ) + γX)

Ẏ = δX − 3α

8
(X2 + Y 2)X +

1

2
(F1 + F2cos(Θ)− γY )

Θ̇ = Ω = (ω2 − ω1)/ω0

(2)

where, δ = (ω1 – ω0)/ω0, and X and Y are the rotating-frame quadratures.
Equation (2) explains why it is difficult to generate chaos within the range of applicability of the rotating frame ap-
proximation in the case of only one forcing term is applied, i.e. F2 = 0. Since in such a case the system reduces to a
two-dimensional system (n = 2), and does not possess the necessary dimensions, i.e. n = 3, for chaos generation.
The typical approach to chaos generation in nonlinear M/NEMS devices have been to operate the device beyond the
regime where equation (2) is valid, usually by applying large driving amplitudes and using exotic nonlinearity [1, 2].
However, it is equally possible to generate chaos while remaining within the perturbation regime, by expanding the rotat-
ing frame dimensions from n = 2 to n = 3, which can be done by applying the second tone, i.e. F2 ̸=0.
While increasing the rotating-frame dimensions from 2 to 3 is a necessary condition, it nevertheless does not define the
area within the four-dimensional parameter-space (δ, Ω, F1, F2) where chaos can exist. Fortunately, the system of equa-
tion (2) is typically described by Melnikov’s method [3], which imposes the existence of a homoclinic bifurcation as
a precondition for chaos generation. The existence of a homoclinic orbit implies operating within the bistable regime.
Thus, it is an equally necessary condition to have at least one of the two applied tones within the bistable area of operation
shown in Fig. 1(a)-(c) as a function of the non-dimensional parameters.

Experimental Validation

Experimental validation is performed using a GaAs piezoelectric MEMS clamped-clamped beam resonator. Under low
drive amplitudes (70 mV), the single-tone frequency response of the device shows a resonance frequency and quality
factor of f0 = 1.559 MHz and Q = 1000 respectively, Fig. 1(d). For large amplitude sweeps (2.8 V), the device exhibits
a hardening-type Duffing nonlinearity, which is fitted to give an α = 16, Fig. 1(d).
Upon the application of two tones, with one tone having 1 V amplitude and δ = 4 kHz, while the other tone (2 V) is swept
over a Ω = 10 kHz interval. The system exhibits a frequency doubling bifurcation route to chaos once the high amplitude
tone is within its respective bistability region. This effect holds for a bidirectional frequency sweep, as shown in Fig. 1(e).
The spectral response as well as the phase-space plots corresponding to a rotating frame periodic motion, period-doubling
motion, and chaotic motion are shown in Fig. 1(f)-(h), and Fig. 1(i)-(k), respectively.
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Figure 1: (a) Bistability map plotted as a function of non-dimensional force and detuning, showing the region of bistability for a
lossless driven Duffing resonator (grey area), and for a low-loss (Q=1000) Duffing resonator (area within the dashed blue line). (b)
Amplitude versus detuning response of a lossless Duffing taken for F1

√
α = 1. The corresponding phase-space plots for a detuning

of δ = 2.5× 10−3 is shown in (c). The stable fixed points and the saddle point are shown as black and white dots respectively, as
well as the homoclinic orbit. (d) Experimentally obtained frequency response sweep showing the linear regime (blue trace) and the
Duffing regime (red trace). (e) Amplitude of the rotating-frame oscillations under the effect of a two-tone excitation, with one fixed
tone (δ = 4 kHz), and Θ swept between [−8, 2] kHz, the frequency is swept in both directions with the forward and backward sweeps
plotted side by side. The oscillations show Period 1, Period 2, and chaos, the spectral density and phase space plots of which examples
are shown in (f)-(h), and (i)-(k), respectively.

Conclusions

In conclusion, this work presents an approach that leverages our understanding of the rotating frame approximation in
order to generate chaos in nonlinear M/NEMS resonators using low power actuation. The chaos generation area within the
parameter space is constrained using arguments from Melnikov’s method, and the technique presented here is independent
of the exact device design and scale, and therefore is generally applicable to low-loss nonlinear M/NEMS resonators.
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Controlling the location of discrete breather formation in a nonlinear electrical lattice
using random excitation

Subramanian Ramakrishnan∗ and Connor Edlund†

∗Department of Mechanical and Aerospace Engineering, University of Dayton, Dayton, USA
†Department of Electrical Engineering, University of Minnesota - Twin Cities, Minneapolis, USA

Summary. Emergence of discrete breathers (also known as Intrinsic Localized Modes) in nonlinear lattices, analogous to solitons in
continuous media, is a uniquely nonlinear phenomenon wherein energy gets localized in specific nodes of the lattice. While extensively
studied in various contexts including optical systems and MEMS arrays, the effects of random excitation on the formation and dynamics
of breathers remains largely unexplored. In this talk, we will present our recent results which demonstrate that additive white noise
excitation can aid the controlled formation and sustenance of discrete breathers in a nonlinear electrical lattice. In addition, we will
present computational results that demonstrate that a temporary burst of random excitation of the white noise type can facilitate the
change of location of a breather in a lattice. The results are expected to be of both theoretical interest as well as in several important
applications involving discrete breathers, such as targeted energy transfer.

Overview and Analytical Framework

Discrete breathers (also known as Intrinsic Localized Modes) correspond to localization of energy at specific locations
within perfectly periodic, nonlinear lattices. Manifest as sustained, stable oscillatory modes, the existence of breathers is
predicated on the nonlinearity and discreteness of the lattice. Studies of discrete breathers may be traced back to inves-
tigations of the Fermi-Pasta-Ulam oscillator chain. Since then, the phenomenon has been observed in a broad spectrum
of systems such as Josephson junctions, photonic crystals [2] and micro-cantilever (MEMS) arrays [3] thereby establish-
ing its universality. In addition to being fundamentally important in theoretical studies of energy distribution in periodic
nonlinear systems, breathers are of interest in applications such as targeted energy transfer and signal processing.
The dynamical scale of several systems in which breathers emerge point to the importance of stochastic effects. Fur-
thermore, it is known that phenomena such as stochastic resonance that arise due the interplay between randomness and
nonlinearity can be exploited to advantage in applications. However, the influence of randomness on the formation and
dynamics of breathers is yet to be understood and motivates the present effort. In recent work, we found that random
excitation (characterized by additive white noise of appropriate intensity) of even an arbitrarily chosen cell of a lattice
for a short period of time can induce breather formation in a nonlinear electrical lattice [1]. Here, we specifically ask
whether random excitation of a node at which a breather has emerged can induce a change of location of the breather. In
other words, we ask whether random excitation can be used as a technique to manipulate and move breathers to different
locations in a lattice.

Analytical Framework
The non-dimensional dynamic model equations for a unit cell “n" in the considered electrical lattice are given in Equations
(1) and (2) [4]:

dvn
dτ

=
1

c(vn)

[
yn − iD(vn)

− 1

ω0C0

(
1

RI
+

1

R

)
vn +

cos(Ωτ)

RC0ω0

]
(1)

dyn
dτ

=
L2

L1
(vn+1 + vn−1 − 2vn)− vn (2)

In these equations, vn = Vn/Vs is the non-dimensional node-voltage of cell n, τ = ω0t is the non-dimensional time,
Ω = ω/ω0 is the non-dimensional driving frequency with ω0 = 1/

√
L2C0, c(vn) = C(Vn)/C0, and iD(vn) =

ID(Vn)/w0C0Vs. Note that the sinusoidal sources in each cell are identical in frequency Ω, amplitude Vs, and phase.
Rl is an additional term added to account for the resistance of the inductors. It is considered to be parallel to L2 and its
value is dependent on the driving voltage amplitude Vs. In this case, where we have chosen Vs = 4V , Rl is equal to 5 kΩ
[?].
To account for stochastic excitation, the modelling equations are recast as a vector-valued Ito stochastic differential equa-
tion given in Equation (3):

dx(τ) = f(x(τ), τ)dτ + σG̃dW(τ) (3)

where dW(t) is a Brownian motion increment that is drawn from the standard normal distribution and represents a
white-noise Gaussian process. The noise intensity is represented by the scalar coefficient σ. The computational results
are obtained by simulating the above equations using the standard Euler-Maruyama scheme for numerical solutions of
stochastic differential equations.
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Figure 1: Averaged Results for Noise Burst at Cell 12

Figure 2: Individual Run Results for Noise Burst at Cell 12

Results

Breather formation spurred by small randomized initial voltage conditions at top node of cell in the range of 0 to 0.04
volts is observed. White noise is applied at cell 12 starting at 1/3 into the simulation, turned off again at the halfway point
into the simulation. Figure 1 depicts the average of ten individual runs each using the same initial conditions but different
noise profiles, with the dashed white lines indicating when and where noise is applied. As apparent, when σ = 0.15,
the breather located at cell 12 is effectively eliminated. Individual run results pictured in Figure 2 further corroborate
this. The ability to eliminate or shift breathers was found to depend on the initial condition profile used. For 2 of the 3
profiles used, including this one, it was possible to move or eliminate the breathers using a noise burst at its location. For
the third profile tested, the breathers were too robust and reappeared after the noise burst in the same location. However,
the effectiveness in the other two IC cases indicate that noise may be used to control the location of these breathers on
average. The other cases suggest that appropriate choice of noise intensity is essential to successfully move the breathers.

Conclusions

The results indicate that random excitation characterized by additive white noise can induce a change of location of
breathers in the lattice. This has not been reported in the literature and hence is a novel aspect with implications in
applications where shepherding breathers across a lattice would be of interest. In addition, our recent results showing that
discrete breather formation in a nonlinear electrical lattice may be controlled by random excitation will also be presented
in the talk. Together, the results suggest that random excitation can be employed as a novel pathway towards controlling
the emergence and dynamics of discrete breathers in nonlinear lattices.
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Long Time Trapping of Particles in a Rotating Sinai Billiards System

Saheli Mitra, Saugata Bhattacharyya and Vikram Pakrashi
Laboratoire de physique des Solides, Université Paris Sud, Orsay, France

Department of Physics, Vidyasagar College, Calcutta University, India
UCD Centre for Mechanics, Dynamical Systems and Risk Laboratory, School of Mechanical and

Materials Engineering, University College Dublin, Ireland
SFI MaREI Centre, University College Dublin, Ireland

UCD Energy Institute, University College Dublin, Ireland

Summary. We consider a rotating Sinai Billiards system in this paper and consider a square wall boundary with a circular scatterer.
We subsequently consider the effects of rotation on this system for a number of particles. The question of ergodicity is considered from
the point of view of whether or not in long time the particle can explore the complete phase space. The system is numerically simulated
and tested for a range of rotational speed, indicating non-ergodic responses.

Introduction

A two-dimensional billiard with reflective square boundary and a single circular disk obstacle at the center is considered
in this paper. In absence of external force, a point mass in this standard classical Sinai billiard system would have straight
line trajectory until it collides either with the outer wall or the inner wall. Upon elastic collision it will change the
direction of the velocity in accordance with angle of incidence is equal to angle of reflection. In this paper, the billiard
system is considered under rotating conditions without an external force. Subsequently, we intend to investigate how
non-ergodicity is manifested in the system as a function of rotational speed and the radius of the disk at the centre, the
two main parameters governing the outcome of the system.

Fig.1. An ensemble of the initial and final positions of particles for different rotational speeds and disk radius. The green points
indicate N=2000 initial positions of the mass point for N independent simulations. The blue points indicate their final positions

after an equal amount of time has elapsed.

Results and discussions

Particle trajectories starting from different sets of initial conditions defined by position and velocity are simulated. The
effect of increasing the rotational speed of the table for several cases of the radius of the circular disk on those trajectories
are observed. For a certain set of rotational speed and radius of disk, 2000 initial conditions of location and velocity were
considered drawing from uniformly distributed values between the inner and outer boundaries. After a sufficient time has
elapsed (t = 10), the locations of the particles are noted for all of these independent runs, as observed in Fig 1.
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From Fig.1, it is observed that as rotational speed increases, particles spend more time away from the disk and for high
value of rotational speed the trajectories are trapped at the corners of the outer wall of the billiard making the system
highly non-ergodic.
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Feedback control of propagating bubbles in Hele-Shaw channels

João V. Fontana∗, Alice B. Thompson∗

∗Manchester Centre for Nonlinear Dynamics and Department of Mathematics, University of
Manchester, Oxford Road, Manchester, UK

Summary. We explore the capabilities of feedback control to stabilise and manipulate propagating bubbles in the confined geometry
of a rectangular Hele-Shaw channel. Several steadily-propagating solution branches exist in this system, but only one is linearly stable.
Subsequent branches featuring increasingly deformed bubble shapes and increasing numbers of unstable eigenmodes. Our aim is to
use feedback control and control-based continuation to detect and stabilise at least the first of these unstable branches. This system
is an appealing prototype for control: the low Reynolds number and strongly confined geometry means the system state is essentially
encapsulated in the interface shape as viewed from above, recent experimental realisations of this system are in good agreement
with depth-averaged models, and the system responds well to actuation via fluid injection, but nonetheless practical implementation of
feedback control presents significant challenges. Here we use a depth-averaged model to explore how control would work in this system,
including the design of a suitable feedback gain, the impact of control on the bifurcation structure, the complexities of controlling a
propagating bubble moving past a fixed array of injection points, and how our idealised simulations relates to experimental reality.

Introduction

The study of nonlinear dynamics in soft matter systems often leads to a myriad of steady states. Stable states can be studied
via both experimental and computational methods but experimental investigations at best transiently observe unstable
states. Control based continuation (CBC) is a methodology that applies feedback control to the physical system using a
target state as the control parameter. By choosing an unstable state as the target state and carefully choosing a feedback
strategy it is possible to detect and stabilize the unstable solution without otherwise modifying it. This methodology
enables tracking of bifurcation structures as well as experimental investigations of unstable behaviour [1, 2, 3]. Our aim
is to use the CBC to investigate free-surface problems in fluid dynamics, both to understand the rich range of dynamical
behaviour and to widen the range of possible applications of CBC in the future.

We study the propagation of an air bubble through a fluid filled rectangular Hele-Shaw channel at low Reynolds number.
This system is a classical problem in fluid dynamics with known rich dynamics, which we have previously explored both
via a depth-averaged model and also via laboratory experiments [4]. For steady propagation, the bubble system supports
one stable solution (figure 1(a)) and an infinite number of multi-tipped unstable solutions that assume an increasing
number of interface tips and unstable eigenvalues (figure 1(b,c)). Our aim is to develop and test an experimentally viable
protocol for the stabilization of unstable solutions, to detect and stabilise at least the first unstable solution branch.

Steady stable solution

(a)

Steady unstable solution

(b)

Steady unstable solution

(c)

Figure 1: Three steady modes for a bubble propagating from left to right in a Hele-Shaw channel, calculated using our model.

Model

We take advantage of the shallowness of Hele-Shaw channels by using a depth-averaged approximation of the system, thus
avoiding the computational complexity of the full 3D problem for bubble propagation. The problem domain is then two-
dimensional, with the interface shape corresponding to the top view seen in experiments. The numerical simulations are
implemented in C++ using the open-source object-oriented multi-physics finite element library oomph-lib (www.oomph-
lib.org).

Our model is inevitably an approximation of the full experimental system and does not capture all details of the bifurcation
structure in the experiments. Nonetheless, the model is in good qualitative agreement with experiments and in quantitative
agreement in appropriate regimes. As a result, we have reason to believe that control strategies developed using this model
would be effective, though not optimal, if applied in experiments.
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Control via moving or fixed actuators

In order to actuate control, we inject fluid from specific points at the side walls with time-dependent amplitude A(t).
The system can be generically represented as F(x, ẋ,A) = 0 where x(t) is a vector that describes the system state (the
current interface shape) and A(t) describes the injection amplitude. The simplest case to analyse is when actuator position
is fixed within the frame of the bubble, so actuator action is steady as perceived by the bubble. For simplicity we use a
linear feedback control strategy A(t) = −K(x(t)− xt) towards a target state xT . Various standard algorithms can be
employed to choose a feedback gain K that (linearly) stabilizes the resulting steady solution.

We test our control strategies in nonlinear time-dependent simulations of the depth-averaged model. Choosing the unstable
solution of the uncontrolled system (figure 1(b)) as the target state xT , the stable solution (figure 1(a)) as the initial
condition, and using a pair of actuators placed a distance d = 1 (half the channel width) in front of the bubble centroid,
we can successfully control the system towards the target solution, see figure 2(a). The transition between states is rapid
and the bubble moves only a short distance along the channel.
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Figure 2: (a) Time evolution of a bubble, presented in the lab frame, starting with the stable solution as initial condition and evolving
towards the unstable target solution. The actuator distance d is half of the channel width. The first and last interfaces are superposed
with the stable and unstable solutions, in blue and red dashed lines respectively. (b) Eigenvalue plotted as a function of the actuator
centre d. The steady state is successful stabilized for values of d between dmin and dmax.

A more realistic setup actuator setup is via an array of injection points fixed in the lab frame. In the frame of the bubble,
this introduces time dependence in the control problem as the distance d between actuator and bubble depends on time.
However, each fixed K has a window of d where the control is able to stabilize the equilibrium state (figure 2(b)). Hence
by choosing actuator spacing within this range and switching the active actuators depending on the position of the bubble
we are again able to stabilize bubbles in our simulations. Importantly for CBC, this piecewise constant K means that a
low-dimensional parameterization of the target state is still sufficient for feedback control.

Outlook for experiments

Our analysis and simulations of control based on a depth-averaged model suggest that an unstable state can be successfully
controlled via injection of fluid chosen in real time based on top view observations of the bubble. Compared to simulations,
experiments present several new challenges, including noise and delay. CBC can in principle address the inevitable
differences between experiment and model, as the model would be used to devise an effective control strategy which
need not be optimal. It remains to be seen how closely the bifurcation structure, solution shapes and stability properties
for unstable states in experiments corresponds to those predicted by the simplified model used here. We are currently
developing an experimental setup to test and implement these control strategies in practice and will present experimental
results for either static or moving bubbles if possible.

References

[1] D. A. W. Barton. Control-based continuation: Bifurcation and stability analysis for physical experiments. Mech. Syst. Signal Pr. 84:54, 2017.

[2] J. Sieber, A. Gonzalez-Buelga, S. A. Neild, D. J. Wagg & B. Krauskopf. Experimental continuation of periodic orbits through a fold. Phys. Rev.
Lett. 100:244101, 2008.

[3] L. Renson, A. D. Shaw, D. A. W. Barton & S. A. Neild. Application of control-based continuation to a nonlinear structure with harmonically coupled
modes. Mech. Syst. Signal Pr. 120:449, 2019.

[4] A. Gaillard, J. S. Keeler, G. Le Lay, G. Lemoult, A. B. Thompson, A. L. Hazel & A. Juel. The life and fate of a bubble in a geometrically perturbed
Hele-Shaw channel J. Fluid Mech. 914:A34, 2021.

ENOC 2022, July 17-22, 2022, Lyon, France

911



ENOC 2020, July 5-10, 2020, Lyon, France

Stabilizing reset control for motion systems with Stribeck friction

Ruud Beerens*, Andrea Bisoffi***, Luca Zaccarian****, Maurice Heemels*, Henk Nijmeijer*,
Nathan van de Wouw*,**

*Dept. of Mechanical Engineering, Eindhoven University of Technology, The Netherlands
**Dept. of Civil, Environmental and Geo-Engineering, University of Minnesota, Minneapolis, USA

***ENTEG, Univ. Groningen, The Netherlands ****CNRS, France & Univ. Trento, Italy

Summary. We present a reset control approach to achieve setpoint regulation of a PID-based motion system subject to Coulomb and
velocity-dependent friction, including the velocity-weakening (Stribeck) effect. While classical PID control results in persistent oscilla-
tions around the setpoint (hunting), the proposed reset mechanism ensures asymptotic stability. Robustness for unknown static friction
levels, and an unknown Stribeck contribution is obtained. The working principle of the controller is demonstrated experimentally on a
motion stage of an electron microscope, showing superior performance over classical PID control.

Introduction

We present a reset integral control approach for stabilization of motion systems with unknown Coulomb and Stribeck
friction. Friction is a performance-limiting factor in many high-precision motion systems, in the sense that it limits the
achievable positioning accuracy and the settling times. Many different control techniques for frictional motion systems
have been presented in the literature. Several control solutions rely on developing as-accurate-as-possible friction models,
used for online compensation in a control loop, see, e.g., [1]. Also non-model-based solutions have been proposed, e.g.,
impulsive control (see [2]) or sliding-mode control.
Despite the availability of a wide range of control techniques for frictional systems, linear controllers are still used in
the vast majority of industrial motion systems due to the existence of intuitive design and tuning tools. In the industry,
the classical proportional-integral-derivative (PID) controller is most commonly used for motion systems with friction.
In particular, the integrator action is capable of compensating the unknown static friction, due to the the control force
increment arising from integrating the position error. However, PID control does not generally achieve stability in the
presence of Stribeck friction, resulting in poor positioning accuracy. While the integrator action compensates for the
static part of the friction, friction overcompensation occurs as the velocity increases due to the velocity-weakening effect.
As a result, the system overshoots the setpoint and ends up in stick-slip oscillations (hunting). In order to eliminate these
persistent oscillations, we propose a reset integral controller that induces asymptotic stability of the setpoint, despite the
presence of unknown static friction, and an unknown velocity-weakening effect in the friction characteristic.

Reset controller design

Consider a single-degree-of-freedom mass m sliding on a horizontal plane with position z1 and velocity z2, subject to a
control (force) input u and a friction force belonging to a set Ψ(z2), governed by the dynamics

ż1 = z2, ż2 ∈
1

m
(Ψ(z2) + u) , z2 ⇒ Ψ(z2) := −Fs Sign(z2)− αz2 + f(z2), (1)

where Fs is the static friction, Sign(·) is the set-valued sign function (i.e., with Sign(0) := [−1, 1]), αz2 the viscous
friction contribution (where α ≥ 0 is the viscous friction coefficient), and f is a nonlinear velocity-dependent friction
contribution, encompassing the Stribeck effect. Define the setpoint (z1, z2) = (r, 0) for any constant position reference r.
Let us first present a classical PID controller for input u in (1), i.e.,

u = −kp(z1 − r)− kdz2 − kiz3, ż3 = z1 − r, (2)

where z3 is the integral state of the PID controller, and kp, kd, ki represent the proportional, derivative and integral gains,
respectively, satisfying kp > 0, ki > 0, and kpkd > mki. Finally, we embrace the (mild) assumption that the friction
characteristic satisfies |f(z2)| ≤ Fs for all z2, that z2f(z2) ≥ 0 for all z2, that f is globally Lipschitz with Lipschitz
constant L > 0, and that, for some (potentially arbitrarily small) εv > 0 and L2 ∈ (kd + α,L], f(z2) = L2z2 for all
|z2| ≤ εv .
In order to achieve closed-loop stability, we enhance the integrator in (2) with resets. The integrator performs two parti-
cular resets, where the key mechanism of these resets is to enforce that the integrator control force (given by kiz3) always
points in the direction of the setpoint. To this end, we introduce a boolean state b ∈ {−1, 1}, characterizing whether the
mass moves towards the setpoint (then b = 1), or away from the setpoint (then b = −1, typically after an overshoot of
the position error). Then, the inequality bz2(z1 − r) ≤ 0 is always satisfied. The first reset that we propose entails a sign
change of the integrator state z3 at a zero-crossing of the position error z1 − r. We also toggle b at this instant, because a
zero-crossing of the position error marks the start of an overshoot phase, i.e.,

z+3 = −z3, b+ = −b, when z1 − r = 0 and b = 1, (3)
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Figure 2: Position error response and experimental control force
with the classical PID (red), and the reset PID (blue).

where the notation “x+” represents the value of the considered state x after an instantaneous change, i.e., the controller
reset. Besides recovering stability of the setpoint, the reset in (3) results also in some overshoot reduction. The second
reset involves resetting to zero the integrator state z3 when the velocity z2 hits zero after the overshoot, i.e.,

z+3 = 0, b+ = −b, when z2 = 0 and b = −1. (4)

The reset in (4) also results in a reduction of the duration of the stick phases occurring when the mass stops after the
overshoot. Summarizing, the closed-loop system with the proposed reset PID controller is given by (1)-(4).
Closed-loop stability is analyzed as follows. First, we write the closed-loop system in the hybrid systems framework
of [3], where we use a hybrid description of the Coulomb friction element in (1), as presented in [4]. We then prove that
solutions to the closed-loop system (1)-(4) are also contained in said hybrid model. We then exploit the hybrid model to
show that (under the aforementioned mild assumptions on the controller gains and friction characteristics) the setpoint is
globally asymptotically stable, using a Lyapunov function and a recent hybrid invariance principle [5].

Experimental case study

We demonstrate the working principle and the effectiveness of the proposed reset controller on an industrial motion
platform (a sample manipulation stage of an electron microscope), see Figure 1. A servo motor is connected via a spindle
and a nut to a carriage, whose position is measured by a linear encoder. The goal is to position the carriage within a
desired accuracy band of 10 nm. The main sources of friction are two bearings supporting the motor axis, and the contact
between the spindle and the nut. We have implemented both the classical PID controller, and the proposed reset PID
controller (with the same gains). For the latter one, we have designed suitable robustified conditions capable of triggering
the controller resets (3), (4) also in the presence of measurement noise. Figure 2 shows the position error response and
the control force for an experiment with the classical PID controller (red), and with the proposed reset PID controller
(blue). The classical PID controller induces a persistent oscillation, limiting the achievable setpoint accuracy. For the
reset controller experiment, the reset enhancements are activated at the time instant indicated by the blue vertical dashed
line (up to this time instant, a classical PID controller is active). Then, the challenging desired accuracy band of 10 nm,
indicated by the horizontal black dotted lines in the top subplot, is achieved after two controller resets. The corresponding
control force is discontinuous due to the controller resets, visualized in the lower subplot and highlighted in the inset.

Conclusions

We proposed a reset PID control strategy for motion systems with unknown Coulomb and velocity-dependent friction,
including the Stribeck effect. Our reset strategy recovers global asymptotic stability of the setpoint (lost by the hunt-
ing effect associated to the classical PID). The working principle and effectiveness of the controller are experimentally
demonstrated on an industrial high-precision positioning device.
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Summary. This work proposes some iterative procedures for estimating additive measurement biases in multi-
agent non-linear systems. The bias is a constant additive offset in the relative measurement of states between agents. In
contrast to existing literature which estimate biases asymptotically or does adaptive control to remove the impact of bias,
we provide an iterative procedure that estimates the bias in a finite number of steps in the noiseless case.

Introduction

The multi-agent formalism enables treating problems that arise in many application domains such as engineering [3], soci-
ology [5] or biology [9]. Consensus and synchronization were mainly studied for agents with linear dynamics interacting
through a graph, see [6] for instance. However, there are also studies with nonlinear dynamics, see for example [8] which
considers oscillators dynamics, or [3] on non-holonomic robots. However, the effect of measurement biases have not been
well explored in this context. In [11], the authors develop an adaptive control to correct biases in a double integrator but it
is not clear how this method can be adapted to general non-linear systems. In [2] and [7], the authors proposed algorithms
to estimate sensor offsets in wireless sensor networks. These methods only partially compensate the offsets and never
completely eliminate the bias. Recently, in [10], the authors propose a distributed bias removal strategy using a consensus
type algorithm, however, the convergence of the estimate to the true bias is asymptotic.
Our main contribution is to provide a method of bias removal in finite time when dealing with nonlinear multi-agent
systems subject to constant bias measurements. The method proposed here requires a limited number of communication
instances and can be implemented either in a centralized manner through cloud computing or in a decentralized manner
as long as two interacting agents can measure the same reference point.
Problem formulation: We consider a network of n interacting agents, where the interactions are described by a graph
G = (V, E). Each agent i ∈ V is described by a state xi ∈ Rnx . Ni = {j ∈ V | (i, j) ∈ E} specifies the neighborhood
of agent i and represents the set of neighbors whose relative states can be measured by i. However, the measurements
made by any agent i have a constant additive bias bi which must be removed in order to accomplish the overall common
goal. For any j ∈ Ni, agent i has access to the measurement zi,j(t) = xj(t) − xi(t) + bi and implements a distributed
control g(zi) in order to achieve a cooperative task.
The agent dynamics is given by

xi(t+ 1) = fi(xi(t), g(zi,j)). (1)

We assume that the above algorithm performs well when the additive bias is 0. However, the presence of the additive
bias leads to significant deterioration in performance and this must be corrected by taking z̄i,j = zi,j − b̂i(t), with b̂i(t)
assumed to be an estimate of the bias. Our objective is to estimate bi for all i in finite time, using communication with a
cloud or only among neighboring agents when a reference can be measured.

MAIN RESULTS

Estimating the additive biases without communication with neighbors is not possible since all the measurements have the
same bias and this parameter can not be removed. In the following, we provide the assumptions on communication and
on the graph structure so that bias can be estimated in a finite number of steps . .

Bias removal for non-bipartite connected graphs
Assumption 1 We look at connected, undirected and non-bipartite graphs and assume that all agents can identify the tag
of their neighbors and themselves.

We use L+ to denote the sign-less Laplacian which can be defined as having L+
ij = 1 when j ∈ Ni, L+

ij = |Ni| if i = j
and 0 otherwise.

Lemma 1 ([4]) The matrix L+ is invertible when the graph is non-bipartite.

We assume that all agents can communicate with the cloud which will then process all the information it has to estimate the
bias. In the proposed procedure, all agents i will measure zi,j(0) for all its neighbors j and communicate this information
to the cloud (synchronously or asynchronously). Once all agents have communicated their measurements to the cloud, it
can use the following result to estimate all their biases.

∗This work was partially funded by CEFIPRA under the grant 6001-A
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Proposition 1 Under Assumption 1, the cloud can estimate the bias for all agents as b̂ = (L+)−1δ where

δi =
∑

j∈Ni

zi,j + zj,i. (2)

From [1], we know that all non-bipartite graphs contain an odd-ring as a sub-graph. So the above procedure can work as
long as the graph contains an odd-ring. In the absence of a cloud/central entity, the following distributed procedure may
be used.

Remark 1 When there is no central-cloud, if all agents have sufficient memory and can communicate with their neigh-
bors, then all agents can estimate their bias in N steps. At each step all agents will communicate all the new information
they have collected in the last step allowing them to aggregate all the information required to apply proposition 1.

Distributed bias estimation with a reference
Assumption 2 The graph is connected and there exist at least two neighboring agents i, j who can measure a common
reference r.

We use zi,r to denote the relative measurement of the reference with respect to agent i. In this case, we propose a
distributed procedure for bias estimation in finite time. First, all agents i communicate zi,j(0) and zi,r(0) (if the reference
can be measured by i) to all its neighbors.

Proposition 2 Under Assumption 2, at least one agent i will be able to estimate

b̂i = zi,r(0)− (zj,r(0)− zj,i(0)). (3)

after it receives communication from its neighbor j which can also measure the reference.

We propose the following distributed procedure for bias estimation in finite steps (at most N ) for the remaining agents.
The algorithm applied by any agent i can be described as follows.
Data: At time 0, measure and communicate zi,j(0) and zi,r(0) (if available) to all neighbors j.
if zj,r(0) and zi,r(0) are known after receiving communication from neighbor j then

estimate b̂i using proposition 2.
else

di,j ← zi,j(0) + zj,i(0)
end
while b̂i is not estimated do

Wait for transmissions ;

if some neighbor j transmits b̂j then
Estimate b̂i ← di,j − b̂j

end
end
Transmit b̂i to all neighbors.

Algorithm 1: Procedure of bias estimation
Since the graph is connected due to Assumption 2, the iterative procedure described above will have all agents estimating
their own biases within N steps at most.
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Summary. This work focuses on the design of a control strategy for consensus of fleets of nonholonomic robots in presence of noisy
measurements. The proposed strategy leads to a hybrid behaviour of the closed-loop dynamics of each robot. Precisely, the robots
sporadically compute references that are kept constant until the next update. Between two updates of the reference the robots will apply
a tracking controller allowing them to approach exponentially fast their targets. The main contributions are related to both the control
design and the analysis of the resulting hybrid closed-loop dynamics. Simulations and real experiments will be presented at ENOC.

Introduction

During the last decades the design of control laws for nonholonomic robots received a lot of attention. This is mainly due to
the fact that Brockett conditions [2] required for smooth stabilisation do not hold for this class of dynamics. To overcome
the fact that smooth state-feedback controllers stabilizing the position and orientation of the robot do not exist, different
discontinuous control laws have been proposed [5, 1]. We also point out that a control design for tracking a smooth
trajectory has been also proposed for nonholonomic robots [4]. It is noteworthy that, all these strategies consider a stand-
alone robot that is continuously controlled. Our objective is to control a fleet of nonholonomic robots in a decentralized
manner and in a harsh environment hampering continuous communications between robots.
The main contribution of our work is twofold: first, the design of a hybrid control strategy for consensus of nonholonomic
robots and second, the stability analysis of the closed-loop system providing minimum dwell-time conditions guaranteeing
the overall system stability. As shown in the Figure 1 below, our strategy contains two loops. The external loop takes
place in discrete time and uses local information related to neighbouring robots state in order to sporadically compute
references of the robots. The internal loop takes place in continuous time, does not require communication with (or
information from) other robots and uses a standard tracking (or point stabilization) controller such as the one proposed in
[4].

Consensus
Controller

(Decentralized)

Stabilisation
Controller
(Local)

Relative Positioning Sensors

Reference

Figure 1: Control structure

Problem formulation
We consider a fleet of n nonholonomic robots that have to reach a consensus in the positions without requiring specific
final orientation of the agents. For the sake of simplicity we remove the time argument t when it is not explicitly needed.
We denote by ri = (rxi

, ryi) the 2D reference position for the robot i and we fix rθi = 0 its heading reference. The
Cartesian coordinates of the center of mass of each vehicle with respect to the fixed inertial frame are denoted using vector
Xi = (xi, yi). Denoting ei = (exi , eyi , eθi)

⊤ the dynamics of the ith robot is described by the following differential
equations

ėi = g(ei)ui, g(ei) =




cos eθi 0
sin eθi 0

0 1


 , ui =

[
vi
ωi

]
. (1)

where vi is the linear velocity and ωi is the angular velocity of the mobile robot; exi
and eyi are the Cartesian coordinates

of the center of mass of the vehicle with respect to a frame positioned on the reference position ri, and eθi is the angle
between the heading direction and the x-axis of this frame.
The point stabilization control considered in this work is the continuous piecewise smooth control law introduced in [3].
Basically, one considers a map F : R3 7−→ R × (−π, π] relating ei ∈ R3 to zi = (ai, αi)

⊤ ∈ R × (−π, π]. Taking
K, γ > 0 the control law ui = κ(ei) = (−γb1(ei)a,−b2(ei)v − Ka)⊤, where b1, b2 are explicitly defined in [3],
exponentially stabilizes the origin of the planning reference frame ei = 0. In the following, we denote εi = (exi

, eyi) the
2D Cartesian error coordinates i.e. εi = Xi − ri.
Lemma 1 Let us consider the closed loop dynamics ėi = g(ei)κ(ei) with κ(ei) defined above. Then, there exist positive
constants cε and λε such that ∀t ≥ t0 one has ‖εi(t)‖∞ ≤

√
ncε ‖εi(t0)‖∞ e−λε(t−t0), ∀i ∈ {1, . . . , n}.
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As we previously said, the external loop designs references for each robot based on the sensing of relative positions
of some neighbouring robots. These "interactions" are mathematically captured by a time-varying digraph (directed
graph) G(t) = (V, E(t)), where the vertex-set V represents the set of robots and the edge set E(t) ⊂ V × V collects
the interactions between robots at time t. A path of length p in a digraph Ḡ = (V̄, Ē) is a union of directed edges⋃p
k=1(ik, jk) such that ik+1 = jk, ∀k ∈ {1, . . . , p − 1}. The node j is connected with node i in Ḡ = (V̄, Ē) if there

exists at least a path in Ḡ from i to j (i.e. i1 = i and jp = j). A strongly connected digraph is such that any of its two
distinct elements are connected. In the sequel we consider the set of instants when at leat one robot updates its reference
as T = {tk : tk ∈ R+, tk < tk+1, ∀k ∈ N, limk→∞ tk =∞}. Moreover, we define Ti ⊂ T selecting the instants when
robot i updates its reference (i.e. T =

⋃n
i=1 Ti). At each instant tk ∈ T a graph structure G(tk) = (V, E(tk)) defines

the interactions between neighbours. Let α ∈ (0, 1), β ∈ (1/2, 1) be given. To each graph structure G = (V, E) we
uniquely associate a row stochastic matrix P satisfying the following properties: Pi,j = 0, if (i, j) /∈ E , Pi,i > β, ∀i =
{1, · · · , n} , Pi,j > α, if (i, j) ∈ E .
Assumption 1 (Connectivity) The digraph G =

⋃
k≥k0 G(tk) is strongly connected for all k0 ∈ N.

Assumption 2 (Bounded Intercommunication Interval) If (i, j) ∈ E(tk) infinitely often, then there is some L ∈ N
such that, for all tk ∈ T , (i, j) ∈ E(tk)

⋃ E(tk+1)
⋃ · · ·⋃ E(tk+L−1).

Main results

The closed-loop hybrid dynamics associated with the i-th robot (i ∈ {1, . . . , n}) can be formulated as:




ṙi(t) = 0, ėi(t) = g(ei(t))κ(ei(t)) for t ∈ R+ \ Ti,

ri(tk) =
n∑

j=1

Pi,j(tk)εj(t
−
k ) +

n∑

j=1

Pi,j(tk)rj(t
−
k ) + δi(tk), εi(tk) = εi(t

−
k ) + ri(t

−
k )− ri(tk) + δi(tk) for tk ∈ Ti,

where δi(tk) represents the measurement bias whose infinity norm is upper-bounded by δ̄ ∈ R+. Our main objective is to
analyse the ISS property of the overall dynamics of n robots defined above w.r.t the following set:

A =
{
ε, r ∈ R2n | ε = 0, rxi

= rxi
, ryi = rxj

, ∀i, j ∈ {1, . . . , n}
}
.

Theorem 1 Let Assumptions 1-2 hold. Then the overall dynamics of n systems defined above is ISS w.r.t. the set A, if the
time between any two consecutive updates of the reference for each robot is larger than τ∗ with

τ∗ =
1

λ
lnmax

{
η2cN

1− η1

2L−1∑

l=0

a
2L−1−l
2L−1 ,

c(η3(N − 1) + 1)

(1− n(2L− 1)η3)a

L−1∑

l=0

a
2L−1−l
2L−1

}
> 0,

with η1 = 1− αL, η2 = 4− 2α, η3 = 1− β and a = 1+η1
2 .

Remark 1 • We note that theorem above does not fix the update instants but only provide a minimum dwell-time
between updates of the reference of the same robot. Consequently, very frequent updates are forbidden.

• When δ̄ = 0 (i.e. the sensors provide perfect measurements) the theorem above states thatA is GUAS for the overall
closed-loop dynamics of n nonholonomic robots.

Conclusions

This work formulates a decentralized control strategy for fleets of nonholonomic robots with biased measurements. The
control is designed as follows. In a first step, at sporadic time-instants the robots compute a reference based on measure-
ments of relative postions of some neighbours. In a second step, the robots continuously apply a state-feedback tracking
controller. This yields a hybrid behaviour of the closed-loop dynamics. We show that consensus can be achieved as far as
a certain minimum dwell-time condition between the reference updates of each robot is respected. Simulations and real
experiments will be presented at ENOC.
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Summary. In this paper, nonlinear vibration control of a plate is investigated using Nonlinear Modified Positive Position Feedback 

(NMPPF) method that is applied through a piezoelectric layer on the plate. NMPPF controller consists of a resonant second-order 

nonlinear compensator for vibration suppression at targeted resonance. In this model, transverse vibrations are studied and 

stimulations are performed for the primary resonance. Using time-space separation of the differential equations of the model and 

Galerkin method the temporal nonlinear equations governing the system have been found. Then, the free and forced vibrations of the 

structure with the NMPPF controller has been solved using Method of Multiple Scales to obtain an analytical solution. Results show 

that the NMPPF controller reduces the amplitude of the vibration by inducing an increase to the damping coefficient. In addition, the 

NMPPF controller provides a higher level of suppression in the overall frequency domain response by increasing the compensator 

gain. Finally, the results of the analytical solution for the closed-loop NMPPF controller are presented and compared with the result 

of the conventional Positive Position Feedback (PPF) controller and nonlinear integral resonant controller (NIRC). 

Introduction 
Controllers are one of the most effective ways to control linear and nonlinear vibrations. Hence, different control 

strategies have been presented and utilized [1]. One of the methods for nonlinear vibration control is to use of active 

control. The advantage of using active control is its real-time adjustment according to the condition of the system and 

alternations in the input disturbance force on the system. In order to have the highest level of suppression in the 

vibration control process, it is essential to design a controller compatible with the nonlinear characteristics of the system 

oscillations. Linear and nonlinear active vibration controllers typically employ piezoelectric actuators. Active vibration 

control is usually applied using piezoelectric ceramics as actuators and sensors, as an example, piezoelectric actuators 

are used in Atomic Force Microscopes to produce high-frequency vibrations. The purpose of this paper is to obtain the 

equations of nonlinear vibrations and controller system for elastic plate with a piezoelectric layer that follows the 

classical theory of Kirchhoff. In addition, Van Karman's nonlinear strains have been used to investigate geometrical 

nonlinear effects. This plate has a piezoelectric layer at its upper surface. This layer actually is utilized to actively 

suppress the vibrations of the plate. The external force applied to the piezoelectric layer is divided into two groups: 1) 

the control force (Fc(t)), the control force via the controller's compensator will be logged; and 2) the harmonic excitation 

force distributed uniformly on the plate as the disturbance. The constitutive equations for piezoelectric layer is utilized 

to implement the effect of applied voltage into the electromechanical model. Method of Multiple Scales is utilized for 

calculation of the frequency response of the system and the controller. The resulting modulation equations are, then, 

used to verify the effectiveness of the proposed controller. Having the solution for the controllers, results are graphically 

demonstrated and discussed. In order to understand the performance of the controllers in more detail, sensitivity 

analysis on the closed loop system responses is performed and the influence of each parameter on the control output 

have been investigated. 

 

MATHEMATICAL MODELING OF THE STRUCTURE 

In this section, the nonlinear dynamic model of the structure is investigated. The structure is composed of two layers of 

square plates, a substructure layer and a piezoelectric layer with the different thickness on top of the substructure, as 

shown in Fig. 1. It is assumed that the ℎ! and ℎ! are thicknesses of the piezoelectric layer and substructure, 

respectively. Also, as shown in Fig. 1, 𝑎 is the side length of the plate. The origin of the coordinate system is placed on 

the corner of the middle plane of the substructure layer. The boundary conditions of the plate are considered as simply 

support and 𝑢. 𝑣 and 𝑤 are  the displacement of the plate  in the 𝑥. 𝑦 and 𝑧 directions respectively. 

 

Figure 1. The symmetric unimorph piezoelectric plate. 

Using Hamilton’s principle, equations of motion of the plate based on classical theory and von Karman strain and then 

applying Galerkin method for simply suppotted B. C. in all edge of plate, nonlinear temporal equations can be 

expressed as: 

𝑊 𝑡 + 𝜔!
!
𝑊 𝑡 + 𝛼𝑊

!(𝑡) + 𝜂!𝑊(𝑡) = 𝐹 𝑐𝑜𝑠 𝛺𝑡        (1) 

The control force, Fc(t), will be added to the equation. Also, 𝜔!
!  consists of two parts of the natural frequency created in 

the sheet with the piezoelectric layer and a coefficient of the voltage created from the piezoelectric layer to the elastic 
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layer. The equation is created for the natural frequency of 𝜔!
!
= 𝜔

!
+ 𝑠!𝑉! where 𝑠! is the constant coefficient of the 

voltage applied to the plate. The method of Multiple Time Scales is used to find a uniform nonlinear structure. The 

nonlinear system of Equation (1) under NMPPF controllers are defined as follows  

(2) 
   
!!r t( )+ "η

r
!r t( )+ω

r

2
r t( )+ "δ r

3
t( ) = "k

r
U t( )   

  
!s t( )+ω

s
s t( ) = "k

s
U t( )   

 where 𝑟 𝑡  𝑎𝑛𝑑 𝑠(𝑡) are compensatory first and second order state variables, respectively. 𝑘! and 𝑘! are the inputs of 

the control. The control law pertains to the modified positive position feedback controls system in the main system of 

Equation (1) as ( ) ( ) ( )c r s
F t r t s tτ τ= + ;	 that are 𝜏! and 𝜏! respectively, are first order compensator and second in a 

closed loop system. Using Multiple time scale method, the coupled equations obtained for the frequency are the 

response of the main system and the controller domain. 

(3) 
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Results and discussions 

This part has discussed the vibration range in the resonant frequency region and the performance of the controllers in 

controlling the vibration amplitude in the resonance region. The frequency response of main system is given in Fig. 2.  

Fig. 3 indicates the frequency response of the closed loop system with the PPF controller. Implementation of PPF 

controller reduces vibration range in the resonant frequency region ( )0fσ = .  This controller amplifies the production of 

two-peak amplitudes with relatively large amplitude around the frequency. Fig. 4 shows the frequency response of 

NMPPF controlled systems. In this Fig., the right peak has higher amplitude. Also, Fig. 5, shows the comparison of the 

effects of these nonlinear controllers on the frequency response of smart plate. 

                            
    Fig 2. Frequency response of the uncontrolled system             Fig 3. Frequency response of the PPF controlled 

 

                      

Fig 4. Frequency response of the NMPPF controlled system                      Fig 1. Comparison of the PPF, NIRC, and NMPPF controller performances 

Conclusion 

In this article, active nonlinear vibrations control of a simply supported smart plate using the NMPPF controller 

introduced. The system response also studied under NIRC and PPF control approaches. It is shown that the PPF 

controller had a weaker control effect than the other two controllers. Also, the NMPPF controller reduced the vibration 

amplitude on a large bandwidth in the frequency domain better than the other two methods. 
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Strongly Nonlinear Forced Damped Model for the Dynamics of the Valve Spring 
 
 Majdi Gzal and Oleg V. Gendelman 

Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Haifa, Israel 
  
Summary. The preloaded valve spring of an internal combustion engine is mathematically modeled as a one-dimensional finite non-
homogenous forced-damped chain using the Hertzian contact law, and its strongly nonlinear dynamics is analytically studied. An 
approximated analytical single-frequency solution in the form of time-periodic and spatially localized state is derived. The theoretical 
results are confirmed by numerical simulations as well as experimental test results. This indicates that the strongly nonlinear chain allows 
a single-frequency approximate solution. 

Introduction 

The interplay between nonlinearity and discreteness supports time-periodic and spatially localized solutions, which are 
commonly referred to as discrete breathers (DBs) [1]. Exact solutions for symmetric discrete breathers were derived for 
the Hamiltonian model [2] and for the case of a homogenous external forcing with restitution coefficient less than unity 
[3]. Recently, we developed a discrete nonhomogeneous model for the nonlinear dynamics of the valve spring [4]. This 
model revealed two qualitatively different states of the periodic responses; we referred to them as propagating states and 
edge states. The propagating states are characterized by weak localization, and the edge states—by strong localization at 
the forced edge. To meet more realistic conditions of the valve train, in this study, we extend our previous model in two 
ways. First, using the Hertzian contact law to describe all the valve-valve seat interactions in each period of excitation. 
Second, we include the preload effect. This implies that in our model, both the precompression and the non-smooth 
behavior caused by the separation exist.  

Model description and analytical treatment 

Following our previous paper [4], the valve spring is mathematically described as a one-dimensional finite non-
homogenous chain, as illustrated in Figure 1. The model includes a heavy mass, denoted by M , which represents the 
valve mass together with the mass of the upper element of the spring, and N light masses, each with mass m , i.e. the 

mass of one spring element. The masses are interconnected in series by linear springs and dampers, denoted by k  and 

 , respectively, resulting to total spring stiffness of /k N  and total internal damping of the spring material of / N .  

In realistic settings of the valve train, the valve spring is preloaded by a static load of 0 /kd N , resulting to total 

preload displacement of 0d  (as shown in Figure 1, middle). Then, the preloaded valve spring is closed by a rigid wall 

in such a way that the heavy mass interacts with the wall, as illustrated in Figure 1, right. We assume that this 
interaction is given by Hertzian contact law. This constraint on the displacement of the heavy mass represents the 
interaction between the valve and valve seat. Regarding the boundary conditions, the Nth light mass is fixed while the 

heavy mass is subjected to an external displacement  h t , which represents the cam lobe profile, through a flexible 

connection called tappet, modeled by the spring ck  and damper c . 

 
Figure 1: A mathematical model for the valve spring dynamics: free spring (left), preloaded spring in the static state 

(middle) and the forced spring with the contact constraint (right) 

Let nu  denotes the dynamic displacement (relative to the preloaded state) of the nth mass. Thus, the equations of 

motion for the forced valve spring (Figure 1, right) are given as follows: 

 

     

       
   

3/2 0
0 0 1 0 1 0 0 0

0

1 1 1 1

0 :

cos sin

1 1: 2 2 0

: 0
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Here in (1), the parameter   represents the equilibrium displacement induced by the preload force 0 /kd N , resulting 

to  2/3

0 /kd N  ,   is a material parameter (depending on the elastic properties and the geometric 

characteristics of the heavy mass and the wall). The    subscript is used to emphasize that the bracketed term is non-

zero only if the term inside the bracket is positive and zero otherwise. The parameter    describes the frequency of the 
applied excitation, which was assumed to be given by the first harmonic approximation      0 cos sinh t a a t b t     . 

We assume that the response of each oscillator has a dominant harmonic component with the frequency equal to the 
frequency of the applied excitation, then, the following single-frequency solution is introduced: 

    0 1 cos sinn n n

n
u U C t S t

N
       
 

  (2)    

Introducing the suggested solution (2) into (1) and expanding the non-smooth term into Fourier series to obtain static 
and dynamic components as follows: 

        3/2

0 0 0 0
1 1

cos sin cos sinr r
r r

U C t S t r t r t  
 


 

                (3)    

For the first harmonics, one obtains: 
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  (4)   

Here we denote 2 2 / 2   ,  0 /U A   ,  0 0arctan /S C   , 2 2
0 0A C S   ,    

represents the complete elliptic integral of the first kind, and   is the complete elliptical integral of the second 

kind. 
Substituting equations (2), (3) and (4) into (1) and applying the harmonic balance method, one obtains a set of 

 2 3N   nonlinear algebraic equations in the unknowns 0U , nC  and nS  , 0,1,...,n N . 

Conclusions 

In this work, we introduce a strongly nonlinear mathematical model to describe the dynamics of the preloaded valve 
spring taking into account the valve-valve seat interaction, which has been described by the essentially nonlinear 
(nonlinearizable) Hertzian contact law. The dynamics of the chain is analytically studied under the assumption that the 
response of each oscillator has a dominant harmonic component with a frequency equal to the excitation frequency. 
Depending on the location of the applied frequency in the dispersion curve of the linear chain, the model under 
consideration reveals two different periodic responses, namely, propagating and edge breathers. The propagating 
breathers have main frequency in the propagation zone, and are characterized by weak localization, in which the energy 
can spread among all the masses. The edge breathers (we referred to them as edge states) possess frequency in the 
attenuation zone, these states are characterized by strong localization at the forced end of the chain, i.e. maximal 
concentration of energy in the excited mass against small-amplitude oscillations in the rest of the chain. This implies 
that in the edge states regime, the coupling between the zeroth and first masses can be removed, and the strongly 
nonlinear forced oscillator can be considered as a single DOF that excites the linear chain. Comparison of the analytical 
solution with numerical simulations and experimental test results yields close agreement. 
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Tuned Mass Systems with a Hybrid Hysteresis Model 

 
 Khogesh K Rathore and Saurabh Biswas 

*Indian Institute of Technology Jammu, Jammu 181221, India 

 
  
Summary. Tuned-mass-dampers are used in mechanical systems to reduce the dynamic response of the primary structures. The 
damping plays a significant role in a tuned-mass-damper system. In many engineering systems, damping is hysteretic in nature. Here, 
we study tuned mass systems with a hybrid version of hysteresis model with the Bouc-Wen model and a recently developed scalar 
hysteresis model. The sine sweep responses show two resonance peaks. The sine sweep responses indicate the amplitude vs. 
frequency of the systems. We compare the numerical results obtained for two different hysteresis models. 

Introduction 

Tuned mass dampers (TMD) are often used in practical systems to reduce the high amplitude vibrations. There have 
been extensive researches on TMDs and their applications to engineering problems. TMD devices are extensively used 
for vibration control, including long span cable bridges, tall buildings, tall water tanks, etc. Much researches have been 
done over the last several decades on the passive and active control of structures using TMD, see e.g., [1,2]. 

The damper of the TMD device plays a very important role. Both linear and nonlinear dampers are used in the TMD 
systems, see e.g., [3,4]. TMD systems with linear viscous damping are often analytically tractable. On the contrary, 
TMD systems with nonlinear damping models are mathematically challenging. 

In many engineering systems, energy dissipation occurs in the form of rate-independent hysteresis. In general, rate-
independent hysteresis introduces signum nonlinearities in systems. Several researchers used hysteretic dampers in the 
TMD systems, e.g., [5]. In [6], a hysteretic tuned mass damper is used for structural vibration reduction. In [7], the 
Bouc-Wen hysteresis model [8,9] is used as the damper in the TMD.  

With the above motivation, we will study TMD systems with the Bouc-Wen model and a rate independent scalar 
hysteresis model developed in [10]. The hysteresis model of [10] is motivated by a study of an elastic plate with several 
frictional microcracks.  

The above two models are briefly discussed below. 

The Bouc-Wen hysteresis model is given by 

                                         ( ) ( ) sgn ( ) ( ) ( )
n

f t z t A z t f t f t     
& & &                                                                            (1) 

where A >0, > 0, [ , ]    and n > 0 are the model parameters. Here, ( )z t is the given input and ( )f t is the 

corresponding hysteretic output of the system.  

The rate-independent scalar hysteresis model of [10] is given by 
 

                                       0 sgn ( ( ) ( )) ( ) ( )
( )

( ) a z t z t t z t
z t

t
      


 & &&                                                                      (2) 

where ( )z t  is the input displacement to the system and   is an internal variable. Here, a ,  , 0  are model 

parameters and   is a small regularizing parameter. The hysteretic force is given by 
 
                                         ( ) ( ) ( )f t t z t                                                                                                                          (3) 

 
We use the Bouc-Wen model and the scalar hysteresis model of [10] in parallel in TMD systems. We compare the 
numerical results obtained for both cases. 
 

TMD with the Bouc-Wen hysteresis and the hysteresis model of [10] in parallel 
Figure 1(left) shows a TMD system with the Bouc-Wen hysteresis model and the hysteresis model of [10] in parallel. 
Here, 1m is the mass of the primary system, 1k is the stiffness of the spring on which 1m is mounted,  2m is the mass of 

the secondary structure which is attached to the primary mass with a spring of stiffness 2k  and two hysteretic dampers 

in parallel indicated by
1

h and 
2

h . Here, the damper 
1

h is governed by the hysteresis model of [10], and the damper 
2

h is 

governed by the Bouc-Wen model. A harmonic force 0 sin( )F t  is applied to the primary mass. 
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Fig. 1 Left: A tuned mass system with the Bouc-Wen hysteresis and the hysteresis model of [10] in parallel. Right: Response of the 
TMD with the Bouc-Wen and the model of [10] in parallel. Parameters used: 1m = 1, 2m = 1/10, 1k = 1, 2k = 1/10, A = 1,n =1,  = 

0.5,   = 0.1,  = 4, a = 2, 0 = 1.8, = 10-6, 0F = 1.2,  = 0.01, 
1

 = 0.7 and 
2

 = 0.9. 

 

Equations of motion of the system are as follows: 
 
                             

1 1 1 2 1 2 2 0( ) sin( )m x k k x k x f F t    &&                       (7) 

                             
2 2 2 1 2 2 0m x k x k x f   &&                                     (8) 

                             0 2 1 2 1 2 1
2 1

sgn[( ( ) ( ))( ( ) ( ))] ( ) ( ) ( )
( ) ( )

( ) a x t x t x t x t t x t x t
x t x t

t
        

 
 & & & &&                                     (9) 

                               2 2 2 1 2 2 1 2( ) ( ) sgn ( )( ( ) ( )) ( )
n

h x t x t A h t x t x t h t        
& & & & &               (10) 

Here, 
1 1 2 1

( ) ( )( )t x th x      

and 

 1 2f h h   

where 1 and 2 are scalar multipliers that control the level of damping. Note that, the input displacement to the 

dampers is 2 1( ( ) ( ))x t x t . 

 
We use a slowly time varying frequency  = 10-5t for the frequency sweep calculations. Figure 1(right) shows a 
frequency sweep response of the primary mass for the TMD with the Bouc-Wen hysteresis and the hysteresis model of 
[10] in parallel. Resonance peaks are seen in the frequency sweep response. In Figure 1(right), the frequency sweep 
responses indicate the amplitude vs. frequency of the primary mass. We can see the primary and secondary resonances 
of the TMDs. By tuning the parameters of the TMDs, we can get the desired resonant amplitudes for our systems. 
 

Conclusions 

In this paper, we have numerically studied tuned mass systems with the Bouc-Wen hysteresis model and the hysteresis 
model of [10] in parallel as the dampers. The net damping force is numerically controlled by two parameters. The goal 
of the paper was to numerically study the sine-sweep frequency responses of the TMDs. The sine-sweep response gives 
a clear idea of how the amplitude of the system varies with the frequency. The study helps to develop the idea to tune 
the model parameters in order to achieve desired resonant responses.  
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Summary. Friction interfaces can be almost found in all engineering structures which has major influence on their dynamical response.
Previous experiments found that mesoscale geometrical characteristics of friction interfaces have a significant impact on the nonlinear
modal properties of assembled systems but their effects on nonlinear dynamics has not numerically explored due to the complex
coupling between tribology and dynamics. This work proposes an efficient multi-scale approach to investigate the influence of meso-
scale interface geometry of friction interfaces. It is applied to a realistic “Dogbone” test rig designed to assess the effects of aero-engine
blade root geometries in a fan blade system. The friction interface with different meso-scale profiles are effectively investigated.

Introduction

Friction interfaces have been widely used in assembled structures to connect components and transfer the mechanical
loads. They are regarded as the main source of nonlinearities and uncertainties in an assembled structure. The relative
motion occurring on friction interfaces often leads to a significant change of its dynamics such as reducing overall stiff-
ness, shifting resonance frequencies and decreasing vibration amplitude through strong energy dissipation. A number of
experiments have shown that the nonlinear dynamical behavior of the system is very sensitive to the geometry of friction
interfaces [1, 2], which can greatly change the static and dynamic properties such as with crowning interface geometries.
However, the effects of meso scale interface geometry on nonlinear dynamics has not been much investigated. How-
ever, there is a lack of efficient numerical approaches to design and analyse the influence of such meso-scale interface
geometries on the nonlinear dynamical properties.

Methodology

This work proposes a multi-scale modelling framework to study the effects of meso-scale interface geometries on the non-
linear dynamics of complex dynamical systems with friction interfaces. The approach mainly consists in the integration
of micro/meso-scale friction interfaces into macro-scale FE model. As shown in Eq.1, nonlinear static analysis (with a
flat-on-flat contact interface) is firstly performed to evaluate overall contact loads on the friction interfaces under different
pre-loadings. Then, based on overall contact loads from the nonlinear static analysis, a highly efficient semi-analytical
solver based on the boundary element method shown in Eq.2 and 3 is performed to obtain the pressure and gap distribution
from the contact interface with different geometrical characteristics [3]. The static pressure and gap distribution are then
used as the input for a frequency domain nonlinear vibration solver to evaluate nonlinear vibration response of the whole
assembled structures where the governing equation is shown in Eq.4. The detailed methodology for nonlinear dynamic
analysis can refer to [4].

Ku(t) + Fnl(u(t)) = Fs(t) (1)

uz(x, y) =
1− ν2
πE

+∞∫

−∞

+∞∫

−∞

p(ξ, η)√
(ξ − x)2 + (η − y)2

dξdη (2)

uz(i, j) = Kzz ⊗ p =
Nx∑

k=1

Ny∑

l=1

p(k, l)Kzz(i− k, j − l) (3)

M ü(t) +C u̇(t) +Ku(t) + Fnl(u(t)) = Fe(γ, φ,Ω, t) (4)

Test case and results

The test case for this study is based on a fan blade root test rig setup as shown in Fig.1 (a). The “Dogbone” rig consists of
two main components: a set of identical solid root-block disks and a set of “bones” for different root designs [5]. Fig.1(b)
shows the FE model representing the test rig which is performed in Hypermesh where matching mesh has been used on
four friction interfaces. The 3D node to node contact element as shown in Figure 1(c) has been used to simulate the contact
force. Different meso-scale interface geometries are considered including the different interface shapes including central
bump, Y wise bump, edge wise radium. The geometry of the central bump is constructed using defined ellipse curves in
both directions with maximum height in the central point similar to [2]. Figure 2 (a) shows the pressure distribution of
the central bump contact interface with different maximum heights. With the increase of bumpiness of central bumper,
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Figure 1: (a) Dogbone Test rig setup; (b) FE model of the Dogbone rig (c) Contact friction element

Figure 2: (a)Normal contact pressure and (b)Nonlinear modal properties of the Central Bump for diffident levels of bumpiness

the pressure distribution becomes more centralized in middle of the contact interface with higher stress amplitude. Figure
2 (b) shows the nonlinear modal properties of these central bump contact interfaces at different force levels. With the
increasing bumpiness, it shows the stating resonance frequency is reduced from 700 to 600 rad/s mainly because of the
increasingly reduced contact area making jointed friction interfaces become less and less stiff. With the increase of force
level, for all the cases, the resonance frequency increases initially and then gradually decreases with further increase of
energy levels.

Conclusions

This work presents a multi-scale-based approach to efficiently evaluate the effects of meso-scale interface geometries on
the nonlinear dynamical response of structures with frictional interfaces. The proposed approach was applied to design
and analysis of a blade root Dogbone test rig (similar to fan blade dovetail joints) to evaluate the effects of blade root
geometries on the overall dynamic response of the system. Different meso-scale interface profiles including different
shapes, level of bumpiness and edge radium were investigated. The studies show the proposed multi-scale approach can
efficiently evaluate the influence of meso-scale interface profiles on the contact pressures at a much lower cost. The
effects of meso-scale interface profiles on the damping and resonant frequency behavior are significant which should not
be ignored in the design and analysis of jointed structures. The developed tool can also be used to design and optimize
the friction interface for improved nonlinear dynamics.
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Summary. The stability of steady-state solutions is typically assessed by means of local criteria. As an example, the eigenvalues’ real
parts indicate linear stability of an equilibrium position against small perturbations. However, realistic dynamical systems may exhibit
multiple co-existing solutions. If the perturbations are not small, local stability measures have only a limited value for evaluating the
effective probability of arriving at one of the multiple solutions. Therefore, global methods are required to evaluate the attractiveness
of a state for finite perturbations. This work illustrates the concept of basin stability for a frictional oscillator that exhibits bi-stability.
The results indicate how the global basin stability measure can complement conventional stability considerations.

Introduction

Dynamical systems are well-known to exhibit multistability, i.e. multiple stable states co-exist at a given system con-
figuration. In this scenario, only the initial conditions and instantaneous perturbations dictate on which state the system
will end up. For example, Gräbner et al. [1] report experimental observations of bi-stability in brake system vibrations.
Recently, Jahn et al. [2] have discussed a friction-excited system that exhibits multistability via periodic orbits that com-
pete with chaotic dynamics. Classical linearization-based approaches, such as eigenvalues or Lyapunov exponents, asses
a state’s stability by investigating the local behavior of small perturbations. The absolute values of those metrics quantify
the rate of convergence (for stable states), or divergence (for unstable states), and classify the stability in a binary fashion.
For example, the eigenvalue’s real part indicates the growth of small perturbations in the vicinity of a fixed point, and
hence the equilibrium is stable for a negative real part. However, local linear stability concepts cannot indicate the most
desirable state amongst the multiple co-existing ones. This scenario is particularly unsatisfactory if some of the stable
states are undesired for reasons of increased vibrations, noise, wear, or fatigue. The concept of basin stability [3] relates
to the volume of the basin of attraction B. The basin stability SB of a particular state indicates the volumetric fraction
of initial states that converge to the attracting set with respect to the overall state space volume. Therefore, it is a global
nonlinear measure for the attractiveness of states, i.e. the basin stability can adequately assess the stability of a state under
non-small perturbations. In practical system dynamics, the knowledge of multiple solutions and their stability, as typically
displayed in bifurcation diagrams, is only one piece of information. The likelihood of the system arriving at one of those
solutions may be of even greater importance during the operation of a mechanical structure or machine. This works strives
to illustrate the concept of basin stability on the example of a bi-stable frictional oscillator.

Methods

We study the dynamics and stability of a single-degree-of-freedom systemmẍ+cẋ+kx = F , see Figure 1 (a), following

F = −Nµ (vrel) sign (vrel) , vrel ̸= 0, vrel = ẋ− vd
|F | < µstN, vrel = 0,

µ(vrel) = µd + (µst − µd) exp

(
−|vrel|

v0

)
,

(1)

that experiences friction-induced vibrations (FIV). The friction formulation features a velocity-dependent weakening-
strengthening behavior that gives rise to an instability of the steady sliding solution, see Figure 1 (b). A self-excited
stick-slip limit cycle exists for the parameter range 0 ≤ ṽd ≤ 1.84 and, most importantly, co-exists with the steady
sliding solution in the bi-stability regime 1.11 ≤ ṽd ≤ 1.84 resulting from the subcritical Hopf bifurcation. Hence, in this
parameter range, there exist two stable states in parallel, as depicted in Figure 1 (c). Depending on the initial condition or
instantaneous perturbations, the system will either end up in the low-energy steady sliding state, or on the high-intensity
stick-slip cycle.

Results

Conventionally, the stability of the equilibrium solution, i.e. the steady sliding state, is assessed by the eigenvalue’s real
partℜ (λ). However, in realistic systems, it is often unknown what type of perturbations the system may experience during
operation. In our model, the unstable periodic orbit (UPO) represents the separatrix between the basins of attraction ⌊ for
the two stable states. A perturbation of x̃ < −0.65 at ṽd = 1.5 would result in a jump from the steady sliding state to
the limit cycle. The eigenvalue in Figure 2 (a) grows for a decline in belt velocity, indicating that the steady sliding state
becomes less stable against perturbations up to ṽd = 1.11. However, the linear stability analysis is unable to show how
fast the basin B of the steady sliding state shrinks for declining belt velocities ṽd. Hence, the eigenvalue analysis does not
detect the critical transition at ṽd = 1.84 where the systems transits into the bi-stability regime. On the contrary, the basin
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Figure 1: (a) single-degree-of-freedom frictional oscillator, (b) bifurcation diagram for the non-dimensional belt velocity ṽd, and (c)
phase plane for ṽd = 1.5. Stable (unstable) solutions are indicated by solid (dashed)lines. The stable steady sliding state (blue
spiral trajectory) co-exists with the unstable periodic orbit (black dashed line) and the stable stick-slip limit cycle (red trajectory). The
non-dimensional system (̃·) is evaluated for µd = 0.5, µst = 1, ξ = 0.05, N = 1 and ṽ0 = 0.5 following the work [4]

stability SB in Figure 2 (b) indicates the global degree of stability, which changes quickly at the transition point. Here,
SB is a much more reliable proxy for detecting the critical transition of the steady sliding state. While the linear analysis
states a negative eigenvalue at ṽd = 1.5, SB indicates that the likelihood of converging to the steady sliding state is in fact
only SB = 0.255. Hence, the system is three times more likely to exhibit stick-slip vibrations if the initial conditions or
perturbations were randomly drawn from the given state space regime.

0.5 1 1.5 2 2.5
−5 ·10−2

0

5 ·10−2

0.1

linear instability

linear stability

ṽd
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Figure 2: (a) eigenvalue’s real part as a function of the belt velocity. The linearly unstable regime for ℜ (λ) > 0, shaded in gray, is
reached at ṽd = 1.11. (b) basin stability SB of the steady sliding equilibrium and the stick-slip limit cycle. Initial conditions were
drawn from x̃0 ∈ {−2, 3} and ˙̃x0 ∈ {−2, 2} using a uniform grid of 20× 20 points.

Conclusions

The basin stability is studied as a measure for the state’s relevance in a multistability scenario. While the (nonlinear)
stability of this small oscillator is rather straight-forward, the basin stability seems to be a particularly useful stability
measure for more complex, i.e. higher-dimensional, systems that feature a complicated multi-stability behavior [5].
Regarding the actual motion during operation, the basin stability is likely to contribute to higher prediction quality of
numerical models of mechanical structures. As a second model, a frictional oscillator with multiple degrees of freedom
and a more complicated dynamical behavior [2] will be studied in the full conference proceeding.
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Summary. The nonlinear vibrations of a homogeneous, isotropic, and shallow spherical cap under a harmonic pressure field are 
investigated. The problem is tackled using a semi-analytical method based on Novozhilov’s nonlinear thin shell theory. The partial 
differential equations (PDEs) are reduced to a set of ordinary differential equations (ODEs) through the Rayleigh-Ritz approach and 
Lagrange equations. The final equations of motion are numerically solved using both continuation and direct integration techniques. 
Results depicted the activation of non-symmetric vibrational states, with the presence of multiple bifurcations and chaotically-modulated 
oscillations. 

Introducti on 

The characterization of thin-walled structures under dynamic loads has always received considerable research attention 
due to the large number of applications in Engineering from macro to nanoscales (e.g. propellant tanks, micro-electro-
mechanical systems, nanotubes). 
This study proposes a method to analyze the dynamics of a homogeneous, isotropic, and thin-walled shallow spherical 
cap under a uniform, time-varying pressure distribution, see Figure 1. 
Despite most of the previous studies on this topic being limited to the axisymmetric vibrations, which neglected the 
possible onset of non-symmetric vibrations, some authors suggest retaining asymmetric modes into the analysis to 
improve the matching among experimental and numerical results [1]. 
To this end, the formulation here presented uses Novozhilov’s thin shell theory [2], a follower pressure to model the 
external load distribution [3], and it retains the asymmetric modes into the reduced-order model. Complete details 
regarding the present study are reported in Refs [4,5]. 
 
(a) 

 

(b) 

 
Figure 1: Spherical cap reference system: (a) side and (b) top view. 

 

Results and Discussion 

Following the analyses presented in Refs [4,5], a 38 dofs reduced-order model is considered. The structure is loaded by 
a uniform static pressure superimposed to a harmonic one. The frequency of the harmonic pressure varies about the first 
axisymmetric mode resonant frequency 𝜔ଵ,. Using a continuation method to analyze the stability of periodic solutions, 
and directly integrating the equations of motion, a dynamic scenario characterized by multiple bifurcations and chaos is 
shown. 
In Figure 2, the frequency-response diagram of the asymmetric modal coordinate 𝑓𝑤,ଵ,ଶሺ𝑑ሻ  is given. The continuation 
method (black-solid line) shows the presence of period-doubling bifurcations (PD) leading to the onset of asymmetric 
oscillations. The stability loss of the periodic responses (black-dotted line) agrees with the irregular response trend 
prompted by the direct integration of the equations of motion (red-dashed/blue-solid line). 
Since an irregular frequency-response diagram suggests chaotic oscillations, Figure 3 shows the time response of 𝑓𝑤,ଵ,ଶሺ𝑑ሻ  
for a normalized forcing frequency Ω = ͳ.Ͳ9 ∙ 𝜔ଵ, . Two different phenomena could be observed: a slow dynamic, 
which module the oscillation amplitude, and a fast dynamic governed by rapid burst. This pattern has some periodicity, 
and the evolution of the Poincaré map clearly shows weekly chaotic vibrations: by reporting the section for an 
increasing number of periods 𝑛𝑃, the sparse cloud contour becomes regular, and a dense kernel becomes noticeable. 
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Figure 2: Asymmetric mode activation after period doubling bifurcation: continuation method VS direct time integration. 
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Figure 3: Chaotically-modulated oscillations with fast and weekly periodic burst: time history and progressive Poicaré map evolution 

of the asymmetric modal coordinate and its time derivative. 
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Parameter identification of periodic systems by impulse dynamic subspace description
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Summary. In this contribution, a parameter identification technique is introduced for delayed time-periodic differential equation,
which is based on the so-called impulse dynamic subspace (IDS). The description is tested on the delayed Mathieu equation. Then, a
possible application is discussed for chatter detection technique in machine tool vibrations, and its limitation due to arising nonlinear
behaviour is summarized.

Introduction

The main goal of this work is to characterize the dynamical behaviour of delayed periodic systems without substantial
knowledge of the underlying model. Our assumptions are that the system is a linearized version of a nonlinear phe-
nomenon and the time-period is known. The main idea is to capture the dominant spectral properties of the system from
its impulse response. In order to achieve this, the so-called impulse dynamic subspace (IDS) is used [1]. This is an effi-
cient description for possible automatic parameter fitting for mechanical structures. Originally, the method is developed
for linear time-invariant systems. It is based on the evaluation of frequency response functions by using Green func-
tion representation of the homogeneous dynamics. However, in this work, we slightly modify the original ideas of the
method to make it suitable for periodic systems. In this way, here, we apply this method for periodic non-autonomous
systems and we characterize its the Floquet multipliers (characteristic multiplier), consequently, we characterize the sta-
bility properties of the underlying system without knowing its parameters. The method and its applicability is tested on a
time-periodic delay-differential equation (DDE), the so-called delayed Mathieu equation by using time signal generated
by numerical integration. Finally, one possible application field is discussed from the topic of machine tool vibrations,
namely quantitative chatter detection and stability prediction method in milling operations [2].

Impulse dynamic subspace description for periodic non-autonomous case

The IDS can describe the relevant dynamics of a structure by means of the singular value decomposition applied on the
Green function representation of the vibration signal x(t) of a periodic non-autonomous system with time-period T . For
detailed derivation on the IDS description, the reader is referred to [1]. The so-called block-Hankel matrix representation
of the Green function for time-periodic system is

G =




x0 x1 . . . xN
x1 x2 . . . xN+1

...
...

. . .
...

xN xN+1 . . . x2N


 , (1)

where xi is the discretized state vector along a period T . It form as

xi = [x(iT +∆t) x(iT + 2∆t) . . . x(iT + (n− 1)∆t)] = rown−1
j=0 x(iT + j∆t), (2)

where the number of sampled points in one period is n and the discretized time step is ∆t = T/n. Note that in
case of time-periodic systems, the blocks are shifted by 1 time-period in the Hankel matrix. By using singular value
decomposition (SVD) of the Hankel matrix G = VΣWH, the dominance of subsystems can be identified. Here V
and W are the stroboscopic- and sampled-singular-responses (SR) (alike singular-IRF in [1]), respectively. By taking an
appropriate singular set, as a result, using the truncated versions of the stroboscopic-SR Ṽ, a discrete map can be defined
as

B = ṼHSṼ, (3)

where S is a shift matrix with non-zero elements Si,i = 1. The eigenvalues of B are the Floquet multipliers of the periodic
non-autonomous (time-variant) system.

Figure 1: Effect of truncation on fitted multipliers (a), dominant multipliers in the complex plane (b); bistabe machining process (c).
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Test case

In this section, the time periodic DDEs are detailed, on which IDS description was applied. The general form of the
delayed Mathieu equation reads

ẍ(t) + a1ẋ(t) + (δ + ε cos t)x(t) = b0x(t− τ) . (4)

where the time-period is T = 2π. Here, the special case will be investigated, when the time delay is just equal to the
principal period (τ = T ). For periodic systems, the stability condition is provided by the Floquet theory.
In order to validate the description by IDS, we test it on the delayed Mathieu equation, where the fitted dominant mul-
tipliers are compared directly to the theoretically ones calculated by the semidiscretization method (SDM) [3]. The IDS
description is applied on numerically generated time signal, with parameters δ = 3.1605, ǫ = 1, a1 = 0, b0 = −0.6246
and initial function [x0 ẋ0]

⊤ = 0 if t ∈ [−τ, 0) and [x0 ẋ0]
⊤ = [0 1]⊤ if t = 0. The number of the simulated periods

are 2N = 120 and the discretized number of points during 1 period is n = 100. Consequently, the size of the Hankel
matrix is N ×nN . The size of the problem is decreased by truncating the Hankel matrix squarely, thus, considering only
N × N elements. Then, the IDS description is applied with several truncated versions of the stroboscopic-SR Ṽ, also
(see Eq. 3).
The magnitude of the fitted multiplier are plotted in Fig. 1a with black dots together with the theoretical values (red
vertical lines) as a function of the truncation of Ṽ. For a few considered stroboscopic-SR, the IDS description can capture
2 complex conjugate pair of multipliers with large magnitude with good accuracy. On the other hand, taking into account
more stroboscopic-SR, the fitted multipliers start to scatter. To select the appropriate number of stroboscopic-SR, the
singular values of the Hankel matrix can be analysed, see more details in [1]. In this case, we select 6, since all the other
singular values were merely close to zero. This case is illustrated in the complex plane in Fig. 1b. As shown in the figure,
the IDS description is not only able to capture the magnitude of the multipliers, but its imaginary and real components
as well. However, as cons of the proposed method, it could not identify multipliers with small magnitude, since solution
segments relating to these terms are decaying very fast. Nevertheless, from the practical point of view, those are usually
not relevant in engineering applications.

Stability prediction in machining

One possible application of the described method can be used in the operational stability prediction in milling processes
[2]. During machining, an undesired phenomenon, the so-called chatter vibration can lead to unacceptable surface quality
and possible damage in the machine components. Therefore, avoidance, or at least, the prediction of these vibrations is
necessary.
During the operational stability prediction technique, the stability of the machining process can be characterized through
the Floquet multipliers. They can be determined during machining by applying the above discussed method. By changing
technological parameters, the variation of the modulus of the Floquet multipliers can be monitored, by which, precise
stability limit can be extrapolated while the manufacturing parameters remain in the safe region.
On the other hand, according to practical observations, usually there is a bistable region near the linear stability boundary
due to unmodelled nonlinear effects. This is also unsafe zone since two attractive motions coexist: stable cutting and large
amplitude chatter, which are separated by an unstable periodic motion [4, 5]. In this range, the vibration can jump from
the linear attraction zone to the chatter motion due to a large-enough perturbation, as shown in Fig. 1c. Consequently,
one cannot excite a stable stationary solution in this range and thus one cannot determine the multipliers of the linearized
system.
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Summary. This paper deals with the modelling and simulation of parametrically excited vibrations in a test rig with a drive belt. The 

structure is modelled as a dynamical system with time-periodic coefficients and four degrees of freedom (two rotational and two 

translational degrees of freedom). Stiffness parameters are obtained from experimental load-displacement diagrams, and mass parameters 

are calculated by hand or by CAD software. The system’s proportional damping parameters are derived from measured damping ratios of 

the structure. Finally, the parametrically excited vibrations are studied numerically by using fourth-order Runge-Kutta method. The 

simulation results are considered to be very valuable for the upcoming measurements and the analysis of experimental data. 

Introduction 

Machines with drive belts often exhibit parametrically excited vibrations [1]. The test rig in figure 1 uses a V-ripped L-

profile drive belt. For the most part, the drive belt consists of vulcanized rubber material. In addition to that, the drive 

belt contains a load-carrying tension member (high strength fibres) for transmitting the longitudinal forces. This type of 

drive belt can be found in many different machines, e.g. sheet-fed offset printing machines. Recent work of one of the 

authors showed, that the drive belt can be modelled as a spring with time-periodic stiffness. This parametric stiffness 

excitation leads to numerical results that match very well with measured vibrations [2]. 

 

 
 

 
 

Parameters: Θଵ = ͳ.Ͷ ∙ ͳͲ−ଷ kg m², Θଶ = ʹ.ʹͳ ∙ ͳͲ−ଶ kg m², 𝑚ଷ = 𝑚ସ = ͳ.ʹͷ kg, ݀ଵ = Ͳ.ͳͲͶ m, ݀ଶ = Ͳ.ͳͶ m, ݁ = Ͳ.ͲͲͷ m, 𝑘ଷ = 𝑘ସ = 𝑘ହ = Ͷͻʹ N/m, ߙ = ʹ.Ͷͷ s−ଵ, ߚ = ͺ.͵ ∙ ͳͲ−ସ s 
 

Drive belt’s geometry and stiffness: ܮ = Ͳ.ͻͻͳ m, ℎ = Ͳ.ͲͲ m, 𝑏 = Ͳ.Ͳ͵ͺ m, 𝑘ଵ = 𝑘ଶ = .ͺ ⋅ ͳͲହ N/m ∙ [ͳ + Ͳ.ͳͷ ∙ cos (𝑞ሶଵ𝜋݀ଵ𝑡ܮ )] 

Figure 1 (left): Photograph of the test rig. Figure 2 (right): Sketch and parameters of the dynamical system. 

 

Dynamical system 

Figure 2 displays a sketch of the dynamical system. The rotational degrees of freedom of the two belt pulleys are 

denoted by q1 and q2. The two masses m3 and m4 have translational degrees of freedom (q3 and q4). An asynchronous 

motor fed from a frequency converter delivers the drive torque M1 to the small belt pulley. According to [3], the drive 

belt’s stiffness can be different for tight span (k1) and slack span (k2). k3, k4 and k5 represent helical compression springs. 
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Applying Newton’s Second Law yields the following equations of motion: 

 Θଵ𝑞ሷଵ + ሺ𝑘ଵ + 𝑘ଶሻ 𝑑భమସ 𝑞ଵ − ሺ𝑘ଵ + 𝑘ଶሻ 𝑑భ𝑑మସ 𝑞ଶ − ଵܯ = Ͳ (1) 

 Θଶ𝑞ሷଶ + ሺ𝑘ଵ + 𝑘ଶሻ 𝑑మమସ 𝑞ଶ − ሺ𝑘ଵ + 𝑘ଶሻ 𝑑భ𝑑మସ 𝑞ଵ + 𝑘ଷ݁ଶ sinሺ𝑞ଶሻ cosሺ𝑞ଶሻ − 𝑘ଷ݁ cosሺ𝑞ଶሻ𝑞ଷ = Ͳ (2) 

 𝑚ଷ𝑞ሷଷ + ሺ𝑘ଷ + 𝑘ସሻ𝑞ଷ − 𝑘ସ𝑞ସ − 𝑘ଷ݁ sinሺ𝑞ଶሻ = Ͳ (3) 

 𝑚ସ𝑞ሷସ + ሺ𝑘ସ + 𝑘ହሻ𝑞ସ − 𝑘ସ𝑞ଷ = Ͳ (4) 

Kammer experimentally acquired the linear load-displacement diagram for the helical compression springs used in the 

test rig [4]. This leads to k3 = k4 = k5 = 492 N/m. Furthermore, the authors’ colleagues Pyttel and Wiesner carried out a 
tensile test of the drive belt [5]. The measured load-displacement relationship is nonlinear, but linearizing the pro-

gressive (hardening) curve at the operating point (belt tension: 278 N) leads to: k = 6.78105 N/m. In accordance with 

recent work of one of the authors, the drive belt is modelled as a spring with time-periodic stiffness as follows [2]. 

 𝑘ଵ = 𝑘ଶ = 𝑘 ∙ [ͳ + 𝜀 ∙ cosሺ𝜔𝑃𝐸𝑡ሻ] (5) 

Neglecting slip, the parametric excitation frequency 𝜔𝑃𝐸 relates to the drive belt’s length L as follows: 

 𝜔𝑃𝐸 = 𝑞ሶభ𝜋𝑑భ𝐿  (6) 

For 𝑞ሶଵ = 𝑞ሶଶ = Ͳ (non-rotating belt pulleys) Kammer measured free vibrations of m3 and m4 and identified eigen-

frequencies (20 rad/s, 34 rad/s) and corresponding damping ratios (0.07, 0.05) [4]. Consistent with [2], proportional 

damping (𝐷 = ܯߙ +  .is assumed, and  and  are chosen to yield the system’s above-mentioned damping ratios (ܭߚ

Simulation of parametrically excited vibrations 

Since the drive torque M1 hasn’t been measured yet, the dynamical system is simulated for the scenario 𝑞ሶଵ = const. 
Figure 3 shows simulation results for 𝜀 = Ͳ.ͳͷ, which is in line with [2]. Maximum amplitudes in figure 3 occur at 

order  Ͳ.͵͵ =  𝜋݀ଵ/ܮ (first drive belt order). Simulation results will be compared with impending measurements. 
 

 
 

Figure 3: Simulated parametrically excited vibrations 
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Summary. Parametric resonance in floating bodies is well known for large amplitude pitch and roll oscillations with a slower period
than the wave induced motions. The pitch and roll dynamics exhibit characteristics of the damped Mathieu equation, due the restoring
torque being dependent on the heave postion, which is oscillating in response to the input waves. Therefore, when ocean waves are
approximated as a sinusoid, the monochromatic input wave can cause parametric resonance to occur in the system when the input
frequency is around twice the pitch/roll natural frequency. However, in reality ocean waves contain a spectrum of frequencies. This
paper examines the motion of floating bodies subject to input waves represented by sinusoids and by standard ocean wave spectra. The
occurance of parametric resonance is compared for these two cases. A test case, considering a spar-type heaving cylinder from the
literature, is presented, showing the resulting parametrically induced pitch and roll motions for the different input waves.

Parametric resonance in floating bodies

Parametric resonance is caused by the time-varying changes in the parameters of a dynamical system, resulting in an
exponential increase in oscillation amplitude [1]. Parametric resonance is known to cause large amplitude pitch and roll
oscillations in floating bodies. This phenomena was first noted by Froude in 1861 [2], where large amplitude roll motions
were observed for a ship when the input wave frequency was half the roll frequency. Parametric pitch/roll is relevant in a
number of fields, such as shipping [3], spar-buoy platforms [4], marine based wireless sensor networking [5] and offshore
renewable energy [6].

Dynamics
The pitch and roll dynamics of a floating body (we consider a heaving, spar-type cylinder as depicted in Figure 2-(b)) can
be well approximated by the Damped Mathieu Equation [1]:

ẍ(t) + bẋ(t) + a(t)x(t) = 0. (1)

Mechanically, this equation describes the motion, x(t), of a mass-spring-damper system with a time-varying spring stiff-
ness term, a(t). For harmonic variation of the parameter, a(t), the system is known to become unstable at certain frequen-
cies and amplitude thresholds. For a floating body, the spring stiffness in the pitch and roll degrees of freedom, depends
on the heave position, which varies in time due to wave induced oscillations. Therefore, the wave induced heave motion
of a floating body can trigger parametric resonance in the pitch and roll modes of motion. This is depicted in Figure 1,
showing the heave and pitch motions of a floating cylinder subjected to a sinusoidal input wave with a frequency twice
the pitch natural frequency.

Figure 1: The heave and pitch response of a floating cylinder, subject to an input sinusoidal wave, showing the transfer of energy from
heave to pitch

Ocean waves
While the analysis of parametric resonance and Mathieu instability is well known for sinusoidal waves, real ocean waves
are stochastic [7]. For engineering purposes, ocean waves are often approximated by Fourier analysis, described by a wave
spectrum, with the sea surface well represented by a linear superposition of harmonic components. Figure 2-(a) shows
standard wave spectra, JONSWAP and Pierson-Moskowitz, whose shape and bandwidth depends on the wind speed and
fetch distance over which the wind blows.
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Figure 2: (a) Comparison of the JONSWAP spectrum for varying fetch, F , distance (dashed lines) against the Pierson-Moskowitz (PM)
spectrum for a 12m/s wind speed (from [5]) (b) Schematic of the generic spar-type structure in the test case (from [9]).

Test case

As an illustrative example, we consider a heaving, spar-type cylinder, as depicted in Figure 2-(b), whose dynamic insta-
bility was previosuly examined in [8, 9, 10]. The pitch/roll natural frequency of the cylinder is twice the pitch/roll natural
frequency which makes the cylinder particularly prone to parametric resonance. Numerical simulations of the cylinder
motion are presented, considering a range of monochromatic and polychromatic wave inputs and the occurance of para-
metric resonance in the different wave regimes compared. We compare the occurance of parametric resonance in floating
bodies, for experiments considering single frequency or multi-frequency input waves. For the multi-frequency spectra,
the effect of the bandwidth is also investigated, comparing narrowband with broadband spectra.
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Summary. An extension of the semidiscretization method to impulse dynamic subspace (IDS) is summarized. This domain is the
eigenspace of a measured impulse response function (IRF), which is commonly used in the industry. By considering the special
properties of the measurement the stability of a single degree of freedom (DoF) milling model is presented as a representative example.
Convergences are shown for Hopf and Period Doubling (PD) induced instabilities.

Introduction

In the verge of the new technological revolution more and more automatized solutions will appear in the daily life and
very much in the manufacturing sector. One of the most difficult processes to be automatized are the ones that rely on
human pattern recognition like understanding traffic situations. Dynamic characterization of machine tools are one of
these problems, due to the special parameter identification techniques and selection methodologies used nowadays in the
industry. In order to avoid that the impulse dynamic subspace (IDS, [1]) is used for carrying dynamic information.
In this work, a modeling technique is presented where the determination of model parameters is avoided and the process is
directly described in the IDS. The main aim is to show that it is possible to derive theoretically the stability properties of a
time-periodic milling process by only using the measurable IRF. The time-periodic nature of the milling process induces
a stationary solution, which is always apparent and it directly determines the surface quality. However, this stationary
solution can loose its stability by setting ’wrong’ parameters, and can lead to a high amplitude, limiting oscillation. This
limiting oscillation is mathematically stable, although the engineering jargon calls this as chatter instability [2], which
refers mathematically to the unstable nature of the stationary time-periodic solution.
The main reason of this oscillation is the regenerative effect, when the consecutive tooth of the milling cutter cuts the
surface left by the previous teeth. Since then many methods have been developed in time- and frequency- domain for de-
termining stability of the corresponding stationary solution. Frequency domain solutions, like zeroth order approximation
(ZOA, [2]) and multi-frequency (MF, [2]) solution, based on D-subdivision, and Hill’s infinite determinant method, can
include the measured frequency response functions (FRFs). However, this advantage comes with a huge disadvantage,
namely, these methods only provide the critical (non-hyperbolic) limits and not actually the stability boundaries. Also to
define the ’measure of stability’ (distance from the border) is not straightforward in this case. One needs extremely spe-
cialized theorems to perform optimization. Time-domain methods like semidiscretization, time-finite element, collocation
methods and spectral element methods, provide the Floquet-multipliers [3], whose magnitude are excellent to ’measure’
stability for optimization purposes. However, all these methods rely on time-consuming modal parameter fitting, which
computation time adds to the already slow extensive scanning of the parameter space constructing a given stability chart.
In order to help on this disadvantage a method is proposed here by performing process modeling based on the IDS [4],
which essentially a good candidate for avoiding manual fitting. Moreover by using time-domain based methods the
’measure’ of stability is also granted by the magnitude of the multipliers.

Stationary Solution

There are plenty of papers dealing with modeling of regenerative milling processes [2, 5, 1]. In general, the milling process
is not only time-periodic, but also nonlinear due to the degressive characteristic of the specific cutting force ftra(h) (N/m)
[6] given in (tra) (figure 1a) coordinate system. In milling, each ith (i = 1, ..., Z) tooth cuts different thickness of the
workpiece hi material during the rotation of the tool with angular velocity Ω. On the other hand, the chip thickness is also
state dependent due to the regeneration [2], that is, hi(t) := hi(t, xt(ξ)) (ξ ∈ [−τ, 0], xt(ξ) = x(t + ξ)). In general, the
resultant cutting force is time-periodic in its coefficients (Fx(t, •) = Fx(t+ T, •)) and has the form (more detail in [6])

Fx(t, xt(ξ)) := Fx(t, ftra(hi(t, , xt(ξ)))) = Fx,0(t) + ∆Fx(t, xt(ξ)) + gx(t, xt(ξ)), (1)

where the stationary part of the force is Fx,0(t) = Fx(t, xt(ξ)), while the linear variational part and the higher order
terms are ∆Fx(t, xt(ξ)) and gx(t, xt(ξ)), respectively. The structural behavior of the machine tool is supposed to be
linear, thus, it can be represented with an IRF as h(θ) = (F−1{H(ω)})(θ) subjected to the causality h(θ ≤ 0) = 0.
If that is true, the response behaviour for a zero initial value can be represented by the Duhamel’s integral as xt(θ) :=∫ θ
0
h(θ − ϑ)Fx(t + ϑ) dϑ. Since the stationary solution is time-periodic xt(θ) = xt+T (θ) = xt(θ + T ), Duhamel’s

representation actually works for the nonlinear state-dependent forcing case too, if the stationary solution is considered
frozen for the time period T in the interval θ ∈ [0, T ]. The stationary solution is then shifted with a sufficient enough
transient time Tt to ensure periodicity and the boundary problem is solvable in both time and frequency domain with

x0(θ) =

∫ θ

−∞
h(θ − ϑ)Fx(ϑ, xϑ(ξ)) dϑ =

∫ Tt+T

0

h(θ + Tt − ϑ)Fx(ϑ, x0((ξ + ϑ)modT )) dϑ. (2)
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Figure 1: a) sketch of the milling model, b) stability charts with Hopf (H) and flip (PD) curves. Convergence for the solutions is
checked in c) by varying the discretisation resolution NSDM at H and PD points depicted in b).

Linear Stability of Stationary Solution

Perturbation is introduced around the time periodic stationary solution as x = x + u. By neglecting the nonlinear terms
gx in (1), the linear variational system can be expressed in the following linear form

ut(θ) =

∫ ∞

0

G(θ, ϑ)∆F−
u (t−ϑ)dϑ+

∫ θ

0

h(θ−ϑ)∆F+
x (t+ϑ, ut+ϑ(ξ))dϑ, ⇒ ut(θ) = uIF,t(θ)+uF0,t(θ, ut(ξ)). (3)

The first term uIF of (3) represents the response for initial (variational) forcing ∆F−
u (IF, alternative to initial condition),

while the second term uF0 describes the solution for actual forcing ∆Fx(t, ut(ξ)) = aKcAx(t)(u(t)−u(t− τ)) (see (1))
combined with the transient solution for zero initial condition (F0). In the first term the so-called Green function can be
replaced with the IRF as G(θ, ϑ) := h(θ + ϑ) = V(θ)ΣWH(ϑ), whose two left-singular-IRF for a single DoF system
V(θ) = [V1(θ) V2(θ)] can be used to introduce the new IDS as a result of SVD explained in [4]

u(t+ θ) = V(θ)q(t), ⇒ q̇(t) = Aq. (4)

By defining the product 〈a(ξ),b(ξ)〉 :=
∫∞
0

aH(ξ)b(ξ)dξ the system matrix can be derived as A = 〈V(θ),V′(θ)〉 (using
V′(θ) = 〈G′(θ, ϑ),W(ϑ)〉Σ−1, G′(θ, ϑ) := h′(θ + ϑ), h′(θ) := (F−1{iωH(ω)})(θ), [4]). Describing the behavior in
the IDS (qi = q(ti), ti = i∆t, ∆θ = ∆t) and considering that only physical displacement space ui = u(ti) is needed
for the calculation of the process force, the size of the problem can be significantly decreased. Thus

qi+1 = eA∆tqi + 〈V(θ), uF0,i+1(θ, ui, σt(ui−l))〉 , l = 0, 1, 2, ..., r, r =
⌈
τ
∆θ − 1

2

⌉
+
⌊
p
2

⌋
, (5)

where uIF,i+1(θ) := uIF,ti+∆t(θ) = V(θ + ∆t)qi, uF0,i+1(θ, ut(0), ut(−τ)) := uF0,ti+∆t(θ, ut(ξ)) = aKc
∫∆t

0
h(θ −

ϑ)Ax(t + ϑ)(ut+ϑ(0) − ut+ϑ(−τ))dϑ and ut(0) := ui, ut(−τ) ≈ σt(ui−l) =
∑p
k=0 Pk(t)ui−r+k. Using the homo-

geneous solution operator (exponential term in (5)) as eA∆t = 〈V(θ),V(θ +∆t)〉 [4] the following semidiscretization
map can be derived

qi+1 = 〈V(θ),V(θ +∆t)〉qi +Di ui + ...+Di−r+1 ui−r+1 +Di−r ui−r,
ui+1 = V(∆t)qi,

}

Di−l = −aKc

〈
V(θ),

∫∆t

0
h(θ − ϑ)Ax(ti + ϑ)Pr−l(ti + ϑ)dϑ

〉
, Pr(t) = −1.

(6)

Conclusion

The map presented in (6) can be used to approximate the monodromy operator of the time-periodic milling system in order
to calculate stability properties (figure 1c) of the corresponding stationary solution x. This converging solution (figure 1c)
uses the IDS which actually originated from measured IRF by using a well posed SVD on the homogeneous core of the
dynamics (G(θ, ϑ) at (3)). This theoretical framework can be extended for the entire period by facilitating larger portion
of the corresponding IRF function by using nested convolutions.
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Summary. This work is devoted to how the frequency of an external force effects the resonances in a one-dimensional initial-boundary
value problem for a nonhomogeneous wave equation involving a Robin type of boundary condition with a time-dependent coefficient.
By setting the frequency of the external force equal to ω, and the time-dependent boundary coefficient in the boundary condition equal
to k(t), different kinds of resonances can be obtained by numerical simulations. Next, by using the method of d’Alembert and wave
reflections, we can calculate the solution u(x, t) by dividing the time domain into finite intervals of length 2. Finally, the resonance
results can be analyzed by the map of the solution from t = 2n to t = 2(n+ 1), which are in agreement with those obtained by using
a numerical method.

Statement of the problem

k(t)

x = 0 x = L

Figure 1: The transverse vibrating string with a time-varying spring-stiffness support at x=L.

In this paper we study resonance for a nonhomogeneous wave equation (see Figure 1), where one end is attached to
a spring for which the stiffness properties change in time (due to fatigue, temperature change, and so on). By using
Hamilton’s principle, the system can be written as:

ρutt(x, t)− Puxx(x, t) = εcos(ωt), 0 < x < L, t > 0, (1)

where ρ is the mass density, P is the axial tension which is assumed to be constant, L is the distance between the supports,
and u describes the lateral displacement of the string. εcos(ωt) is an external force acting on the whole string, where ε
and ω are constants. The boundary conditions are:

u(0, t) = 0, Pux(L, t) + k(t)u(L, t) = 0, t > 0, (2)

where k(t) is the time-varying stiffness of the spring at x = L. The boundary condition at x = 0 is a Dirichlet type of
boundary condition, and the boundary condition at x = L is a Robin type of boundary condition with a time-dependent
coefficient k(t). Based on the Buckingham Pi theorem,the governing equation (1), the boundary conditions (2), and the
initial conditions can be transformed to the following non-dimensional form:





utt(x, t)− uxx(x, t) = εcos(ωt), 0 < x < 1, t > 0,

u(0, t) = 0, ux(1, t) + k(t)u(1, t) = 0, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < 1.

(3)

Numerical example of Resonance

This section is devoted to presenting some numerical simulations on the dynamical resonance behavior of system (3) for
two cases. Let us first assume that ε = 1 and the following initial conditions are given:

f(x) = sin2(1.7155x), g(x) = 0, 0 < x < 1. (4)

Case 1: k(t) is constant
Choosing k(t) = 2 and setting ω = λ1 ( λi satisfies the transcendental equation − 1

kλi = tan(λi)) the solution of the
nonhomogeneous wave equation (3) can be obtained, and is given as in Figure 2-1 (where a resonance arises).

Case 2: k(t) is not constant (k(t) = 1
at+1 )

Let k(t) = 1
at+1 . We know the eigenvalues λ satisfy approximately−(at+1)λ = tan(λ) (see Figure 3). By giving fixed

values for "ω" and "a", different solution shapes can be obtained as time increases (see Figure 2-2 to 2-4). Resonances
might occur (or not) depending on the choices for "ω" and "a".
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Figure 2-1: The solution u(x, t) with k=2, ω=2.2889. Figure 2-2: ω = 1.329, resonance zone is around (2,16).

Figure 2-3: Resonance arises when ω = π
2 . Figure 2-4: No resonance when ω = π.

Resonance (unbounded solution) analysis

The analytical solution based on the method of d’Alembert
According to the method of d’Alembert (see [1]), the general solution to Eq.(3) is given by

u(x, t) =
1

2
[f(x− t) + f(x+ t)] +

1

2

∫ x+t

x−t
g(s)ds+ ε

∫ t

0

(t− τ)cos(ωτ)dτ.

It should be noted that the functions f and g are only defined on the interval [0,1]. To extend f and g on the whole domain
(−∞,+∞), the boundary conditions should be considered.
The nonhomogeneous wave equation we considered above in Eq.(3) has a propagation speed of 1, which implies that the
vibration information at the point x = xi and t = 0 will propagate into two different directions with speed 1, and the
information will be back to the position xi at t = 2 as shown Figure 4-1. Furthermore, Figure 4-2 shows the domain of
dependence. Then by treating the state at t = 2 as a new initial condition and using the same extension procedures, the
information needed to calculate the solution of the equation up to every time can be obtained (for details see [2]).

Figure 3: The resonance produced
by different values of ω.

Figure 4-1: Wave reflections. Figure 4-2: Domain of
dependence.

Solution and mapping
The resonance results can be analyzed by the map of the solution based on the proposed method (the method of d’Alembert),
from t = 2n to t = 2(n + 1), which turns out to be in complete agreement with those obtained by using a numerical
method.
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Summary. Human balancing on rolling balance board in the sagittal plane is analyzed by a two-degree-of-freedom mechanical model.
Human body is modeled by an inverted pendulum. The geometry of the balance board can be adjusted: the radius of the wheels
and the elevation between the top of the wheel and the board can be changed. The central nervous system is modeled by a delayed
proportional-derivative (PD) controller, where the constant feedback delay corresponds to the human reaction time. A critical delay
can be defined for each setting of the balance board geometry: if the reaction time is larger than the critical delay, then there are no
control gains that can stabilize the system. The critical time delays were determined by a numerical method for four balance board
geometry with different radii. Balancing trials by a human subject were analyzed and the reaction time was estimated by comparing
the theoretical and experimental results. In this particular balancing task, the reaction time was estimated to be 170 ms.

Introduction

Stabilization of the human body around an unstable equilibrium is controlled by the central nervous system (CNS). The
sensory organs obtain information about the spatial position and velocity of the body and the CNS determine the corrective
movement in order to maintain equilibrium. This process requires certain amount of time, therefore the balancing task can
be modeled as a delayed control system, where the feedback delay is identical to the reaction time. In this study, CNS is
assumed to obtain information about the angular position and angular velocity of the balance board and the human body,
therefore delayed PD controller with constant time delay τ is used in the model. Nowadays, more and more accidents are
caused by loss of balance during everyday activities, especially in the elderly societies. One of the main reasons of falls is
the increased reaction time. Understanding the control concept and the effect of increasing feedback delay, therefore may
help to predict and prevent falls.

Mechanical model

Human balancing on rolling balance board with adjustable geometry is analyzed in this work. The radius R of the wheels
and the elevation h between the top of the wheel and the board can be changed, which highly influence the difficulty of
balancing. Previous experiments showed that ankle strategy is dominant during balancing on rolling balance board in
the sagittal plane, and oscillations at the hip are negligible compared to that at the ankle. Therefore, human body was
modeled as an inverted pendulum which connects to the balance board through the ankle joint as can be seen in Fig. 1a.
The control torque

T (t) = Pφϕ(t− τ) +Dφϕ̇(t− τ) + Pϑϑ(t− τ) +Dϑϑ̇(t− τ) (1)

is applied at the ankle, where Pφ, Pϑ, Dφ, Dϑ are the proportional and derivative control gains with respect to the general-
ized coordinates, which are the angle φ of the human body and angle ϑ the balance board measured from the equilibrium.
Following [2], the passive stiffness s of the ankle is determined using the mass mh and height l of the balancing subject
as

s = 0.91mhg
l

2
. (2)

The position of the ankle are described by parameter e and f as shown in Fig. 1a. The center of gravity, mass mh and
mass moment of inertia Ih of the human body were determined based on the literature [1]. The same parameters for the
balance board (lb,mb, Ib) were calculated using the actual geometry.

Stability analysis

After deriving the governing equations of motion of the system, and linearization about the equilibrium, the mathe-
matical model is obtained as a system of delay differential equations of the retarded type. Stability is analyzed in
the four-dimensional space of the control gains Pφ, Pϑ, Dφ, Dϑ for a fixed delay τ . If the value of the delay is in-
creased, then the size of the stable domain of gains decreases and it completely disappears at a specific value, which
is called critical delay (τcrit). Stability analysis was performed over a non-uniform grid in the four-dimensional space
(Pφ, Pϑ, Dφ, Dϑ) such that ±10% inaccuracy was allowed the control gains. The critical delay was determined numeri-
cally using the Walton-Marshall method [3] above the four-dimensional grid for four different radius of the balance board
(R = 125, 100, 75, 50 mm). The board elevation R − h was the same in all cases, such that the board was adjusted to
the lowest position of the wheel. The calculated critical delays are shown in Fig. 2. It is assumed that if the reaction time
of the balancing subject is lower than the critical delay obtained based on the mechanical model, then the subject is able
to stand on the balance board.
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Figure 1: a) Mechanical model of human balancing on rolling balance board in the sagittal plane. b) Measurement setup.

Figure 2: Estimation of reaction time based on experimental and numerical results.

Experimental analysis

The numerical results of the mechanical model were compared with actual balancing trials. A balancing subject was
asked to stand on the balance board with radius 125, 100, 75, and 50 mm. The task was to stand at least 60 s long with
stretched legs and open eyes. The arms had to be hold at the back as shown in Fig. 1b. Standing on the balance board with
radius 125, 100, and 75 mm was successful, however, the subject was not able to stand on the balance board associated
with 50 mm radius as indicated by green and red colors in Fig. 2. This means that the reaction time is between the critical
delays obtained for 50 and 75 mm, which gives approximately 170 ms.

Conclusion

The reaction time can be estimated by comparing experimental and numerical results of a balancing task. The reaction
time of the subject is 170 ms, which is in the range of the values that can be found in the literature [4, 5]. In the future,
the calculations and experiments will be repeated involving larger number of participants.
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Summary. Time-delayed dynamical systems (TDSs) materialize in situations where distant, point-wise, nonlinear nodes exchange
information that propagates at a finite speed. They are akin in their complexity to spatially extended dissipative and diffusive systems.
However, they are considered devoid of dispersive effects, which are known to play a leading role in pattern formation and wave
dynamics. It explains why the existence of nonlinear conservative TDSs remains an open problem. In this work we show how
dispersion may appear naturally in a wide class of delayed systems that can lead to conservative dynamics. We exemplify our result
considering a dispersive micro-cavity containing a Kerr medium coupled to a distant external mirror. At low energies and in the long
delay limit, a multi-scale analysis shows the equivalence with the nonlinear Schrödinger equation.

Introduction

Delayed dynamical systems describe a large number of phenomena in nature and they exhibit a wealth of dynamical
regimes such as localized structures, fronts and chimera states [1, 2, 3, 4, 5]. The presence of delayed terms is connected
with the finite propagation speed of signals, hence delayed systems are widely used to model, e.g., networks, map lattices
or optical systems. A fertile perspective lies in their interpretation as spatially extended diffusive systems which holds in
the limit of long delays [6]. This correspondence enables a direct interpretation of purely temporal phenomena in terms of
diffusive, dissipative spatio-temporal dynamics. It was shown recently[7] that a more general class of singularly perturbed
TDSs allows to cancel this generic diffusive behavior which lead to a dispersive response and the purely imaginary
eigenvalue spectrum typical of reversible systems. However, the question whether conservative solitons can be obtained
in such TDSs remains open. In this contribution, we demonstrate the existence, that remained elusive so far, of nonlinear,
time-reversible, conservative TDSs leading to conservative solitons.

Results
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Figure 1: a) A schematic of a micro-cavity enclosed by two
distributed Bragg mirrors with reflectivities r1,2. It is coupled to
a long external cavity with round-trip time τ which is closed by
a mirror with reflectivity re. E is the sum of the forward and
backward propagating fields that interfere upon the Kerr medium
while Y is the field impinging upon the top mirror. b) The
eigenvalue spectrum of Eqs. (3,4) for different values of h and re.
For h < 2 and re < 1 (red dots) the spectrum resemble an inverted
parabola. When h → 2 (blue dots) it flattens as γmτ = ln re. For
re → 1, the spectrum converges to the imaginary axis.

We consider a micro-cavity containing a nonlinear Kerr
medium coupled to an external mirror as depicted in
Fig. 1 (a). Our theoretical approach follows the method
developed in [8] and the dynamical model for the slowly
varying electromagnetic field envelopes in the micro-
cavity E and the external cavity Y reads

Ė =
(
−1 + i |E|2

)
E + hY , (1)

Y = ree
iφ [E(t− τ)− Y (t− τ)] . (2)

We scale time to the photon lifetime in the micro-cavity
and the cavity enhancement is scaled out allowing E and
Y to be of the same order of magnitude leading to a
simpler input-output relation: The cavity output O =
E − Y is the combination of the intra-cavity photons
transmitted by the micro-cavity and those reflected.
Finally, the field intensities are scaled by the intra-cavity
enhanced Kerr saturation parameter. The coupling between the fields E and Y is given in Eq. (2). Due to the absence
of the time derivative, the latter is a Delay Algebraic Equation (DAE) that takes into account all the multiple reflections
in the external cavity. The field is re-injected after a round-trip τ with the attenuation factor re eiφ, where re is the
external-mirror reflectivity and the phase φ contains both the propagation phase as well as that of the external mirror.
The light coupling efficiency in the cavity is given by the factor h = (1 + |r2|)(1 − |r1|)/(1 − |r1r2|), where |r1,2| are
the upper and lower distributed Bragg mirror reflectivities (cf. Fig. 1 (a)). In particular, for a perfectly lossless bottom
mirror |r2| = 1 yields h = 2, which corresponds to the Gires-Tournois regime [9]. Second- and third-order dispersion are
naturally captured by Eqs. (1,2) as was shown in [7].
The system (1,2) possesses infinitely many degrees of freedom and its eigenvalue spectrum is a countably infinite set. In
the long delay limit τ → ∞ the spectrum becomes quasi-continuous [10] and the real part of the eigenvalues, obtained
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around the (E, Y ) = (0, 0) solution, λm = γm + iωm can be expressed as a function of its imaginary part as [7]

γm =
1

τ

(
ln re +

h− 2

1 + ω2
m

)
, (3)

ωmτ + 2arctanωm =
h− 2

1 + ω2
m

ωm + 2πm , (4)

with m ∈ Z, see the red dots in Fig. 1 (b). Note that for h = 2 the real part γm does not depend on ωm yielding a vertical,
yet lossy, spectrum which is shifted from zero by ln re/τ (blue dots). In what follows we consider the lossless cavity
limit that corresponds to (re, h) = (1, 2) and where λm converges towards the unitary spectrum presented in solid black
in Fig. 1 (b). In itself, a unitary spectrum is rather surprising in the context of TDSs since it implies the possibility to
integrate linear perturbations backward in time without any particular problem.
The link between Eqs. 4(1),(2) and the nonlinear Schrödinger (NLS) equation can be clarified by performing a multi-scale.
We introduce the two time representation by defining σ ∈ [0, τ ] and θ ∈ N so that time can be expressed a t [σ, θ] = σ+θτ .
Assuming a field with carrier frequency δ as E (t) = A (t) exp (iδt) one obtains the following amplitude equation

i (∂θ + υ∂σ)A+ φ̃A− β2
2
∂2σA− i

β3
6
∂3σA+ γ |A|2A = 0, (5)

that is, the NLS equation with third order dispersion. Changing the carrier frequency allows to modify the sign and even
cancel the second order dispersion coefficient β2 which corresponds to the transition from anomalous to normal dispersion
while third order dispersion β3 can also cancel for some particular value of the carrier frequency δ± = ±1/

√
3. In this

case Eq. (5) is equivalent to the classical NLS equation up to fourth order. From this equivalence, we observed that in the
anomalous dispersion regime the Eqs. (1),(2) allows for the exisistence of bright hyperbolic secant solitons while we also
observed dark solitons for normal dispersion. Our results were confirmed using the continuation package ddebiftool [11].
Finally, one can rewrite the Eqs. (1),(2) as a Neutral Differential Delayed Equation (NDDE)

E + Ė − i |E|2E =
(
Eτ − Ėτ + i |Eτ |2Eτ

)
eiφ. (6)

The Eq. (6) is a so-called bilateral NDDE which preserves its type under time inversion. This property, as well as the
presence of a purely imaginary nonlinearity that corresponds to the Kerr effect allows to demonstrate the reversibility in
time of the dynamics under the parity-conjugation symmetry.

Conclusions

We discussed how second and third order dispersion can be implemented in delayed dynamical systems using delay
algebraic equations and how this particular form of dynamical systems appears naturally as a boundary conditions on
a partially reflecting micro-cavity. Using a realistic photonic example, we have demonstrated that nonlinear reversible
TDSs exist and that they can host conservative solitons in the long delay limit, thereby bridging the gap with the results
known for dissipative TDSs. The essential structure consists of a bilateral NDDE with an imaginary cubic nonlinearity
which preserves the solution smoothness upon forward and backward propagation and may generate a unitary spectrum.
The normal form identifies with the NLS equation, thereby allowing for bright and dark solitons. We believe that bilateral
NDDEs open an avenue for the potential realization of conservative nonlinear dynamics in TDSs, such as, e.g., the Fermi-
Pasta-Ulam-Tsingou [12] recurrence or the observation of the Korteweg-de-Vries solitons.
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Summary. Two usually neglected effects are considered in the mechanical model of the Furuta pendulum: the additional viscous

damping caused by back electromotive force and the sampling delay caused by the digital control. These effects have relevant influence

on the choice of the control algorithm and on the stability properties of the upward position of Furuta pendulum.

Introduction

The Furuta pendulum [1] is a relatively simple two degree of freedom mechanical device (see the left panel of Figure 1),

which has became a commonly used equipment for demonstrating various control algorithms applied on a highly nonlinear

dynamical system. The arm is usually driven by an electric DC motor and the pendulum hangs freely, so this system is

underactuated. The contol signal is the input voltage of the motor, and its calculation by means of a digital controller

requires the consideration of both the sampling delay and the additional viscous damping caused by the back electromotive

force appearing in the real system. This work considers these two often neglected effects; the consequences on stability

and possible control algorithms are discussed.

Governing equations

The nonlinear equations of motion of the Furuta pendulum can be obtained by means of the Lagrangian equations of the

second kind in the form of:

(Ja + Jp sin2θ) Üϕ − (m2rl cos θ) Üθ + 2Jp (sin θ cos θ) Ûθ Ûϕ + (m2rl sin θ) Ûθ2
= M , (1)

Jp
Üθ − (m2rl cos θ) Üϕ − Jp (sin θ cos θ) Ûϕ2 − m2gl sin θ = 0 , (2)

where θ is the pendulum angle, ϕ is the arm angle, Jp = m2l2
+ J2 and Ja = m1(r/2)2 +m2r2

+ J1 are corresponding mass

moments of inertia; the other mechanical parameters are shown in Figure 1. The control torque M applied on the arm is

usually provided by a DC motor, for which the output torque can be determined based on the governing equations of the

electric motor as a function of the input voltage Uin and the motor angular speed which is proportional to the arm angular

velocity Ûϕ of the Furuta pendulum:

M = NUin − K Ûϕ. (3)

The constants N and K are the motor parameters related to the input voltage and back electromotive force, respectively.

Note that substituting this into the equation of motion, the back electromotive force is analogous to a viscous damping

force applied at the arm. Considering that the input voltage is determined by a digital microcontroller, sampling delay

appears in the feedback loop in the following form

Uin(t) = −P1θ(tj−1) − D1
Ûθ(tj−1) + D2 Ûϕ(tj−1), t ∈ [tj, tj+1), (4)

where P1,D1,D2 are the control gains; tj = jτ, j ∈ Z is the j th sampling instant, and τ is the sampling time, which is

assumed to be constant. Alternatively, if the angular velocity Ûϕ cannot be measured, then the application of an integral

term can be considered in the feedback loop:

Uin(t) = −P1θ(tj−1) − D1
Ûθ(tj−1) − I1τ

j−1∑

i=0

θ(ti), t ∈ [tj, tj+1), (5)

In what follows, we discuss the case of Equation (4).

Results

The sampling delay causes stability problems in the control systems as shown in [3, 4]. Based on the linearized system

model, the critical sampling time can be calculated; this is the maximal sampling time of the digital control for which

the pendulum can be stabilized with appropriate control gains. The minimal value of D2,min > 0 control gain can also

determined, which means the simplest P1D1 controller (with D2 = 0) cannot stabilize the system. In other words, the

upward pendulum position θ = 0 is unstable for any P1,D1 control gains without feedback of the arm angular velocity

(or the integral of the pendulum angle, see (5)). This instability is caused by the back electromotive force of the DC

motor, which is similar to the viscous damping along the cyclic coordinate, while the inverted pendulum is underactuated
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Figure 1: The Furuta pendulum (left) and the four dimensional stability chart of the Furuta pendulum which

takes into account the back electromotive force of the DC motor and the sampling delay of the feedback

loop (right).

due to the control force applied along the cyclic coordinate only. In case of standard positioning tasks of fully actuated

systems, the back electromotive force does not cause such kind of instability, moreover, it is often considered useful

because of its extra damping effect. In case of the underactuated control task like the Furuta pendulum, the presence of

back electromotive force makes the system inherently unstable in case of classical PD control, this is the reason why an

improved control law is needed to achieve stable system behavior: either the feedback of the arm (motor) angular velocity

Ûϕ with a D2 > D2,min control gain is needed, or an integral gain has to be used with respect to the pendulum angle θ.

The results of the corresponding calculations are represented by stability charts in the right panel of Figure 1, in the space

of four parameters: the sampling time τ and the three control gains P1,D1,D2. It can be seen, that the size of the stable

parameter region becomes smaller with increasing sampling time τ and it completely vanishes at the identified critical

values. The effect of the parameter D2 is similar: the stable regions disappear above maximal and below minimal gain

values. The stability charts are similar if the integral gain I1 is applied as shown in Equation (5).

Conclusions

It was found that the simple P1D1 control law applied on the pendulum angle θ and angular speed Ûθ is insufficient in the

presence of cyclic viscous damping or back electromotive force; an improved control algorithm is necessary, by extending

the P1D1 controller with an extra derivative term D2 applied on the angular speed Ûϕ or with an extra integral term I1 applied

on the pendulum angular position θ. The critical sampling times of the digital control loops can also be determined, which

are identified also by laboratory experiments on the Furuta pendulum.
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Summary. We study theoretically the formation and dynamics of phase-locked temporal localized states (TLSs) and frequency combs
that can be generated from a high finesse Fabry-Perot microcavity containing a Kerr medium that is coupled to a external cavity in the
presence of optical injection. These TLSs possess a strongly asymmetrical oscillating tail which results from third order dispersion
induced by the cavity. Using a first principle model based on delay algebraic equations and applying a combination of direct numerical
simulations and path continuation methods, we disclose sets of multistable dark and bright TLSs coexisting on their respective bistable
homogeneous backgrounds. In particular, we show that the detuning of the injection with respect to the microcavity resonance controls
the region of existence of TLSs and its change can lead to a period-doubling route to chaos. Further we discuss a transformation of
the original delay model to a normal form given by a partial differential equation using a rigorous multiple time scale analysis and a
functional mapping approach.

Introduction

Time-delayed systems (TDS) describe a large number of phenomena in nature and they proposed for hosting localized
structures, fronts and chimera states [1, 2, 3, 4, 5, 6, 7]. They also have been analyzed from the perspective of their
equivalence with spatial extended systems [8]. In general, the expansion of a delayed term leads to drift and diffusion.
However, it was shown [9] that considering a more general class of singularly perturbed TDS allows to cancel the generic
diffusive behavior which leads to a dispersive response. Here, an example of TDS giving rise to second and third order
dispersion (TOD), which combined with Kerr effect and optical injection is able to generate temporal localized states
(TLSs), as well as molecules induced by third order dispersion [10].

Kerr Medium

E

Y

O τ Y0

Figure 1: A schematic of the coupled cavity configuration. E denotes the field amplitude in the Kerr region. The output and injection
fields in the external cavity are represented by O and Y , respectively. The round-trip time is τ

Model

Our schematic setup is depicted in Fig. 1 in which we show i) the intra-cavity field E and ii) the external cavity field Y .
We follow the approach of [11] that consists in solving the field propagation in the linear sections of the micro-cavity.
That way one obtains a dynamical model linking the two fields E and Y . Their coupling is achieved considering the
transmission and reflection coefficients of the top Distributed Bragg Mirror (DBR). After normalization, one obtains the
rate equations for the fields E and Y

dE

dt
=
[
−1 + i

(
γ |E|2 − δ

)]
E + hY , Y = η [E (t− τ)− Y (t− τ)] +

√
1− |η|2Y0 . (1)

The field cavity enhancement can be conveniently scaled out using Stockes relations allowing E and Y to be of the same
order of magnitude. This leads to the simple input-output relation O = E − Y . The cavity-enhanced complex nonlinear
coefficient is γ = γr + iγi, where γr stands for the self-phase modulation and γi models the two-photon absorption.
The effects of the external mirror and signal extraction (e.g., a beam-splitter or transmission through the mirror itself) are
combined in the attenuation factor η = re exp (iφ). The coupling between the intra-cavity and the external cavity fieldsE
and Y is given in Eqs. (1) by a delay-algebraic equation (DAE). The latter takes into account all the multiple reflections in
a possibly high finesse external cavity for which |η| / 1 [9]. Note that in the limit of a very low external mirror reflectivity
η ≪ 1, one would obtain Y = ηE (t− τ) +O

(
η2
)

leading to the so-called Lang-Kobayashi model [12].
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Results

In [SCH19], the DAE system (1) was successfully used to prove the existence of multistable dark and bright TLS coexist-
ing on their respective bistable homogeneous continuum wave (CW) backgrounds for fixed parameter values, see Fig. 2
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Figure 2: (a) Bistable cavity response under CW injection (dotted line). The lower and upper snaking branches (full lines) correspond
to the trains of bright (b) and dark (d) TLSs observed as a function of time t. The inset shows the dynamics over many roundtrips. The
respective frequency combs are depicted in panels(c) and (e), where the injection frequency was cut for clarity.

Here, we conduct extensive direct numerical simulations of DAEs (1) in the combination with path continuation methods.
In particular, the influence of the detuning δ is analyzed in details. We show that it controls the region of existence of
TLSs and its change can lead to a period-doubling route to chaos.

Figure 3: A part of the branch of the TLS (blue) of DAEs (1) as a function of the injection Y0, obtained with the contunuation methods
together with the results of the direct numerical simulations (red). A period-doubling route to chaos is visible. Green line indicate a
branch of period-doubled solutions.

Further, the influence of attenuation factor η will be studied. In particular, the regimes of low and high η will be assessed.
We demonstrate that in the so-called good cavity limit (η → 1), the dynamics is dominated by TOD leading to a wide
region of multistability between bright and dark TLS.
Finally we discuss a transformation of the original DAE model (1) to a normal form at the onset of optical bistability
given by a partial differential equation using a rigorous multiple time scale analysis and a functional mapping approach.

References

[1] Giovanni Giacomelli, Francesco Marino, Michael A. Zaks, and Serhiy Yanchuk. Nucleation in bistable dynamical systems with long delay. Phys.
Rev. E, 88:062920, Dec 2013.

[2] Laurent Larger, Bogdan Penkovsky, and Yuri Maistrenko. Virtual chimera states for delayed-feedback systems. Phys. Rev. Lett., 111:054103, Aug
2013.

[3] Francesco Marino, Giovanni Giacomelli, and Stephane Barland. Front pinning and localized states analogues in long-delayed bistable systems.
Phys. Rev. Lett., 112:103901, Mar 2014.

[4] M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici. Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays.
Nature Photonics, 9:450–455, 2015.

[5] B. Garbin, J. Javaloyes, G. Tissoni, and S. Barland. Topological solitons as addressable phase bits in a driven laser. Nat. Com., 6, 2015.

[6] Serhiy Yanchuk and Giovanni Giacomelli. Dynamical systems with multiple long-delayed feedbacks: Multiscale analysis and spatiotemporal
equivalence. Phys. Rev. E, 92:042903, Oct 2015.

[7] Serhiy Yanchuk and Giovanni Giacomelli. Pattern formation in systems with multiple delayed feedbacks. Phys. Rev. Lett., 112:174103, May 2014.

[8] G. Giacomelli and A. Politi. Relationship between delayed and spatially extended dynamical systems. Phys. Rev. Lett., 76:2686–2689, Apr 1996.

[9] C. Schelte, P. Camelin, M. Marconi, A. Garnache, G. Huyet, G. Beaudoin, I. Sagnes, M. Giudici, J. Javaloyes, and S. V. Gurevich. Third order
dispersion in time-delayed systems. Phys. Rev. Lett., 123:043902, Jul 2019.

[10] C. Schelte, A. Pimenov, A. G. Vladimirov, J. Javaloyes, and S. V. Gurevich. Tunable Kerr frequency combs and temporal localized states in
time-delayed Gires-Tournois interferometers. Opt. Lett., 44(20):4925–4928, Oct 2019.

[11] J. Mulet and S. Balle. Mode locking dynamics in electrically-driven vertical-external-cavity surface-emitting lasers. Quantum Electronics, IEEE
Journal of, 41(9):1148–1156, 2005.

[12] R. Lang and K. Kobayashi. External optical feedback effects on semiconductor injection laser properties. Quantum Electronics, IEEE Journal of,
16(3):347 – 355, mar 1980.

ENOC 2022, July 17-22, 2022, Lyon, France

950



ENOC 2020+2, July 17-22, 2022, Lyon, France

Entrainment of Self-Organized Synchronized States in Delay-Coupled Oscillators
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Summary. This work presents how synchronized states that self-organize in networks of mutually coupled oscillators can be entrained
by an external reference oscillator. A second-order Kuramoto model with time-delayed coupling is used to predict the phase-differences
in the network and the stability of the entrained states. The model predictions are then verified by experimental measurements.

Introduction

Synchronization is important for well-defined and concerted operations and provides the means to establish and keep
time-synchronization in networks of spatially distributed clocks [1]. In technical applications synchronization is usually
achieved by entraining an oscillator with a periodic signal of a high quality reference oscillator [2]. In natural systems
self-organized synchronization is prevalent and based on a mutual coupling between, e.g., cellular oscillators. In this
manuscript we study the complex dynamics in finite system of inert, mutually delay-coupled oscillators when subject to
an external forcing. The theoretical results for the minimal case, where a reference entrains a network of two mutually
delay-coupled oscillators, are verified by experiments with electronic phase-locked loop (PLL) oscillators [4]. We discuss
the experimental results taking into account the basins of attraction of the synchronized states that are studied.

Model for Studying the Entrainment of Networks of Mutually Delay-Coupled Oscillators

The dynamics in networks of inert, delay-coupled oscillators can be studied using a second-order Kuramoto model [3, 4]

mk θ̈k(t) + θ̇k(t) = ωk +
Kk

nk

N∑

l=1

ckl h (θl(t− τkl)− θk(t)) , (1)

where k = 1, . . . , N indexes the N oscillators, ωk ∈ R denotes the intrinsic frequencies, h(·) a periodic coupling
function, Kk ≥ 0 ∈ R the coupling strength, mk ≥ 0 ∈ R an inertial parameter, nk ≥ 0 ∈ N0 the number of inputs of
oscillator k, θi(t) ∈ S1 for i = {k, l} the phases of the oscillators’ output signals with θ̇(t) and θ̈(t) denoting their first
and second time derivatives, ckl = {0, 1} the components of the network’s adjacency matrix, and τkl ∈ R denotes the
cross-coupling time delays. The ansatz to study synchronized states and their linear stability is

θk(t) = Ωt+ βk + ǫqk(t), (2)

where Ω denotes the global frequency of a synchronized state, ǫqk(t) a small perturbation (ǫ≪ 1), and βk a phase-offset.

Network of mutually delay-coupled oscillators: frequency and phase differences of synchronized states
Using the ansatz (2) in Eqs. (1) and expanding h(·) to first order with respect to ǫ, we obtain the properties of synchronized
states fromO(ǫ0): Ω = ωk+K h (−Ωτkl + βkl) , where βkl = βk−βl, e.g., equal to 0 or π for identical oscillators. The
linear stability of these states depends on the the oscillator’s parameters and the properties of the synchronized states [4].

Individual oscillator entrained by a reference: phase difference with respect to reference oscillator
Here, the frequency of the synchronized state is determined by the reference Ω = ωR. The phase difference is β =
−h−1 [(ωR − ω)/K]−ωRτ . The stability depends only on the detuning of the frequencies and the coupling strength [5].

Networks of mutually delay-coupled oscillators entrained by a reference: phase differences
Here, we consider a network of heterogeneous oscillators, making the ansatz (2) for Ω = ωR. The entrainment is accounted
for by assigning the reference oscillator with k = 1 and setting c1l = 0 ∀ l. The N − 1 phase differences can then be
obtained from

ωR = ωk +
Kk

nk

N∑

l=1

ckl h [−ωRτkl − βkl] . (3)

Example of a Minimal Entrained Network and Experimental Verification

We study a network of two mutually coupled oscillators one of which is forced by an external reference, see Fig. 1. From
Eq. (3) the phase differences between the mutually coupled oscillators β23 = ωRτ32+h

−1 [(ωR − ω3)/K3] and that to the
reference βR2 = ωRτR2 + h−1 [2 (ωR − ω2) /K2 − h [−ωRτ23 − β23]] are obtained. The theoretical predictions and the
experimental results β23 and βR2 of the synchronized states are shown as a function of the reference frequency in Fig. 2c.
The range of reference frequencies for which synchronized states are linearly stable is shown in green. In experiments
however, we only find stable synchronized states in a smaller range than predicted. This can be explained by the basins
of attraction obtained from time-series simulations shown in Figs. 2a, 2b. They show the basins for different initial phase
histories for t ∈ [−τ, 0]. In Fig. 2a all oscillators are initially free-running, as can be realized in the experimental setup.

ENOC 2022, July 17-22, 2022, Lyon, France

951



ENOC 2020+2, July 17-22, 2022, Lyon, France

PLL 3
REF 2 31

REF1

outa) b)

PLL 2

Figure 1: a) Sketch of entrainment of a network of two mutually delay-coupled oscillators. b) The experimental setup con-
sists of a microcontroller that organizes the delay-coupling between the two mutually coupled PLLs and the entrainment
by a virtual reference derived from its internal clock. For details about the experimental setup see reference [4].

In Fig. 2b, the simulation starts in the entrained synchronous state, similarly to linear stability analysis. Their x- and y-axis
represent the phase differences φ1 = θ3(0)− θ2(0) and φ2 = θ3(0)− θ1(0) between the oscillators at t = 0, respectively.
The color encodes the asymptotic value of the order parameter for any combination (φ1, φ2), obtained from a time series
simulation of the oscillator network using the Eqs. (1). The order parameter has been modified such that it is equal to one
if the phase configuration of the entrained synchronous state under investigation is achieved [3]. From Fig. 2a it can be
understood that the basin of attraction has zero volume close to the boundaries of linear stability. Hence, we cannot find
entrained synchronous states with the experimental setup (Fig. 1b) that always starts from an initially free-running state.

(a) history: all oscillators uncoupled

(b) history: entrained synchronized state

(c) The phase differences β23 (red) and βR2 (blue) versus the fre-
quency of the reference. The green area denotes linearly stable states.
Experimental results shown by black stars and yellow diamonds.

Figure 2: Parameters: ω2 = 1004·2πHz, ω3 = 996·2πHz,K2 = 423·2πHz,K3 = 408·2πHz, and τR1 = τ12 = 0.265 s.

Conclusions

This work studies the entrainment of self-organized synchronous states. Our phase oscillator model takes into account
time-delays in the coupling and inert oscillator response. It predicts the properties of entrained synchronous states as
verified here by experimental results obtained from electronic oscillators. Self-organized synchronous states can be viewed
as an effective oscillator that has emerged over a network of mutually coupled oscillators. This effective oscillator is
characterized by its quiescent frequency Ω and the frequency range within which it can lock to a reference. Both properties
affect the linear stability of entrained synchronous states and depend on the delays within the mutually coupled oscillators.
The delay between reference and network only affects the phase differences of the entrained synchronized states.
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Human positioning of a planar pendulum
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Summary. The human positioning of a planar pendulum is investigated. The system is modelled with two particles which are connected
with a rope. Collocated proportional-derivative control acts with human reaction delay at the suspension point of the pendulum that can
only move horizontally. The Hopf bifurcation analysis of the system is executed which leads to closed form algebraic expressions for
the Poincaré-Lyapunov coefficient and for the amplitude of oscillation.

Introduction

The motion of a planar pendulum is examined at its downward position considering human position control. The human
intervention is modelled with a proportional-derivative (PD) controller subjected to constant reaction delay, which leads
to a system of delay differential equations (DDEs). The inclusion of the time delay implies that the stability region in the
PD-plane will be bounded and sub- and supercritical Hopf bifurcations appear along the stability boundary.
The stability and amplitude of the periodic solutions close to the bifurcation point are calculated analytically leading to
closed form algebraic equations. We follow the algebraic procedures of Hopf bifurcation calculation as given in [1, 2, 3].

Mechanical model

The coupled hand-held pendulum system is modelled with two point masses connected with a rope as shown in Fig. 1.
The human hand is modelled with the mass m1 on which the control force F acts; this is the pivot point of the planar
mathematical pendulum with mass m2 and length l. The controlled mass can slide in a linear guide so that it can only
move along the x axis. The horizontal displacement of the hand and the bottom point of the pendulum are denoted with
x1 and x2, respectively. The equations of motion of the system are derived with respect to the two generalized coordinates

Figure 1: In-plane model of the coupled hand-pendulum system

x1 and x2 [4]. These expressions are highly nonlinear, therefore, their Taylor series are calculated up to third order in x1
and x2 leading to the governing equations:

ẍ1 =
F

m1
+
m2

m1

g

l
(x2 − x1)−

m2

m1

((
m2

m1
+

1

2

)
g

l3
(x2 − x1)3 −

1

l2
(x2 − x1)(ẋ2 − ẋ1)2 +

F

m1l2
(x2 − x1)2

)
, (1)

ẍ2 = −g
l
(x2 − x1) +

(
m2

m1
+

1

2

)
g

l3
(x2 − x1)3 −

1

l2
(x2 − x1)(ẋ2 − ẋ1)2 +

F

m1l2
(x2 − x1)2, (2)

where the time derivative is denoted by dot. The control force can be chosen in different ways. In this study, a collocated
PD control is investigated which means that the human operator acts based on the displacement and velocity of his/her
hand:

F (t) = −Px1(t− τ)−Dẋ1(t− τ). (3)

Here, τ stands for the delay caused by the reaction time, while P and D are the proportional and derivative gain parame-
ters, respectively.

Stability analysis

Introduce the dimensionless distances x̃i = xi/l (for i = 1, 2) and the dimensionless time t̃ = t/τ , furthermore, the
transformed characteristic exponents and angular frequencies λ̃ = τλ and ω̃ = τω, respectively. By abuse of notation we
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drop the tildes and introduce the dimensionless parameters: µ = m2/m1, α = τ
√
g/l, p = Pτ2/m1, and d = Dτ/m1.

Then the characteristic equation assumes the form:

D(λ) = λ4 + dλ3e−λ + α2(1 + µ)λ2 + pλ2e−λ + α2dλe−λ + α2pe−λ = 0. (4)

When the real characteristic exponent crosses the origin at λ = 0, saddle-node bifurcation appears at p = 0. Hopf
bifurcation occours when a pair of complex conjugate roots lies on the imaginary axis at λ = iω, which yields the
stability boundary curve:

pcr =

(
1− µα2

ω2 − α2

)
ω2 cosω, dcr =

(
1− µα2

ω2 − α2

)
ω sinω. (5)

Let the proportional gain p be the bifurcation parameter. Then the real part of the root tendency λ′ = dλ(pcr)/dp assumes
the form:

ℜ (λ′) =
ω

4 (a2 + b2)

(
sinω + ω cosω + µα2 ω2 + α2

(ω2 − α2)
2 sinω − ωµα2

ω2 − α2
cosω

)
, (6)

where a and b can be expressed as

a =
1

2
ω

(
1− µα2

ω2 − α2

)(
1

2
sin(2ω)− ω

)
, b = ω +

ωµα4

(ω2 − α2)
2 −

1

2

(
1− µα2

ω2 − α2

)
sin2 ω2. (7)

The Poincaré-Lyapunov coefficient ∆ and the amplitude of oscillation A are obtained in the form:

∆ =
µ

8 (a2 + b2)

(
ω2

ω2 − α2

)4(
1− µα2

ω2 − α2

)(
1

4
ω sin(2ω)− 1

2
ω2

)(
2ω2 − 3

2
α2

)
, (8)

A =

√
−ℜ (λ′)

∆
(p− pcr) =

(
ω2 − α2

ω2

)2

√√√√√− 2

µ

sinω
(
1 + µ ω

2α2+α4

(ω2−α2)2

)
+ ω cosω

(
1− µ ωα2

ω2−α2

)

(
1− µ α2

ω2−α2

) (
1
4ω sin(2ω)− 1

2ω
2
) (

2ω2 − 3
2α

2
) (p− pcr). (9)

The first two terms of Eq. 8 are nonnegative, therefore the last three terms determine the sign of ∆ and so the sense of
the bifurcation. Fig. 2 shows the saddle node and Hopf bifurcation curves of the system indicating the sub- or subcritical
nature as well. The boundary of the stable region is always supercritical.

Figure 2: Stability chart in the PD plane. The numbers indicate the number of unstable characteristic exponents. (µ = 1/30, α =
1.1437)

Conclusions

The model can explain why hand-held pendulums often oscillate in spite of the intention of the human operator.
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∗Poznań University of Technology, Institute of Applied Mechanics (Jana Pawła II 24, 60-965 Poznań, Poland Poland)
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Small and large amplitude, free oscillations of a pinned spherical interface

Yashika Dhote, Partha S. Goswami and Ratul Dasgupta
Department of Chemical Engineering, IIT Bombay, Mumbai, India

Summary. We investigate using linearised theory and numerical solution to the incompressible Euler equation, the effect of density
ratio and perturbation amplitude on shape oscillations of a pinned spherical interface. The interface in the base state is a spherical cap
separating quiescent fluids and may be pinned at any angle lying in the interval [0, π]. The linearised analysis presented in [1] which
takes into account the density of fluid inside the spherical cap only, is further extended to account for the density of fluids inside(ρI) as
well as outside(ρO). The limits of linearised theoretical predictions are tested via numerical simulations by exciting the first eigenmode
of the system at various pinning angles(α). For sufficiently small perturbation amplitude, the agreement with linearised predictions
found to be quite good. A systematic nonlinear correction to frequency is observed as the perturbation amplitude is increased, becoming
particularly discernable after the first few oscillations. The simulations are carried out using the open source code Gerris [8] and we
quantify the effect of non-linearity and droplet ejection is observed due to increasing perturbation amplitude. We investigate the bubble
limit and the droplet limit respectively where density of fluid inside the cap is negligible compared to that outside and vice versa.

Inviscid oscillations of a pinned interface

Natural and forced oscillations of a pinned spherical cap due to surface tension is of interest in numerous applications
both in engineering as well as in the natural sciences and remains a topic of active research interest [2]. The frequency
spectrum of small amplitude free oscillations of an inviscid free drop of unperturbed radius R0 and density ρI due to the
restoring force of surface tension T was first obtained by Rayleigh [9]. The effect of the second fluid on the spectrum
was studied by Lamb [5] lead to the classical dispersion relation for shape oscillations of liquid drops (ρI >> ρO) and
bubbles (ρO >> ρI):

ω2
0 =

T

R3
0

l(l + 1)(l − 1)(l + 2)

ρI(l + 1) + lρO
(1)

where l is a positive integer arising from the spherical harmonic Yml (s, ψ). In many engineering applications like vibration
induced atomisation [4], it is necessary to know the modification to the Rayleigh-Lamb frequency spectrum (eqn.1) due
to the droplet resting on a substrate. While a number of studies have investigated this problem under the assumption of
a hemispherical cap [6], the first study which systematically studied the modification to the spectrum for the case of a
droplet pinned at an arbitrary angle α was by Steen [1]. As a part of the present study, we extend the analysis of of their
work to take into account the density of the second fluid on the shape oscillation of pinned bubbles. For this, we closely
follow the analysis by Steen employing two spherical coordinate systems as shown in fig.1(a). It maybe shown that in
the inviscid, irrotational approximation [3, 7] the perturbation velocity potential φ and the surface perturbation η can be
expressed in the standing wave form [3].

η(s, ψ, t) = a(t)y(s) exp(ilψ), φI(ρ, θ, ψ, t) = ȧ(t) ΦI(ρ, θ) exp(ilψ), φO(ρ, θ, ψ, t) = ȧ(t) ΦO(ρ, θ) exp(ilψ)
(2a,b,c)

Here, ȧ ≡ da
dt and it maybe be further shown that a(t) satisfies the simple harmonic oscillator equation ä+ω2

0a(t) = 0. The
pinned frequency ω2

0 is calculated by solving a generalised eigenvalue problem employing the Green function formalism
suggested in [1] and additionally also taking into account both densities [3]. We test predictions made in the droplet and
in the bubble limits using the open-source code Gerris [8] and these are described below in fig. 2, 3 and 4.

(a) Geometry (b) Initial condition in numerical simulation

Figure 1: (a) A cartoon representation of a spherical cap (in the base state) pinned at an angle α on a substrate [1]. In close
analogy to the linearised analysis by [1], we employ two spherical coordinates systems viz. one centred on the substrate
with scaled coordinates (ρ, θ, ψ) and another centred at the spherical cap with scaled coordinates (r, s, ψ). The density
of the fluid inside is taken as ρI while that outside is ρO. (b) The initial deformation is obtained from linear theory by
computing the eigenmodes which may be represented as r = R0 + a0η(s, ψ). Shown here is the lowest axisymmetric
eigenmode for a pinning angle of 80◦. For consistency and to justify the neglect of gravity, R0 is chosen to be much
smaller than the capillary length scale. Grid density of 2048x2048 is used near the interface and 512x512 is used away
from the interface.
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Droplet Limit (ρO/ρI → 0): Axisymmetric modes and comparison of linear theory with simulations

Figure 2: Time signal from oscillatory response of the interface obtained from numerical solution to the incompressible
Euler equation (labelled as DNS in the plots) with surface tension (72dyne/cm). We distort the spherical cap at the
indicated pinning angle using the axi-symmetric eigenmodes with zero perturbation velocity as shown in fig.1b. In the
droplet case, these eigenmodes are provided in [1] and correspond to the droplet limit. (R0 = 0.1cm, ρO/ρI = 0.001.
The time signals are measured at the interface at a location slightly off the apex of the spherical cap and compared to a
sinusoidal signal with the frequency obtained by solving a generalised eigenvalue problem in Matlab [1, 3]. Note that
the time t is non-dimensionalised by the time period τ predicted from linear theory [1]. A good agreement with linear
predictions is seen in simulations with small disagrement in the predicted frequency around α = 60◦ and α = 120◦.

Bubble Limit (ρO/ρI →∞): axisymmetric modes and comparison with simulations

Figure 3: Oscillatory response obtained from numerical simulations in the bubble limit(ρO/ρI = 1000) and comparison
with linearised predictions [3]. A resonably agreement is seen in all cases for comparison of linear theory with simulations.
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Figure 4: Effect of change of perturbation amplitude for a spherical cap pinned at 80◦.

Fig. 4(a) shows the effect of increase of the perturbation amplitude a0. It is seen that the time signal becomes distinctly
non-sinusoidal with a frequency which increases with increasing a0. Panel (b) of the same figure shows a large ampli-
tude simulation where a droplet is (nearly) detached from the spherical cap as a result of large amplitude deformation.
Systematic comparisons of nonlinear effects for free and pinned droplets will be discussed at the meeting.

Conclusions

We extend the theoretical formalism developed in [1] to include the effect of internal as well as external (linearised) fluid
inertia for pinned spherical interfaces. For sufficiently small amplitude, we find good agreement with linearised theoretical
predictions both in the droplet as well as the bubble limit. For perturbation amplitude exceeding about 10 percent of the
spherical cap radius, discernable nonlinear effects are seen in the numerical simulations and in the large amplitude regime,
droplet ejection is observed.
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 Forced vibration of spring pendulum with nonlinear springs connected in series  
 
 Jan Awrejcewicz*,  Roman Starosta ** , Grażyna Sypniewska-Kamińska **  

* Technical University of Łódź, Department of Automatics and Biomechanics, Łódź, Poland 

**  Poznań University of Technology, Institute of Applied Mechanics, Poznań, Poland 
  
Summary. An attempt to solve the problem and to conduct a qualitative analysis of the forced vibration of the spring pendulum 
containing nonlinear springs connected in series is made in the paper. The method of multiple scales in time domain (MMS) has been 
employed in order to carry out the analytical computations. The MMS allows one, among others, to predict the resonances which can 
appear in the systems. The approximate solution of analytical form has been obtained for vibration at main resonance.  

Introduction 

Elastic elements arranged in various kinds of connections (in serial, in parallel or in branching) are widely applied in 
many mechanisms, mechatronic devices and more and more often in micromechanical systems [1], [7]. When the 
massless springs are connected in series or in branching, modelling of them as massless elastic links, commonly used  in 
discrete approach, leads to the mathematical model equations among which there are algebraic equations beside the 
differential ones. The algebraic equations describe then the equilibrium of the nodes at which the springs connect with 
each other. In the linear case, spring connections of such types create no greater difficulties. Depending on the degree of 
complexity of the connection, the equivalent spring constant can be introduced or one can retain in the mathematical 
model the algebraic equations that are linear, which results in a positive semi-definite mass matrix [2]. In nonlinear 
systems, the principle of superposition does not apply, which is a source of certain computational difficulties. It should 
be emphasized the serial springs connections increase the whole system pliancy, thus its nonlinear character manifests 
itself even more. 
Various nonlinear oscillators with serially connected springs were investigated by many authors mostly numerically. An 
approximate analytical approach to the free vibration of oscillators with two nonlinear springs or one linear and another 
nonlinear spring is used among other in papers [4-5] and [3], [6] respectively. The free vibration of two mechanical 
systems with springs connected in series is studied using MSM in [5]. 

Mathematical model 

The pendulum with two serially connected springs, presented in Fig. 1, is constrained to the motion on the vertical 
plane. 𝑍ଵ and 𝑍ଶ stand for the total elongation of the springs whereas ܮ𝑖 denotes the length of the ith non-stretched 
spring. The springs nonlinearity is of the cubic type, i.e. 𝐹𝑖 = 𝑘𝑖ሺ𝑍𝑖 + Λ𝑖𝑍𝑖ଷሻ for 𝑖 = ͳ,ʹ, and the nonlinear contributions 
to the whole elastic force are assumed to be small. There are two purely viscous dampers in the system. The system is 
loaded by the torque of magnitude ܯሺ𝑡ሻ =   cosሺΩଶ 𝑡ሻ and by the force F whose magnitude changes alsoܯ
harmonically i.e. 𝐹ሺ𝑡ሻ = 𝐹 cosሺΩଵ 𝑡ሻ. Although the system has two degrees of freedom, its state is unambiguously 
determined by three time functions: the elongations 𝑍ଵ and 𝑍ଶ and the angle Φ.  
 

Figure 1: Forced and damped spring pendulum with two nonlinear springs 
 

 
Two equations of motion, obtained using the Lagrange formalism, and the equilibrium equation of the join S govern the 
dynamic behaviour of the pendulum. They are as follows:  
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 (ͳ + 𝑑𝑍ଵ𝑑𝑍ଶ)ଶ ሺ𝑚𝑍ሷଶ + 𝐶ଵ𝑍ሶଶሻ + 𝑚 (ͳ + 𝑑𝑍ଵ𝑑𝑍ଶ) 𝑍ሶଶଶ𝑍ሷଵ + 𝑘ଶ𝑍ଶሺͳ + Λଶ𝑍ଶଶሻ + 
𝑘ଵ𝑍ଵሺͳ + Λଵ𝑍ଵଶሻ 𝑑𝑍ଵ𝑑𝑍ଶ − 𝑚 (ͳ + 𝑑𝑍ଵ𝑑𝑍ଶ) ቀሺܮ + 𝑍ଵ + 𝑍ଶሻΦሶ ଶ + ݃ cos Φ − ݂cosሺΩଵ𝑡ሻቁ = Ͳ, (1) 

 𝑚ሺܮ + 𝑍ଵ + 𝑍ଶሻଶΦሷ + 𝐶ଶΦሶ + ʹ𝑚ሺܮ + 𝑍ଵ + 𝑍ଶሻ (ͳ + 𝑑𝑍ଵ𝑑𝑍ଶ) 𝑍ሶଶΦሶ + 
𝑚݃ሺܮ + 𝑍ଵ + 𝑍ଶሻ sin Φ − cosሺΩଶ𝑡ሻܯ = Ͳ, (2) 

 𝑘ଶ𝑍ଶሺͳ + Λଶ𝑍ଶଶሻ = 𝑘ଵ𝑍ଵሺͳ + Λଵ𝑍ଵଶሻ, (3) 

 

where: ܮ = ଵܮ +  .ଶܮ
Equations (1) – (3) are supplemented by the initial conditions of the following form 

 𝑍ଵሺͲሻ + 𝑍ଶሺͲሻ = 𝑍,   𝑍ሶଵሺͲሻ + 𝑍ሶଶሺͲሻ = 𝑣,    ΦሺͲሻ = Φ,     Φሶ ሺͲሻ = 𝜔, (4) 

where 𝑍, 𝑣, Φ, 𝜔  are known quantities. 

The derivative 
𝑑𝑍భ𝑑𝑍మ  one can calculate taking into account Eq. (3) which simplifies significantly the governing equations. 

The method of multiple scales in time domain with three time variables is applied to solve the considered problem. 
Because of the algebraic-differential character of the motion equations the use of the method requires an appropriately 
modified approach. Omitting the details of the adaptation, it is worth noting that at each subsequent approximation there 
is an additional algebraic equation that after differentiating allows one to determine the relationship between the  
derivatives of the mutually dependent coordinates 𝑍ଵ and 𝑍ଶ. The approximate solution obtained allowed for prediction 
of the resonance conditions. Then, the governing equations have been modified appropriately in order to describe the 
main resonance. The solution to the resonant vibration problem has semi-analytical form, because of the equations of 
modulation of the amplitudes and phases are solved in numerical manner. 

Conclusions 

The dynamics of the 2-dof system containing two serially connected nonlinear springs has been studied. The 
mathematical model consists of the differential and algebraic equations. The approximate solution to the governing 
equations, up to the third order, has been obtained using MMS with three time scales. The forced vibration of the 
pendulum have been analysed for two cases: far from resonance and in the resonance conditions. The analytical or 
semi-analytical form of the solution is the main advantage of the applied approach giving the possibility of the 
qualitative and quantitative study of the pendulum dynamics in wide spectrum. 
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Stabilisation of Rayleigh-Plateau modes on a liquid cylinder

Sagar Patankar, Saswata Basak and Ratul Dasgupta
Department of Chemical Engineering, IIT Bombay, Mumbai, India

Summary. We show stabilisation of unstable Rayleigh-Plateau(RP) modes on a liquid cylinder by subjecting it to a radial oscillatory
body force. The proposed stabilsation was short lived as shown earlier in our inviscid study [5]. Viscous analysis is performed which has
importance for this stabilisation. Linear stability predictions are obtained via Floquet analysis [3]. We also solve the linearised, viscous
initial-value problem for free-surface perturbations obtaining an integro-differential equation governing the amplitude of Fourier mode.
This equation represents the cylindrical analogue of its Cartesian counterpart [1]. Present study [4] shows that RP stabilisation can
be extended longer in time using radial oscillatory forcing. Predictions from the numerical solution to this equation demonstrates RP
mode stabilisation upto several hundred forcing cycles and shows excellent agreement with direct numerical simulations(DNS) of the
incompressible, Navier-Stokes equations using Basilisk [7]. An expanded version of present study is under review in a journal for
publication.

Dynamic stabilisation of RP modes - Linear inviscid theory

Liquid filaments, jets or annular fluid films coating the rods are susceptible to breakup into droplets via classical Rayleigh-
Plateau (RP hereafter) instability [6, 8]. In our earlier inviscid study [5], Faraday waves on a liquid cylinder where dynamic
stabilisation of RP modes was predicted but found to be extremely short-lived in inviscid simulations. Figure 1, shows an
infinitely long, quiescent liquid cylinder of density ρ, surface-tension T , kinematic viscosity ν and radiusR0 being subject
to a radial, oscillatory body force F(r, t). Interface perturbation is expressed as η(θ, z, t) = am(t; k) cos(mθ) cos(kz),
where k and m represents axial and azimuthal wavenumber.

Figure 1: A schematic representation of surface perturbation on a viscous liquid cylinder of radius R0 subject to a radial

body force F(r, t) = −h
(
r
R0

)
cos(Ωt)êr, where h and Ω are imposed forcing strength and frequency respectively.

Under the linearised, inviscid, irrotational approximation, the equation governing amplitude am(t; k) of Faraday waves
on the free surface is shown to be Mathieu equation[5],

d2am
dt2

+
I
′

m (kR0)

Im (kR0)

[
T

ρR3
0

kR0

(
k2R2

0 +m2 − 1
)
+ kh cos (Ωt)

]
am(t; k) = 0, (1)

Figure 2a and 2b shows the inviscid stability chart and stabilisation of RP modes through DNS being short lived due to
nonlinearity.

5
4.83.48

(a) Inviscid stability chart

m=4

(b) DNS for k = 4.8, h = 1.8× 104cm/s2

Figure 2: Shaded and white indicate unstable and stable regions respectively. Panel (a) Inviscid stablity chart from equa-
tion 1 showing critical forcing strength hcr above which RP unstable mode k0 = 4.8 cm−1 will be stablised. Parameters:
Ω = 600π rad/s (f=300 Hz), R0 = 0.2 cm, ρ = 0.957 gm/cm3, T = 20.7 dynes/cm. Panel (b) (Red curve) Time signal
from inviscid 3D-DNS [7], (k0 = 4.8 cm−1,m0 = 0) excited at t = 0. (Black curve) Solution to equation 1, (Left inset)
Zoomed out view of solution to equation 1, (Right inset) Stability chart for m = 4 showing unstable non-axisymmetric
Fourier mode (k = 28.8 = 6k0,m = 4) at t̃ ≈ 14 s causing destabilisation.
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Dynamic stabilisation of RP modes - Linear viscous theory

In the viscous analysis presented here [4] we performed Floquet analysis following [3] to obtain viscous stability chart
and solve the initial-value problem (IVP) following toroidal-poloidal decomposition [2] on a cylinder. We finally obtain
an integro-differential equation (2) for am(t; k) which has a damping and two memory terms incomparison to Mathieu
equation 1. It is shown that, by carefully tuning the strength and frequency of (radial) forcing, RP modes accessible to the
system maybe rendered stable thus stabilising the cylinder for long time (many forcing time periods).

d2am
dt2

+ 2νk2
I′′m(kR0)

Im(kR0)

dam
dt

+

∫ t

0

L̂
−1

(χ̃(s))
I′m(kR0)

Im(kR0)

[
T

ρR3
0

kR0

(
k2R2

0 +m2 − 1
)

+hk cos [Ω(t− τ)]
]
am(t− τ)dτ + 4νk

I′m(kR0)

Im(kR0)

∫ t

0

L̂
−1

[ζ(s)]
dam
dt

(t− τ)dτ = 0 (2)

Stablisation of RP modes: viscous stability chart and DNS comparison

Case Fluid a(0) m0 k0 ρI ρO µI µO R0 h Ω T
1 Silicone oil 0.01 0 4.8 0.957 0.001 0.1 0.001 0.2 1.8 × 104 600π 20.7

Table 1: Parameters for stability chart and DNS (CGS units)
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Figure 3: Panel a) Stability chart (m = 0) and panel (b) non-axisymmetric (m = 1, 2, 3, 4) modes with Case 1 parameters
in table 1. Figure 3a shows bold black lines→ viscous tongue, black dashed line→ inviscid tongue. (Inset) complete chart.
The mode (k0 = 4.8,m0 = 0) is stabilised when hcr1 < h < hcr2 with hcr2 = 2.05 × 104 cm/s2 from m = 4 (see figure
3b). We select h = 1.8× 104 (red dot and solid red line in figure 3a and 3b respectively) for stabilisation. Panel (c) DNS
time signal for case1 with parameters in table 1: (Red and blue dots) from DNS shows excellent agreement with solution
to equation 2(refered as Analytical in figure 3c) upto 600 forcing cycles (t̃ ≡ tΩ/2π). (Orange line) Destabilisation seen
in axisymmetric DNS when h < hcr1 and when (Pink line) h > hcr2. Note that inviscid simulation in figure 2b where for
the same k0, stabilisation is seen for only three forcing cycles.

Conclusions

We solved the initial-value problem (IVP) leading to a novel integro-differential equation governing the (linearised) am-
plitude of three-dimensional Fourier modes on the viscous liquid cylinder extending our earlier inviscid study. It is
demonstrated that by suitably tuning the frequency of forcing and choosing strength hcr1 < h < hcr2, RP mode (k0)
can be stabilised with all axisymmetric and three-dimensional modes that may be generated by nonlinear effects, can be
prevented from destabilising the cylinder. DNS comparison have shown excellent aggreement with theoretical predictions
demonstrating RP stabilisation upto hundreds of forcing cycles.

References

[1] J. Beyer and R. Friedrich. Faraday instability: linear analysis for viscous fluids. Physical Review E, 51(2):1162, 1995.

[2] P. Boronski and L. S. Tuckerman. Poloidal–toroidal decomposition in a finite cylinder. i: Influence matrices for the magnetohydrodynamic equations.
Journal of Computational Physics, 227(2):1523–1543, 2007.

[3] K. Kumar and L. S. Tuckerman. Parametric instability of the interface between two fluids. Journal of Fluid Mechanics, 279:49–68, 1994.

[4] S. Patankar, S. Basak, and R. Dasgupta. Dynamic stabilisation of rayleigh-plateau modes on a liquid cylinder. (Under review), 2021.

[5] S. Patankar, P. K. Farsoiya, and R. Dasgupta. Faraday waves on a cylindrical fluid filament–generalised equation and simulations. Journal of Fluid
Mechanics, 857:80–110, 2018.

[6] J. A. F. Plateau. Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, volume 2. Gauthier-Villars, 1873.

[7] S. Popinet. Basilisk. http://basilisk.fr, 2014.

[8] L. Rayleigh. Xvi. on the instability of a cylinder of viscous liquid under capillary force. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, 34(207):145–154, 1892.

ENOC 2022, July 17-22, 2022, Lyon, France

962



 

ENOC 2020, July 5-10, 2020, Lyon, France 
 

 On solving one-dimensional wave equations subject to nonclassical and to nonlinear 
boundary conditions  
  
 Wim T. van Horssen  

Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands 

 

Summary. In this paper it will be shown how characteristic coordinates, or equivalently how the well-known formula of d’Alembert can be 
used to solve initial-boundary value problems for wave equations on semi-infinite intervals or on fixed, bounded intervals involving non-
classical and nonlinear boundary conditions. It will be shown that solutions or approximations of solutions for wave-problems can be 
constructed for a much larger class of problems than generally is assumed. In this paper linear and nonlinear mass-spring-damper systems 
will be considered at the boundary, and it will be shown how (approximations of) solutions can be constructed. 

Introduction and overview 

The study of a one-dimensional wave equation such as 
 0 , 0, ,tt xxu u t x− = > −∞ < < ∞   (1) 

goes back to the middle of the 18th century when d’Alembert solved an initial value problem for Eq. (1) on an infinite 

interval (that is, on x−∞ < < ∞  ) by using characteristic coordinates. In Eq. (1) ( ),u u x t=  is a displacement (usually 

a lateral displacement of a string), x is a space coordinate, and t is time. When the initial displacement, and the initial 
velocity are given by  
 ( ) ( ) ( ) ( ),0 ,  and ,0 ,tu x f x u x g x= =   (2) 

respectively, one obtains as solution the well-known formula of d’Alembert 

 ( ) ( ) ( ) ( )1 1 1
2 2 2, .

x t

x t

u x t f x t f x t g s ds
+

−
= + + − + ∫   (3) 

On a semi-infinite interval (that is, for instance on 0x >  ) this formula (3) can also be used to solve an initial value 
problem for a wave equation. For a Dirichlet type of boundary condition at 0x =  , or for a Neumann type of boundary 
condition at 0x =  , it is also well-known that the functions in the classical formula of d’Alembert should be extended 
as odd, or as even functions in x, respectively. How the functions should be extended for a Robin type of boundary 
condition (with constant coefficients) at 0x =  , is less well-known, but is was already discovered at the end of the 19th 
century by Bryan. Recently in [1] and [2] the extension procedures on semi-infinite intervals for problems with a linear 
mass-spring-damper boundary condition at 0x =  , were presented for a string equation and for an axially moving string 
equation, respectively. 
On a bounded interval (that is for instance on 0 x L< < < ∞  ) the classical formula of d’Alembert can also be used to 
solve an initial value problem for a wave equation. In the literature only the cases where one has Dirichlet and/or 
Neumann boundary conditions, are solved by using the formula of d’Alembert, and leads to odd and/or even periodic 
extensions of the functions in the formula of d’Alembert. For other boundary conditions the formula of d’Alembert is 
not used, most likely, because it is not (well) known how to extend the functions in the formula of d’Alembert for other 
boundary conditions than those of Dirichlet type or of Neumann type.  
Usually the method of separation of variables, or the (equivalent) Laplace transform method is used to solve initial 
value problem for a wave equation on a bounded interval for various types of boundary conditions with constant 
coefficients. However, when a Robin boundary condition with a time-dependent coefficient is involved in the problem, 
then the aforementioned methods are not applicable. In [3] it has been shown how characteristic coordinates or 
equivalently, how the classical formula of d’Alembert can be used to solve an initial value problem for a wave equation 
on a bounded, fixed interval with at one endpoint a Dirichlet type of boundary condition, and at the other end a Robin 
type of boundary condition with a time-dependent coefficient. The Robin boundary condition with a time-dependent 
coefficient is an interesting one to study from the applicational (and from the mathematical) point of view. When one 
considers the transversal vibrations of a string which at one end is attached to a spring for which the stiffness properties 
change in time (due to fatigue, temperature change, and so on), then a Robin type of boundary condition is obtained 
with a time-varying coefficient. But also in the study of longitudinal vibrations of axially moving strings with time-
varying lengths (as simple models for vibrations of elevator or mining cables), one obtains, after some transformations 
as a first order approximation of the problem, a wave equation for which at one end a Robin type of boundary condition 
with a time-varying coefficient has to be satisfied. 
For nonlinear or weakly nonlinear boundary conditions not so many results are known. The reader is referred to [4] (and 
the references in [4]) for some recent and historical approaches that have been used. In this paper a problem for a wave 
equation on a semi-infinite domain will be discussed. The boundary condition is assumed to be weakly nonlinear and it 
will be explained how a multiple time-scales perturbation method can be applied to construct approximations of the 
solution of the problem. 
In this paper our recent results on the applicability of the formula of d’Alembert (as discussed above) will be presented. 
For details the reader is referred to our recent publications [1, 2, 3]. 
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Four classes of problems 

In this paper four classes of problems will be explained in detail. In the first class the vibrations of a semi-infinite string 
(that is, equation (1) with 0x > ) will be studied with a spring-damper system attached at 0x = , that is, a boundary 
condition like 
 (0, ) (0, ) u (0, t)x tTu t ku t α= +   (4) 

will be considered, where T  is the tension in the string, k  the stiffness of the spring, and α  the damping coefficient of 
the dashpot. By using characteristic coordinates or equivalently, by using d’Alembert’s formula (3) it will be shown that 
the extensions of the functionsf andg in (3) for negative arguments in the functionsf andg , have to satisfy 

nonhomogeneous, first order ordinary differential equations (ODEs). The solutions of these ODEs can readily be 
obtained, and so, reflected waves and energy dissipation can be determined.  
In the second class of problems the vibrations of a semi-infinited string will be studied with a mass-spring-damper 
system attached at 0x =  , that is, a boundary condition like 

 
 (0, t) Tu (0, ) (0, ) (0, )tt x tmu t ku t u tα= − −   (5) 

will be considered, where m is the mass in the attached system at 0x = . In this case the extensions of the functions of  
f andg have to satisfy nonhomogeneous, second order ODEs with constant coefficients. Again reflected waves and 

damping properties can be determined. 
In the third class of problems the vibrations of a finite string (that is, equation (1) with 0 x L< < < ∞ ) will be studied 
with a fixed end at 0x =  and a spring (with a time-varying stiffness ( )k t ) attached at x L= , that is, with the boundary 

conditions  

 
(0, ) 0,

( , ) ( ) ( , ).x

u t

Tu L t k t u L t

=
= −

  (6) 

It will be shown that the method of separation of variables can not be applied, but d’Alembert’s formula (3) can be 
used. It will turn out that the extensions of the functionsf  and g (outside the interval [0, ]L ) have to satisfy 

nonhomogeneous first order ODEs and have to satisfy a certain iteration process. Again properties of the solutions can 
be obtained from d’Alembert’s formula (3). 
In the fourth class of problems the vibrations of a semi-infinite string will be studied for 𝑥𝑥 > 0 with a (weakly) 
nonlinear mass-spring-damper system attached at 𝑥𝑥 = 0, that is, a boundary condition like 
 𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡(0, 𝑡𝑡) = 𝑇𝑇𝑚𝑚𝑥𝑥(0, 𝑡𝑡) − 𝑘𝑘1𝑚𝑚(0, 𝑡𝑡) − 𝑘𝑘3𝑚𝑚3(0, 𝑡𝑡) − 𝛼𝛼𝑚𝑚𝑡𝑡(0, 𝑡𝑡)    (7) 
will be considered, where 𝑘𝑘1 and 𝑘𝑘3 are constants. When the displacement 𝑚𝑚(𝑥𝑥, 𝑡𝑡) is small, or when 𝑘𝑘3 is small, 
perturbation methods like the two time-scales perturbation method can be used to construct accurate approximations of 
the solution, which are valid on a long time scale. 

Conclusions and future work 

In this paper it has been shown that the formula of d’Alembert can be applied to a much larger class of problems than is 
generally assumed. This also implies that a larger class of weakly nonlinear problems for wave equations can be studied 
by means of characteristic coordinates (see also recent work in [5, 6]). 
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Modeling non-conventional vibrational modes of micro-plates in viscous fluids

Andre Loch Gesing∗, Daniel Platz∗ and Ulrich Schmid∗

∗Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27, 1040 Vienna, Austria

Summary. Micro-plates exhibit extraordinarily low losses in viscous fluids when vibrating in the non-conventional roof tile-shaped
modes. However roof tile-shaped modes are commonly not considered for micro-sensors due to the lack of methods to predict these
modes’ dynamic response in viscous fluids. We developed a numerical method to calculate the spectral displacement of micro-plates
oscillating in viscous fluids with which we can predict both conventional and non-conventional vibrational modes. The method is based
on the Kirchhoff-Love plate equation, which we solve with a continuous-discontinuous approach to the Galerkin Method, with the
method of fundamental solutions for the linearized Navier-Stokes equations. We show-case our method with the analysis of a silicon
micro-plate immersed in water. With the spectral displacement curve it is straight forward to categorize peaks correspondent to beam
bending modes, torsional modes and roof tile-shaped modes. Furthermore, we calculate the fluid flow field associated to each vibrating
mode of the micro-plate. Our method thus provides a crucial understanding of the flow field around an oscillating micro-plate, which
may enable novel device architectures for resonantly operated micro-sensors in viscous fluids.

Introduction

Commonly micro electro-mechanical systems (MEMS) devices exploit as key building block the Euler-Bernoulli (EB)
flexural bending modes, or torsional modes, of narrow beams. These modes are chosen because methods to predict their
dynamic response and thermal calibration in viscous fluids are well established and straightforwardly implemented [1].
Higher order bending modes of beams in viscous fluids are subject to high viscous losses. High order roof tile-shaped
modes of micro-plates, on the other hand, exhibit extraordinarily low losses in viscous fluids [2]. However numerical
methods for the prediction of the dynamic response of micro-plates in viscous fluids, and thus for roof tile shaped modes,
are missing. Thus, a method for the prediction of the dynamic response of micro-plates in viscous fluids is of utmost
importance to improve device performance even further.

Numerical Method

Micro-plates immersed in viscous fluids is a multi-scale problem, which means its solution via traditional numerical
techniques - e.g. computational fluid dynamics and finite differences - is not straight forward. Our approach is to solve
the Kirchhoff-Love (KL) plate equation combined with the method of fundamental solutions for the linearized Navier-
Stokes (LNS) equations. KL plate theory is based on a fourth order partial differential equation (PDE), which can’t
be solved with out-of-the-box Finite Element Method (FEM). We solve the KL PDE with a continuous/discontinuous
method called interior penalty (IP). IP method enables us to use Lagrange-type continuous elements (C0 continuous) while
minimizing discontinuities in first order derivatives (obtaining thus C1 continuity) and weakly enforcing clamped and free-
end boundary conditions. For comparison purposes we also implemented the IP method for the EB beam equation. To
solve the fluid-structure interaction, we assume the non-slip condition at the plate’s surface and assume that the fluid
velocity in the longitudinal direction of the plate is small in comparison to the other components. With this simplification,
there is a fundamental solution for the LNS that relates pressure at the plate surface and the plate’s transverse displacement
at each cross-section [3]. Evaluation of the fundamental solution at top and bottom surfaces of the plate results in a
complex pressure jump over the plate which is linearly and non-locally dependent on the plate’s transverse displacement.

Results

As an application example we consider a 300 × 300 × 5 µm3 silicon micro-plate immersed in water. The micro-plate is
clamped on one side and free on the three others, and is excited by an external force at one of the free corners. Fig. 1 shows
the displacement spectrum per unit excitation force φ/F of the free corner of the plate where the force is applied. Note
that some of the peaks in the displacement spectrum are predicted by both KL and EB models. These peaks correspond,
evidently, to flexural bending modes. The second peak in KL displacement spectrum corresponds to the first torsional
mode. First beam bending mode and first torsional mode are shown in Figs. 2a and 2b, respectively. Roof tile modes in
water occur at frequencies 237.4 kHz and 651.8 kHz and are shown in Figs. 2c and 2d. Naturally, note that these modes
are predicted only with the KL method. Once the plate spectral displacement is calculated, we can predict the velocity
field at any point of the fluid domain by applying once again the fundamental solutions for the LNS. The results of this
procedure are shown in Fig. 3, where the velocity field is shown for the plate’s vibrational modes shown in Fig. 2. Velocity
field associated with the first bending mode exhibits two vortices at the edges of the plate’s cross section with opposite
directions, with the fluid near the middle being dominated by a normal component. For the torsional mode we see the
vortices with opposite directions at the edges, and the fluid moves across the plate’s surface dominated by a tangential
component. For roof tile modes the fluid moves back and forth across the plate’s surface with a pattern that varies with
the number of nodal lines of the vibrating mode. Note also that for roof tile modes the velocity field can reach higher
velocities near the middle of the plate than at its edges.
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Conclusions

We showed that with the KL method we can model non-conventional modes of micro-plates in viscous fluids besides
the traditional bending and torsional modes. What is more, we are able to calculate the fluid flow associated to each
vibrational mode, which in turn enable novel strategies to further decrease energy losses to the fluid. Future developments
include implement 3D fundamental solutions for the LNS and comparison to experimental data.
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Figure 1: Displacement of a corner of the plate per unit excitation force calculated with KL and EB methods.
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Figure 2: (a) First flexural, (b) first torsional, (c) first and (d) second roof tile-shaped vibrating modes.
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Figure 3: Fluid flow associated to the plate’s different mode shapes.
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Modeling of Frequency Locking in a Differential Vibrational Beam Accelerometer

Omer HaLevy and Slava Krylov
School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University,

Ramat Aviv, Tel Aviv, Israel 69978

Summary. Nonlinear dynamic behavior of a generic differential vibrating beam accelerometer is studied numerically and analytically
with the emphasize on the frequency locking phenomenon. The device incorporates two tuning fork oscillators attached to a proof
mass and described as a weakly nonlinear Kirchhoff beam driven through the self-excitation loop. Our numerical results obtained using
the reduced order (RO) Galerkin model indicate that the influence of the geometric nonlinearity and inertial coupling on the locking is
minor while the role of the structural coupling is dominant. An analytical prediction of the acceleration range where the locking occurs
is obtained by considering two coupled Van der Pol oscillators and is found to be in a good agreement with the numerical results.

Introduction

Microelectromechanical (MEMS) accelerometers are among the most widely implemented and commercially successful
micro devices. New challenges imposed by emerging applications continue to stimulate intensive research in the inertial
sensors area. Among the approaches allowing performance enhancement are resonant accelerometers, which exploit the
dependence of the sensing element natural frequency on the inertial (acceleration) force acting on the proof mass. A large
variety of resonant accelerometer designs were reported, including beams directly stretched by an inertial force [1], as
well as sensors implementing force amplification or electrostatic softening.
In this work, to explore device’s dynamics and modeling approaches, we consider the most generic architecture of a
vibrating beam accelerometer (VBA). The device consists of two beam-type tuning fork oscillators attached to a proof
mass, Fig. 1(a) [1]. Inertial force acting on the mass results in the increase/decrease of the frequencies of the left
(L)/right(R) pairs of the beams fL/R = f0

√
1± γMa/NE ≈ f0(1± γMa/(2NE)). Here f0 is the reference frequency

of the unloaded beam, γ is the correction coefficient, M is the proof mass, a is the acceleration and NE ≫ γMa is the
Euler’s buckling force. The acceleration is extracted from the measurement of the difference between the two frequencies
∆f = (fL − fR). In the case of nominally identical and uncoupled L and R beams ∆f should be zero at a = 0.
However, as was observed in experiments [2], at small a frequency locking occurs, when two beams oscillate at the same
frequency and phase. This phenomenon leads to a "blind zone" in the scale factor curve, limiting the minimal measurable
a. As a result, the differential sensing, implemented in these devices to reduce the negative influence of thermal and other
environmental effects, cannot be used. Locking (also referred as synchronization) is a well-known phenomenon and the
literature on the subject is voluminous [3, 4]. In the MEMS/NEMS area where synchronization can be beneficial, most
of the works were focused on the approaches allowing to achieve rather than avoid locking (e.g., see [5] and references
therein). However, there is only a limited amount of publications dealing with the modeling of locking in resonant
accelerometers [2].
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Figure 1: (a) Schematics of a generic vibrational beam accelerometer (VBA). (b) The half-model used in this work.

Model of the device

Due to symmetry only one half of the device is considered, Fig. 1(b). Each of the (assumed to be identical) beams (ties)
is clamped at one end and is attached to a proof mass at the other end. The mass moving in the x direction is anchored
through the suspension beams. The ties are described in the framework of the nonlinear Kirchhoff beam model, which
accounts for a deflection-dependent stretching. By implementing the single-term Galerkin approximation, the beams are
described as single DOF oscillators. The dynamics of the device are governed by three coupled nonlinear differential
equations in terms of the L and R beams deflections qL, qR and the mass displacement uM





q̈L + c q̇L + (1 + σuM )qL + knlq
3
L + α (qL − qR) = FLsign (q̇L)

üM + cM u̇M + kMuM = a+ µ
(
(qR)

2 − (qL)
2
)

q̈R + c q̇R + (1− σuM )q+knl (qR)
3
+ α (qR − qL) = FRsign (q̇R)

(1)

Here c, cM are the damping coefficients of the beams and proof mass, σ is the inertial force coefficient, knl is the nonlinear
stiffness coefficient, µ is the inertial coupling coefficient [3], kM is the effective stiffness of the mass suspension and F
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is the driving force amplitude. The overdot represents time derivative. The structural coupling coefficient α is extracted
from the results of a three-dimensional finite elements modal analysis. Namely, fL, fR were calculated for the beams
with slightly detuned parameters and α was obtained by fitting the veering frequency curves in the vicinity of a = 0.

Results

Equations (1) completed by zero initial conditions were solved numerically using Runge-Kutta solver. The beam’s fre-
quencies were extracted from the steady-periodic time-history using FFT and zero crossing approaches. The phase be-
tween the beams was obtained using Hilbert transform. The results presented here correspond to the following parameters:
c = 2.85× 10−5, cm = 2.55× 10−8, knl = 6.75, kM = 0.0115, α = 5.75× 10−5, σ = 2.95× 10−5, µ = 1320, F =
6.68 × 10−8. The relative frequency shifts ∆frelL/R = (fL/R − f0)/f0 are shown in Fig. 2(a). In certain range of a the
locking occurs and the curves are indistinguishable. The curve representing the maximal phase difference ∆φ between
the oscillators, Fig. 2(b), indicates that the locking region (in terms of a) is subdivided into two sub-regions - the strong
locking where ∆φ is close to zero and the weak locking, where a certain phase difference is apparent. Within the locking
region the difference in the amplitudes of the two beams (the “mode localization” effect) is more pronounced than outside
of the locking area, Fig. 2(c). Our numerical results suggest that for typically small (compared to the beam’s width d)
values of vibrational amplitudes, the influence of the geometric nonlinearity and of the nonlinear inertial coupling on
the locking region is minor. This allows to consider the deflection of the proof mass as quasi-static, and to reduce the
problem to two equations of motion which are coupled only through the stiffness coefficients. An additional simplifica-
tion, which was made due to a periodic character of motion, is to replace the sign function in the driving force such that
sign(q̇) ≈ arctan(q̇) ≈ q̇(1− q̇2/3) ≈ q̇(1−q2/3). As a result, Eqs. (1) are reduced to two coupled Van der Pol equations

{
q̈L +

[
c− FL

(
1− q2L/3

)]
q̇L + (1 + σ̃ a) qL + α (qL − qR) = 0

q̈R +
[
c+ FR

(
1− q2R/3

)]
q̇R + (1− σ̃ a) qR + α (qR − qL) = 0

(2)

where σ̃ is the new acceleration force coefficient. The results based on the asymptotic analytical solution of these equations
obtained using averaging [6] are shown in Fig. 2(d). Comparison between the analytically predicted locking region
(obtained for the realistic device parameters) and the numerical results showed good agreement between the two. Our
modeling approach can be useful also for the analysis of other resonant electrostatically or piezoelectrically actuated
accelerometers including tilting devices, devices implementing mechanical force amplification or electrostatic softening.
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Figure 2: Numerical results obtained by solving Eq. (1) (a) The relative frequency shifts of the each of the beams as a function of the
acceleration. In incense of locking the frequency-acceleration dependence curves for each of the beams should cross at a = 0. (b) The
maximal phase difference between the oscillators as a function of the acceleration. (c) The ratio between the amplitudes of the L and
the R beams. (d) Analytical solution - a boundary separating the locked and unlocked regions in the acceleration (detuning)-coupling
plane.
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UK 
 

Summary. Micro-electromechanical (MEMS) gas sensors receive increasing interest thanks to the high demand for environmental 
monitoring, air quality measurement, chemical process control, and personal safety. Extensive research has been conducted to improve the 
selectivity and sensitivity of gas sensors. However, there is still no comprehensive study on multi-gas sensing despite its potential. This 
work proposes a new prototype of gas sensors that can simultaneously detect the concentration of two different surrounding gases using a 
single structure based on a weakly coupled resonator. This study presents a thorough theoretical investigation on the dynamics of coupled 
cantilever and bridge resonators to prove its potential for multi-gas sensing. The sensing scheme relies on mass (due to gas absorption) and 
stiffness (due to cooling/heating) alteration of the cantilever and bridge resonators, respectively. A nonlinear theoretical model is developed 
using the Euler-Bernoulli beam theory while accounting for the geometric and electrostatic nonlinearities. The sensor's dynamic is 
explored using the Reduced-Order model and one-mode Galerkin discretization, showing its richness. The results suggest the potential of 
the nonlinear coupled resonator in performing muti-gas detection. 

Manuscript 

Over the past decades, several gas-sensing mechanisms have been developed, including resistive/chemical-resistive, 
electro-chemical, work function, thermal conductivity, optical and surface acoustic wave [1]. One of the most widely 
used sensor designs is based on sensors coating. These conventional gas sensors rely on special coating materials for 
selective and sensitive detection [2]. Alternatively, the thermal conductivity-based gas sensors show comparable 
sensing performance and gains lots of interests. These sensors rely on the thermal energy dissipation of a heated 
structure due to the alteration of the surrounding gas concentration [3]. This research will present a sensor that combines 
the thermal conductivity-based gas sensor technique and coating surfaces with micro-electromechanical systems 
(MEMS) technology. This generates a new kind of multi-gas sensing technology based on micro-gravimetric sensing by 
mass absorption and the thermal conductivity sensor design. The new sensing approach shows the potential to detect 
numerous gases and analyze the binary gas mixture.  
On the other hand, electrostatically driven MEMS based mass (gas) sensors showed an excellent capability in various 
potential applications thanks to their easy implementation [4]. A mechanically coupled resonant device is designed to 
provide a stable sensing performance, as shown in Figure 1. The sensor comprises a weakly coupled resonator including 
a cantilever and bridge resonators. A thin coupling beam weakly couples both resonators. By changing the coupling 
position, the moment of inertia and the length of the coupling beam, the coupling strength could be controlled [5]. Both 
cantilever and the bridge resonators are driven electrostatically by a DC polarization voltage VDC and an AC harmonic 
voltage of amplitude VAC. The system geometry is optimized to ensure that both the first and second modes are similar.  

Figure 1: 3D schematic of the weakly coupled micromachined resonator for gas sensing application 
Table 1: Geometric parameters of the sensor structure 

The multiple gas sensing methodology is demonstrated in two aspects in this sensor structure. The bridge resonator will 
be heated electrothermally, experiencing convective cooling (or heating) from the ambient gas. The thermal expansion 
will change the bridge's stiffness and hence its resonance frequency. This technique is promised to detect gases with 
significant differences in thermal conductivity compared to the air (26.2 mW/mK in 300K), such as Hydrogen 
(186.9mW/mK in 300K) or Carbon dioxide (16.8 mW/mK in 300K) [3]. At the same time, the cantilever will be coated 
with a specific material having an affinity to absorb Ammonia (which has a similar thermal conductivity of 24.4 
mW/mK with air), causing a mass perturbation and hence frequency shift. Through simultaneous tracking of multiple 
modes of vibration of the coupled resonator, the change in the surrounding gases' thermal conductivity and the mass 
perturbation (i.e., due to gas absorption) are shown accurately in the shift in the resonance frequency of the systems.  
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Results and Discussion 

The analytical study is based on nonlinear Euler-Bernoulli beam theory while accounting for the geometric and 
electrostatic nonlinearities. To simulate the dynamics of the studied system, a reduced-order model and one-mode 
Galerkin discretization (for each resonator) were used. The geometric parameters of both beams are carefully designed: 
by adjusting the length of the cantilever, two beams' resonant frequencies are balanced (Figure 2(a)). The theoretical 
results of eigenvalue problems reveal how mass/stiffness perturbation influences two resonant frequencies (Figure 2(b), 
2(c)). The frequency response of two beams' deflection (Figure 2(d), 2(e)) shows several non-linear phenomena of 
hysteresis and jumps, hence providing the possibilities of high-sensitivity sensing. The results for both stiffness and 
mass perturbation simulations (Figure 2(f), 2(g), 2(h), 2(i)) present rich dynamics, further prove the influence of both 
kinds of perturbations on resonant frequencies, which suggests the potential of the proposed design to perform multi-
sensing. 

(a)                              (b)                              (c)  

              (d)                           (e)                              (f) 

(g)                              (h)                              (i) 
Figure 2: (a) Length of cantilever versus two resonant frequencies. Eigenvalue problems for single mass perturbation (b) 

and both mass and stiffness perturbation (c). The inset of (b) presents the enlarge view of veering zone. 
With the actuating of 𝑉ௗ1 = 50𝑉, 𝑉𝑎1 = 20𝑉 on bridge resonator, the frequency response of max deflection for bridge 
and cantilever without perturbation (d) and (e); with mass perturbation (f) and (g); with stiffness perturbation (h) and (i). 

Conclusions 

We designed a potential sensor prototype for multi-gas sensing that combined micro-gravimetric sensing technique and 
thermal conductivity sensing techniques. The dynamics of the proposed design are simulated theoretically and showed 
promising results for accurate detection of two different surrounding gases simultaneously. The obtained results 
encourage further experimental and theoretical investigation of the dynamic of the proposed weakly coupled system. 
This work could reveal a new-generation answer for multi-gas sensing and show potential on different applications. 
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 Nonlinear dynamics of 2D materials  
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Summary. Two-dimensional (2D) materials such as graphene are model systems for investigating nonlinear dynamics at the nanoscale. They 
exhibit phenomena such as intermodal coupling and stochastic switching already at amplitudes that are only a few nanometers with potential 
applications that are yet to be harnessed. In this talk, I will give an overview of the recent advancements in nonlinear dynamic studies of 2D 
materials with particular focus on methods for utilizing nonlinearity in ultra-thin mechanical systems. 

Introduction 

Nanomechanical systems are ubiquitous in a variety of applications in modern technology. The advent of 2D materials, 

and the ability to fabricate one-atom thick membranes, have made it possible to reach the ultimate sensing capabilities 

that not so long ago were only dreamed of. But this revolutionary downscaling has been associated with constraints on 

the linear dynamic range of these mechanical systems since signatures of nonlinearity already emerge at amplitudes that 

are only a few nanometers [1].  

Although the field of nonlinear dynamics dates back several centuries, its implications in atomically thin membranes have 

remained largely unexplored. In this talk, we present methods and experiments for understanding and utilizing nonlinear 
dynamic phenomena in 2D material membranes. Our aim is to shed light on the intricate modal couplings and the strong 

interplay between noise and nonlinearity and discuss the means to harness these effects.  

 

Results 

Our experiments are performed on multilayer graphene nanodrums with a diameter of 5 μm, which are transferred over a 

cavity etched in a layer of SiO2 with a depth of 285 nm. We use a blue laser to opto-mechanically modulate the tension 

of the membrane, and a red laser to detect the motion, using interferometry. To control the static deflection of the drum, 

in some of our experiments we also place a local electrode at the bottom of the cavity. The presence of this electrode will 

allow us to controllably deflect the membrane downwards and use that as an electromechanical knob to tune the tension 
and thus resonance frequencies of the drum. Moreover, to reduce the damping from the surrounding air we perform the 

experiments in a vacuum chamber. A schematic of the setup is shown in Fig. 1a together with microscopic image of the 

graphene drum in Fig. 1b.  

 

 

 

Figure 1: (a)The opto-mechanical set-up for actuating and detecting the motion of the graphene membranes; (b) 

Microscopic image of the graphene drum [2]; (c) Measurement of the nonlinear dynamic response as a function of the 

excitation amplitude [3].  
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By increasing the power of the blue laser, we detect a plethora of nonlinear dynamic phenomena over a wide frequency 

range. This includes the presence of spring hardening nonlinearity already at forces that are only a few pN, the emergence 

of nonlinear damping, parametric resonance, parametric -direct internal resonance [2] and a range of direct-direct 2:1 

internal resonance. We show that it is possible to make use of these nonlinear effects. For instance, by adding random 

fluctuations to the drive level, it is possible to obtain stochastic switching rates of 4 kHz between the stable states of the 

graphene Duffing resonator that are 100 times faster than current state-of-the-art, at effective temperatures 3000 times 

lower (See Figure 2a and 2b), providing the possibility to transduce weak signals through stochastic resonance. Moreover, 

by tuning the tension of the membrane using a back gate, we can control internal resonance conditions, obtain 

quasiperiodic oscillations and thus generate mechanical frequency combs (see Figure 2c).  

 

Figure 2: (a) stochastic switching in a graphene resonator close to room temperature [4]; (b) Up and down switching 

rates as a function of fixed drive frequency [4]; (c) Emergence of frequency combs at internal resonance. 
 

 Conclusions 

In conclusion we showed that 2D material resonators exhibit a wealth of nonlinear dynamic phenomena and discussed 

the means to detect them. We showed that these atomically thin membranes provide a platform for investigating a range 

of modal interactions and the strong interplay between fluctuations and nonlinearities, thus paving the way towards new 

opportunities for utilizing nonlinear dynamics at smallest length scales and very fast (MHz frequency) time scales.  
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Summary. In this work, we experimentally measure a relative frequency stability below 10-6 for a stress-engineered 

≈ 28 MHz nanomechanical resonator by detecting and analyzing its thermodynamic fluctuations at room temperature, 

without external excitation. We devive the Cramer-Rao lower bound (CRLB) thermodynamic limit for resonance 

frequency measurement precision for a classical harmonic oscillator subject to dissipation, thermodynamic noise, 

detection uncertainty and with or without external excitation. We propose a general statistically efficient frequency 

estimator and experimentally show frequency uncertainty reaching the CRLB on the cavity-optomechanically detected ≈ 

1 pg resonator data for up to ≈ 0.1 s averaging. The stress-engineered nanomechanical resonator with high frequency-

Quality factor (fQ ≈ 1012) and considerable frequency stability could be used for frequency-readout displacement sensors 

with no excitation required.  

Introduction and Novelty 

The work is related to an earlier report about passive frequency stabilization [1] which uses the same type of high fQ 

tuning fork resonator [4]. Resonance frequency variance is critical to the performance of nanoresonators. With sufficient 

motion detection precision, frequency measurement is fundamentally limited by the thermodynamic fluctuations. Lower 

measured frequency variance is achieved by increasing the driven amplitude. However, as the thermodynamic uncertainty 

is lowered, the variance becomes limited by frequency drift at ever shorter time scales. Here, we study the frequency 

variance of a stress-engineered nanomechanical resonator with an effective mode mass of ≈ 1 pg. First, without external 

excitation, the relative frequency stability is reaching below 10-6, which is better than the average performance of state-

of-the-art driven NEMS in such mass range [2]. Second, more importantly, we derive rigorous CRLB, establishing the 

theoretically lowest limit for the resonance frequency estimation variance. It is applicable to any linear harmonic resonator, 

including the Micro- and Nano-electron-mechanical systems. Our undriven and driven devices perform at those limits up 

to the averaging times of ≈ 0.1 s without any extra stabilization [3]. Finally, we present a computationally-fast and 

statistically efficient frequency estimator–a formula for converting motion records into frequencies with imprecisions at 

the CRLB. The presented general analysis is applicable to any undriven or harmonically-driven M/NEMs in the linear 

regime and may be extendable to the nonlinear regime by considering a nonlinear equation of motion, such as a duffing 

oscillator. 

 

Figure 1: Experimental system introduction. (a) False-colored SEM image of the stress-engineered nanomechanical resonator. (b) 

Measured optical resonance and the operating principle of the optomechanical detection. (c) Mechanical vibration power spectral 

density in a vacuum. 

Results and Discussion 

In this work, stress engineering is applied to increase fQ products of nanoscale Si3N4 tuning forks, reaching 1012 to 1013 

range. A false-colored SEM image of the device with a stress tuning bar is shown in Fig. 1(a). The mechanical motion of 
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the tuning fork modulates the optical resonance frequency of an adjacent microdisk resonator (Fig. 1(b)), generating time-

varying optical transmission signals proportional to mechanical displacement. Fig 1(c) shows the mechanical power 

spectral density of the thermodynamically fluctuating tuning fork mode.  

 

Figure 2: ADEV for simulated data(solid lines) with (a) negligible motion detection noise and  (b) experimentally-realistic detection 

noise added. ADEV without (blue) and with (red) external excitation agrees with theoretical CRLB (dashed lines) 

To verify the validity of the derived CRLB and the efficiency of the derived frequency estimator, we first apply the 

estimator to a simulated motion trace of a fluctuating resonator and calculate the resulting frequency Allan deviation 

(ADEV). Following the expected ∝ 𝜏𝜏 -1/2 , the ADEV quantitaively agrees with the CRLB without any adjustable 

parameters on all time scale for both the driven and non-driven cases, provided detection noise is negligible (Fig. 2(a)). 

The maximum-likelihood frequency estimator includes the contributions from both the phase and the phase derivative for 

the frequency estimation. When artificial motion-detection noise is added to the simulation, the ADEV becomes detection 

noise limited at the shortest time scales (widest bandwidth), following ∝ 𝜏𝜏 -3/2 . The ADEV follows ∝ 𝜏𝜏 -1/2 and 

quantitatively agrees with the CRLB for the longer time scales, where our CRLB is valid (Fig. 2(b)).  

 

Figure 3: ADEV (solid lines) for experimental data without (blue) and with (red) external excitation. Dashed lines are corresponding 

theoretical CRLB ∝ 𝜏𝜏-1/2. Dot-dash lines ∝ 𝜏𝜏-3/2  are the theoretically expected limits from the detection noise. 

The ADEV for experimental data presented in Fig. 3 shows similar features to the simulated data with detection noise, 

and quantitatively agrees with CRLB without adjustable parameters for 𝜏𝜏 < 0.1 s. At longer averaging the resonance 

frequency drift becomes apparent. Remarkably, the resonator without any applied excitation (blue line) shows a low 

frequency ADEV at the thermodynamic limit of ≈ 7 Hz/Hz0.5 below 1 s and (relative) stability of ≈ 10 Hz (≈ 0.40×10-6) 

above 1 s averaging. The undriven and driven devices perform at CRLB up to averaging times of about 1 s and 0.1 s. 

Conclusions 

In conclusion, we present a statistically efficient resonance frequency estimator and the thermodynamic limit of resonance 

frequency measurement uncertainty applicable to linear resonator subjects to harmonic drive, thermal fluctuations, and 

detection uncertainty, on all time scales. After validating them with simulated data, we have implemented the frequency 

estimator on a stress-engineered nanomechanical resonator. Remarkably, the resonator remained at the thermodynamic 

limit even for fairly long averaging times, and better than part per million frequency stability has been measured, even 

though the resonator was driven solely by thermal fluctuations. The stress-engineered nanomechanical resonator with 

high frequency-Quality factor and considerable frequency stability may be used for developing frequency-readout 

displacement sensors requiring no excitation. 
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Summary. We study free ringdown dynamics of a MEMS system with two modes near a 1:3 internal resonance. By separately preparing 
initial states and measuring the motion of both modes, we demonstrate that dependent on the initial relative phase the modes can either 
bypass or enter a phase-locked state, which can persist several times longer than the dissipation timescales. The sustained energy transfer 
between modes in the phase-locked state leads to non-monotonic energy dependence for one of the modes and overall lower dissipation rate 
for the system. The observations are accurately modeled by the coupled equations of motion, and can be understood by considering the low 
frequency mode as entering or bypassing a period tripling state under the influence of the periodic force from the high-frequency mode. 

Persistent phase-locked state is described by a PTS model. 

Nonlinearity in MEMS resonators is widely used in frequency stabilization [1], dissipation engineering [2], and 
improvement of resonance-based sensing [3] to achieve performance not available in the linear regime. Here, we 
thoroughly studied the nonlinear dynamics of two coupled MEMS resonators during free ringdown. The two resonators 
are designed with commensurate 1:3 eigenfrequencies to facilitate fast energy flow at internal resonance (IR). 
Remarkably, the two modes can get locked during ringdown and persist in this phase-locked state for extended periods 
of time, much longer than their intrinsic dissipation timescales. During relaxation, the low-frequency mode exhibits 
striking non-monotonic energy dissipation and negative modal energy dissipation rate (transient energy gain). The rich 
dynamics observed in the experiment are well explained by an intuitive model that regards the low-frequency mode at 
period-tripling states (PTS) created by the high-frequency mode, similar to the period-two states in parametric oscillators. 
In contrast to works at steady states [1,4,5], we demonstrate for the first time the phase lock at the transient states, the 
non-monotonic dissipation rate, and we provide an intuitive PTS model to describe it, simultaneously and independently 
from [5]. The observation and the model pave the way to engineering efficient energy flow between coupled nonlinear 
MEMS, which can be used for frequency stabilization and dissipation engineering. 

Results 

The two coupled modes are the fundamental in-plane mode (mode1) and torsional mode (mode2) of a clamp-clamp beam, 
as shown in Figure 1. The two modes are driven electrically with driving frequency ω1,osc and ω2,osc via the side gates. The 
modes are measured electrically and optically by an oscilloscope and a vibrometer, respectively. The eigenfrequencies of 
mode1 and mode2 are ω1/2π ≈ 64.6 kHz and ω2/2π ≈ 199.9 kHz (ω1 ≈ ω2/3). When the driving force is strong, they exhibit 
spring hardening and softening effects, respectively, as shown in Figure 2. The dip on mode1’s spectrum (orange) 
corresponds to the IR frequency of ω1,osc = ω2/3 where the model coupling is the strongest. In the experiment, we drive 
the two modes separately to their initial amplitude A1,0 and A2,0, labeled as red dots. At time t = 0, we turn off their drive 
simultaneously to let them ring down. Following their Duffing trajectory (black arrows in Figure 2), their frequencies 
shift due to the exponentially decaying amplitude (Fig. 3) and finally get locked at IR (black dots in Figure 2). The locking 
duration is ≈ 3× of the system intrinsic dissipation time ≈ 1/Γ2 where Γ2/2π ≈ 3.3 Hz is the intrinsic dissipation rate of 
mode2. The two modes persist in this state by spontaneously transferring energy from mode2 to mode1, indicated by the 
energy gain and rapid energy loss of mode1 and mode2 in Fig. 3(b). Their energies are calibrated to the same scale and 
fitted (black line) based on energy conservation in this system. The coupled two modes system can be regarded as a 
parametric resonator at PTS (mode1) subject to a period-three harmonic drive (mode 2). Repeating the same ringdown-
locking experiment, we find the system exhibits discrete relative phase n×2π/3 shown in Figure 4, similar to period-two 
parametric oscillators. Following this logic, the non-monotonic and negative energy dissipation rate of mode1 (Γ1) shown 
in the inset of Figure 3(b)) can be explained by the opposite Duffing coefficients of the two modes: (1) Spring softening 
effect of mode2 leads to increasing ω2 during ringdown. (2) Locked by mode2, mode1’s amplitude increases at higher 
frequency following its spring hardening spectrum.   

Discussion 

More generally, the gain or loss of mode1 can be engineered by altering mode2’s Duffing coefficient, i.e. mode1 can 
either perform gain or rapid loss depending on mode2’s parameters. The findings of phase-locking states and tunable 
dissipation rates are useful for energy dissipation engineering, such as for fast switches or low-dissipation timing/sensing 
devices. The proposed intuitive model provides a picture to understand the complicated dynamics in coupled nonlinear 
resonators.  More details can be found in our preprint [6].
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Figure 1: (a) Measurement schematics and false-colored 
SEM micrograph of the clamp-clamp beam MEMS. 
Optical and electrical measurements are performed, 
simultaneously. (b) Simulated mode shape of the two 
coupled modes.  
 

 

Figure 2. Spectrums of mode1 and mode2 are labeled by 
yellow and green dots. The oscillating frequency of 
mode2 is divided by 3. The two modes have opposite 
Duffing coefficients. In ringdown experiments, we set 
the initial conditions at A1,0 and A2,0 (red dots), 
respectively, and turn off the drive simultaneously. They 
evolve to equilibrium following the black arrows. After 
locked at the black dots, mode1 experiences frequency 
and amplitude increase shown as the short black arrow.  

 

Figure 3. Oscillating frequencies and energy of the two 
modes are presented in (a) and (b), respectively. The 
yellow and green dots correspond to mode1 and mode2, 
respectively. The inset of (b) shows the minors of the 
measured effective dissipation rate of mode1 (-Γ1). It 
indicates that mode1 shows a non-monotonic and 
negative dissipation rate during locking.  
 

 
 

Figure 4.  Relative phase of mode1 (φ1) and mode2 (φ2) 
in 7 repeating experiments. φ1-φ2/3 exhibits discrete 
values of (0, 2π/3, 4π/3) as expected in period tripling 
states.

References 
[1] Antonio D., Zanette D. H, López D. (2012) Frequency stabilization in nonlinear micromechanical oscillators.  Nature communications 3(1), 1-6. 
[2] Güttinger J., et al, (2017) Energy-dependent path of dissipation in nanomechanical resonators. Nature nanotechnology 12(7), 631-636. 
[3] Huang, L., et al, (2019) Frequency stabilization and noise-induced spectral narrowing in resonators with zero dispersion. Nature communications 10(1), 

1-10 
[4] Czaplewski D. A., et al, (2018) Frequency comb generation in a nonlinear resonator through mode coupling using a single tone driving signal. Technical 

digest-Solid-State Sensor, Actuator, and Microsystems Workshop 
[5] Yan Y., et.al. (2022) Energy Transfer into Period-Tripled States in Coupled Electromechanical Modes at Internal Resonance. PRX in press, 

arXiv:2206.0163 
[6] Wang M., et al, (2022) Persistent nonlinear phase-locking and non-monotonic energy dissipation in micromechanical resonators. arXiv: 2206.01089 

ENOC 2022, July 17-22, 2022, Lyon, France

977



ENOC 2022, July 17-22, 2022, Lyon, France

	        
 

2022
ENOC

Thursday, July 21, 2022
13:30 - 15:30

MS-18 Control and Synchronization in Nonlinear Systems
Rhone 1

Chair: N. Van de Wouw, B. Brogliato

13:30 - 13:50
Online Control-Based Continuation of Nonlinear Structures Using Adaptive Filtering
ABELOOS Gaëtan∗, RENSON Ludovic, COLLETTE Christophe, KERSCHEN Gaëtan
∗Aerospace and Mechanical Engineering Department [Liège] (1, Chemin des Chevreuils Sart Tilman 4000 Liège Bel-
gium)

13:50 - 14:10
Optimal Control of Spin Coating on a Spherical Substrate
SHEPHERD Ross∗, BOUJO Edouard, SELLIER Mathieu
∗University of Canterbury (20 Kirkwood Avenue, Upper Riccarton, Christchurch 8041 New Zealand)

14:10 - 14:30
Non-smooth inverted pendulum swing-up control optimization using a novel, Fourier series based numerical method
BALCERZAK Marek∗, ZARYCHTA Sandra, DENYSENKO Volodymyr, STEFANSKI Andrzej
∗Lodz University of Technology (1/15 Stefanowskiego Street, 90-924 Lodz Poland)

14:30 - 14:50
PID-based learning control for frictional motion systems
HAZELEGER Leroy, BEERENS Ruud, VAN De Wouw Nathan∗
∗University of Minnesota, Department of Civil, Environmental and Geo-Engineering (Minneapolis MN 55455 United
States) - Technische Universiteit Eindhoven, Department of Mechanical Engineering (P.O box 513 5600 MB Eindhoven
Netherlands)

14:50 - 15:10
Simulation of an OWMS PLL network for clock signal distribution using parallel computing
BUENO Atila∗, MACIEL Elvio, BATISTA Matheus, PANZO Eduardo, DERMENDJIAN Fabio, BATISTELA Cristiane,
PIQUEIRA José, BALTHAZAR José
∗Instituto de Ciência e Tecnologia - Universidade Estadual Paulista (Av. Três de março, 511, Sorocaba - SP Brazil)

978



ENOC 2020, July 5-10, 2020, Lyon, France

Online Control-Based Continuation of Nonlinear Structures Using Adaptive Filtering
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∗Dept. of Aerospace & Mechanical Engineering, University of Liège, Liège, Belgium
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‡Dept. of Bio, Electro and Mechanical Systems, Université Libre de Bruxelles, Brussels, Belgium

Summary. Control-Based Continuation uses feedback control to follow stable and unstable branches of periodic orbits of a nonlinear
system without the need for advanced post-processing of experimental data. CBC relies on an iterative scheme to modify the harmonic
content of the control target and obtain a non-invasive control signal. This scheme currently requires to wait for the experiment to
settle down to steady-state and hence runs offline (i.e. at a much lower frequency than the feedback controller). This paper proposes to
replace this conventional iterative scheme by adaptive filters. Adaptive filters can directly synthesize the control target adequately and
can operate online (i.e. at the same frequency as the feedback controller). This novel approach is found to significantly accelerate con-
vergence to non-invasive steady-state responses to the extent that the structure response can be characterized in a continuous amplitude
sweep. Importantly, the stabilizing effect of the controller is not affected.

State of the art of Control-Based Continuation

A common way to characterize the steady-state behavior of a nonlinear structure consists in identifying its orbits under
a monoharmonic excitation. Nonlinear structures can reach different periodic orbits under identical excitation, each
one with its own response amplitude, stability and harmonic content. Some of the responses are unstable and cannot
be observed experimentally without diverging towards another periodic orbit. Control-Based Continuation (CBC) is an
experimental method that stabilizes the structure using feedback control of the displacement to generate the excitation
signal and reach these unstable response branches [1][2]. Characterizing the unstable branches is useful to uncover
potential hidden branches that, even though stable, cannot be reached by performing standard uncontrolled experiments
such as frequency sweeps [3].
Non-fundamental harmonic content of the displacement x is fed back through the controller and must be taken into account
to ensure monoharmonic excitation, synonymous with non-invasiveness of the controller [4]. Current implementations
of CBC shown in Fig. 1a iterate (e.g. using Newton or fixed-point iterations) on the harmonics of the non-fundamental
component of the control target x∗nf until the non-fundamental harmonics of the excitation signal are below tolerance
[5][6]. The fundamental component of the target x∗f determines the fundamental amplitude of the response. Such a
method necessitates waiting for steady-state to perform the harmonic decomposition before each target update.

Control-Based Continuation with adaptive filtering

Adaptive filters have been used for online harmonic elimination in the literature [7]. In this work, they are used to estimate
the non-fundamental harmonics of the response and synthesize the non-fundamental control target x∗nf. The now fully on-
line strategy is shown in Fig. 1b. No offline iteration is needed to ensure a non-invasive controller. Two continuation
procedures can be considered: finite steps like the state of the art lead up to 25% of experimental time reduction; contin-
uous sweep of the target amplitude lead up to 50% time reduction, but high sweep rate can induce transient effects in the
system’s dynamics, decreasing accuracy. When using an adaptive filter in closed-loop, the structural and filter dynamics
are coupled. More research is needed to predict the effect of such a coupling. However, the convergence time of the
adaptive filter in open-loop is significantly shorter than the structural transient time.
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Figure 2: The relationship between excitation and response amplitudes (S-curve) can be obtained by sweeping the target amplitude

(a) S-curves and interpolating manifold in 3D space
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Figure 3: S-curves are measured for different frequencies and the manifold is interpolated using a B-spline surface; the interpolated
frequency response curves are obtained by slicing the surface in the frequency-response plane for constant excitation amplitudes

The proposed strategy is demonstrated numerically using a Duffing oscillator; the resulting time series and the correspond-
ing S-curves at 7 Hz are shown in Fig. 2. By performing sweeps at different frequencies, the manifold characterizing the
structural dynamics can be interpolated, as shown in Fig. 3a. The frequency response curves can then be extracted, they
are shown in Fig. 3b.

Conclusion

An online method that identifies stable and unstable periodic orbits of nonlinear mechanical systems is proposed. To en-
sure non-invasiveness of the controller, an adaptive filter is used to synthesize a target which renders the controller’s output
monoharmonic. This strategy removes the need for offline iterations on the control target. Therefore, identifying com-
plete frequency response curves with fully-transient sweeps is within reach, significantly accelerating the experimental
characterization of nonlinear systems.
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Summary. We consider the optimal control of spin coating on a convex spherical substrate. We present a lubrication model for the flow
a thin fluid film on the surface of a rotating sphere, and derive a corresponding adjoint problem to calculate the effects of changes in spin
speed on the thickness profile of films produced by spin coating. This was used to determine an optimal time-varying angular velocity
throughout the spin coating process in order to produce a uniform coating over section of the substrate. With this we demonstrate that
there are circumstances in which spinning can allow for greater control of coating thickness than gravitational draining, but even the
best performance achieved by optimal spinning showed up to a 10% deviation from the desired coating thickness.

Introduction

Spin coating has been used in a wide range of industrial applications since the early 20th century as a technique to deposit
thin liquid films onto flat substrates [1]. Today, it is used to apply functional and protective coatings in the manufacturing
of printed circuit boards, solar panels, light-emitting diode displays, chemical sensors, and optical components [2]. Cur-
rent spin coating methods are limited, however, to flat substrate geometries and cannot reliably produce uniform thin films
over curved substrates. A novel spin coating process for curved substrates could enable the development of new technolo-
gies in consumer electronics, medicine, and optics, among many other fields. Building on the seminal work of Emslie et
al. [3], spin coating on flat substrates has been extensively studied, however the problems associated with coating curved
surfaces have received relatively little attention despite being identified as early as this original paper. Feng and Sun [4],
Chen et al. [5], and Liu et al. [6] have all developed models for spin coating on spherical substrates and validated these
against experimental measurements, but the question of how to improve coating performance on curved substrates has yet
to be addressed. Here, we investigate whether the spin speed used throughout the process can be manipulated to improve
coating performance on a convex spherical substrate.

Model Development

We consider the flow of an axisymmetric thin liquid film on the surface of a rotating spherical substrate, parameterised
by the zenith angle φ from the top of the sphere. Let h be the film thickness measured normal to the substrate, let R be
the substrate radius, and let Ω be the angular velocity of the substrate around the vertical axis. Choosing the average film
thickness h̄ and drainage time td = µ0h̄/εγ as characteristic length and time scales (where ε = h̄/R and µ0, γ are the
initial viscosity and surface tension of the fluid), we derive a dimensionless 4th-order partial differential equation (PDE)
describing the evolution of the film, with hats denoting rescaled dimensionless variables and subscripts denoting partial
derivatives:

0 =
∂ĥ

∂t̂
+

1

sinφ

(
ĥ3

3µ̂
sinφ

[
ε2κ̂ϕ + Bo

(
sinφ− εĥϕ cosφ+ εGaΩ̂2

(
sinφ cosφ+ εĥϕ sin

2 φ
))])

ϕ

. (1)

Here, Bo = ρgh̄2/γ is the Bond number, Ga = γ2/µ0
2h̄g is the Galileo number characterising the relative strength of

gravity and centrifugal force, and κ̂ϕ = ĥϕϕϕ+ ĥϕϕ cotφ+ ĥϕ(2−csc2 φ) is the derivative of the dimensionless curvature
of the free surface. We incorporate the effects of increases in viscosity due to curing or evaporation following the method
of Lee et al. [7] by introducing the coefficient:

µ̂(t) =

{
exp(βt), t ≤ tc
µ̂1t

α, t > tc
(2)

so that the time-varying viscosity may be written as µ = µ0µ̂(t), with a characteristic curing time tc after which the film
becomes essentially solid. Here, µ̂1 = exp(βtc)tc

−α is chosen to ensure continuity. An example film evolution under
the effects of gravity alone is shown in figure 1 (left panel) using the same fluid properties and substrate dimensions as
[7]. We see that beginning from a non-uniform initial condition concentrated around the top of the sphere, the fluid drains
over the entire upper half before hardening, leaving a non-uniform coating with thickness of approximately ĥ ≈ 2.5.

Optimal Control Methodology

We now wish to determine how the angular velocity Ω̂ can be changed as a function of time throughout the spin-coating
process in order to achieve a more even coating. We begin by choosing (as a proof of concept) the region of the substrate
surface φ ∈ D = [0, π/4] over which we want a produce a uniform coating. We also choose ĥopt = 2 as a desired coating
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Figure 1: (Left panel) Example evolution of a film under gravitational draining alone with Ω̂ = 0, Bo = 5.7×10−3, Ga = 6.9×10−10,
ε = 2.6×10−3, and t̂c = 0.2421 in order to match [7]. (Right panel) The optimal angular velocity distribution over time by the adjoint
method with the same parameters, compared with an optimal constant angular velocity with comparable performance.

thickness, corresponding to the thickness of a uniform coating over the entire upper-half sphere. The uniformity of the
final film ĥf = ĥ(φ, t̂f) at the time t̂f = 2t̂c can then be characterised by:

J (ĥ, Ω̂2) =

∫

D

(ĥf − ĥopt)
2 sinφ dφ, (3)

where small values of J correspond to good coating performance. We determine the optimal Ω̂(t̂) using the same method
as Boujo and Sellier [8] by considering the constrained minimisation of (3) subject to (1). We then introduce an adjoint
variable λ as a Lagrange multiplier for ĥ and derive a terminal value PDE which can be solved for λ. The adjoint variable
then allows for the calculation of the gradient dJ /dΩ̂ and the use of a simple gradient-descent optimisation algorithm.

Results and Conclusions

The optimal control methodology described above was implemented using COMSOL Multiphysics and MATLAB for two
cases: (i) with no restrictions on the angular velocity distribution over time Ω̂(t̂), and (ii) with the additional constraint
that Ω̂ is constant over time, similar a typical speed profile currently used in spin coating. The angular velocity profiles
resulting from the optimisation are shown in figure 1 (right panel). We see that the optimal angular velocity is greatest
early in the coating process, then decreases as the viscosity increases and the film hardens. The final film uniformities
produced using adjoint optimised and constant angular velocities are Jadjoint = 7.55× 10−4 and Jconstant = 8.17× 10−4,
respectively, compared to J0 = 0.0159 if the film drains under gravity alone (Ω̂ = 0). However, following optimal
spinning the final film thickness still varied by up to 10% from ĥopt over the domain D = [0, π/4]. This shows that
spin coating offers significantly improved control of film thickness over simple gravitational draining, but a constant
angular velocity is able to achieve almost the same coating performance as the optimal time-varying velocity profile.
We can conclude from this that spin coating cannot, in general, be used to uniformly coat a curved substrate even with
optimised angular velocity. We also see that the use of an adjoint-optimised time-varying angular velocity cannot produce
a significantly more uniform coating than the constant speeds typically used in spin coating. This suggests that new
coating processes designed specifically for curved surfaces will be required if we wish to produce uniform spin-coated
films on non-planar substrates.

References

[1] Norrman, K., Ghanbari-Siahkali, A., and Larsen, N. B. (2005) Studies of spin-coated polymer films. Annual Reports on the Progress of Chemistry
– Section C 101:174–201.

[2] Cohen, E. and Lightfoot, E. J. (2011) “Coating Processes” in Kirk–Othmer Encyclopedia of Chemical Technology. Wiley, NJ.

[3] Emslie, A. G., Bonner, F. T., and Peck, L. G. (1958) Flow of a Viscous Liquid on a Rotating Disk. J. App. Phys. 29(5):858–862.

[4] Feng, X.-g. and Sun, L.-c. (2005) Mathematical model of spin-coated photoresist on a spherical substrate. Optics Express 13(18):7070–7075.

[5] Chen, L. J., Liang, Y. Y., Luo, J. B., Zhang, C. H., and Yang, G. G. (2009) Mathematical modeling and experimental study on photoresist whirl-
coating in convex-surface laser lithography. Journal of Optics A: Pure and Applied Optics 11(10).

[6] Liu, H., Fang, X., Meng, L., and Wang, S. (2017) Spin Coating on Spherical Substrate with Large Central Angles. Coatings 7(8).

[7] Lee, A., Brun, P. T., Marthelot, J., Balestra, G., Gallaire, F., and Reis, P. M. (2016) Fabrication of slender elastic shells by the coating of curved
surfaces. Nat. Comm. 7.

[8] Boujo, E. and Sellier, M. (2019) Pancake making and surface coating: Optimal control of a gravity-driven liquid film. Phys. Rev. Fluids 4(6).

ENOC 2022, July 17-22, 2022, Lyon, France

982



 

ENOC 2020+2, July 17-22, 2022, Lyon, France 
 

Non-smooth inverted pendulum swing-up control optimization using a novel, Fourier 
series based numerical method 

 
 Marek Balcerzak*, Sandra Zarychta*, Volodymyr Denysenko* and Andrzej Stefanski* 

*Division of Dynamics, Lodz University of Technology, Lodz, Poland 

  
Summary. Swing-up control of an inverted pendulum is one of the classical tasks in dynamics and control theory. Optimization of the 
pendulum’s trajectory and the corresponding control function is not trivial, particularly when the controlled object is non-smooth (for 
example, due to presence of dry friction). This short paper contains a concise description of a novel, Fourier series based numerical method 
of control optimization, which is able to successfully solve such problem. It is expected that this algorithm will enable progress in control 
optimization of systems, for which typical approaches cannot be utilized.   

Introduction 

Optimal control is the one that minimizes the cost of performing a desired action [1]. In the case of systems described 
by a set of ordinary differential equations (ODEs), the necessary conditions for control optimality have been described 
by Pontryagin [2] in terms of variational calculus. Another classical approach to solving optimal control problems is the 
dynamic programming method, introduced by Bellman et al. [3]. However, the former cannot be utilized in non-smooth 
and discontinuous systems, whereas the latter requires significant computing power even in simple cases [1]. Therefore, 
there is a need for a simple method which solves optimal control problems in non-smooth systems. In this paper authors 
present a novel, Fourier series based numerical algorithm [4] applied in optimization of the swing-up control of an 
inverted pendulum [5] with a dry friction discontinuity. 

System description 

 
Figure 1: Scheme of the inverted pendulum system 

 

The inverted pendulum system [5], whose scheme is presented in Fig. 1, consists of the controlled cart, able to move 
along the   axis, with a mathematical pendulum of the mass   and the length   attached to it. Dry and viscous friction 
torque in the pendulum’s bearing is taken into account, i.e.                 . The swing-up control means moving 
the cart in such a manner that the pendulum stands up from the initial state             (pendulum hanging 
vertically downwards) to the final one               (pendulum standing vertically upwards). Defining the 

dimensionless time      with       , transforming the derivatives                                   and 

introducing dimensionless parameters                          yield the following dimensionless form of the 

model. 
                                 
 

The quantity          , a dimensionless counterpart of the cart’s velocity, is the controlled variable in the system. 

Obviously, velocity and acceleration of any physical drive are bounded. Moreover, the space in which the cart moves 
may be restricted. Therefore, the following constraints are assumed:                                          , where                      . 

Optimization method 

Assume that the goal is to minimize two factors in parallel, motion time   and drive usage - the integral of    . 

Therefore, the cost functional can be defined as follows:               , where   is a positive, real parameter. The 
proposed optimization method assumes that the control function      to be optimized is described using a finite number 
of harmonics of the Fourier series.                                       
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Bearing in mind that         and taking into account the boundary conditions                        , it 

can be easily shown that     ,              ,               . Consequently, the control function      depends on        independent parameters, which can be collected in a vector                                    . 
Taking a large enough value   enables to approximate      with arbitrarily high accuracy. Now an important fact must 
be noticed: the direction of the vector   in         is responsible for the shape of the function     , i.e. signs of its 
derivatives of all degrees, locations of local extrema and inflection points etc., whereas the length of   determines the 
span, i.e. the set of values and the global extrema of      [4]. Therefore, the shape of the function      for a fixed   
can be uniquely defined by a direction      , which in turn can be described by a point on a unit hypersphere 
immersed in      , i.e. on      , a (      dimensional one. Location of any point on such hypersphere depends 
on      angular coordinates, which uniquely define the shape of      [4]. Assume that this shape is already known. 
Now, as the continuous function         is constrained by                                          , there exists the smallest number     such that at least one of the constraints is violated by        if    . Consequently, as the shape of      is fixed, then          with a parameter         define all the 
admissible functions      of the shape defined by a point on      . Summing up,  -harmonics approximation of any 
Dirichlet control function                          can be described using        angular coordinates on       and the parameters    . Global optimization of all these parameters, for example using Differential Evolution 
method [6], leads to optimization of the control function      itself. When the proposed approach is utilized, 
smoothness of the controlled system is not required as long as the required trajectories exist and are unique. 

Results and conclusions 

The shape of the function      was optimized for         parametrized in terms of spherical coordinates on       
along with the parameters                    using the Differential Evolution method [6]. The results are 
presented in the graphs below. 
 

  
Figure 2: Results of optimizing the control function      with respect to the cost functional  .  

 

The optimized values of the cost functional                were approximately equal 13.93 (optimization with 2 
harmonics, i.e.      and 12.62 (optimization with 3 harmonics, i.e.    ). Therefore, it can be noticed that 
increasing number of harmonics in the optimized function      from     to     increases accuracy of control 
optimization. It is expected that larger values of   lead to better approximations of the optimal control. As it can be 
noticed, the method works successfully in the discontinuous system. Authors hope that this algorithm will enable 
progress in control optimization of systems, for which typical approaches cannot be utilized.   
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Summary. Classical PID control is exploited widely in industrial motion systems suffering from dry friction. This is motivated by the
easy-to-use design tools available. However, friction-induced limit cycling (i.e.,hunting) is observed when integral control is employed
on frictional systems that suffer from the Stribeck effect,thereby compromising setpoint stability. In addition, theresulting time-
domain behavior, such as, e.g., rise-time, overshoot, settling time, and positioning accuracy, highly depends on the particular frictional
characteristic, which is typically unknown or uncertain. On the other hand, omitting integral control can lead to constant non-zero
setpoint errors (i.e.,stick). To achieve superior setpoint performance for frictionalmotion systems in a repetitive motion setting, we
propose a PID-based feedback controller with atime-varyingintegrator gain design. To ensure optimal setpoint positioning accuracy,
a data-based sampled-data extremum-seeking architectureis employed to obtain the optimal time-varying integrator gain design. The
proposed approach does not rely on knowledge on the frictioncharacteristic. The effectiveness of the proposed approach is evidenced
experimentally by application to an industrial nano-positioning motion stage set-up of a high-end electron microscope.

Introduction

The vast majority of the high-precision industry employs classical PID control, since control practitioners are oftenwell-
trained in linear control design (loop-shaping). Moreover, it is well-known that integral action in PID control is capable
of compensating forunknownstatic friction in motion systems. However, friction-induced limit cycling (i.e.,hunting,
see [1]) is observed when integral control is employed on systems where the friction characteristic includes the velocity-
weakening (Stribeck) effect, so that stability of the setpoint is lost. Even if stability can be warranted, rise-time, overshoot,
settling time (see [2]), and positioning accuracy depend onthe particular friction characteristic, which is highly uncertain
in practice. Hence, despite the popularity of the PID controller in industry, friction is a performance- and reliability-
limiting factor in PID-controlled motion systems.
In this work, we propose a PID-based learning controller in order to achieve a high setpoint accuracy for repetitive tasks in
motion systems subject to unknown static and velocity-dependent friction, including the Stribeck effect. The PID-based
learning controller consists of two elements. First, a PID control architecture with atime-varying integrator gaindesign is
proposed, facilitating a tailored design such that friction-induced limit cycles can be avoided, and high accuracy repetitive
setpoint positioning can be achieved instead. In addition,similar robustness properties as for the classical PD control
at the desired setpoint can be achieved. Second, a sampled-data extremum-seeking architecture (see [3]) is proposed, in
order to iteratively find the optimal time-varying integrator gain, in the presence of unknown friction. The effectiveness of
the proposed approach is evidenced experimentally by application to an industrial nano-positioning motion stage set-up
of a high-end electron microscope

Control problem formulation for frictional motion systems

Consider a single-degree-of-freedommotion system, consisting of a massm sliding on a horizontal plane, with measurable
positionx1, velocityx2, control inputuc, and subject to a friction forceFf . The friction forceFf takes values according
to the set-valued mapping of the velocityx2 ⇒ Φ(x2). The set-valued friction characteristicΦ consists of a Coulomb
friction component with (unknown) static frictionFs, a viscous contributionγx2 (whereγ ≥ 0 is the viscous friction
coefficient), and a (unknown) nonlinear velocity-dependent friction componentf , encompassing the Stribeck effect, i.e.,

Ff ∈ Φ(x2) := −FsSign(x2)− γx2 + f(x2), (1)

The dynamics are governed by the following differential inclusion:

ẋ1 = x2, mẋ2 ∈ Φ(x2) + uc. (2)

We focus on achieving high-accuracy positioning for frictional motion systems that perform aT -repetitivemotion. We
consider, for the positionx1, a desired repetitive referencer, defined on the time interval[0, T ], where the system starts
and ends at rest and define two particular time intervals; 1) the intervalt ∈ [0, TB) during which the system is allowed
to move from0 to r, and 2) the intervalt ∈ [TB, T ], during which standstill atr is required. The time interval[TB, T ] is
typically used by the industrial machine, of which the motion system is part, to perform a certain machining operation, for
which accurate positioning is required. We address the following setpoint control problem:Design a PID-based control
strategy for motion systems of the form(2), (1), that perform a repetitive motion profile and are subject to unknown
static and velocity-dependent friction, such that high-accuracy setpoint positioning during the standstill time window is
achieved.
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Figure 1: Nano-positioning motion stage set-up:1© Maxon RE25
DC servo motor,2© spindle, 3© coupling, 4© nut, 5© carriage, 6©
linear Renishaw encoder,7© bearings,8© coiled spring.
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spondingki(t) and uc after the initial parameter settingu0 =
[0.85, 0.175]⊤ · 108 ( ), the2nd ( ), 4th ( ), and7th ( )
extremum seeking controller update, leading to an achievedset-
point accuracy of about4− 6 nm.

A time-varying integrator gain design for PID-based control of frictional motion systems

Limit-cycle behavior present in the case of PID control withconstantintegrator gain is caused by the build-up of integrator
action (during transients and the stick phase) in interplaywith the friction characteristic, see, e.g., [1]. This observation
motivates the design of a noveltime-varyingintegrator gainki(t) for point-to-point motion, namely: 1) the presence of
integrator action still allows the system to escape undesired stick phases, 2) overcompensation of friction due to, e.g., a
severe Stribeck effect, can be avoided, by alteringki(t) during the slip phase, and 3) zero integral action can be enforced
at the setpoint when standstill of the system is required, such that robustness against other force disturbances is provided
by the static friction. The resulting controller is then given byuc = kpe+ kdė+ ki(t)x3, ẋ3 = ς(t)e, with ς(t) ∈ {0, 1}
a to-be-designed switching function that prevents uncontrolled growth ofx3. We are able to 1) escape undesired stick
phases by enablingki ̸= 0 andς(t) = 1 duringt ∈ [0, TB], and 2) create robustness to other force disturbances closeto the
setpoint, by enforcingki = 0 andς = 0 duringt ∈ [TB, T ]. Thereto, we parametrizeki(t) =

∑6
j=1[v

(j) v(j+1)]Ψ(j)(t)

by linear spline basis functionsΨ(j)(t), with v⊤ = [1 · 108 u⊤0 01×4], andu0 a to-be-optimized parameter vector.

PID-based learning control for an industrial nano-positioning motion stage

The working principle and the effectiveness of the proposedPID-based controller are demonstrated on an industrial
nano-positioning stage, representing a sample manipulation stage of an electron microscope, exhibiting significant and
unknown frictional effects. The experimental setup and a schematic representation are presented in Fig. 1. A sampled-data
extremum-seeking architecture (see, [3]) is used to iteratively find a time-varying integrator gain designki(t), ultimately
leading to a position error in the range of4− 6 nm, depicted by ( ) in Fig. 2. In contrast, the classical PID controller for
this particular set-up yields an absolute error of about100 nm on the same time interval, and does not provide robustness
during the standstill time window. This clearly illustrates the performance benefits of the proposed PID-based learning
controller in terms of the ability to cope with Stribeck friction and achieving superior setpoint positioning accuracy.

Conclusions

We have presented a novel time-varying integrator gain design for motion systems with unknown Coulomb and velocity-
dependent friction, capable of achieving a high positioning accuracy, in contrast to classical PID control, which often
leads to limit cycling. The optimal time-varying integrator gain is iteratively obtained by employing a sampled-data
extremum-seeking architecture. The superior performanceof the proposed control architecture over classical PID control
is experimentally demonstrated on a nano-positioning stage of an electron microscope.
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Summary. The development of electronics in general, in particular integrated circuits, allowed accurate and stable clock signal - or
phase and frequency - distribution. The PLL is the fundamental component of clock signal distribution networks, and consists of a
closed-loop control system that synchronizes a local oscillator, or clock, to a reference signal. The Phase-Locked Loop (PLL) is the
basic element of clock signal distribution networks that is a fundamental part of digital communications networks. In many cases One-
Way Master-Slave (OWMS) chain networks is used for clock signal distribution due to its reliability and low cost. Due to the nonlinear
behavior of PLLs the design of the networks is a difficult problem, therefore, numerical simulations play important role. In this paper,
a parallel computing strategy is used do simulate OWMS chain networks aiming to develop a more efficient simulation strategy, and to
study the nodes interaction effects on the network due to parallel computing and distribution of the clock signal.
Index Terms — Clock distribution, phase-locked loop, synchronization, OWMS chain networks and parallel computing.

Introduction

PLLs (Phase-Locked Loops) are part of numerous applications in Electrical Engineering, control systems, and especially
in communication networks. A time synchronization signal distribution network is defined by the connection of a certain
clock oscillators whose purpose is to organize a temporal coordination. Synchronization networks are characterized by
the fact that several oscillators (clocks) operate with the same frequency and phase. The basic element in these networks
are PLL circuits [1, 2]. The PLL is a control system that synchronizes a local oscillator to an input signal. If properly
designed the PLL tracks the input signal and filter phase and frequency fluctuations (jitter and wander) [3, 4, 5, 6].
The PLL block diagram shown in Fig. 1 is composed of a Phase Detector (PD), of a Low-Pass Filter (LPF) and of a
Voltage Controlled Oscillator (VCO). The multiplier type PD compares the input signal vi (Eq. 1) with the output vo (Eq.
2) of the VCO and generates the phase error signal vd with the same sign of the phase difference. The LPF filters the
phase and frequency fluctuations and also provide the control signal vc that controls the VCO frequency and phase (Eq.
3) around the free-running frequency ωM .

Figure 1: PLL block diagram.

vi(t) = vi sin(ωM t+ θi(t)) (1)

vo(t) = vo cos(ωM t+ θo(t)) (2)

d

dt
θo(t) = kovc(t), (3)

Considering a multiplier type PD in Fig. 1 with the input and output signals in Eqs. 1 and 2, and that the VCO control
signal 3, the mathematical model of a PLL is given by

L [θo(t)] +GQ [sin (θo(t)− θi(t))] = GQ [sin (2ωM t+ θi(t) + θo(t))] , (4)

where G = 1
2kmkovivo is the loop gain and the operators L and Q depend on the LPF transfer function. In addition, the

nonlinear differential equation in 4 is of order p+ 1 given that the LPF order is p [1, 5].

Network Synchronization

The clock signal distribution in synchronous networks requires that the frequencies and phases are common to all network
elements. Many methods have been proposed for synchronization of spatially distributed clocks, such as mutually con-
nected networks or master-slave networks. In mutually connected networks, see Fig. 2(a), all the PLLs (clocks) contribute
to the phase and frequency scales. On the other hand, in Master-Slave networks, see Fig. 2(b), the master clock dictates
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the phase and frequency scales. Due to simplicity and low cost, the Master-Slave strategy is frequently used for clock
signal distribution. In OWMS (One-Way Master-Slave) networks, the master node has its own time base and is indepen-
dent the others while slave nodes have their time base depends on a single node, may come from the master node or from
another slave node. The master clock has its own and independent time basis. Slave clocks have their basis depending on
a unique node, the master or another slave. Besides, these networks are classified according to the topology in chain and
star.

1 2

3 4

5

(a) PLL network.

1 2 3 j N

MASTER SLAVES

(b) OWMS network.

Figure 2: Clock signal distribution networks.

Considering an OWMS network with N nodes, as shown in Fig. 2(b), and the PLL model of the previous section, the
OWMS network model of the slave nodes is given by

L(j)
[
θ(j)o (t)

]
+G(j)Q(j)

[
sin
(
θ(j)o (t)− θ(j−1)

o (t)
)]

= G(j)Q(j)
[
sin
(
2ωM t+ θ(j−1)

o (t) + θ(j)o (t)
)]

(5)

for j = 2, 3, · · · , N . As it can be noticed, the master clock’s phase and frequency scales do not instantaneously spread
throughout the network given that it depends on the dynamics of each slave node. In addition, noise, jitter and wander
impair the quality of the clock signal distribution. The nonlinear and interaction of the slave nodes generate complex dy-
namics, and in this case numerical simulation is an important tool to study the qualitative behavior of the synchronization.

Parallel Programming

With the development of computational resources and multicore processors, it is possible to buid faster computational
systems with higher precision and stability using parallel programming techniques [7]. A program is considered sequential
programming when it is viewed as a series of sequential instructions that must be executed on a single processor. A
program is considered parallel programming when it is seen as a set of parts that can be solved concurrently. Each part
also consists of a series of sequential instructions, which together can be executed simultaneously on several cores of
the multicore processor, as depicted in Fig 3. Traditionally, parallel programming was motivated by the resolution of
fundamental engineering problems of great scientific and economic relevance, called Grand Challenge Problems (GCPs).
Typically, GCPs simulate phenomena that cannot be measured by experimentation, such as: climatic, physical, chemical
and biological phenomena and in telecommunications, mainly in the propagation of signals. Two main reasons for using
parallel programming are: to reduce the time needed to solve a problem and to solve more complex and larger issues [7].

Figure 3: Instructions will be executed simultaneously on multiple processor cores [7].

Today, applications that require the development of faster and faster computers are everywhere. These applications require
a lot of computing power or require the processing of large amounts of information. Same idea can be applied for the
simulation of synchronization networks. A computer program is considered parallel when it organized as a set of parts that
can be solved concurrently, reducing the time needed for complex computational solutions. Each part is also composed of
a series of sequential instructions, but as a whole they can be executed simultaneously in several processors or processing
cores, as depicted in Fig. 4.
In this paper the parallel programming is used to build and simulate the nodes of OWMS network. The target is devel-
oping an efficient simulation strategy, that allows to study the interaction of the nodes running in parallel in a distributed
computation system.
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Figure 4: Distributed processing system for a network [7].

Parallel Programming in Matlab

With parallel computing, Matlab can help solve large computing problems in different ways. The software provides an
interactive programming environment where it can vectorize tasks and use parallel computing support through distributed
matrices, allowing you to perform multiple calculations simultaneously. Big problems can often be broken down into
smaller ones, which are then solved at the same time (in sync) The main reasons to consider parallel computing in Matlab
are: optimization of simulation time when distributing tasks with simultaneous execution, solving big data problems and
simulating signal propagation in telecommunications and electronics [8].
Workers in Matlab are the cores of the multicore processor and are thought of as computational engines that automatically
execute smaller tasks (threads) in the background when triggered by parallelism commands. Here, the PARFOR loop was
used, which executes the sequence of instructions of the loop in parallel, analogously synchronous counter.

Figure 5: Interactively run a loop in parallel using PARFOR [9].

Each loop execution is an iteration where the workers perform in any order and independently of each other. If the
number of workers is equal to the number of iterations of the loop, each one performs one iteration, as depicted in
Fig. 5. If there are more iterations than cores, some will run more than one, receiving multiple threads at once to reduce
processing time. When using parallelism commands, consideration must be given to the parallel overhead, which includes
the parameterization of the processor cores, the time required for communication, coordination and data transfer (sending
and receiving data) [9].

Steps to simulate a OWMS chain network

To design the mathematical simulation some steps were followed:
1 - Simulation parameters: number of PLLs, start and end time, integration math step, time vector and number of integra-
tion points;
2 - PLL parameters: input and output sinusoids amplitudes, phase detector and VCO gains, free-running angular frequency
and excitation signal input;
3 - Declaration of 2 auxiliary variables to handle parallel processing. Its necessary cause the processing output of each
core is given by a matrix that indexes each line corresponds to a processor core;
4 – Designing the OWMS network: making a selector to identify the condition of PLL1 (Master) and the others PLLs
(Slaves), that identify the blocks that should receive feedback signal (previous PLL);
5 – Run the Network in parallel processing (PARFOR Loop);
6 - Receive the calculated values from the simulating, compile results and call the graphics function.

Simulation graphics

The simulation was performed with 4 PLLs OWMS chain network and phase angle step excitation input θi(t) = u(t).
Let vi(t): input signal, vo(t): output signal; vd(t): output of detector phase; vc(t): control signal; θi(t): reference phase
and θo(t): ouput phase (or lagged phase).

First PLL node (Master)
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Figure 6: The output signal is lagged 90 degree (π/2 rad) of input signal, according to Eqs. 1 and 2.

Second PLL node (1ë Slave)

Figure 7: The output signal is lagged 180 degree (π rad) of input signal

Third PLL node (2ë Slave)

Figure 8: The output signal is lagged 270 degree (3π/2 rad) of input signal
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Fourth PLL node (3ë Slave)

Figure 9: The output signal is lagged 360 degree (2π rad) of input signal (1 delay cicle, in phase).

Comparison between input and output phase

Figure 10: After the transient the trajectory of the system presents a closed orbit around of a point in lissajous.

Conclusions

Dynamic Systems Simulation is a very useful tool for this type of problem, providing conditions of existence and stability
for the synchronous state of networks, relating circuit parameters, delays and deviations. An OWMS chain network was
modeled with order P + 1 PLLs as slave nodes, taking into account the jitter from the phase detector. Notes that if it is not
properly mitigated, network performance can be seriously degraded. It was shown that amplitude on the control signal
depends on the node gain and on the filter frequency response. Using several processing cores to build a synchronization
network gives flexibility to the simulation, however, parallel interactions of the nonlinear nodes, including jitter and
wander dynamics, can lead to complex dynamics and, probably, to a more realistic model of synchronization networks.
While parallel computing can be more complex and have a higher upfront cost, the advantage of being able to solve a
problem more quickly outweighs any difficulties.
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Nonlinear oscillations of a beam-like model of pipe with deformable cross-sections

Arnaldo Casalotti and Daniele Zulli and Angelo Luongo
Department of Civil, Construction-Architectural and Environmental Engineering, University of

L’Aquila, Italy

Summary. Nonlinear dynamics of a beam-like model of pipe are considered here. The mechanical model allows change in shape of
the cross-sections of the pipe under bending, through a nonlinear and coupled response function for the hyperelastic materials, which is
outcome of a homogenization procedure. The coupling between global bending and change in shape of the cross-sections is addressed,
and large amplitude vibrations are analyzed under harmonic loading, including different internal resonance conditions.

Introduction

Pipes are widely used structures in civil and industrial applications, and the evaluation of their strength represents a key
point for structural engineers to be addressed in the design process. Usually, their thin-walled nature introduces some
peculiar features to be considered during structural analysis, like possible occurrence of local effects as well as change in
the transversal shape. In this framework, the use of beam-like models for their analysis can, on the one hand, allow one to
deal with (moderately) handy equilibrium or dynamic equations; on the other hand, they may not avoid to include specific
aspects which are commonly discarded for slender beams, like cross-section change in shape and warping. For instance,
it is well known that ovalization of the cross-section, taking places when pipes are bent over, may lead to instability
phenomena, with consequent loss of carrying capacity of the whole structure. This phenomenon is explained by the
occurrence of a limit point in the bending moment-curvature relationship, as a consequence of the softening nature of
such a law, and is known as Brazier effect [1]. This specific effect is analyzed in [2] in case of anisotropic materials. In
case of multi-layered structures, a one-dimensional beam-like, which is derived from a corresponding three-dimensional
continuum, is proposed in [3], distinguishing the case of open and closed cross-sections and accounting for the Vlasov
theory. Theories of multi-layered beams and cross-sectional models are addressed in [4], where use of the Variational
Asymptotic Method is made to obtain the equations of motion. In [5], a homogeneous beam-like coarse model is adopted
to describe the mechanics of thin-walled beams with possibility of cross-section distortion. In [6], static and free dynamic
analysis of a homogeneous beam-like model is performed, after an identification procedure from a companion three-
dimensional continuum. The same model is then extended in [7], where further parameters are introduced in order to take
into account shear deformations in the multi-layered case, and in [8], where inertial contributions are identified in order
to take into account dynamical effects.
In some cases, a soft core realized with structural foam may be introduced to improve the performance of the pipes
under bending. For instance, in [9], the contribution of soft elastic cores is analyzed in thin-walled cylindrical structures,
letting inspiration from nature where, e.g., plant stems or hedgehog spines have their mechanical efficiency increased
by soft cores. In [10] the optimum design of thin-walled cylindrical shells with compliant cores, subjected to uniaxial
compression and bending, is theoretically addressed and experimentally proved. In [11], an internally constrained beam
model is proposed to deal with foam filled tubes, and equilibrium analysis is then performed in order to forecast and
reproduce typical phenomena.
Here, the one-dimensional non-standard beam-like model presented in [7, 8] is used to address nonlinear oscillations
under specific internal resonance conditions between global (bending) and local (ovalization) modes, also in presence of
a resonant external load which expends work on cross-section flattening.

Equations of motion

A nonlinear beam-like model is used to analyze nonlinear dynamics of an elastic pipe. The beam model is shown in Fig. 1a,
where the axis-line, spanned by the abscissa s running from 0 to l, and the generic cross-section are sketched. Besides the
classical kinematic descriptors of planar Timoshenko beams, which are the longitudinal and transversal displacements of
the axis line (u, v) and the cross-section bending rotation (ϑ), two further s- and time-functions are used, referred to as
ap and aw and related to the cross-section change in shape, in its plane and out of its plane, respectively. The kinematic
equations are posed and the dynamic equilibrium equations of the beam evaluated from the consequential use of the virtual
power theorem. The constitutive relations are evaluated by means of a process of homogenization from a corresponding
3D model, shown in Fig. 1b, where the pipe is assumed as realized by longitudinal rods and transversal ribs. For the
homogenization purposes, the change in shape of the cross-section is described as in the GBT theory [12], namely the
kinematic variables ap and aw multiply assumed functions, as shown in Fig. 1c. The equations of motion are written
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Figure 1: (a) The one-dimensional beam-like model; (b) the three-dimensional model with fibers and ribs; (c) the assumed functions
and amplitudes for the change in shape of the cross-section.

below, where the nonlinear terms are related to elastic and inertial contributions:
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2
pϑ̈−m6a

2
wϑ̈ = 0 (2)

[c7aw + c8a
3
w +

1

4
c1a

′
p]

′ − c5ap − c4apϑ
′2 − c6ϑ

′2 + qp −m4äp +
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Boundary conditions are combined to Eqs. (1)-(4), prime indicates s-derivative and dot t-derivative, whereas pv , c, qp
and qw are external load components. It is worth noticing that the bending problem (variables v, ϑ) and the cross-section
problem (variables ap, aw) are uncoupled in their linear part, while coupling occurs only due to nonlinear terms. Solu-
tions are obtained both via perturbation methods and pure numerical approach, in case of internal resonance conditions
among modes involving the bending and cross-section problems. Discussion on the effect of change in shape of the
cross-sections during bending vibrations is provided, highlighting the resulting softening behavior related to reduction of
bending stiffness of the pipe due to the cross-section flattening.

Conclusions

Nonlinear dynamics of a thin pipe is analyzed here. A homogeneous beam-like model is used, where specific kinematic
functions describe the change in shape of the cross-section. Dynamic interaction between bending of the beam and change
in shape of the cross-sections is addressed, leading to a softening behavior of the cantilever and related to the reduction of
the bending stiffness as the cross-sections flatten.
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Summary. Present study is devoted to analysis of fundamental problem of parametric instability of damped-driven bi-linear two-
oscillator model, given to the low-amplitude parametric forcing. Assuming the resonant excitation in the vicinity of similar NNMs,
we derive the reduced order model. Further, applying the method of isolated resonance we analyze asymptotically the most significant
family of sub-harmonic (m:1) resonance regions which reveal their peculiar properties.

Introduction

Response of bi-linear oscillatory systems subject to various types of forcing has become a subject of immense theoretical
and experimental research. These models are broadly applied for mathematical modeling of the response of various en-
gineering problems such as mooring towers [1], interlocking structures [2], suspension bridges [3], beams with breathing
cracks [4] and many more. Numerous analytical and numerical works have been devoted to the analysis of externally
forced, single bi-linear oscillator. Shaw and Holmes [5] were the first to develop the semi-analytical methods for the
analysis of stability and bifurcation structure of periodic orbits emerging in the harmonically forced piece-wise linear
oscillator (PWLO). In the same year, a thorough computational study of sub-harmonic orbits, bifurcations of periodic
solutions and chaotic motion of harmonically forced piece-wise linear oscillator has been reported by Thomson et al. [6].
Some initial experimental work by Shaw [8] has shown the superharmonic and sub-harmonic steady state regimes in the
experimental setup, mimicking the damped-forced response of piece-wise linear oscillator. We bring here some most fun-
damental theoretical works which considered the parametric instability phenomena arising in the various damped-driven
piece-wise linear setups [9, 10, 11].

Model

In the present study we consider the damped-driven system of two coupled identical, bi-linear oscillators which assume the
parametric excitation on the first oscillator. The non-dimensional equations of motion of the system under consideration
read,

ξ
′′

1 + ϵλξ
′

1 + [1 + αH(−ξ1)] ξ1 + β (ξ1 − ξ2) + ϵP cos(Ωt)ξ1 = 0 , (1a)

ξ
′′

2 + ǫλξ
′

1 + [1 + αH(ξ2)] ξ2 + β (ξ2 − ξ1) = 0 , (1b)

. Here ǫ is a formal, small non-dimensional system parameter. Where λ, P, α, β stand for the damping, forcing, bi-linear
nonlinearity and coupling parameters. The formal small system parameter 0 < ǫ << 1 is introduced for scaling the
magnitude of damping and forcing terms. This system can model the low amplitude vibrations of two linearly coupled,
damped pendulums where one out of the two pendulums, performs the prescribed vertical oscillatory motion on its point
of suspension.

It can be easily seen that OP NNN belongs to the special family of NNMs of similar type. Further setting the OP NNM to
be the resonating mode, we define the two auxiliary coordinates ξ1 − ξ2 = η and ξ1 + ξ2 = ζ. It is reasonable to assume
that in the resonant motion of the system being parametrically excited in the resonant region of OP NNM, the newly
defined η variable, dominates over ζ. Applying some rather simple algebraic manipulation and using the same resonant
assumption, one readily arrives at the following, reduced order model (ROM) i.e. the damped-driven, bi-linear oscillator
which recovers the entire resonance structure of resonating OP NNM.

η
′′

+ ǫλη
′

+ (1 + αH(−η) + 2β) η + ǫ
P

2
cos((mΩN + ǫσ)t)η = 0 . (2)

Results

We rewrite Eq. (2) in the phase space form, as follows:

q
′

= p, p
′

= −ǫλp− (1 + αH(−q) + 2β) q + ǫ
P

2
cos((mΩN + ǫσ)t)q , (3)

It is worthwhile noting that the asymptotic analysis applied in the present work is valid up to O(ǫ) order. Therefore, the
terms of the higher asymptotic order are omitted in the following part of analysis. To derive the asymptotic approximation
for transition curves corresponding to the special family of (m:1) resonant tongues, we introduce the action-angle variables
[11, 12]

I(E) =
1

2π

∮
p(q, E)dq , and Θ =

∂

∂I

∫ q

0

p(q, I)dq . (4)
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and using the method of isolated resonance derive the averaged flow in the neighborhood of (m:1) resonance tongues.Further
analysis of the averaged flow, reveals the closed form asymptotic approximations for the transition curves for different
resonance conditions (see e.g. [12]). Please note that ϵσ stands for the small detuning parameter, while the excitation
frequency in the vicinity of m:1 resonant neighborhood is taken as Ω = mΩ+ ϵσ. Here ΩN is a natural frequency of the
out-of-phase NNM. In Figure. 1 we present the stability charts for the three resonant cases. It can be readily seen that the
analytical approximation of transition curves (shown by black solid lines) are in very good agreement with the results of
numerical simulations of the full model (Eqs. (1a) and (1b)). In Figure.2 (left panel) we present the evolution of transition
curve w.r.t damping. In the limiting case of zero damping transition curves become straight lines whose slopes change
w.r.t the system parameter α. As is shown in 2 (right panel) the width of the instability regions, varies w.r.t the change
in the parameter of non-linearity, such that the well-known, fundamental, 2:1 parametric resonance tongue can become
narrower than the 1:1 tongue.

(a) (b) (c)

Figure 1: Stability chart for resonance conditions (a) 1 : 1, (b) 2 : 1, and (c) 3 : 1. Here green and red colours represent stable and
unstable regions, respectively obtained numerically from exact model in Eqs. (1a) and (1b) and black solid lines represent instability
boundaries obtained using A-A method. Parameters are α = 2, β = 0.5, λ = 0.005 and ǫ = 0.1.
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Figure 2: (a) Variations of the instability tongues with damping coefficient λ for resonance condition 2 : 1. (b) Variations of the slope
corresponding to each resonance condition with α.

Concluding Remarks

Present study has concerned the resonant parametric excitation of the symmetric system of two coupled bi-linear oscil-
lators. To derive the relatively simple analytical approximation to transition curves, we derive the reduced order model
which mimics the response of resonantly excited two-oscillator model in the vicinity of out-of-phase NNM. Boundaries of
the transition regions emerging in the original, parametrically forced system are approximated asymptotically. Transition
curves emerging from the analysis of effective bi-linear, parametric oscillator are in very good agreement with numerical
results of the original system. In this talk, we will also present the alternative analytical treatment for the case of resonant
system reduction in the vicinity of NNMs of the general type. This part of the talk is currently a work in progress.
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On the Nonreciprocal Dynamics of Bilinearly Coupled Oscillators
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Summary. This work explores nonreciprocity in the dynamic response of oscillators that are coupled by a bilinear elastic force and
subject to external harmonic drive. The conditions for breaking reciprocity and the influence of different parameters on the steady-
state nonreciprocal dynamics of the system are described. The manifestation of nonreciprocity in the time profile of the response is
discussed in terms of the amplitudes of oscillation, phase differences and time-independent shifts. While the main focus is on the
frequency-preserving response regime, the nonreciprocal response beyond the weakly nonlinear regime is also addressed.

Introduction

There has been an incredible interest in the recent years to explore scenarios in which reciprocity theorems do not hold [1].
A main motivation is that deviation from reciprocity can lead to asymmetric propagation of elastic waves for opposite
directions. Reciprocity theorems generally apply to linear, time-invariant systems [2]. The breakdown of reciprocity may
take place, for example, in systems with time-dependent (active) [3] or nonlinear (passive) [4] material properties.
The focus of this work is on nonreciprocity caused by nonlinearity. In particular, the nonreciprocal dynamics that results
from bilinear elasticity is studied. A bilinear spring exhibits two different values of stiffness with a transition occurring at
a critical strain. Bilinear stiffness is used, among other problems, for modeling systems involving contact and friction. A
system with bilinear elasticity, due to its non-smooth character, can exhibit complex nonlinear dynamic behavior [5].
This work studies the conditions that lead to the emergence of nonreciprocal dynamics in bilinearly coupled oscillators
subject to external harmonic excitation.

Bilinearly Coupled Oscillators

The following normalized equations govern the dynamics of the system considered here
{

ẍ1 + cẋ1 + x1 + kc(x1 − x2) = F1 cos(Ωt)

(1 + µ)ẍ2 + cẋ2 + x2 + kc(x2 − x1) = F2 cos(Ωt)
, kc =

{
1 + b , x1 − x2 > d

1 , x1 − x2 < d
(1)

where d is the offset above which bilinearity is triggered. The steady state dynamic response is computed as the periodic
orbits of Eq. (1) using the numerical continuation software package AUTO [6]. The bilinear stiffness is regularized using
a hyperbolic tangent function to maintain smoothness. A very large coefficient is used for regularization to ensure the
results are representative of the bilinear system.
To investigate reciprocity, two configurations need to be considered: (i) forward, where F1 = P , F2 = 0 and the
steady response of x2 is monitored; (ii) backward, where F1 = 0, F2 = P and the steady response of x1 is moni-
tored. A reciprocal response is characterized by xf2 = xb1, where the superscripts f and b denote the response in the
forward and backward configurations, respectively. To better analyze the results, the steady time-periodic response of
each oscillator is decomposed into a constant (time-independent) and oscillating component: xi(t) = Ci + yi(t), where
Ci = (1/T )

∫ T
0
xi(t)dt with T denoting the period of oscillations. Furthermore, the amplitude of oscillations is de-

fined as Ai, where A2
i = (2/T )

∫ T
0
y2i (t)dt. A difference norm M is used as a quantitative measure of nonreciprocity:

M = (1/T )
∫ T
0
(xf2 − xb1)2dt .

Nonreciprocal Dynamics

Fig. 1 shows the steady response of the system for µ = 1 and b = 1. A damping coefficient of c = 0.008 is chosen. A
non-zero value of d = 0.1 is chosen for the offset; accordingly, the response of the system is linear for very small values
of the driving amplitude. The driving amplitude P = 0.0015 is just high enough to trigger the transition into bilinearity
(i.e., x1 − x2 > d) for one of the configurations. Panel (a) shows the normalized amplitude of oscillations log10(Ai/P )
as a function of Ω for the forward and backward configurations. As expected, the first appearance of nonlinear behavior
occurs near the out-of-phase mode because (x1 − x2) has a larger value there. The inspection of Ai near this resonance
in panel (b) shows that while the system is behaving linearly in the backward configuration, the response of the forward
configuration has clearly entered the nonlinear regime. The initial effect of bilinearity is to increase the frequency of the
second mode (because b > 0). Panel (c) shows the difference norm M for the same frequency range as in panel (b).
The time profile of three points are shown in panels (d)-(f), with the corresponding points marked by a triangle, square
and circle in panels (b) and (c). Panel (d) corresponds to the peak oscillation amplitude of the backward configuration.
Panel (e) corresponds to equal oscillation amplitudes for the forward and backward configuration. Note, however, that it
corresponds to a large phase difference between the two configurations, which is responsible for the large value of M ;
see [7] for a detailed discussion. Panel (f) corresponds to the peak oscillation amplitude of the forward configuration. The
backward configuration is off-resonance at this point, explaining the large difference between the amplitudes.
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Figure 1: The steady-state dynamic response of the system for µ = 1 and b = 1.

The bilinear nature of the coupling force causes nonreciprocity in the system, manifested by a large difference in the
amplitude of oscillations (panel (f)), as well as a significant phase difference between the backward and forward configu-
rations (panel (e)). The bilinear response may also exhibit a time-independent component (a DC shift). In particular, the
shift in the response is different for the forward and backward configurations, contributing to the nonreciprocity of the
response. This shift can be seen in panel (f) for the forward configuration. In the weakly nonlinear regime, the DC shift in
the response is less significant than the shift in the resonance frequencies (i.e., it appears in a higher order of correction).
It is important to note the significant influence of b and µ on nonreciprocity. b controls the degree of nonlinearity and its
type (softening or hardening). In the limit of very large b, the coupling force is effectively modeling an impact problem [5].
Having a non-zero value for µ is essential for violating reciprocity because it is the parameter than breaks the symmetry;
nonlinearity and asymmetry are both needed for breaking reciprocity in a passive dynamical system. The values used here
for b and µ (as well as for c and d) can be realized in experiments.
At larger driving amplitudes (equivalently, at higher values of b or lower values of d), the backward configuration also
exhibits nonlinear behavior in the out-of-phase mode. Beyond the weakly nonlinear response, we also observe some
of the typical bifurcations in a bilinear system such as period doubling and subharmonic resonances. A period-doubling
bifurcation is already detectable in Fig. 1(b), though it is not further explored here. As expected, these nonlinear behaviors
are more readily accessible through the out-of-phase mode of the system.

Conclusions

Bilinearly coupled oscillators can exhibit steady nonreciprocal dynamics when subject to external harmonic drive. The
nonreciprocal regime can be reached at relatively small values of driving amplitude, degree of bilinearity and asymmetry,
making the mechanical system a good candidate for experiments. The nonreciprocal behavior manifests in the time
domain as different amplitudes of oscillation, phases and time-independent shifts. Typical instabilities such as period-
doubling bifurcations may be observed and further exploited for nonreciprocity. This work highlights the potential of
bilinear elasticity in realizing passive nonreciprocity in mechanical systems.
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Summary. The paper addresses the use of a piezoelectric element for energy-harvesting purposes in a 2 DOF Ziegler’s column subjected to 
a harmonically varying follower force. Hence, two different destabilizing mechanisms are potentially present in this problem, namely the 
follower-force-driven flutter and the parametric instability. The system parameters are chosen in such a way that the column is tuned into the 
principal parametric resonance with respect to an asynchronous vibration mode. The initial voltage applied to the piezoelectric element is a 
key variable which either favours vibration control – as a result of the structural stiffening associated to the inverse effect, inherent to 
piezoelectric coupling – or energy harvesting. For brevity reasons, only small initial voltages will be considered herewith, focusing the case 
of enhanced vibrations to a stable post-critical steady state, which is suitable for energy harvesting. Due to the similarity of this problem to 
that of pipes carrying fluids or gases in harmonic flows, it is expected that similar behaviour could also appear there. 

Introduction 

The 2 DOF model of a column with a follower force P, forming an angle 𝜃ଶ with the vertical direction, as represented in 
Fig. 1, is the classic model studied in [1,2]. In this paper, it is further assumed that the follower force varies harmonically 
with time, so that Pሺ𝑡ሻ = 𝑃 + 𝑃ଵ cos Ω𝑡. When ܮଵ = ଶܮ = ଵܯ ,ܮ = ଶܯʹ = ଵܭ ,ܯʹ = ଶܭ = 𝐶ଵ ,ܭ = 𝐶ଶ = Ͳ and also  �̅� = 𝑃బ = ʹ, the system displays a stable  asynchronous (in the sense it is localised)  vibration mode 𝐮ଵ = {𝜃ଵ 𝜃ଶ}𝑇 ={Ͳ ͳ}𝑇 with natural frequency 𝜔ଵ = ଵ √ெ. By the way, this value of  �̅� = ʹ is slightly smaller than the critical load  �̅�𝑐𝑟 = −ଶ√ଶଶ  that causes instability of the trivial solution for the undamped model, as seen in [3]. At  �̅�𝑐𝑟 a supercritical 

Hopf bifurcation takes place and a stable periodic attractor appears. It is worth noting that there is also a subcritical Hopf 
bifurcation at  �̅�𝑐𝑟, indicating that if  �̅� <  �̅�𝑐𝑟, which happens to be the case, the basin of attraction of the stable trivial 
solution is very small due to the proximity to the critical load. It is further known that even an infinitesimal damping 𝐶ଵ =𝐶ଶ = 𝜇 is capable of finitely reducing the critical load of the model to �̅�𝑐𝑟𝜇 = 4ଵଶ଼ , as seen in [3]. Hence, the load �̅� = ʹ 

that tunes the system into a stable asynchronous mode, which is smaller than the critical load for the undamped system, 
becomes larger than the critical one for the damped one. 
 

 
 

Figure 1: 2 DOF Ziegler column with follower force 
 

A single piezoelectric element is inserted in parallel with spring ܭଶ, with the following constitutive properties: electro-
mechanical coupling term 𝑒𝜃 and capacitance 𝐶𝑃. Two dimensionless quantities associated with the piezoelectric 

parameters are introduced, namely 𝜎ଵ = 𝑒𝜃మ𝐶𝑃ெమ𝜔మ and 𝜎ଶ = ଵ𝑅𝐶𝑃𝜔, 𝜔 = ͳܮ  being the chosen reference frequency. The ܯܭ√

energy harvesting circuit is composed of an electrical resistance 𝑅. It is worth mentioning that if a new modal analysis is 
performed for the enlarged 3 DOF electro-mechanical model, in which the piezoelectric element voltage 𝑣 is added as the 
third generalized coordinate, the previously found structural vibration mode 𝐮ଵ will not be practically affected, i.e. it will 
be nearly-asynchronous, provided 𝜎ଵ and 𝜎ଶ are small, which happens to be the case for 𝜎ଵ = 𝜎ଶ = Ͳ.Ͳͳ. Yet, a slightly 

different natural frequency appears for the nearly-asynchronous mode, namely 𝜔ଵ = ͳ.Ͳʹ ଵ √ெ. Further, a free-body 

mode 𝐮 = {𝜃ଵ  𝜃ଶ 𝑣}𝑇 = {−Ͳ.ͺͳ −Ͳ.4Ͳͺ Ͳ.ͳͲͺ}𝑇 will also appear, coinciding with the quasi-static deformed 
configuration due to an applied initial voltage to the piezoelectric element, known as the inverse effect. 
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Parametric excitation 

In addition to the follower force scenario, already explained, parametric excitation is applied to the column by means of 

a harmonic variation of load Pሺ𝑡ሻ = 𝑃 + 𝑃ଵ cos Ω𝑡, with Δ𝑝 = 𝑃భ = Ͳ.ʹͲ about �̅� = 𝑃బ = ʹ. The forcing frequency Ω 

is assumed to be twice the natural frequency 𝜔ଵ = ͳ.Ͳʹ ଵ √ெ of the nearly-asynchronous mode, so that the system is 

subjected to the principal parametric instability of the trivial configuration. Nevertheless, due to the kinematic and 
piezoelectric nonlinearities, it may be stabilised in a post-critical fluttering pattern. The piezoelectric element plays the 
role of an energy harvester. Fig. 2 illustrates the time histories for 𝜃ଵሺ𝑡ሻ, 𝜃ଶሺ𝑡ሻ and 𝑣ሺ𝑡ሻ for a mechanically undamped 
(𝜁 = 𝜇ଶ√ெమ = Ͳ) or a damped system (𝜁 = 𝜇ଶ√ெమ = Ͳ.Ͳͳ). The assumed initial conditions were 𝜃ଵሺͲሻ = Ͳ, 𝜃ଶሺͲሻ =Ͳ.Ͳͳ and 𝑣ሺͲሻ = Ͳ.  

 

                𝜁 = Ͳ                                                
 𝜁 = Ͳ.Ͳͳ 

Figure 2: time histories for 𝜃ଵሺ𝑡ሻ, 𝜃ଶሺ𝑡ሻ and 𝑣ሺ𝑡ሻ 
 
Although the follower-force-driven pattern alone is not characterised by localised vibrations, the parametric-instability 
pattern does favour localisation. It is seen that, for sufficiently large values of Δ𝑝, which happens to be the case here, the 
parametric instability pattern prevails, as seen in Fig.2, since 𝜃ଵሺ𝑡ሻ ≈ Ͳ. The undamped case leads to a post-critical 
amplitude-modulated nearly-asynchronous response, whereas the damped one indicates a well-defined stable periodic 
steady state nearly-asynchronous response, in which 𝜃ଶሺ𝑡ሻ and 𝑣ሺ𝑡ሻ are in anti-phase. 

Conclusions and final remarks 

The two mechanical DOF Ziegler column model has been addressed in a scenario characterised by the coupling of four 
phenomena, namely: follower-force-driven flutter, parametric instability, modal asynchronicity and energy harvesting 
using a piezoelectric element. The paper is still the result of on-going research. The high system-parameter-space 
dimension didn’t allow yet for an exhaustive study of all possible response regimes, such as those related to vibration 
control and the influence of the inverse-effect phenomenon provided by the piezoelectric constitutive properties. Future 
work will also look at the three mechanical DOF model of the Ziegler’s column and the continuous model of the Beck’s 
column. As already mentioned, the problem of pipes carrying fluids or gases in harmonic flows, due to common 
characteristics with the model studied herewith is of the author’s interest. 
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A machine learning perspective on frictional contacts and self-excited vibrations.

Maël Thévenot∗1, Merten Stender2, Jean-François Brunel1, Charlotte Geier2, Philippe Dufrénoy1

and Norbert Hoffmann 2,3

1Univ. Lille, CNRS, Centrale Lille, UMR 9013 - LaMcube - Laboratoire de Mécanique
Multiphysique Multiéchelle, F-59000, Lille, France

2Hamburg University of Technology, Dynamics Group, Hamburg, Germany
3Imperial College London, Department of Mechanical Engineering, London, United Kingdom

Summary. Braking systems of modern cars require a high speed contact between a rotating and a stationary part, with material
flows taking place in between for optimal functioning. During those situations, self-excited vibrations can lead to squeals phenomena
which can be of high intensity. A high speed contact test rig was developed to recreate various contact conditions occurring in a road
profile. Thermal and mechanical instrumentation were used in each test, coupled with surface observations and numerical modeling.
Establishing an understanding of thermo-mechanical phenomena and tribological behavior of the contact to guide machine learning
models allows to develop a more accurate, physics-based estimation of the squeal occurrence in a frictional contact.

Pin-on-disk interaction

The self-excitation of friction-induced vibrations has a long history in tribology and vibrations research, and still today
lacks a full-explanatory framework of mechanisms, driving factors and instability conditions [1, 2]. Most uncertainty
stems from the frictional interface, which is notoriously difficult to access, measure and characterise in practice [3]. How-
ever, data retrieved from the interface carry information representative of the whole system (state of materials, vibrations
from all scales. . . ). In this work an experimental study of frictional contact between a pin and a rotating disk is conducted
(Fig. 1), with self-excited vibrations and squeal sound emissions. The set-up is heavily-instrumented at the system and
contact scales. Particularly, along thermomechanical characterization from sensors on the pin and disk, surface observa-
tions such as profilometry are realised on both parts between solicitations to track the interface evolution. Cross-checking
those pieces of information allows for the deduction of which phenomena will be in play during the contact and to estab-
lish a better understanding of their influence on vibrations and squeal. Tests are realised with various contact parameters
(in term of normal load, rotating speed of the disc, contact duration and duration between each contact) to represent dif-
ferent road profiles.

Time/frequency spectrum of one test

Disk

Pin

Figure 1: Pin and disk assembled on the test bench - sample recordings of temperatures, frequencies and surface observation.

Data analysis

The aim of this work is to establish the relation between phenomena involved at the interface and the propensity of high-
amplitude self-excited vibrations for the system at hand. In order to further reveal the relation of effect and cause, a data
analytics perspective is taken. Machine learning models are set up to replicate the dynamical system in the sense of a
digital twin model, and recognize patterns in the high-dimensional space of loading conditions acting in the interface
and the structural response [4]. Based on the extensive experimental measurements and with the help of appropriate
processing algorithms the study of correlations between physics expected to be responsible of self-excited vibrations and
squeal occurrence is investigated [5]. Deep learning methods, namely recurrent and convolutional neural architectures, are
employed to approximate the functional relationship of external loads (frictional contact loads), internal states (interface
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temperatures and friction), and the vibrational response of the structure at hand. A multivariate sequence classification
task is set up to predict a binary target indicating linear instability and the resulting nonlinear high-amplitude vibrations.
Neural architecture search is performed upfront for selecting proper model hyperparameters and results are reported in
terms of binary classification metrics with an intentional correction of imbalanced data sets. Correlations are identified,
for example, between heating and squealing events, which are signs of variations in load-bearing area [6] and in the con-
tact interface morphology.

Conclusion

Post-mortem observations of the surfaces (profilometry, camera) allows the identification of various material flows through
the contact, which are used to establish a phenomenological model of the third body at the interface. Thermo-mechanical
characterisation realised during tests allows to better understand the mechanisms underlying those material flows and to
locate them in time and place. The influence of contact parameters is investigated to guide machine learning models,
which highlight the relationships between the identified phenomena and the occurence of self-excited vibrations. The
treatments also show the importance of considering the history effects corresponding to the evolution of the tribological
situation. This study shows the contribution of machine learning models in the prediction of non-linear vibrations from
frictional contact.
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 Free Vibration Analysis of Functionally Graded Plates with Crack or Slit   
 by the R-Functions Method  
 

Jan Awrejcewicz*, Lidiya Kurpa** , Tetyana Shmatko** , Aleksandr Shmatko**  
* Lodz University of Technology, Poland 

**  National Technical University ”KhPI”, Kharkov, Ukraine  
  

Summary. The proposed approach applies the Ritz method combined with the R-functions theory to analyze the free vibrations of 
cracked functionally graded material (FGM) plates of an arbitrary planform and different boundary conditions. Material properties 
are assumed to be temperature-independent and varying along the thickness direction according to Voigt’s law. The paper proposes a 
new set of admissible functions in order to describe the effect of cracks on the frequencies and mode shapes of vibrations. The 
admissible functions constructed by the R-functions theory take into account discontinuous of deflection. A comparison of the 
obtained results with available ones for rectangular plates confirms validation of the proposed approach. The present method is 
employed to obtain the frequencies and mode shapes for FGM plates with complex form and internal cracks, having various locat ions 
and length. Effects of the gradient index, crack location, crack length and orientation on frequencies and mode shapes of FGM plates 
are studied. 

Introduction 

Free vibration analysis of cracked functionally graded materials (FGM) plates with complex planform is a difficult 
mathematical problem, but it is very important for investigation of the nonlinear dynamical behavior of many modern 
thin walled construction. Number of publications devoted to this problem is quite limited and concerns only rectangular 
plates [1-3]. In this study we propose to apply the R-functions theory to construct the corresponding admissible 
functions which take into account the discontinuous behavior of the deflection of FGM plates with complex planforms. 
The developed approach is tested on linear vibration problems, what is important for solving nonlinear vibration 
problems. 

Problem formulation 

Assume that a plate is made from a mixture of ceramics (top of the plate) and metal (bottom). Below a power-law 
distributions (Voigt’s model) of the volume fractions of the metal and ceramics is employed. Тhen the effective material 
properties Pef (z) such as Young’s modulus E, Poisson’s ratio  , and mass density   can be expressed as [1-4]: 

        TP
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Mechanical characteristics of ceramic cP  and metal mP  depend on temperature T. This dependence is defined by 

known formula presented in work [4]. Stress and strain resultants in matrix form are as follows: 
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where u , v  are middle surface displacements along the axes Ox and Oy respectively, w  is the transverse deflection of 
the plate along the axis Oz, yx  ,  are angles of rotations of the normal to the middle surface about the axes Ox and 

Oy. Symbol 1  stands for first order shear deformation theory (FSDT) and 0  is associated with the classical 
theory (CLT). Elements of the matrixes      DBA ,,  have the following form: 
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The proposed method of investigation of free vibration of FGM plates is based on an application of the R-functions 
theory and the Ritz method [5, 6]. Variational statement of the vibration problem is reduced to determine the stationary 
point of the following functional  

PUJ 2 ,         (5) 
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where U  and  P are maximum potential and kinetic energies [3] relatively: 
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Construction of admissible functions 

Let us construct admissible functions for FGM plates clamped on part of the border and free on remain part of the 
border. Suppose that a crack or a slit is located on the straight line directed from the free plate part to inside domain. 
Equation of the clamped part of the border   0,1 yx  can be constructed by the R-functions theory. Normalized 

equation of the crack or slit   0,2 yx  can be also constructed using tools of the R-functions theory. If crack or slit 

lies on the line l with the normalized equation 0l  and the function   0, yx  describes the area, separating the part 

of the line coinciding with length and position of the crack or slit, then the function   0,2 yx  takes the following 

form  

   0
2

2 ,  lyx  ,      (9) 

where 0  is a sign of the R-disjunction [6]. The R-function theory allows to construct an equation of the free part of 

the border   0,3 yx . It is possible to prove that solution structure with an account of crack on free part of the 

boundary plate has the following form 
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where 321 ,,   are indefinite components of the solution structure. Functions    yxqyxq ,,, 21  are defined as  

              2/,1,,2/,1, 212211 yxDyxqyxDyxq ll   ,  (11) 

where  
yyxx

l llD ,,,, 2221   . It is possible to show that    221 1  OD l  . 

The corresponding structures can be constructed for the functions u, v and yx  in a similar way. In order to get 

admissible functions, indefinite components 321 ,,   are expanded into series over some complete system of 

functions     .3,2,1, kk
i  

Conclusions 

A new approach is proposed to study free vibrations of FG plates with cracks or slits. System of basic functions, which 
takes into account the shape of a crack and the discontinuous behavior of the deflection, is constructed by the R-
functions theory. The proposed approach is validated against available results for the linear frequencies of cracked 
isotropic and FGM plates with various boundary conditions and rectangular planform. The comparison was made for 
simply supported square plate with center crack and cantilevered plate with a side crack. The obtained results are found 
to be in a good agreement with the known solutions. In order to demonstrate the possibilities of the proposed method 
and developed software, we have analyzed influence of the location, crack length on natural frequencies of the FGM 
plates with complex planform. 
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Methods for decreasing order and dimension in mechanics of solids 
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Summary: The paper gives further development of methods for reducing a system of partial differential equations (PDEs) to a 
system of ordinary differential equations (ODEs). Iterative methods are proposed which at each loading step for static problems and 
at each time step employ suitable approximating functions. The Bubnov-Galerkin method was considered as a basis for further 
consideration. The effectiveness of the developed methods were demonstrated by solving the problems of the theory of plates and 
shells. The proposed approaches allow us to solve a wide class of problems in linear/nonlinear formulation for both full-sized and 
nanoscale structures. The problems were solved taking into account the temperature field, geometric and physical nonlinearities, 
contact interaction between structures, as well as the Casimir and Van der Waals effects. The convergence theorems of solutions for 
some iterative methods were proved. Software packages for solving problems of statics/dynamics were developed. The exact 
solutions regarding plates were given taking into account the nanoscale parameter and constant load. Then exact solution was 
compared with solutions obtained by two iterative methods. 

Introduction  

Such problems are usually solved using the following methods: finite difference methods (FDM), finite element 
method (FEM) and in result a system of linear or nonlinear algebraic equations is obtained, which bounds application 
of these methods. 

Mathematical models and solution methods 

Iterative methods for reducing PDEs to a system of ODEs were constructed. These methods are based on the Bubnov-
Galerkin method, and the method of Kantorovich–Vlasov (MKV) [1] . The latter method, by its ideology, match the 
Fourier method (MF) based on the variables separation and the Bubnov-Galerkin method (MBG), which gave impetus 
to a number of modifications (Fig. 1) including the following modifications: the Vaindiner method (MV)[2], the 
variational iteration method (MVI) [3] or extended Kantorovich method (EKM) [4], the Agranovsky – Baglai – 
Smirnov method (MABS) [5-6] and their combinations [7-10]. These articles provide evidence of convergence and a 
comparative analysis of the results can be applicable for full-sized structures. The method of variational iterations 
(MVI) eliminates the need to construct a system of approximating functions in the procedure of employment of the 
Bubnov-Galerkin method. The functions initially specified in an arbitrary way (obviously satisfying certain well-
known smoothness conditions) were refined in the process of calculations by MVI based on the solutions of the 
original system of PDEs. The resulting system of functions was given and the Bubny-Galerkin method was used to 
obtain a system of ODEs with respect to another variable. This iterative process continues to obtain a solution with a 
given accuracy. In this paper, these methods are implemented to solve a class of problems in the mechanics of a 
continuous deformable medium. The nanostructures are described using the modified couple stress theory [11] and the 
classical theory of shallow shells. Contact interaction is investigated using the theory of Kantor. Physical nonlinearity 
is taken into account according to the deformation theory. The temperature field is determined from the solution of a 
three-dimensional heat PDE. The relationship between the strain fields and temperature is not taken into account 

 
Fig.1 Interrelation of the Bubnov-Galerkin method, the Fourier method, the method of Kantorovich-Vlasov and their 

modifications 
 

The effects of Casimir [12], Van der Waals are taken into account as well as a geometric non-linearity based on the 
von Kármán theory. The governing partial differential equations, boundary and initial conditions are obtained from the 
Hamilton principle and the calculus of variations. For a number of approaches (Fig. 1), theorems were formulated and 
proved for the existence and uniqueness of solution for the equations of nanostructures of rectangular shells in terms 
of geometric nonlinearity. 
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Results 

As a numerical example, the results of a study of the static problem of a square in terms of a nanoplate are presented. 
The load is uniformly distributed over the plate area. Plate material is isotropic and elastic with Poisson's ratio ν=0.3. 
The solution is obtained for two types of boundary conditions. The problems are solved in a linear formulation for a 
size dependent parameter γ=0 and γ=0.5. Exact solutions have been obtained. 

 
Table 1. 

Boundary condition Exact solution γ MVI MVI+MABS 
Hinge 0.2028 γ=0 0.2030 0.2028 
Rigid jamming 0.0661 0.0653 0.0661 
Hinge 0.1064 γ=0.5 0.1073 0.1065 
Rigid  0.0381 0.0376 0.0383 

 
The solutions are obtained by a combination of MVI and MVI + MABS. These solutions practically coincide with the 
exact solution of the considered problems. This indicates the effectiveness of these methods. These two approaches 
have their advantages: there was no need to build an initial approximation that satisfies the given boundary conditions 
of the problem. The methods (MV) and (MV+MABS) have the same property. To analyze the problems of nonlinear 
dynamics, the methods of the theory of differential equations are used including analyses of signals, phase portraits, 
Fourier power spectra and wavelets. In addition, the Lyapunov exponents are numerically estimated using the Wolf, 
Kantz, and Rosenstein methods. Static problems are obtained from dynamic solutions using the set up method. 

Remark. The approach proposed in Fig. 1 applies to elliptic equations. It is possible to extend it to linear and 
nonlinear hyperbolic equations. Then the solution can be represented as a product of three functions, each of which 
depends on one variable t,x,y. B Reducing the PDE's to ODE's regarding t at each time step, it was proposed to use the 
methods described in Fig. 1. 
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Summary. The sandwich conical shell with three layers is considered. The middle layer of the structure consists of honeycomb core, 
which is manufactured by FDM additive technology from ULTEM 9085 material. Top and bottom faces are produced from the 
carbon fiber-reinforced composite. The self-structure vibrations are observed due to structure interactions with supersonic gas flow. 
The assumed mode method is used to obtain the system of nonlinear ordinary differential equations for the structure motions. The 
combination of the shooting technique and the continuation algorithm is used to study the structure periodic vibrations. The periodic 
and quasiperiodic self-sustained vibrations are discussed. The quasiperiodic vibrations are born due to the Naimark-Sacker 
bifurcation. 
 

Introduction 

 Honeycomb sandwich structures are commonly used in aircrafts and launch vehicle structures because of their 
superior strength and stiffness. Honeycomb sandwich shell can be used to make rocket and missile head shell, engine 
tail nozzle, spacecraft fairing, solar cell shell and so on. Therefore, many efforts were made to study the mechanical 
properties of the honeycomb sandwich structures. Now the nonlinear vibrations of the honeycomb sandwich structures 
are treated. The nonlinear vibrations of smart viscoelastic composite doubly curved sandwich shell with flexible core 
and magnetorheological layer with different distribution patterns are treated in [1]. The nonlinear vibration analysis of 
composite sandwich doubly curved shell with a flexible core integrated with a piezoelectric layer is considered in [2]. 
The nonlinear dynamic behavior of the double curved shallow shells with negative Poisson’s ratios in auxetic 
honeycombs on elastic foundations subjected blast is treated in [3]. A geometrically nonlinear forced vibration analysis 
of circular cylindrical sandwich shells with cellular core using higher-order shear deformation theory is presented in [4]. 
The paper [5] studies the nonlinear free and forced vibration of the sandwich cylindrical panel on Pasternak foundations 
in thermal environment under the action of blast load. The sandwich cylindrical panel consists of the auxetic 
honeycombs core and two carbon nanotube reinforced composite face sheets. The nonlinear dynamics of a double 
curvature sandwich shell with honeycomb are studied in [6]. 

 
Figure 1: Truncated conical shell and honeycomb core 

 
 
Problem formulation and main equations 

The sandwich conical shell with three layers is shown on Fig.1. The middle layer of the structure consists of 
honeycomb core, which is manufactured by FDM additive technology (Fig.1) from ULTEM 9085 material. Top and 
bottom faces are produced from the carbon fiber-reinforced composite. The main geometrical parameters of the 
honeycomb cell (Fig.1) are the following: 𝑙ଵ, 𝑙ଶ, ℎ , 𝜓, where ℎ is thickness of the cells.  

The dynamic instability and the self-sustained vibrations of the sandwich conical shell are treated. These nonlinear 
vibrations are take place due to interaction of the supersonic gas flow with the sandwich conical shell. The growth of 
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vibrational amplitudes of thin-walled structures is observed due to the system dynamic instability. Then the geometrical 
nonlinearity contributes essentially to the nonlinear mathematical model of the sandwich structure. This geometrical 
nonlinearity limits of the vibrational amplitudes grow. This limitation results in the self-sustained vibrations. Therefore, 
the geometrical nonlinearity is taken into account. The faces composite material and the honeycomb materials satisfy 
the Hooke's law. The shell initial imperfections are not accounted here.  

As the sandwich structure self-sustained vibrations are expanded by the eigenmodes, the linear vibrations of the 
sandwich structure are considered in this paper too.  

The stress-strain state of the sandwich conical shell is studied in the curvilinear coordinate system. Three curvilinear 
coordinate systems, which are connected with the layers middle surfaces, are used. The curvilinear coordinate systems 
of the top, core and bottom layers are denoted as: (𝑠௧ , 𝜃, 𝑧௧), (𝑠 , 𝜃, 𝑧), (𝑠 , 𝜃, 𝑧), where 𝑠௧ , 𝑠 , 𝑠   are longitudinal 
coordinates directed along the generating line of the layer middle surface; 𝜃 is curvilinear coordinate (Fig.1); 𝑧௧ , 𝑧௧ , 𝑧௧ 
are lateral coordinates of the layers.  

 
 
Results of numerical analysis  

The data of the self-sustained vibrations numerical simulations, which are observed due to interaction of 
supersonic gas flow with the sandwich conical shell is considered accounting geometrical nonlinear deformations. The 
nonlinear autonomous dynamical system of the structure vibrations has 21 degrees-of-freedom. This dynamical system 
is analyzed numerically by the algorithm, which combines the shooting technique and the continuation approach. Fig. 2 
shows the result of the dynamical systems steady states. The dependences of the vibrational amplitudes max (𝑞ଵ ℎൗ ) on 
the pressure 𝑝ஶ is shown on the figure. The stable and unstable steady states are shown by solid lines and dotted lines, 
respectively.  

The dynamical behavior of the structure, which are shown on Fig.2, are considered. The trivial equilibriums, 
which are described by the straight line (𝐴𝐵) (Fig.2), are observed at any value of 𝑝ஶ. The Hopf bifurcation is taken 
place in the H point. The stable equilibriums (AH) are transformed into the unstable equilibriums (HB) and the stable 
self-sustained vibrations are born. These vibrations are described by the curve (𝐻𝑁௦). The Naimark-Sacker bifurcation 
is observed in the point 𝑁௦. Then the stable self-sustained vibrations are transformed into unstable ones and stable 
quasiperiodic vibrations are born. The amplitudes of such quasiperiodic vibrations are shown by the curve (𝑁ௌ𝐷). 

 

 
Figure 2: Bifurcation diagram of cantilever conical shell self-sustained vibrations at М=1.5 
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Summary. Dynamic models of geometrical nonlinear deformations of functionally graded carbon nanotubes reinforced composite 
thin-walled structures are obtained. Reddy higher- order shear deformation theory is used to derive this model. The nonlinear system 
of high dimension ordinary differential equations, which describes the structure nonlinear vibrations, is obtained using the assumed-
mode method. The linear piston theory is used to describe the supersonic flow. The losses of the cylindrical shell dynamic stability 
owing to the Hopf bifurcations are analyzed. The self- sustained vibrations, which describe the circumferential traveling waves 
flutter, occur due to this bifurcation. The harmonic balance method is applied to analyze these self-sustained vibrations. The 
properties of the circumferential traveling waves are analyzed. The dynamic instability of conical- cylindrical thin-walled 
nanocomposite structure is treated.   
 

1. Introduction 

Intensive researches in advanced materials, which have been widely used in aerospace engineering, are carried 
out in recent years. The extraordinary stiffness and tensile strength of carbon nanotubes (CNTs) make them well-suited 
as reinforcing components of composites. Computational approaches play a significant role in the development of the 
CNT reinforced composites by providing simulations results, which help to understand the behavior of nanocomposite 
structures. Effective elastic properties of CNTs are obtained in [1]. These properties are used to obtain effective elastic 
parameters of nanocomposites by the Mori-Tanaka methods. The effective mechanical properties of CNT reinforced 
composites are evaluated by 3D nanoscale representative volume element method by Liu, Chen [2]. The technique for 
developing constitutive models of CNTs reinforced polymer composite materials is proposed by Odegard and others 
[3].  
 The mechanical characteristics of the nanocomposites are analyzed experimentally by several researchers. The 
tensile tests of dog-bone shaped specimens were performed by Allaoui and others [4]. They obtained, that the Young’s 
modulus and the yield strength have been doubled and quadrupled for composites with respectively 1 and 4 wt.% CNT 
in comparison with the pure resin matrix samples. Ci and Bai [5] systematically evaluate the stiffness of nanocomposite, 
when the CNTs reinforcement is used. The ultimate stresses experimental analysis of rubbery epoxy with CNTs 
reinforcement is treated by Richard and others [6]. 
 The geometrical nonlinear vibrations of functionally graded CNTs reinforced composite cylindrical shell is 
analyzed by using the higher- order shear deformation theory. The self- sustained vibrations of the cylindrical shell 
interacted with the supersonic flow are analyzed numerically. The piston theory is applied to describe the supersonic 
flow.   
 The assumed-mode method is used to analyze the nonlinear vibrations of functionally graded CNTs reinforced 
composite cylindrical shell. The high dimension nonlinear system of the ordinary differential equations is obtained. The 
harmonic balance method with monoharmonic approximation of the self-sustained vibrations is applied to analyze the 
self-sustained vibrations. The system of the nonlinear algebraic equations with respect to the self-sustained vibrations 
amplitudes is derived.  

The dynamic instability of the shell with different types of composite CNTs reinforcement is analyzed. As 
follows from the numerical analysis, the type of composite reinforcement affects essentially on the system parameters, 
when the flutter occurs. If the type of composite reinforcement is changed, the system parameters of the flutter 
origination can be changed twice.  
 The effect of the composite reinforcement type on the self-sustained vibrations is investigated. As follows 
from the data of the numerical simulations, the CNTs reinforcements of the composite shell affect essentially on the 
amplitudes of the self-sustained vibrations.  
 

2. Problem formulation and main equations 
 
 The cylindrical shell with constant thickness ℎ in supersonic flow is treated. The dynamic stress-strain state of 
the cylindrical shell is analyzed in curvilinear coordinate system (𝑥, 𝜃, 𝑧). Three projections of the middle surface 
displacements and rotations of the middle surface normal are chosen as the main unknowns. The dynamic instability of 
the cylindrical shell in supersonic flow is analyzed. This instability results in an increase of the vibrations amplitudes. In 
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this case, the shell geometrical nonlinear deformations occur. This growth of the amplitudes is limited due to the shell 
geometrical nonlinear behavior. Then three projections of the middle surface displacements 𝑢, 𝑣, 𝑤 are moderate and 
shell strains are small. The Hooke’s law is true.   
 The material of the shell is functionally graded CNTs reinforced composite. CNTs are assumed to be 
uniaxially aligned. Five types of CNTs reinforced are considered. UD denotes uniform CNTs reinforced in the 
transverse direction of the cylindrical shell. The rest types of CNTs reinforced are FGV, FG𝚲, FGX and FGO. They 
have variable CNTs dispersion. The shell material is functionally graded. The part of the volume for uniform 
distribution, which is occupied by CNTs, is denoted by 𝑉ே்∗ .  
 As the shell material is functionally graded and composite, shear is taken into account. The shear modulus 
takes the form: 𝐺ଵଷ(𝑧) = 𝐺ଵଶ(𝑧);  𝐺ଶଷ(𝑧) = 𝐺ଵଶ(𝑧). The Hooke’s law is the following: ቂ𝜎𝜎ఏఏቃ = 𝑄ଵଵ(𝑧) 𝑄ଵଶ(𝑧)𝑄ଵଶ(𝑧) 𝑄ଶଶ(𝑧)൨ ቂ𝜀𝜀ఏఏቃ ;                                                               (1) 𝜎ఏ = 𝐺ଶଷ(𝑧)𝛾ఏ; 𝜎 = 𝐺ଵଷ(𝑧)𝛾; 𝜎ఏ = 𝐺ଵଶ(𝑧)𝛾ఏ.. 
 The projections of the shell points displacements, which are placed on the 𝑧 distance from the middle surface, 
are denoted by 𝑢௫(𝑥, 𝜃, 𝑡, 𝑧), 𝑢ఏ(𝑥, 𝜃, 𝑡, 𝑧) and 𝑢௭(𝑥, 𝜃, 𝑡, 𝑧). The higher- order shear deformation theory is used to 
describe the shell displacements: 𝑢௫(𝑥, 𝜃, 𝑡, 𝑧) = 𝑢(𝑥, 𝜃, 𝑡) + 𝑧𝜙ଵ(𝑥, 𝜃, 𝑡) + 𝑧ଶ𝜓ଵ(𝑥, 𝜃, 𝑡) + 𝑧ଷ𝛾ଵ(𝑥, 𝜃, 𝑡);                                       (2) 𝑢ఏ(𝑥, 𝜃, 𝑡, 𝑧) = ቀ1 + 𝑧𝑅ቁ 𝑣(𝑥, 𝜃, 𝑡) + 𝑧𝜙ଶ(𝑥, 𝜃, 𝑡) + 𝑧ଶ𝜓ଶ(𝑥, 𝜃, 𝑡) + 𝑧ଷ𝛾ଶ(𝑥, 𝜃, 𝑡); 𝑢௭(𝑥, 𝜃, 𝑡, 𝑧) = 𝑤(𝑥, 𝜃, 𝑡), 
where 𝑅 is radius of the cylindrical shell; 𝜙ଵ and 𝜙ଵ are the rotations of the middle surface normal about the 𝜃 and 𝑥 
axes, respectively. 
 

3. Results and discussions  
 
 As a result of the numerical analysis, the bifurcation diagram is calculated (Fig.1). The self-sustained 
vibrations are originated as a result of the Hopf bifurcation. The influence of the types of CNTs reinforced is analyzed.  
 

 
Figure 1: The response diagram of the self-sustained vibrations. The amplitudes 𝐴ଵℎିଵ versus the free stream static pressure 𝑝ஶ is 

shown 
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Summary. Resonance behavior of the system with a limited power-supply (or non-ideal system) having the pendulum as absorber is 
considered. The multiple scales method is used to describe the system dynamics near the resonance. It is shown that the essential 
reduction of the resonance vibration amplitudes can be obtained by choose of the system parameters. Transient in the non-ideal 
system under consideration is effectively constructed using the rational Padé approximation. Tending of the transient to the resonance 
steady state is shown. It is shown that the amplitudes of resonant oscillations of the elastic subsystem can be essentially reduced by 
choosing some system parameters.  

Introduction. The basic model.  

The systems with limited power supply are characterized by interaction of the source of energy and elastic sub-system 
which is under action of the source. Such systems are named also as non-ideal systems (NIS). For the NIS the external 
excitation depends on the excited elastic sub-system dynamics. The most interesting effect appearing in non-ideal 
systems is the Sommerfeld effect [1], when in the elastic sub-system the large amplitude resonance regime is appeared, 
and the big part of the vibration energy passes from the energy source to the resonance behavior. Resonance dynamics 
of the systems with limited power supply is first analytically described by V.Kononenko [2]. Then investigations on the 
subject were continued by Kononenko [3] and other authors [4-7]. Reviews of numerous studies of the NIS dynamics 
can be found in [8-10]. We can note that different types of the NIS behaviour were considered, including forced and 
parametric oscillations, self-oscillations, transient, chaotic oscillations, interaction of the NIS with energy sources of 
different physical characteristics, and so on.  
It is known that nonlinear vibration absorbers can significantly reduce the amplitudes of resonant elastic vibrations. We 
consider here the resonant behaviour of the non-ideal system with three DOF (Fig.1), having the pendulum-type 
absorber, by the multiple scales method. Both the resonance steady state and the transient are constructed. The transient 
is effectively presented using the rational Padé approximants [11] containing exponents. It is shown that amplitudes of 
the resonant oscillations of the elastic subsystem can be reduced by changing some system parameters. 
 

 
Figure. 1. The model under consideration 

Resonance steady state solution. Influence of the system parameters to resonance dynamics of the system 

Equations of motion of the system under consideration with respect to variables x, φ and ș are the following:  

     
 

 

2
0 1 1

1

sin cos sin ;

sin cos ;

sin cos 0.

M m x c c x c r ml

I a b c r x r

ml l g x

    

   

  

      
    


  

        (1) 

Here I is the moment of inertia of rotating masses; 0 1( )c c  is the rigidity of the elastic subsystem having the mass 

M; the combination L a b   describes both the driving moment of the energy source and the moment of the forces of 

resistance to the rotation that is the so-called characteristics of the engine. From equations (1) it is seen that the moment 

1 cosc rx   is the part of the motor excitation that depends on the oscillations of the elastic subsystem. 
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Construction of a stationary resonant solution.  

In the first place, we use some transformations. Namely, the functions cos  and sin  are expanded in the McLaren 
series, and terms remain to the third degree. Then a small parameter ε, introduced into the equations of motion, 
characterizes the small mass of the absorber with respect to the mass of the elastic part of the system, m m , and the 
smallness of vibration components in variability in time of the angle φ velocity with respect to its main constant 
component. Terms hx  and h   describe the small dissipation. Considering a region of the resonance between 
frequencies of the motor rotation and the elastic sub-system vibrations, we introduce the small frequency detuning as 

2 2,x      where 2
0 1 xc c M  . We also assume that in the resonance region the external excitation of the 

elastic subsystem is small. A relatively not large nonlinear part of the elastic subsystem response is represented by the 

term 
3x , which is included in the first equation of the system (1). As a result, we consider the following equations of 

motion instead of the equations (1): 

 

  

3
2 3 2 2

1

1

3
2

   

                                                    

1
sin 1

2 6

sin cos

1
1

6

     

2

xM m x x hx x c r ml

I a b c r x r

ml l g x

          

    

   

              
    

   

            
   

                                             0  h 







 


 (2) 

The multiple scales method [12] is used to describe the behaviour of the system in the field of resonance. According to 
this method, we write the following representations of solutions:  

           2 2 2, , , ,...; ; , , , ,...; ; , , , ,...;x t x t t t t t t t t t t t                    (3) 

In addition, the following transformations are used: 

2

0 1 2

2 2 2
2

2 2 2
0 1 0 20 1

...

2 2 ...

d

dt T T T

d

T T T Tdt T T

 

 

  
   
  

      
           

    (4)  

Here 
0 1,T t T t    and x  . The representations (3) are decomposed in the form of the power series by the 

small parameter.  Substituting the power series into the system (2), we distinguish the terms of zero and first degrees by 
the small parameter. As a result, the following system of differential equations can be obtained:  

2
0 20

02
0

: 0,
x

x
T

 
 


      (5)
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       (6)
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2 2

0 01
0 0 02

0 1 0 0

2 cos sin 2 ,
2

qr
K N qx

T T T T

    
     

   
    (8) 

݈ 𝜕మ𝜃0𝜕𝑇0మ + 𝑔ߠ − 𝑔 𝜃𝜊య6 + 𝜕మ𝑥0𝜕𝑇0మ − 𝜃𝜊మଶ 𝜕మ𝑥0𝜕𝑇0మ + ℎ̃ 𝜕𝜃0𝜕𝑇0 = Ͳ              (9) 
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Here ℎ̃ = ℎ/ሺ݈݉ሻ, Ω is the frequency of the motor rotation, depending on the time scale 𝑇ଵ. The solutions of 
equations of the zero approximation by the small parameter (5) and (6) are presented as follows: 

   0 0 0

0 0

cos sin  x A T B T

T
   


 

     (10) 

We assume that in the resonance between the engine speeds and the oscillations of the elastic subsystem, the amplitudes 
of the pendulum oscillations are small. Therefore, we assume that in equation (9) all members with a degree greater 
than one have the order of the small parameter  . As a result, from equation (9) we have the following:  

2 2

0 0 0 2 2
where

A B
C cos T D sin T , C , D .

g l g l
  

     
   

   (11) 

The solution of the zero approximation (10) is substituted to the equation (7). To avoid the appearance of secular terms 
the following modulation equations are obtained:  

2 3
2 2

1

3 3
2 0,

4 4

A hA A B B
B B lD

T M M M

    
         


   (12)

 
2 3

2 2

1

1

3 3
2 0,

4 4

,

B hB AB A
A A lC

T M M M

c rm

M M

  

 

 
         



   
 

   (13) 

To avoid the appearance of secular terms in the solution of the equation (8) we use the following relation:  

2

1

1
2 2

2 0, where , , .
2 x x x

c ra b
K

qA
q

I I I
K N N

T   


      


   (14) 

Together, all three equations (12-14) give variables A, B and Ω, which correspond to the resonant state. Considering 
the steady state, we assume that the values of A, B and Ω are constant. In this case, equations (12-14) are transformed 
into a system of nonlinear algebraic equations for these values, which is solved by the Newton's numerical method. 
Thus, constants can be obtained for a stationary solution ̃ܣ, ,ܤ̃ Ω̃. In particular, from equation (14) we have that Ω̃ = ±ሺሺʹܽ + ܿଵ𝑟̃ܣ𝑜ሻ/ʹܾሻଵ/ଶ     (15)  

Note that in the resonance region, the frequencies Ω and x  differ by an order of magnitude of the small parameter 

 . Thus, if in the coefficients K, N the variable frequency Ω changes by x , then we can find the following solution 

of equation (14): 

  10 2
0 21 , where , 1.

10

N
T

С e   


           (16) 

The last relation shows the approach of the motor frequency to the stationary value of Ω̃ with increasing time. 

Construction of the transient using the Padé approximants.  

The expression (16) is substituted to equations (12) and (13), preserving the terms of zero and first degree by the 
variable .  To solve the obtained differential equations, the following representations of functions A and B in the form 

of the following power series:  ܣ = 𝑜ܣ + ߟଵܣ + ଶߟଶܣ + ܤ ,    ⋯ = 𝑜ܤ + ߟଵܤ + 𝛣ଶߟଶ + ⋯     (17) 
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Here the magnitudes 0 0 and   A B  selected to match the corresponding values for stationary mode, namely, the values ̃ܣ,  , Ș,… The zero approximation solutionsߟ . Next, we need to select equations that contain members of the orderܤ̃

with respect to Ș, which is not presented here, permits to obtain 1A  and 1B , namely 
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Here  20,
2

N
G g l      . From the equations of the first approximation, i.e. equations containing members 

of the order Ș, the constants 2A  and 2B  can be found, which are not presented here. Then we introduce the following 

expansions of functions A and B in power series: 

2
0 1 2 ...inA A A A      2

0 1 2 ...inB B B B        (20) 

Here  0 0,in inA B  these are here arbitrary values of the amplitudes of oscillations, which are determined by the initial 

conditions. For further research, we also introduce the following parameter: 

1

1

1
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1 1

T

T

e

e





  
 






  

 
    (21) 

Substituting the relationship (21) to the power series (20) and decomposing these expressions into McLaren series by 

the parameter  , corresponding to the case 1 0T  , one has the following: 

0 1 1 2

0 1 1 2
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B B B B B
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We introduce the Padé approximants for values ,  varying it from zero to infinity, corresponding to change of the 

time scale 𝑇ଵ  also from zero to infinity, as: 
2

0 1 2
2

1 2

2
0 1 2

2
1 2
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1
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B

   
  

   
  

 


 

 


 

      (23) 

Then we compare expressions (23) with series (22). In addition, to describe the approximation of the transition process 
to the stationary regime, we consider the boundary of expressions (23) when    (that is, when 

1T  ) and 

equate this limit to the values of the amplitudes ܣ̃ and 𝛣̃, previously obtained for stationary mode, i.e. 

2 2
0 0

2 2

,A B
 
 

  . All this makes it possible to obtain coefficients of the Padé approximants (23) from a system of 

linear algebraic equations. 

Comparative characteristics of the transition and stationary modes. Resonant behaviour of the system 
when changing system parameters.  

Here we consider a comparison of the stationary solution and the transient of the system at small and time values. Then 
we consider also the influence of the system parameters on the amplitude of elastic oscillations in the resonant region. 

ENOC 2022, July 17-22, 2022, Lyon, France

1016



 

ENOC 2020+2, July 17-22, 2022, Lyon, France 
 

This applies to the change of the parameters of the pendulum mass m and the parameter of nonlinearity in the elastic 
force .  The corresponding numerical simulation was performed for the basic system (2) using the 4th order Runge-
Kutta procedure. Change of the driving moment coefficient a and the length of the pendulum l leads to a slight decrease 
in the amplitude of elastic oscillations, thus graphical representations corresponding to changes in these parameters are 
not given. From numerical simulations it can be concluded that the amplitudes of resonant elastic oscillations can be 
significantly reduced with the parameters m and τ. We will consider the solutions at different time intervals, as at small 
values of time, 𝑡 ∈ ሺͲ; ͷሻ, and for significant values of time, 𝑡 ∈ ሺʹʹͲ; ʹʹͷሻ. Note that in the pictures a),c) the 
variable x(t), and in the pictures b),d) the variable ș(t) are presented. In all Figs. the following fixed parameters are 
given: = Ͳ,͵ʹͳ; ݈ = ͳ. In Fig. 2 the comparison of the stationary solution and the transient at 𝑡 ∈ ሺͲ; ͷሻ is 
presented for 𝜏 = Ͳ,Ͳͷ. In Fig. 2. а,b the parameter m = 0.07 and in Fig. 2. c,d one has m = 0.11. Fig. 3 shows the 
comparison of the stationary solution and the transient at 𝑡 ∈ ሺʹʹͲ; ʹʹͷሻ for the same fixed parameters a, l, τ as in 
Fig. 2. In Fig. 3a,b the parameter m = 0.07, and in Fig. 3c,d one has m = 0.11 . Fig. 4 presents the comparison of the 
stationary solution and the transient at 𝑡 ∈ ሺͲ; ͷሻ, for m = 0.05. In Fig. 4a,b the parameter 𝜏 = Ͳ,Ͳͳ,  and on Fig. 4c,d 
one has 𝜏 = Ͳ,Ͳͷ.  In Fig. 5 the comparison is shown at 𝑡 ∈ ሺʹʹͲ; ʹʹͷሻ for the same fixes parameters a, l, τ as in 
Fig. 4. In Fig. 5a,b the parameter 𝜏 = Ͳ,Ͳͳ, and in Fig. 5c,d  one has 𝜏 = Ͳ,Ͳͷ.  
 

  
a)                                                                                  b) 

 
c)                                                                                               d) 

Figure 2. Comparison of the stationary solution (1) and the transient  (2) at 𝑡 ∈ ሺͲ; ͷሻ: a) variable x for m = 0.07; b) 

variable   for  m = 0.07; c) variable x for m = 0.11; d) variable   for m = 0.11. 

Conclusions 

Analyzing the obtained results, we can obtain the following conclusions. First, it is fashionable to obtain the resonance 
steady state effectively by the multiple scales method. Secondly, we can see a good coincidence of the transient 
represented by the Padé approximants to the stationary regime with increasing time values. Thus, the proposed Padé 
approximants having exponents are very effective for the transient presentation. Finally, the numerical simulation 
demonstrates a significant decrease in the amplitudes of elastic oscillations with increasing the pendulum mass and the 
nonlinearity in the elastic force. 
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a)                                                                                           b) 

 
c)                                                                                               d) 

Figure 3. Comparison of stationary solution (1) and transient (2) at 𝑡 ∈ ሺʹʹͲ; ʹʹͷሻ: a) variable x for m = 0.07; b) 

variable   for m = 0.07; c) variable x for m = 0.11; d) variable   for m = 0.11. 

 
a)                                                                                            b) 

 
c)                                                                                               d) 

Figure 4. Comparison of the stationary solution (1) and the transient (2) at 𝑡 ∈ ሺͲ; ͷሻ: a) variable x for 𝜏 = Ͳ,Ͳͳ; b) 
variable   for 𝜏 = Ͳ,Ͳͳ; c) variable x  for 𝜏 = Ͳ,Ͳͷ; d) variable   for 𝜏 = Ͳ,Ͳͷ. 
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a)                                                                                                b) 

 
c)                                                                                                d) 

Figure 5. Comparison of the stationary solution (1) and the transient (2) at 𝑡 ∈ ሺʹʹͲ; ʹʹͷሻ: a) variable x for 𝜏 = Ͳ,Ͳͳ; 
b) variable   for 𝜏 = Ͳ,Ͳͳ; c) variable x for 𝜏 = Ͳ,Ͳͷ; d) variable   for 𝜏 = Ͳ,Ͳͷ. 
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The effect of additional masses on the dynamic buckling of a like-beam structure 

 
Amine Alaoui-Tahiri*,** , Claude Stolz*,** , Pierre Badel*,** , Mathieu Corus*,**  

*IMSIA, UMR-CNRS 9219, 828 Bd des Maréchaux, Palaiseau, France 
** EDF R&D, Dpt ERMES, 7 Bd Gaspard Monge, 91120 Palaiseau, France 

 
Summary. A mechanical model of a beam subjected to impact velocity is analyzed. It consists of a beam with additional mass-spring 
systems. We investigate the distribution of the axial stress along the beam, and the effect of different parameters (masses and their 
distribution, spring’s stiffness) on the stability of the beam. 

Introduction 

In industrial safety, dynamic buckling is one of the most important considerations to design structures subjected to 
sudden loadings. For instance, spacer grids in nuclear fuel assembly should have sufficient buckling strength in case of 
major accidents as earthquakes.  Several studies using finite elements models with experimental validation for static 
buckling and post-buckling of spacer grids were conducted [1]. In literature, most studies focus only on inner 
characteristics of the spacer grid components without a fully dynamic analysis of the fuel rods movements [2]. Dynamic 
buckling of structural elements (columns, plates, shells...) under impulsive axial loading has been studied using different 
approaches. It has been widely investigated for imperfection-sensitive structures with neglected axial inertia forces [3]. 
For nearly perfect structures, other studies have shown that the axial inertia forces must be considered, particularly in 
the case of high impact velocities [4].   
 

Mechanical model 

We propose a simplified beam model to reproduce the effect of fuel rods, as lumped masses, on the dynamic buckling 
of the spacer grid. In the present study, we conduct a stability analysis based on eigenvalues evolution for the systems 
shown in figure 1 and figure 2. The occurrence of buckling and its characteristics (time to buckling, evolution of 
eigenvalues) are affected by additional masses due to axial stress waves. This effect is illustrated through the impact 
response of the system with an initial velocity for different configurations. Each configuration is defined by a specific 
distribution of mass-spring systems and by their frequencies. 

 

 
 

Figure 1: Model of a beam with additional masses 
 

 
Figure 2: Model of a beam with additional mass-spring systems 

 
 
To predict a potential buckling of the beam, we solve the wave equation by considering the additional masses  E 

∂2u  ∂x2 = ρ 
∂2u  ∂t2  

 

(1) 

To obtain the geometric stiffness matrix at each time step, we consider the first nonlinear term in transverse direction in 
the axial strain of the beam E I ∂4v ∂x4 + ∂∂x 

(E A 
∂u∂x ሺx, tሻ. ∂v∂x  ) + ρ A 

∂2v∂t2 
= Ͳ 

 

(2) 

 Then an eigenvalue problem is obtained at each time step  [Kୣ୪ୟs + Kୣo୫ሺtሻ].  X + M. Ẍ = Ͳ (3) 
 
In fact, the system is instable if one eigenvalue of the system is positive. 

 

 

 

 

𝑉0 𝑉0 
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Results 

The study is carried out for several configurations with multiple distributions of the masses or the mass-spring systems. 
Herein we present the results obtained for two configurations. The first configuration consists of a beam with three 
masses characterized by the mass ratio: r୫ =  𝑚𝑖Mౘem , with Mୠୣୟ୫ is the beam’s mass. The second one consists of a 

beam with three mass-spring systems characterized by the frequency ratio: r =  iౘem  where fୠୣୟ୫ is the first natural 

longitudinal frequency of the beam and fi is the frequency of the mass-spring system. The distribution of the axial stress 
along the beam at each time step is shown in figures 3 and 4 for the first and the second configurations, respectively. As 
shown in figure 5 the beam tends to buckle for heavy additional masses. Furthermore, for a given additional mass, the 
frequency of the mass-spring system needs to be smaller than the natural frequencies of the beam to avoid buckling 
(figure 6). 
 
 

Figure 3: axial stress in the beam with masses for 𝑟𝑚 = ͳ  Figure 4: axial stress in the beam with mass-spring systems for 𝑟𝑓 = ͳ 
 

Figure 5: Evolution of the maximum real part of eigenvalues of 
the beam with masses for different mass ratios 

 

 Figure 6: Evolution of the maximum real part of eigenvalues of 
the beam with mass-spring systems for different frequency ratios 

Conclusion and comparison with experimental data 

In this study we highlight the importance of considering the compression wave in the prediction of the buckling of a 
beam with an impact velocity. A further study considering non-linear springs is currently carried out to investigate their 
effect on the axial wave motion. 
For the beam model with mass-springs, the validation of this analysis is considered by setting up a prototype of a 
structure with rigid point mass inclusions and an adapted experimental protocol under impact conditions. 
 
 
References 
[1] Yoo, Y.I., Park, N.G., Kim, K.J., Suh, J.M. “Static buckling analysis of the partial spacer grid of the nuclear fuel assembly”. Proceedings of 

ANSYS Conference and 32nd CADFEM Users’ Meeting, 2014. 
[2] Yoo, Y., Kim, K., Lee, S. “Finite element analysis of the mechanical behaviour of a nuclear fuel assembly spacer grid”. Nuclear Engineering 

and Design. 2019. 
[3] H, Lindberg., A, Florence., “Dynamic Pulse Buckling: Theory and Experiment” M. Nijhoff, Boston, 1987. 
[4] J. Wooseok, A,Waas. “Dynamic bifurcation buckling of an impacted column”. International Journal of Engineering Science. 46: 958-967,2008. 

  
 

ENOC 2022, July 17-22, 2022, Lyon, France

1022



 

ENOC 2021, July 17-22, 2022, Lyon, France 

 

 The Bifurcation Structure of a Self-Excited Inertia Wheel Double Pendulum  
 

Y. Levi and O. Gottlieb 

Department of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, Israel. 

  
Summary. We construct the bifurcation structure of a self-excited inertia wheel double pendulum. The dynamical system exhibits stable 

equilibria, periodic limit cycle oscillations and nonstationary rotations. We investigate several configurations documented in literature 

which exhibit internal resonances and compare their bifurcation structure demonstrating similarities in periodic oscillations and distinct 

differences in patterns of chaotic rotations. 

Introduction 

Self-excitation of restrained and freely oscillating rigid bodies are encountered in a variety of engineering 

applications including friction induced vibration, aeroelastic limit cycle oscillations and fluid-structure 

interaction. Stabilization of limit cycle oscillations has been proposed by several approaches including 

boundary feed forward control of a multi-tethered lighter-than-air sphere [1] and digital delayed feedback 

control of an aero-pendulum [2]. Of particular importance is the capability of an inertia wheel (or reaction 

wheel) with linear and nonlinear feedback to obtain stable and robust limit-cycle oscillations in underactuated 

dynamical systems [3,4]. We thus investigate the self-excited dynamics of an autonomous dynamical system 

which consists of a planar double pendulum augmented with a rotating inertia wheel (see Fig.1-left). We 

consider double pendulum configurations documented in literature which exhibit conditions near a 1:1 [5], 2:1 

[6] and 3:1 [7] internal resonances. Stability analysis of the zero-angle equilibrium position under a partial-

state feedback scheme yields a stability map of feedback gains (Fig.1-right) that includes a distinct region 

(green) of possible self-excited limit cycles that is bounded by Hopf and Saddle-Node bifurcations denoting 

the transitions from stable equilibria to periodic limit-cycle oscillations (solid blue line) and the transition to 

rotations (dashed red line), respectively. 

Figure 1. Definition sketch (left) and stability map of the inertia wheel feedback gains for a 2:1 configuration depicting regions of 

stable zero equilibrium (grey), possible limit-cycles (green) and rotations (white). 

Results 

We perform a numerical investigation of the dynamical system near a 1:1 internal resonance where the states 

include the angles (X1, X3) and angular velocities of the pendula and wheel (X2, X4, X5), respectively. The 

bifurcation diagram (Fig.2-left) depicts the maximal state oscillation amplitude as a function of the wheel 

velocity feedback gain (Г3) and includes two regions of periodic oscillations (about the stable zero equilibrium 

and about the unstable upper equilibrium) and two regions of nonstationary oscillations and rotations. 

Examples of a periodic limit cycle (Fig.2-center) and a chaotic rotation (Fig.2-right) include state space 

projections of the system conjugate momenta (Pi, i=1,2,3) and the bottom pendulum position (Y(X) overlaid 

with their corresponding Poincare' maps (sampled every positive zero crossing of the bounded wheel velocity). 

Discussion 

We numerically integrate the dynamical system using the conditions of the above noted 2:1 and 3:1 internal 

resonances and normalize their bifurcation structures by their respective Hopf thresholds (Г3/Г3Hopf). We 

portray the normalized bifurcation strucutres (Fig.3-left) demonstrating a distinct similarity of the periodic 
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self-excited limit cycles between the configurations of the 1:1 (blue), 2:1 (red) and 3:1 (green) internal 

resonances.) However, the Poincare’ maps of the nonstationary rotations for the 2:1 (Fig.3-center) and 3:1 

(Fig.3-right) configurations reveal a distinctly different chaotic pattern than the one obtained for the 

configuration near a 1:1 internal resonance (Fig.2-right). Furthermore, while all the considered cases reveal 

similar behavior of the inertia wheel velocity (X5), the velocities of the two pendulum elements (X2, X4) 

exhibited a distinctly different behavior between the region of periodic limit cycle oscillations and 

nonstationary rotations. 
 

 

Figure 2. Bifurcation diagram (left), and overlaid state space with Poincare’ map for periodic limit cycle oscillations (center) and 

nonstationary rotations (right). 

   

 

Figure 3. Normalized bifurcation diagram (left) depicting the configurations of the 1:1 (blue), 2:1 (red) and 3:1 (green) internal resonances 

and overlaid state space and Poincare’ map for nonstationary rotations of the 2:1 (center) and 3:1 (right) internal resonances. 
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Switching from primary to subharmonic resonances in nonlinear systems

Ghislain Raze∗, Samer Houri∗ and Gaëtan Kerschen∗

∗Aerospace and Mechanical Engineering Department, University of Liège, Liège, Belgium

Summary. This work proposes a simple method to switch between the primary and subharmonic resonances of nonlinear systems. For
a primary resonance harmonically excited at a specific forcing amplitude, there exists another forcing amplitude at an integer multiple
of the fundamental frequency allowing for the excitation of the corresponding subharmonic resonance having the same amplitude and
frequency. Using an energy analysis, it is possible to determine the necessary forcing amplitude change to switch to the targeted
subharmonic resonance. The proposed method is numerically illustrated with a transition from a 1:1 to a 1:3 resonance of a Duffing
oscillator.

Introduction

Nonlinear systems feature rich dynamics, such as multistability, modal interactions, isolated responses, quasiperiodic
oscillations under harmonic forcing, and chaos. Furthermore, the nonlinearities of the system generate harmonics of
the forcing frequency. This leads to the appearance of different families of resonances in addition to the primary one,
such as superharmonic, subharmonic, ultra-subharmonic and combination resonances [1]. Among theses, subharmonic
resonances are unique in that they occur when the excitation frequency is an integer multiple of a resonance frequency.
Subharmonic resonances have attracted attention in various physics and engineering research areas, such as energy
harvesting [2, 3], micro-electromechanical systems [4] and metamaterials [5]. An inherent difficulty associated with
their characterization is that they usually appear as isolated branches with respect to the main nonlinear frequency re-
sponse [1, 6]. Exciting them thus generally requires time-consuming stochastic approaches to bring the state of the
system under test into the basin of attraction of the sought resonance [3].
This work proposes a method to excite subharmonic resonances when the corresponding primary resonance is known. If
the system is excited at one of its primary resonances, and we wish to seamlessly transition to a subharmonic resonance
while maintaining the same motion in terms of amplitude, frequency and phase, then an explicit relation between the
forcing amplitudes in these two cases can be derived using an energy method. By performing an adequate change in
excitation frequency and amplitude, it is thus possible to change a primary resonance into a subharmonic one.

Energy analysis of resonances

The following equations of motion are considered:

Mẍ(t) +Cẋ(t) +Kx(t) + fnl(x(t), ẋ(t)) = fνfext sin (νωt) , (1)

where M, C and K are structural mass, damping and stiffness matrices, respectively, fnl is the vector of nonlinear forces,
and fν and fext are the external forcing amplitude and spatial distribution, respectively. It is assumed that the structure
responds periodically with an angular frequency ω to the external forcing at angular frequency νω (with ν a strictly
positive integer number). The response can thus be expressed by the Fourier series

x(t) =
xc0√
2
+

∞∑

n=1

xsn sin(nωt) + xcn cos(nωt). (2)

We now look for the conditions under which a primary resonance x1:1(t) can be switched to a subharmonic one x1:ν(t),
where x1:1(t) and x1:ν(t) represent the solution of Equation (1) for ν = 1 and ν ̸= 1, respectively. It is thus assumed
that x(t) := x1:1(t) ≈ x1:ν(t). A justification of this hypothesis can be found in [6] if lightly-damped systems are
considered, because primary and subharmonic resonances can both be seen as perturbations of the same periodic orbit
of the underlying conservative system. The premultiplication of Equation (1) by ẋT (t) (where superscript T denotes
transposition) and subsequent integration over one period of motion T feature the dissipation D and the work done by the
external forcing over one periodWext,ν

D =

∫ T

0

ẋT (t) (Cẋ(t) + fnl(x(t), ẋ(t))) dt =

∫ T

0

ẋT (t)fνfext sin (νωt) dt =Wext,ν = −νπxTcνfextfν , (3)

where the last equality is obtained thanks to Equation (2). D depends only on the motion x(t) and is therefore identical for
the primary and subharmonic resonances by assumption. It then follows thatWext,1 =Wext,ν , and hence from Equation
(3) the forcing amplitudes of the primary (f1) and subharmonic (fν , ν ̸= 1) resonances must satisfy a relation given by

fν =
xTc1fext
νxTcνfext

f1. (4)

This suggests that a subharmonic resonance may simply be excited by initiating the structure to its primary resonance,
and by subsequently performing a multiplication of the forcing frequency by ν and a change in amplitude according to
Equation (4). The factor in this equation can readily be computed either numerically or experimentally, as it only requires
to monitor the first and νth cosine Fourier coefficients of the response at the forcing location (xTc1fext and xTcνfext).
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Illustration with a Duffing oscillator

To illustrate the proposed approach, we consider a Duffing oscillator governed by the equation of motion

mẍ(t) + cẋ(t) + kx(t) + knlx
3(t) = f(t), (5)

with parameters m = 1 kg, c = 0.01 kg/s, k = 1 N/m and knl = 1 N/m3.
The structure is excited at its primary (phase) resonance with a harmonic forcing of amplitude 0.047 N at frequency
ω = 2.14 rad/s. A jump to the 1:3 subharmonic resonance is initiated by multiplying the forcing frequency by 3 and
changing its amplitude to 0.49 N, this new amplitude being computed from Equation (4). The time simulation results
(obtained with a Runge-Kutta time integration scheme) are depicted in Figure 1. In spite of the strong change in forcing
featured in Figure 1a, nearly no transient is observed in the motion, and the forcing is effectively able to sustain a motion
with threefold period. Figure 1b indicates that this regime is sustained after the transients died out, which confirms that
this subharmonic motion is a stable attractor of the system.
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Figure 1: Time simulation of a Duffing oscillator undergoing a transition from a 1:1 to a 1:3 resonance: forcing f(t)
( ) and motion x(t) before ( ) and after ( ) the change in forcing; close-up on the transition time (a) and full time
simulation (b).

Conclusion

An approach to excite subharmonic resonances of nonlinear systems was proposed in this work. Based on the assumption
that the resonant motions and the work provided by the external forcings are both identical for the primary and subhar-
monic resonances, an explicit relation was derived between the two forcing amplitudes. This allows for the transition
from a primary to a subharmonic resonance through a suitable change in forcing amplitude and frequency. The proposed
method was numerically demonstrated with a Duffing oscillator. This method is simple and holds great promises to find
and predict subharmonic resonances of more complex nonlinear systems from the knowledge of their associated primary
resonance, both numerically and experimentally.
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 Nonlinear Normal Modes in the pendulum system under magnetic excitation 

 
 Yuri V. Mikhlin *, Yuliia E. Surhanova*  
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Summary. Dynamics of two coupled pendulums under magnetic excitation is considered. Inertial components of the 
pendulums are essentially different, and a ratio of masses is chosen as a small parameter. Padé approximants is used to for the 
magnetic forces approximation. The small parameter method and the method of multiple scales are used to construct 
nonlinear normal modes (NNMs), one of them is localized one. Influence of the initial values and the system parameters, 
including the pendulum masses,  change to the NNMs is studied.  

Introduction. The basic model. 

The system containing two pendulums under the electromagnetic motor influence is studied in few papers [1-3] where 
some corresponding mathematical models are constructed, and their validation is discussed after comparison of the 
numerical simulation and experimental results. Then some important aspects of the system dynamics are analyzed. Here 
we consider a similar system of two pendulums under magnetic force when inertial characteristics of these pendulums 
are essentially different. In this case, a localization of energy on the small mass pendulum is possible. To describe the 
system dynamics, the nonlinear normal modes (NNMs) theory is used. Different theoretical aspects of the NNMs theory 
and applications of the theory are presented in numerous publications, in particular, in reviews [4,5].  
The Padé approximant and the nonlinear least squares method are used for analytical presentation of the magnetic force; 
such approximation demonstrates a good correspondence with experimental results presented in [2,3] as is shown in 
Fig.1.  

 

Fig.1. Comparison of the magnetic force Padé approximation with experimental result [2,3].  

Equations of motion of the system under consideration with respect to the pendulum angles are the following:  
 {𝜀𝐼𝜑ଵ̈ = 𝜀𝑀𝑎𝑔భ − 𝜀𝑚𝑔ݏ sin 𝜑ଵ − 𝑘ሺ𝜑ଵ − 𝜑ଶሻ,𝐼𝜑ଶ̈ = 𝜀𝑀𝑎𝑔మ − 𝑚𝑔ݏ sin 𝜑ଶ − 𝑘ሺ𝜑ଶ − 𝜑ଵሻ,                  (1) 

 
Here I is the inertia moment of the big mass pendulum,   rotating masses, 𝑘ሺ𝜑ଵ −  𝜑ଶሻ is the moment of the torsional 
deformation, ݏ is a distance between the pendulum centrum of masses and the axes of rotation. Later sinሺ𝜑ሻ ≅ 𝜑 −𝜀6 𝜑ଷ. The small parameter ε characterizes the pendulum masses ratio. Then the small parameter method is used. In zero 

approximation, the relation 𝜑ଵ = 𝜑ଶ is obtained for the coupled (in phase) vibration mode, and the relation 𝜑ଶ =Ͳ  is obtained for the localized vibration mode after the following time transformation: t=ετ. Without the magnetic 
influence in a wide range of changes in the system parameters, the error of the analytical solution is insignificant over 
sufficiently long time intervals and slowly increases with the growth of ݐ up to the values of the pendulum initial angle 
deviations of the order 0.8727 ݎ𝑎𝑑 (50°). Numerical simulations show a good exactness of the obtained analytical 
solution for relatively small values of the parameter ε. But with increasing of the parameter 𝜀 there is a gradual 
transition from the localized vibration mode to the out-of-phase one.  

Influence of the initial deviations and the system parameters to the connected and localized nonlinear 
normal vibration modes under magnetic excitation 

Considering numerical simulation of the connected and/or localized NNMs in the system under magnetic excitation we 
can conclude that at small angles, the influence of the magnetic force is greater, which means that the shape of the 
NNMs should not be preserved, although a localization of vibration is saved. At the same time, for large angles (for 
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high energies), the both stable NNMs take place. But, if  the modulated magnetic effect itself is small, the in-phase mode 
will be observed even with small values of the initial deviations of the pendulums. The localized NNM for small and 
relatively large values of initial deviations is presented in Fig. 2б where the simulation is made for the following system 

parameters: 𝑚 = Ͳ.5 𝑘𝑔, 𝑘 = Ͳ.5 𝑁𝑟𝑎𝑑 , ݏ = ʹ.5 𝑚.  

                            
        Fig. 2a: φଵሺͲሻ = Ͳ.ͲͲ7ݎ𝑎𝑑, ε = Ͳ.ʹʹ, φଶሺͲሻ = −Ͳ.ͲͲʹ rad          Fig.2b: 𝜑ଵሺͲሻ = Ͳ.ͳ75 ݎ𝑎𝑑, 𝜀 = Ͳ.Ͳʹ, 𝜑ଶሺͲሻ = −Ͳ.ͲͲ͵ ݎ𝑎𝑑 

Fig.2. Localized NNM for small and relatively large values of the initial angles.  

With the moderate increase of the parameter 𝜀, the connected mode shape is observed with small deviations of the 
trajectories, but with further increase of 𝜀, the deviations increase significantly for both pendulums, and some 
divergences from the connected mode shape is observed.  
With increase of the coupling, the sharps of the in-phase and localized modes becomes more defined. It is true for a 
system with both a large magnetic effect and a small one.  
Increase of the distance from the center of mass of the pendulum to the axis of rotation under both small and large 
initial conditions, as well as at small and large coupling coefficients, always leads to the clear manifestation of the 
connected (in-phase) mode. But if the initial angle of deflection of the pendulum is small, and the connection is small, 
both for a small magnetic effect and for a large magnetic one, then increasing the distance from the center of mass of 
the pendulum to the axis of rotation s does not contribute to the emergence of a stable localized shape.  
A change in the distance from the center of mass to the axis of rotation with not too large values of the small parameter 
(𝜀 <0.2 and with a large value of the coupling coefficient), does not significantly affect the localized shape of the 
oscillations. With a small connection and a large distance from the center of mass of the pendulum to the axis of 
rotation, there are significant wanderings of trajectories around the localized mode 

Conclusions 

An analytical and numerical study of nonlinear vibration modes in a system consisting of two connected pendulums 
under the influence of electromagnetic forces is carried out, and here the masses of the pendulums differ significantly 
(the masses ratio is characterized by the small parameter ε), which leads to the appearance of a localized vibration 
mode. Both vibration modes are constructed by the small parameter method. Influence of the system parameters to the 
connected and localized NNMs is analyzed. In particular, we can conclude that both NNMs are clearly manifested for 
not small values of the initial angles. With a very small initial angle, the localized mode does not manifest itself. 
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Summary. The features of behavior of a dynamically asymmetric heavy body with two elastic supports on an inclined rough 
plane are studied. The classical Coulomb model of dry friction is used. The supports can move without friction along 
parallel guides fixed in the body and interact with the body by means of elastic springs. It is shown that the equilibrium 
position of the system is isolated. There is no stagnation zone by the tilt angle of the guides. Depending on the relationship 
between friction and the angle of inclination of the plane, the body can slide on one or both supports. The equations of 
motion represent a dynamic system of variable structure. The range of inclination angles of the supporting plane close to the 
critical one is considered. For inclination angle values smaller than the critical one, the body on rigid supports does not start 
sliding from rest along the given inclined plane; for angle values greater than the critical one, the body on rigid supports 
starts sliding from rest. For elastic supports, it is shown that if the initial position of the body is not equilibrium, then, starting 
from a state of rest, the center of mass of the system acquires a non-zero longitudinal velocity even if the angle of inclination 
of the supporting plane is less than the critical one.   

Introduction 

To ensure the stability of building structures when supported on a rough foundation, it is necessary to take into account 
various factors: deviations in the dimensions of finished structures from design ones, compliance of structures, 
deviation of the supporting surface from the horizontal, etc. In particular, it is of interest to model the behavior of 
structures for a case of various additional disturbances, such as an earthquake (see, for example, [1]). The difficulties of 
modeling mechanical systems with dry friction were actively considered at the end of the 19th century ([2]). At the 
beginning of the 20th century, the phenomenon of "friction impact" was substantiated ([3]). 
Modeling the interaction of dry friction with elastic forces leads to the formation of dynamic systems of variable 
structure. Such systems, even after the linearization of the equations, have properties characteristic of nonlinear 
systems. Such equations have several singular points depending on the mode of motion. In [4], the sliding of a flat rigid 
body supported on a horizontal rough plane by two elastic telescopic supports was considered. The alternation of body 
sliding on one and two supports is described depending on the coefficient of friction. 
In this paper, some effects of the behavior of a dynamically asymmetric heavy body on two elastic supports on an 
inclined rough plane are considered. The equations of plane-parallel motion of the system are obtained for the cases of 
sliding of one or two supports. The equilibrium position has been found. Conditions for falling one of the supports into 
a friction cone are obtained. A numerical calculation of motion from a state of rest in a position close to equilibrium has 
been carried out. It is shown that the center of mass of the system acquires a non-zero longitudinal velocity even when 
the angle of inclination of the reference plane is less than that required for the beginning of sliding of a solid (inelastic) 
body. 

Problem statement 

Consider a heavy body ABCD with mass m (Fig. 1a) supported by supports AA1 and BB1 on an inclined rough plane. We 
assume that the angle   between the plane and horizontal H1H2 is small. For simplicity, we assume that the body is 
rectangular ( 2AB a , 2AD b ).The support rods can slide along parallel guides without friction. To simulate the 
compliance of the supports, we introduce identical springs of sufficiently high rigidity between the body and the rods. 
When the springs are not stressed, 1 1 0AA BB l  , 0l b a  . The center of gravity G1 of the rectangle is displaced 
from the center of the rectangle G along the straight line DC by a distance d. Consider 0d  , the right support is more 
loaded than the left one. Support springs act on the body by forces 1 1 0 2 2 0( ), ( )el elF k l l F k l l      , where k is the 
spring stiffness coefficient, 1l is the length of the left support АА1, 2l is the length of the right support ВВ1.  

  
a b 

Figure 1: The body on a rough inclined plane. a) Mechanical system in consideration; b) Time dependence of the longitudinal 
velocity 

1Gx  of the center of mass in the steady regime of motion for the angle of inclination _ crit  . 
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The following external forces act on the system: gravity mg, normal 1 2N ,N  and tangential fr1 fr2F ,F  support reactions. 
The values of normal reactions at the support points are determined from the following relationships: 1 1 coselN F  , 

2 2 coselN F  . In the case of sliding of the supporting legs, the reactions of the supports are interconnected according 
to the Coulomb law. In the case when the supporting leg is at rest, the value of the corresponding tangential reactions 

1 1 2 2,  =fr fr stat fr fr statF F F F is determined from other motion characteristics. 
Let us introduce a coordinate system Oxy. The axis Ox is parallel to the support plane and is at a distance 0l b from it. 
The axis Oy is directed along the normal to the support plane. For convenience, we decompose the force of gravity into 
two components  1 2mg F F , where ,1 2F F are the projections of the force of gravity on the Oxy axes. 
As generalized coordinates, we choose the coordinates of the center of mass 

1 1
,G Gx y  and the angle   between the 

vertical and the sides of the rectangle. We distinguish between longitudinal (along the inclined plane) 
1Gx and transverse 

1Gy velocities of the center of mass.  

The equilibrium position  1

* *, Gy  of the system does not depend on the presence of tangential reactions and can be 
obtained from the following equations: 

1

2
2 1 0

5 2 2 4
2 1 1 2 0 2 1

3 2 2
2 1 0 2 1 2

( ) / (2 ) ( )( 1)

2 (( ) (2(( ) )) )
(2 ( ( )) ) 2 04

G
y F sin cos F cos k b l cos dsin

F F cos F F sin b l F F d k cos

k F d F b l sin F F cos F akcos sin a k sin

    

  

    




 

     

     

      

 

In the region of small values * , the dependences 
1

* *( ), ( )Gd y d are single valued. The equilibrium position is isolated. 
There is no stagnation zone in the angle  of inclination of the support guides. 
Obviously, if friction is absent or sufficiently small, then both points of support slide during motion. If during some 
time period the point B1 is motionless, then the number of degrees of freedom has decreased by one, the dynamical 
system must contain two equations of the second order. The immobility of the point is verified by the inequality:

2 2( )fr statN abs F   . As the initial conditions we choose the position of rest, at which the guides of the supports are 

perpendicular to the supporting plane: 0  ,
1 1 1( , ) ( , / 2 )G G d Fx y k  ,

1 1
0, 0, 0G Gx y      . Then the inequality takes 

the following form: 
2

0 1 2
2 2 2

0 1

2 ( 0.5 / ) (( ) ) / ( )
( (( ) ( 0.5 / ) )

md l b F k a d J Fm mg

J m a d l b F k
 

    

 


 



, J is the central moment of inertia of 

the body. If the inequality is satisfied, then the right support does not slide. For 2   both supports start sliding. 
Similar reasoning can be carried out in the case of stopping the supporting point A1. 
Let us single out the value of the angle of inclination _ crit  of the plane such that the force 2F is equal in 
magnitude to the maximum value of the friction force of rest of the same body with rigid supports: 2 1_F crit F   . 
For smaller inclination angles, the body on rigid supports does not slip. It turned out that for the considered case of 
elastic supports, the body slides from a state of rest even if the angle of inclination of the plane is less than the critical 
one. Residual internal oscillations lead to a change in the normal pressure and, accordingly, to a change in the friction 
forces in the supports. In the final motion, the body has a variable non-zero longitudinal velocity. The time dependence 
of the longitudinal velocity 

1Gx  of the center of mass in the steady regime of motion is shown in Fig. 1b for 

2 0.00199, 0.002F   . Such a regime, in particular, is possible due to the fact that the rear supporting point A1 from 
time to time makes an instantaneous stop, and then slides in the opposite direction. 

Conclusions 

Plane motion of a heavy body supported by two elastic supports on a rough inclined plane is considered. The equations 
of motion are obtained, which are the dynamic system of variable structure. The isolated equilibrium position is found. 
It is numerically shown that from the state of rest, the center of mass of the system, can obtain a non-zero longitudinal 
velocity even if the angle of inclination of the supporting plane is less than the critical one required to start sliding of a 
rigid (inelastic) body. 
The work is partially supported by Russian Science Foundation (project 22-21-00303). 
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The Role of Dynamics in Face sheet/Core Interface Debonding of Sandwich Panels
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Summary. The current research addresses the study of debonding the face sheet from the core in a sandwich structure in dynamic
regime by means of the use of a cohesive zone model accountingfor contact and friction nonlinear effects. The finite element method
within the ABAQUS environment is used for modeling and simulations of the dynamic debonding propagation problem. By numerical
examples, the influence of different parameters, such as theadhesive properties in terms of the interface strength and toughness and the
type of traction separation law and types and rates of the imposed loading, in relation to the double cantilever beam testare estimated.
The obtained results demonstrate the relevance of both the adhesive properties and loading conditions, the changes of which may
notably modify the stress state near the interface crack tipand the debonding evolution in the sandwich specimen in dynamics.

Introduction

The use of lightweight sandwich composites as primary structural components has been considered as one of the means
for designing structures with increasing stiffness and strength at minimal increasing in their weight. However, sandwich
structures are very susceptible to debonding of the face sheet from the core. Dynamic loading is relevant for many
applications of sandwich structures. In dynamics, the debonding growth and eventual structural failure may happen even
at a load level significantly lower than the predetermined critical one [1]. Therefore, sandwich composites to be safely
exploited should be developed to withstand the debonding propagation at a certain level of dynamic loading.
In the present study, the cohesive element formulation is used to model the debonding behaviour along the face sheet/core
interface of sandwich panels in dynamic regimes. First, thefinite element formulation is outlined and the constitutive
relationships for the cohesive element are introduced. Finally, the numerical calculations related to the finite element
model of the double cantilever sandwich beam (DCB) test are carried out and the results are discussed in details.

Formulation and method of solution

A dynamic framework of the finite element method (FEM) combined with cohesive zone approach is considered. By
assuming infinitesimal deformations, neglecting body forces, but accounting for cohesive and contact forces for a body
occupying a spaceV and containing crack modeled by cohesive elements at the surface∂Vc = ∂V +

c ∪∂V −
c , the principle

of virtual work states as follows [2]:
∫

V \∂Vc

(σσσ : ∇δu+ ρü · δu) dV +

∫

∂Vc

T · δ∆∆∆dA+

∫

∂Vc

(tNδgN + tT · δgT ) dA−
∫

∂Vt

t̄ · δudA = 0 (1)

for all kinematically admissible displacement fieldsδu and given displacements̄u at a boundary∂Vu and a traction vector
t̄ at∂Vt. Herein,ρ is the density of material;σσσ is the Cauchy stress tensor associated with a displacement fieldu, andü
stands for an acceleration field;∆∆∆ is the displacement jump across andT = σσσ ·nc are cohesive forces along∂Vc oriented
by the normalnc; tN = tNnc andtT are normal and tangential components of the contact traction which are interrelated
with normalgN and tangentialgT gap functions [3]. It is assumed that a bilinear traction separation law (TSL) governs
the fracture behaviour. The TSL has the following form for each fracture mode(i = I, II, III) [4]:

T =





ki∆i, ∆i ≤ ∆0
i

(1 −Di)ki∆i, ∆0
i ≤ ∆i ≤ ∆f

i

0, ∆i ≥ ∆f
i ,

(2)

whereDi =
(
∆f
i (∆i −∆0

i )
)
/
(
∆i(∆

f
i −∆0

i )
)

is a damage variable. Herewith, damage initiates based on the quadratic

stress criterion, whereas the damage evolves when the Benzeggagh-Kenane fracture criterion is met.
The impenetrability and friction constraints are stated inthe form of Karush–Kuhn–Tucker conditions as follows:

tN ≤ 0, gN ≥ 0, tNgN = 0 and ‖tT ‖ ≤ τcrit, ‖gT ‖ ≥ 0, (‖tT ‖ − τcrit) ‖gT ‖ = 0 (3)

In the case of the Coulomb friction model,τcrit = µtN , whereµ is the coefficient of friction.
Following the FEM framework, the discrete system of dynamicequations of motion at timet takes the form:

[M ] ¨{U}t + {Rint}t + {Rcoh}t + {Rcont}t = {Rext}t , (4)

where{U}, {Rint}, {Rext} , {Rcoh} and{Rcont} are the vectors attributed to the nodal displacements, and the nodal
internal, external, cohesive and contact forces, respectively; [M ] is the mass matrix. The system (4) is solved using either
central difference explicit or Hilber-Hughes-Taylor implicit time-stepping schemes available in ABAQUS [5].
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To estimate the stress state close to the crack tip appeared along the surface∂Vc, the interaction integral method is used
to calculate the components of stress intensity factors as follows:

Ki =
H

2Kaux
i

J iint, where H = (2 cosh2 πϵ)/(1/Ē1 + 1/Ē2), (5)

where (aux) stands for auxiliary factors known from the asymptotic Williams type’ solutions of the corresponding material
system;Ēk = Ek for in plane stress and̄Ek = Ek/(1−νk) for in plane strain,k = 1, 2; andϵ is the bi-material oscillation
index. Herewith, the interaction integral is defined as

J iint = lim
Γ→0

∫

C+C++Γ+C−

m ·
{
σσσ : (εεε)

aux
i I− σσσ ·

(
∂u

∂x1

)aux

i

− (σσσ)
aux
i

∂u

∂x1

}
· qdΓ, (6)

whereq is a weighting function within the region enclosed by a contour C ∪ Γ ∪ C+ ∪ C−; q = q1 onΓ andq = 0 onC;
m is the outward normal. The line integral (6) is computed based on the domain integral formulation [6].

Results and conclusions

A 2-D finite element model of the DCB specimen is developed using eight-node reduced integration plane strain finite
elements (CPE8R) available in ABAQUS. The mesh contained a refinement aroundthe crack-tip.
The effect of impulsive loading on the transient dynamic SIFs of the DCB with stationary debonding is demonstrated
in Figure 1. One can see that the DSIFs exceed their static counterparts for all the cases of loading. Also, the forms of
impulse remarkably affect the time histories of the DSIFs. Herewith, unlike the stationary loading, the transient loads
generate a high enough value of the mode II component.

(a) (b) (c)

Figure 1: Dynamic SIFs with a ramp timet0 = 1 ms due to: (a) step loading; (b) rectangular pulse; (c) triangular pulse.

Four-node cohesive elements (COH2D4) satisfying the TSL (2) were inserted into the finite elementmesh of the DCB
model to simulate fracture of the specimens under dynamic loading. The debonding growth under impulse loads of
different durations and the harmonic load at a ceratin driving frequency is shown in Figure 2.

(a) (b)

Figure 2: Debonding propagation versus time under: (a) impulsive step loading; (b) harmonic loading

The calculations revealed that there is a large dynamic effect in the DCB test, primarily due to stress waves from both the
loading and crack face contact. Such waves interact with thecrack tip and strongly affect the fracture parameters and the
debonging behaviour of the DCB sandwich specimen.
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Summary. In this paper a novel time-stepping approach for the linear stability analysis of elastic structures interacting with incom-
pressible viscous flows is presented. The method is based on the coupling of an iterative Krylov-subspace algorithm for the solution of
large eigenvalue problems within an Immersed-Boundary (IB) framework, to obtain a matrix-free global stability solver which extracts
the necessary information directly from Direct Numerical Simulation (DNS).
In this work, the proposed approach is explained and validated with respect to test cases involving elastically-mounted rigid bodies
immersed in open flows.

Introduction

The interactions of elastic structures with incompressible flows have been the subject of numerous works in recent years,
due to their dynamically reach and complex behaviour. Despite the non-linear nature of these phenomena, the onset of
the transition from a state of the system to another one can be predicted via a linear stability analysis. However, even with
high-performing numerical tools, the global stability analysis of a fluid–structure system remains a prohibitive task due to
considerable implementation difficulties; in particular, the linearisation of interface terms is often cumbersome.
This work presents an approach to perform the linear stability analysis of fluid-structure configurations which is incor-
porated into a validated FSI solver based on a Moving-Least-Squares Immersed boundary [1]. This technique has been
largely used to explore the behaviour of fully coupled FSI applications involving large displacements, while linear stabil-
ity analyses, on the other hand, are usually performed using mesh-deforming techniques. Although the latter methods are
often chosen for two-dimensional cases, their implementation is often too expensive in three-dimensional applications.
Furthermore, the extension to complex multi-body configurations is non trivial.
In this work, we adopt the approach followed by Mack and Schmid [2] for the global stability analysis of compressible
flows and extend it to the coupled physics problem.

Methodology

We investigate the dynamics of elastically-mounted rigid bodies immersed in a Newtonian viscous fluid with homoge-
neous density. The flow is governed by the Navier-Stokes equations, here written in an Immersed-Boundary formulation,





∂u

∂t
+ u·∇u = −∇p+ 1

Re
∆u+ f , in Ω

∇·u = 0, in Ω
(1)

where u and p denote the fluid velocity and pressure respectively, Ω is the physical region occupied by the fluid and f is
the volume force arising from the IB treatment. The immersed bodies are modeled as mass-spring-damper systems,

Mẍ+Cẋ+Kx+ Fnl(x, ẋ) = F (t), (2)

where x is displacement vector, M , C and K are the lumped mass, damping and stiffness matrix respectively, and Fnl
takes into account the non-linear contributions. The forcing vector F (t) provides the resultant force on the body which,
in the absence of gravity and other volume force components, reduce to the hydrodynamic load on the immersed surfaces.
Collecting fluid and solid variables into the state vector q, the coupled problem can be reformulated as

∂q

∂t
= R(q), (3)

where q is the state vector, containing all the degrees of freedom of the problem, and R is the nonlinear evolution
operator. The stability of the system in the vicinity of a steady steady solution of (3), qb, is given by a generalized
eigenvalue problem for the Jacobian operator J , who is an unknown quantity in the general case. Therefore, following
Eriksson and Rizzi [3], we linearise the system numerically, approximating the evolution in time of a small perturbation
qp via the second-order accurate finite difference

qp(t0 + n∆t) =
q+ − q−

2ǫ
, (4)
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where q+ and q− are outcomes of two disjoint advancement carried out by the DNS-IB solver:

q+ = F (qb + ϵqp(t0), n∆t), (5)

q− = F (qb − ǫqp(t0), n∆t). (6)

Recalling that the evolution of a small perturbation q′ of the base state is given by

q′(t0 + T ) = eJTq′(t0), (7)

we recognize that the finite difference (4) approximates the action of the exponential transformation of the Jacobian matrix
on the perturbation vector. Thus, we can compute a set of the least stable eigenvalues of the system by means of an iterative
algorithm such as those belonging to the general class of Krylov subspace methods.
In the present work, the approximation of the leading eigenvalues of the system is computed by using the Implicity
Restarted Arnoldi Method (IRAM) as implemented in the ARPACK open source package [4]. The steps of the algorithm
are listed below:

1. The base flow is computed via the BoostConv [7] stabilization procedure;

2. Arnoldi iterations are performed until convergence is reached: (k = 1, 2, ...)

(a) Vector qkp is generated

(b) Reverse communication to the DNS-IB solver gives qkp (n∆t) =
q+−q−

2ǫ

(c) Convergence of the desired Ritz pairs is checked

3. A logarithmic transformation is performed to recover the eigenvalues of the Jacobian matrix.

Results and discussion

The presented methodology has been validated with respect to several literature cases involving rigid bluff bodies inter-
acting with flows with low Reynolds numbers. As a proof of concept, figure 1 shows the growth rate and frequency of
the first two eigenvalues for the case of a elastically-mounted circular cylinder, undergoing vortex-induced vibrations in a
flow with Re = 60. The cylinder is allowed to move only in the direction orthogonal to the unperturbed flow.
Given its matrix-free and Immersed-Boundary formulation, the method is capable of coping with complex geometries,
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Figure 1: Results of the linear stability analysis of the VIV cylinder with Re = 60 and m∗ = 20. Left figure: growth rate
of the two least stable eigenmodes with U∗; Right figure: Strouhal number variation of the same eigenvalues with U∗.
Red line: results from [6]; blu dotted line: results from [5]; black circles: present results.

multibody systems and large-scale inhomogeneous three-dimensional flows.
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Summary. We consider stability of an elastic membrane being on the bottom of a uniform horizontal flow of an inviscid and incom-
pressible fluid of finite depth with free surface. The membrane is simply supported at the leading and the trailing edges which attach
it to the two parts of the horizontal rigid floor. The membrane has an infinite span in the direction perpendicular to the direction of the
flow and a finite width in the direction of the flow. For the membrane of infinite width we derive a full dispersion relation that is valid
for arbitrary depth of the fluid layer and find conditions for the flutter of the membrane due to emission of surface gravity waves. We
describe this radiation-induced instability by means of the perturbation theory of the roots of the dispersion relation and the concept of
negative energy waves and study its relation to the anomalous Doppler effect.

Membrane flutter as a radiation-induced instability

Flutter of membranes is a classical subject for at least seven decades. Membranes submerged in a compressible gas flow
and their flutter at supersonic speeds have been considered already in the works [1, 2]. Recent works on the membrane
flutter are motivated by such diverse applications as stability of membrane roofs in civil engineering [3], flutter of traveling
paper webs [4] and aerodynamics of sails and membrane wings of natural flyers [5, 6].

Surface gravity waves on a motionless fluid of finite depth is a classical subject as well, going back to the seminal
studies of Russell and Kelvin [7]. Numerous generalizations are known taking into account, for instance, a uniform
or a shear flow and surface tension [8], flexible bottom or a flexible plate resting on a free surface [9]. The latter setting
has a straightforward motivation in dynamics of sea ice and a less obvious application in analogue gravity experiments [7].

Remarkably, another phenomenon that is being analysed from the analogue gravity perspective is super-radiance [7]
and its particular form, discovered by Ginzburg and Frank [10], known as the anomalous Doppler effect (ADE) [11, 12].
In electrodynamics, the ADE manifests itself when an electrically neutral overall particle, endowed with an internal struc-
ture, becomes excited and emits a photon during its uniform but superluminal motion through a medium, even if it started
the motion in its ground state; the energy source is the bulk motion of the particle [11].

Anomalous Doppler effect in hydrodynamics was demonstrated for a mechanical oscillator with one degree of free-
dom, moving parallel to the boundary between two incompressible fluids of different densities [13]. It was shown that the
oscillator becomes excited due to radiation of internal gravity waves if it moves sufficiently fast. In [14] the ADE for such
an oscillator was demonstrated due to radiation of surface gravity waves in a layer of an incompressible fluid.

Nemtsov [15] was the first who considered flutter of an elastic membrane being on the bottom of a uniform horizon-
tal flow of an inviscid and incompressible fluid as an anomalous Doppler effect due to emission of long surface gravity
waves. In the shallow water approximation, he investigated both the case of a membrane that spreads infinitely far in both
horizontal directions and the case when the width of the membrane in the direction of the flow is finite whereas the span
in the perpendicular direction is infinite. Nevertheless, the case of the flow of arbitrary depth has not been studied in [15]
as well as no numerical computation supporting the asymptotical results has been performed. Another issue that has not
been addressed in [15] is the relation of stability domains for the membrane of the finite width to that for the membrane
of the infinite width.

Vedeneev studied flutter of an elastic plate of finite and infinite widths on the bottom of a uniform horizontal flow of
a compressible gas occupying the upper semi-space. He performed analysis of the relation of stability conditions for the
finite plate with that for the infinite plate using the method of global stability analysis by Kulikovskii [16, 17]. However,
no connection has been made to the ADE and the concept of negative energy waves.

In the present work we reconsider the setting of Nemtsov in order to address the finite height of the fluid layer, find
flutter domains in the parameter space, analyze them using perturbation of multiple roots of the dispersion relation, find
the domains of absolute and convective instability and investigate dependence of the flutter onset on the width of the mem-
brane including the limit of infinite width. We will explain the instabilities via the interaction of positive and negative
energy waves by finding an appropriate G-Hamiltonian formulation and relate them to the anomalous Doppler effect.
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Summary. Suction of the boundary layer is an effective means of delaying separation and reducing drag on external flows. However,
if a pumping system is required to generate the suction, the weight and power consumption of the system can undo that benefit.
‘Autogenous’ (self-generating) suction control is a type of flow control that utilises the energy already within a flow (notably the
pressure gradients) to drive the suction, thereby requiring no further energy to the system. This paper describes numerical studies
that were performed on the flow around the circular cylinder in the 2D laminar range: Re = 40 (steady) and Re = 120 (unsteady).
Suction and blowing control were implemented by imposed velocity boundary conditions. These controls were then modified using
optimisation methods to generate arrangements of suction and blowing that can be passively generated by their pressure differential
(i.e. Ps ≥ Pb). Steady and unsteady simulations were performed. It was found that at both Re = 40 and Re = 120 drag-reducing
arrangements could be produced. At Re = 120 a reduction in drag of 4.3% was found while maintaining a positive pressure differential
from the suction to blowing loci. This approach for developing passive suction control can be applied to other bluff body flows and
higher Reynolds numbers to design efficient optimised flow control.

Introduction

Boundary layer suction has a long history as an effective means of flow control. The first recorded use of suction to
control a fluid flow was by Ludwig Prandtl to test his boundary layer theory (1). It has been shown by many experimental
(2; 3; 4) and numerical (5; 6; 7; 8) studies that suction control is extremely effective at reducing drag, subduing vortex
shedding, or improving lift in external flows. Additionally, optimised non-uniform suction can be much more efficient
and effective than uniform suction or slot suction (9). In some applications, suction control is effective not by its influence
on the boundary layer, but by its body force imposed on the flow, for example when suction is applied on the already
separated wake behind an object (10).
On the other hand, to generate the suction flow, an appropriate pressure gradient is required. This pressure gradient must
be sufficient to overcome porous and viscous losses through any suction ducting, and depending on the strength of suction
desired, must also overpower the momentum of fluid outside the boundary layer. This is the case whether the suction is
applied through slots or with a porous surface. In practice, this is typically achieved using a pump or compressor (11; 3).
The energy required to power this pump may exceed the savings in energy from drag reduction. Additionally, the weight
of the pump and suction system will increase the mass needed to accelerate for transportation applications. Due to this
and other considerations, while suction control may be extremely effective, it may be inefficient (12).
One alternative to a pump system is to use the pressure gradients already within a flow to drive a suction/blowing
through the bounding surface. This was coined ‘autogenous suction control’ by Atik and van Dommelen, meaning ‘self-
generating’ (13). By connecting a region of high pressure to a region of low pressure, a secondary flow can naturally
develop. Autogenous suction was first explored behind shocks (14; 15; 16), but Atik and van Dommelen were the first to
explore its potential in subsonic and laminar flows.
In their numerical study, it was shown that autogenous suction control was possible for a thin airfoil and could delay
separation over a range of angles of attack (13)). The autogenous suction control was achieved by applying suction over
a distributed area downstream of the location of minimum pressure (and separation point) while exhausting the fluid
removed by suction upstream. The numerical approach by Atik and van Dommelen was limited in that it solved the
boundary layer equations rather than the full Navier-Stokes equations, which was appropriate for their idealised airfoil but
is unlikely to be so for other flow cases. Additionally, their study was intentionally idealised, and many considerations of
a physical implementation were ignored or set to arbitrary values (e.g. viscous and porous losses, the effect of tangential
pressure gradients). However, a type of autogenous suction control device was patented by inventor Pradip Parikh and
assigned to Boeing, to delay separation over an aircraft wing (17).
The paper by Atik and van Dommelen demonstrated the potential for autogenous suction to beneficially control the flow
around an aerodynamic shape (delayed separation), while the patent held by Boeing demonstrates how it might be used
for a real-world application (13; 17). However, it has not been shown whether autogenous suction control can reduce
drag on a body, and whether other arrangements – such as suction upstream of the minimum pressure location – would be
beneficial. Therefore, in this study, autogenous suction control was developed on a canonical flow with the objective to
minimise drag and develop a methodology for designing autogenous suction control using the Navier-Stokes equations.
A bluff body was chosen as the geometry in order to supplement the work of Atik and van Dommelen on a streamlined
shape, hence, the flow around the circular cylinder in the 2D laminar range (Re ≤ 188.5) was modelled numerically.
Parameterised boundary conditions were used to impose the suction and blowing flows, which were then optimised with
constraints so as to be autogenous.
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Methodology

Computational Domain & Governing Equations
The flow around the circular cylinder was modelled numerically for Re = 40 and Re = 120 using COMSOL Mul-
tiphysics, a commercial Finite Element software package. The governing equations are the incompressible isothermal
Navier-Stokes equations:

∂u
∂t

+ (u·∇) u− ν∇2u +
1

ρ
∇p = f, (1)

∇·u = 0, (2)

where u and p are the velocity vector and scalar pressure fields respectively (the dependent variables), ν = µ/ρ is the
kinematic viscosity, ρ is the fluid density, and f is the vector for all external forcing terms (in this case, zero). Both steady-
state and unsteady simulations were employed in this study, and in the former case the time-derivatives vanish (first term
of Equation (1)).
The computational domain is shown in Figure 1. This is the same as in (9), where the model was extensively validated
against experimental data for drag and separation angle from the literature (18; 19; 20; 21). The flow around the circular
cylinder is commonly studied, and its characteristics are well known (22). The flow is characterised by its Reynolds
number, Re = ρUD

µ , where the characteristic length is the cylinder diameter, D. For Re ≤ 188.5 the flow is 2D and
wholly laminar, but for Re ≥ 47 the flow is unsteady.
With 31,640 elements and a time-step of dt = 1

30T = 1
30

D
USt , where T is the vortex shedding period and St is the

Strouhal number, the model is sufficiently mesh and time independent for Re ≤ 180 (see (9)). Here, the control was
ramped up over 1T on a fully-developed solution of the uncontrolled flow. The simulation was run until the flow was
fully-developed again (usually 10T ). The unsteady studies always commenced using a fully-developed uncontrolled flow
as the initial condition.

Figure 1: Computational domain for simulations (a); Schematic illustrating the key parameters for the dual-loci control.
The subscript ’b’ denotes a blowing control parameter, while no subscript indicates suction (b).

Boundary Conditions
The numerical boundary conditions consist of a uniform inlet on the left, lower and upper boundaries, u = U = Reν

D ,
v = 0. A zero relative pressure outlet is defined on the right boundary. The boundary on the cylinder was defined with a
prescribed velocity Dirichlet condition. Suction and blowing profiles were implemented through this boundary condition
as a function of angle from the trailing edge, θ. Theoretically infinite suction/blowing profiles could be implemented,
however it was found in (9) that optimal suction in this range typically consisted of a single locus of suction. A bell-
shaped (cubic) profile was effective. Hence, in this work varieties of this ‘single locus’ profile for the suction and blowing
profiles were considered, and with suction/blowing in the normal direction only (u = (un, ut) = (un, 0) at the cylinder
wall).
The suction/blowing profiles on the cylinder were defined to have one area (locus) of suction and one locus of blowing.
This is called the ’dual-loci’ approach in this paper. Each control locus utilises the ‘single locus’ profile from (9) which
defines a smooth cubic profile with zero derivatives at its centre and edge. Three parameters are needed to define the
profile: the location of the locus centre as measured from the trailing edge (TE), θq , the spread of the locus measured
as an angle, γq , and the maximum strength (which is applied at the centre, cqmax

. These are illustrated in Figure 1. By
superimposing two single locus profiles – one for blowing, one for suction – the dual-loci control is achieved. The control
applied is mirrored across the streamwise axis of the cylinder.
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Outline of Studies
The results of two studies on autogenous suction control are presented here:

1. Q-balanced control: flow-rates of the suction and blowing loci must be equal (Qs = Qb), but no pressure require-
ment is imposed.

2. P-Q-balanced control: Flow-rates must be equal and the pressure gradient negative from suction to blowing (Qs =
Qb, Ps − Pb ≥ 0).

The first represents a case where a pump or other device must be used in order to produce the suction/blowing, whereas
the second is the autogenous case.

Optimisation Approach
Control Parameters
In each model there were five independent control parameters and one dependent control parameter as summarised in
Table 1. As Qs must equal Qb to maintain continuity, the sixth control parameter (cqmaxb

) is dependent on the rest.

Table 1: Control Parameters

Parameter Name Suction Parameter Blowing Parameter
Control angle (◦) 0 ≤ θq ≤ 180 0 ≤ θqb ≤ 180
Control spread (◦) 0 ≤ γq ≤ 90 0 ≤ γqb ≤ 90

Control peak strength 0 ≤ cqmax ≤ 1 cqmaxb
=

γqs
γqb
cqmax

Objectives and Constraints
The major control objective in each study was to minimise the total drag on the cylinder as evaluated by integrating the
stream-wise normal and shear forces:

Jdt = Cdt = Cdp + Cdf =
1

1
2ρU

2D

∮ (
−p (θ) + µ

−∂ut (θ)
∂r

)
cos (θ)Rdθ, (3)

where R the radius of the cylinder, and θ the angle measured anti-clockwise from the trailing edge.
For the autogenous control studies (Model III), an additional objective that the averaged suction pressure must be greater
than the averaged blowing pressure was included:

Jauto = ∆P = Ps − Pb ≥ 0. (4)

The suction and blowing parameters were optimised with a nested approach, as shown in Figure 2. I.e. the suction
control parameters are selected by the control algorithm, then a secondary optimisation occurs to arrange the blowing
locus such that the drag is minimised and pressure drop maximised for that particular suction arrangement. The major
optimisation then evaluates how well this combined suction/blowing control achieves the total objectives. The inner
(minor) optimisations had a maximum of 50 model evaluations each time it was called.
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Figure 2: Flow-chart of P-Q-Balanced Dual-Loci optimisation (autogenous suction control).

An additional constraint was also implemented, preventing the suction and blowing loci from overlapping in order to
generate realisable controls.

Results & Discussion

Optimisation of Non-Autogenous Dual-Loci Control
Optimisation of the Q-balanced dual-loci control resulted in suction/blowing control which reduced drag by up to 13% at
Re = 40 and 22% at Re = 120. The control parameters and key results for the optimised control summarised in Table 2
and Table 3 while the velocity and pressure contours are shown in Figure 3. The improvement in drag is strong at both
Re, but more potent at the higher Reynolds number of Re = 120. However, when the pressure differential between the
suction and blowing loci are considered (−dP = −1.5387& − 1.4143), it can be seen that this control would require
substantial power to run due to the strong APG between the suction and blowing loci.
The optimised control profiles feature suction upstream and blowing near the trailing edge of the cylinder. The suction
removes the low momentum fluid and entrains higher momentum which delays the separation. Consequently the pressure
drag is greatly reduced, while there is a smaller increase in skin friction drag due to the now higher velocity gradient at
the wall. At both Reynolds numbers there is a narrow spread for the suction and a wider spread for blowing. This reflects
the previous findings shown in (9) where the drag is very sensitive to the location of suction - with clearly advantageous
locations. Therefore, the most efficient control targets these locations. Similarly, it appears that the trailing edge is the
best location for blowing control. This helps to increase the base pressure.

Table 2: Key control parameters for drag-optimised Q-balanced dual-loci control compared to its unbalanced variety.

Parameter Re = 40 Re=120

θq 97.898° 78.897°
γq 31.676° 43.607°

cqmax
0.987 0.569

θqb 31.501° 27.835°
γqb 63.001° 55.669°

cqmaxb
-0.496 -0.446

Cq 0 0
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Table 3: Key results for optimised Q-balanced control compared to uncontrolled case.

Re = 40 Re = 120
Parameter No Control Q-Balanced No Control Q-Balanced

Cdt 1.6321 1.4158 1.0860 0.8486
Cdp 1.0760 0.4365 0.8177 0.1998
Cdf 0.5561 0.9793 0.2683 0.6487
θs 54.107° 37.809° 68.826° 32.612°
dP - -1.5387 - -1.4143

(a) (b)

(c) (d)

Figure 3: Velocity surface (a,c) and pressure contours (b,d) for optimised Q-balanced dual-loci controlled flow atRe = 40
(a,b) and Re = 120 (c,d).

Time-Dependent Simulation Verification
Time-Dependent Simulation Verification

The key results for best non-autogenous control from the optimisation study at Re = 120 are shown in Table 4. This
optimised control is strong enough to fully stabilise the flow, therefore the results from the steady-state simulations match
perfectly with the time-dependent simulations. However, since this control should be compared against the drag for the
time-dependent case, the improvement is now seen to be 38.7%. The data in Table 6 clearly indicates that this massive
improvement comes from the large reduction in pressure drag, while the skin friction drag has almost doubled. The
control arrangement is still highly unfavourable for autogenous control, and its actual efficiency would be low given the
large adverse pressure gradient (APG) that the control flow has to overcome. However, it is encouraging to see that the
dual-loci control can be extremely effective on unsteady flows. The pressure and velocity contours are not shown for this
simulation as they match in practically every aspect, those in Figure 3.
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Table 4: Key results for optimised Q-balanced dual-loci control verified on time-dependent simulations at Re = 120.

Param-
eter

No Control
(SS)

No Control
(TD)

Q-Opti
(SS)

Change from No
Control SS (%)

Q-Opti
TD

Change from No Control
TD (%)

Cdt 1.086 1.3851 0.8486 -21.90% 0.8486 -38.70%
Cdp 0.8177 1.0585 0.1998 -75.60% 0.1997 -81.10%
Cdf 0.2683 0.3266 0.6487 141.80% 0.6489 98.70%
dP - - -1.414 - -1.415 -

Optimisation of Autogenous Dual-Loci Control
Steady-State Optimisation
Using the two-optimisation process, the dual-loci control was successfully optimised to minimise drag while enforcing
the constraint on pressure drop between the suction and blowing loci.The optimised control parameters and key results
are shown in Tables 6 to 8.
The improvement in drag is much weaker when the autogenous constraint is imposed compared to the Q-balanced ap-
proach above. Nevertheless, the drag on the cylinder was reduced while maintaining a positive pressure gradient from
the suction to blowing loci. In other words, autogenous suction control was effective for this flow. It was found that the
optimised control was quite sensitive to the initial control parameter values for this flow, so two sets of initial values were
used at both Re - IV1 and IV2 as described in Table 5. For IV1, at Re = 40 the drag was reduced by 5.45% while at
Re = 120 a more modest 3.68% improvement was achieved while the improvements from the IV2 case were even lower.

Table 5: Initial values of control parameters for P-Q-balanced dual-loci optimisation.

Control parameter Initial Values (IV1) Alternative Initial Values (IV2)

θq 150◦ 120◦

γq 20◦ 40◦

cqmax 0.1 0.1
θqb 90◦ 80◦

γqb 10◦ 10◦

cqmaxb
-0.2 -0.4

In both cases, the drag improvement was through a combination of the pressure drag and skin friction drag. This is unlike
for the case of suction only or Q-balanced control, where the pressure drag is substantially improved but the skin friction
worsened to produce a net benefit. At both Reynolds numbers, a quite different control flow was utilised to achieve the
drag objective. This was to produce a suction and blowing very close to each other on the front half. This is effective
at manipulating the Cf and Cp profiles over the front half, reducing the pressure and skin friction, rather than delaying
separation or improving the base pressure.
This dramatically different control arrangement appears to be a factor of the initial values provided for the control. When
alternative initial values – IV2 – were used, the resulting control was quite different. The final optimised controls were
very similar to their initial conditions which suggests that there are other local optima that may be found also.

Table 6: Optimised control values for different dual-loci settings.

Re = 40 Re = 120
Parameters P-Q-Balanced Q-Balanced P-Q-Balanced Q-Balanced

θq 165.520° 97.898° 165.260° 78.897°
γq 26.015° 31.676° 27.158° 43.607°

cqmax
0.381 0.987 0.162 0.569

θqb 144° 31.501° 146° 27.835°
γqb 10° 63.001° 4.410° 55.669°

cqmaxb
-0.99 -0.496 -1 -0.446

Cq 0 0 0 0

ENOC 2022, July 17-22, 2022, Lyon, France

1044



ENOC 2020+2, July 17-22, 2022, Lyon, France

Table 7: Optimised control values for different dual-loci settings.

Re = 40 Re = 120
Parameter No Control Q-Balanced P-Q-Balanced No Control Q-Balanced P-Q-Balanced

Cdt 1.6321 1.4158 1.5432 1.086 0.8196 1.046
Cdp 1.076 0.4365 1.03 0.8177 0.1265 0.8013
Cdf 0.5561 0.9793 0.51316 0.2683 0.6931 0.2447
θs 54.107° 37.809° 176.08 68.826° 29.392° 147.74
dP -1.6333 -1.5387 0.3403 - -1.4143 0.4928

Table 8: Change in optimised result depending on initial values for control at Re = 40 and Re = 120.

Parameters IV1 Re=40 Opti Re=120 Opti IV2 Re = 40 Opti Re = 120 Opti

θq 150° 165.52° 165.26° 120° 119.96° 121.91°
γq 20° 26.015° 27.158° 40° 42.566° 51.7°

cqmax 0.1 0.3807 0.16239 0.1 0.111 0.053
θqb 90° 144° 146° 80° 24.313° 39.5°
γqb 10° 10° 4.4102° 10° 47.125° 23.5°

cqmaxb
-0.2 -0.9904 -1 -0.4 -0.1002 -0.1176

dP - 0.3403 1.046 - 0.0277 1.077
Cdt - 1.5432 0.8013 - 1.6083 0.7716

The pressure contour and velocity surfaces are shown for the best optimised P-Q-Balanced dual-loci control (IV1 case)
below at Re = 40 & 120 in Figure 4. The control is concentrated on the front-half and improves both the skin friction
and pressure drag modestly. This control arrangement is highly dependent on the initial values used for the optimisation
study.

(a) (b)

(c) (d)

Figure 4: Velocity surface (a,c) and pressure contours (b,d) for optimised P-Q-balanced dual-loci controlled flow round
cylinder at Re = 40 (a,b) and Re = 120 (c,d).

Overall, the major research question of “can autogenous suction control theoretically be used to reduce drag for bluff
body flows?” has been found to be true. Certainly for Re = 40, whereas the flow at Re = 120 should be resolved with
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an unsteady simulation to confirm.

Time-Dependent Verification
As for the non-autogenous Q-balanced control, to verify whether these results are feasible for the true unsteady flow at
Re = 120, time-dependent simulations were carried out with the optimised control parameter. These simulations were
successful and found that the optimised controls still satisfied the pressure-drop requirements in both time-dependent
cases. Unlike for the Q-balanced control, the optimised autogenous control does not stabilise the flow at Re = 120
and therefore the steady-state simulations are flawed. The time-averaged values (over one vortex-shedding period), and
their fluctuation are given for the key parameters of the first P-Q-balanced design compared to the steady-state values in
Table 9. The key parameters for both P-Q-balanced designs are provided in Table 10.
As expected, the drag coefficient values are quite different from the steady-state values, but the reaction to the control
is consistent in the TD simulations. For the first optimised arrangement (with the suction and blowing situated at the
front of the cylinder), the improvement in drag is dulled. An average 2.5% improvement was produced compared to the
3.7% predicted by the steady-state study. Importantly, the positive pressure gradient between the suction and blowing loci
remains, and in fact is greater for the TD case (0.5764 vs. 0.4928). This makes sense as the pressure profile is steeper
and has a larger fluctuation for the unsteady case, even for the uncontrolled flow, which is beneficial for the autogenous
constraint.
The most interesting result is the dramatic change in performance for the second P-Q-balanced design (produced using
the second set of initial values in the optimisation). Where the steady-state result suggested a reduction in drag of only
0.83%, the actual result when applied to the unsteady cylinder flow was actually 4.3%. This is not just better than the
SS estimate, but it is a greater improvement than the first P-Q-balanced design. While the first design reduces both skin
friction and pressure drag modestly, the second design uses the same mechanisms as suction-only control to minimise
total drag by greatly reducing the pressure drag at the cost of slightly increasing the skin friction drag. The design of this
control fits better with previous findings that suction near the 90◦ mark with blowing situated near the rear produces the
best drag-reduction but is difficult to achieve with autogenous pressure gradients (5).

Table 9: Key results for SS-optimised P-Q-balanced dual-loci control applied to time-dependent simulation compared to
the steady result and uncontrolled values. SS= steady-state, TD= time-dependent.

Parame-
ter

SS No
Control

SS P-Q
Opti

TD No Control
Average

TD P-Q
Average

TD P-Q Fluctuation
(±)

%
Change

Cdt 1.086 1.046 1.3851 1.3517 0.0169 −2.50%
Cdp 0.8177 0.8013 1.0585 1.0485 0.0155 −1.00%
Cdf 0.2683 0.2447 0.3266 0.3032 0.0017 −7.70%
dP - 0.4928 - 0.5764 0 -

Table 10: Comparison of the two optimised P-Q-Balanced dual-loci control in full time-dependent simulation.

Pa-
rame-

ter

TD No Control
Average

TD
Fluctuation

(±)

IV1 TD P-Q
Average

IV1 TD P-Q
Fluctuation (±)

IV2 TD P-Q
Average

IV2 TD P-Q
Fluctuation (±)

Cdt 1.3851 0.0171 1.3517 0.0169 1.3274 0.0096
Cdp 1.0585 0.0156 1.0485 0.0155 0.9715 0.0088
Cdf 0.3266 0.0017 0.3032 0.0017 0.356 0.0008
dP - - 0.5764 0 0.0747 0.0027

This second arrangement of the autogenous suction control is particularly promising for a variety of reasons. Firstly, the
control flow rates are much lower. While the relationship between the control flow rate and the necessary pressure to
drive it has mostly been ignored in the present study, it is likely that large control flows will require larger pressure drops.
The peak suction strength is only cqmax

= 0.053 which is more like the level of suction seen for early boundary layer
studies (23, p. 383). Secondly, the flow-path for the control is better. While the optimisation procedure accounts for the
effects of blowing control on the boundary layer and the second-order impact on the pressure profile, it seems logical
to have the flow exhausted out the rear of the cylinder. This prevents the boundary layer from being blown away, and
does not have to produce a dramatic change in the momentum direction of the control flow. Finally, the second control
arrangement appears to dampen the dynamics of the flow. The fluctuations of the drag coefficients are all reduced from
the uncontrolled case. The time-averaged flow fields are shown for the two controlled and uncontrolled cases in Figure 5.
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The changes to the flow are subtle so there is little to remark on except the small morphing of the reversed flow region in
the wake from the blowing in the second case.

(a)

(b)

(c)

Figure 5: Pressure contours with vorticity streamlines (left), velocity surface with streamlines (middle) and reversed flow
surfaces for the time-averaged flow round the cylinder for the IV1 optimised control (a), IV2 optimised control (b) and
no control (c). Flow field is averaged over 1 vortex shedding period of the uncontrolled flow. The colour bars for the
pressure, velocity and reversed flow surfaces are shown in the final column (in descending order).

Conclusions

Numerical studies were carried out on laminar flow around a circular cylinder to develop autogenous suction control.
Dual-loci control - consisting of a locus of suction and one of blowing - was imposed using velocity outlet condition on
the cylinder. The parameters of this control were optimised to minimise total drag at Re = 40 and Re = 120. To impose
autogenous control, a constraint that the average pressure of the suction locus is greater than or equal to that of the blowing
locus. Steady-state and unsteady simulations were performed.
The optimised autogenous control was able to successfully reduce drag while maintaining the pressure gradient needed
to be self-generating at both Reynolds numbers. The optimal control arrangements featured suction on the front half
and blowing on the leeward half. This arrangement results in the pressure being reduced on the front half and a modest
increase on the rear, resulting in a reduced pressure drag. This comes at the cost of slightly higher skin friction drag,
however. Total drag was reduced by up to 4.3% at Re = 120 using dual-loci control with a positive pressure gradient
from the suction to blowing locations, and 5.45% for Re = 40.
Overall the results are encouraging for the development and use of autogenous suction control in real flows. The numerical
results showed improvement over the uncontrolled case, and this increased with Reynolds number. On the other hand,
more work is needed. The pressure constraint is idealised - not accounting for any losses in internal ducting. The
investigation successfully extended the findings of Atik and van Dommelen to show that autogenous suction control is
viable for bluff body flows also.
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Summary. Micro-nano-robotic swimmers have a promising potential for future biomedical tasks such as targeted drug delivery and 
minimally-invasive diagnosis. An efficient method for controlled actuation of such nano-swimmers is applying a time-varying external 
magnetic field. While rigid helical nano-structures that move in corkscrew motion under a rotating magnetic field are hard to fabricate, we 
recently found that two nano-rods (magnetized nickel and a rhodium tail) connected by a soft polysaccharide hinge may also exhibit helical 
motion under a rotating magnetic field. We also discovered interesting mode transitions depending on the actuation frequency. In low 
frequency regime, the nano-swimmer tumbles in plane, while larger frequencies lead to out-of-plane helical motion, optimum of peak speed, 
followed by step-out loss of synchronization. In this work, we analyzed these effects by formulating the spatial dynamics of 3D rotating 
nano-swimmer compose of two links connected by a passive rotary joint with a torsion spring representing the flexible hinge. Assuming 
quasi-steady Stokes drag acting on the links, numerical simulations and analysis of the nano-swimmer’s nonlinear dynamics reveal the 
stability transitions of possible synchronized solution, as well as bifurcations with respect to actuation frequency. The results highlight the 
importance of simple low-dimensional models of nonlinear dynamics and their utility in predicting and optimizing motion of magnetically-
actuated nano-swimmers.   

Introduction 

Inspired by the motion of bacteria and other microorganisms, researchers have developed artificial helix-shaped micro-
and nano-structures that can perform corkscrew motion and helical-path swimming upon a suitable stimulation with 
external energy sources. These small-scale helical devices attract much interest because of their great potential for disease 
diagnosis, minimally invasive surgery, telemetry, targeted therapies, or plasmonic-based nanorheology. The most 
common strategy consists of actuating magnetically responsive structures comprising helical components that revolve 
around their long axis when they are actuated using rotating magnetic fields resulting in corkscrew locomotion.  
In this work (recent paper [1]), we show that incorporating a complex helical body shape in swimmers’ architectures is 
not necessary to enable helical swimming. This is an advantageous feature of the presented hinged swimmers, especially 
in terms of fabrication, adjusting the length of hinges and rods becomes easier. In this contribution, we show for the first 
time that a highly integrated multifunctional nonhelical nano-swimmer is capable of helical klinotactic swimming when 
stimulated by purely rotating magnetic fields. 

Modeling 

Figure 1: (A) Simplified Theoretical model; (B) A SEM image of the finalized structure of nano-swimmer  
 

The nano-swimmer consists of two cylindrical rigid metallic links (nickel and rhodium) joined by a soft polymeric hinge 
(Figure 1B). The ferromagnetic nickel link serves as the magnetically responsive motile head component. The non-
ferromagnetic rhodium segment acts as a tail, while the polymeric hinge functions as a flexible joint to promote the 
swimmer's motion by deformation. In the experiments [1], we observed different motion phases, as shown in previous 
helical nanobots’ papers [2,3], at low frequency tumbling, low-speed movements, at a higher frequency, moving forward 
in a helical path, in further frequency increase we obtain asynchronous swimming. 
In order to systematically understand the theoretical mechanism of the spatial dynamic motion of the swimmers, a 
theoretical model was developed. The theoretical model of the two-link nano-swimmer comprises two rigid slender 
cylinders connected by a point-size revolute joint, with a relative angle δ of rotation about a body-fixed axis perpendicular 
to the link’s longitudinal direction (Figure 1 A). The flexibility of the revolute joint represented by a linear torsion spring 
with stiffness k, the torque at the joint is given by 𝜏𝑘 = −𝑘𝛿. The head link made of ferromagnetic material, its 
magnetization vector m directed along the link’s longitudinal axis �̂�𝟏. While being actuated by a rotating magnetic field. 
The external magnetic field B(t) is rotating in the Y-Z plane by 𝑩ሺݐሻ = [0 ሻݐ𝑖݊ሺ߱ݏ  ሻ]ܾ, where ܾ is the magneticݐሺ߱ݏܿ
field’s intensity and  is its rotational frequency. 
Assuming a spatially uniform magnetic field, it induces a pure torque 𝛕𝑚  on the magnetized head link, which depends on 
its orientation and the time-varying field B(t) as 𝛕𝑚 = 𝐦 × 𝐁 .The nano-swimmer submerged in a viscous fluid. The Stokes 
drag forces and torques acting on each of the two links 𝒇𝒊, 𝝉𝒊 depend linearly on their angular velocity vectors 𝐯𝑖 , 𝛀𝑖. 
Neglecting hydrodynamic interactions between the links implies linear drag resistance relations. 

A B 
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The vector of generalized coordinates describing the swimmer’s spatial pose is  𝐪=ሺݔ, ,ݕ ,ݖ 𝜙, 𝜃, ߰, 𝛿ሻ𝑇, where ሺݔ, ,ݕ  ሻ denoteݖ
the position of the head link’s center, ሺ𝜙, 𝜃, ߰ሻ are Euler angles describing its spatial orientation (ZXZ convention), and 𝛿 
is the joint angle. Formulating the links’ linear and angular velocities 𝐯𝑖 , 𝛀𝑖 in terms of orientation and generalized 
velocities, 𝐪 and �̇�. Static equilibrium balance of forces and torques on the two links, including viscous drag terms   (𝒇𝒊𝝉𝒊) = − ( 𝝃𝒊 𝓑𝒊𝓑𝒊𝑻 𝜿𝑖 ) ቀ 𝐯𝑖𝛀𝑖ቁ, where 𝝃𝒊, 𝓑𝒊, 𝜿𝑖 are the translational, rotational and coupling viscous resistance tensor as notated 

in [2], magnetic torque 𝛕𝑚 and elastic joint torque 𝛕𝑘, leads to a system of first-order nonlinearly coupled ordinary 
differential equations of the form �̇�=𝐠ሺ𝐪,  .ሻݐ

Results 

This system is integrated numerically using MATLAB’s ODE15s function, under initial conditions 𝐪ሺ0ሻ = 0 of 
straightened links aligned with X-axis. The swimmer’s motion is extracted from solutions of 𝐪ሺݐሻ after convergence to 
steady-state synchronized periodic motion, whenever it exists. Beyond the step-out frequency, such synchronized motion 
no longer exists, and we observe quasi-periodic oscillations. 

Figure 2: (A) schematic diagram of nano-swimmer illustrating precession angles and XYZ coordinate. (B) Simulation’s values of the 
average speed of a flexible hinged nano-swimmer as a function of rotating magnetic frequency. (C) Mean precession cone angles α 

and ߚ as a function of the external rotating magnetic field frequency in the experiment. 
 
In order to study the locomotion behavior of nano-swimmers, we define the following parameters shown in Figure 2A. 
YZ plane corresponds to the plane of the magnetic field rotation. ߙ is the maximum angle between the magnetic head and 
the X-axis, and ߚ is the maximum angle between the tail link and the X-axis. For the analysis of nano-swimmers' 
locomotion characteristics, magnetic fields of 15 mT and rotational frequencies of up to 50 Hz with steps of 5 Hz 
investigated. At low frequency below 10 Hz, the nano-swimmer's movement speed was relatively low at around 0.5 m/s. 
The nano-swimmer was bent a little and rotated in YZ plane. From 10 Hz to 30 Hz, it started to move forward in a helical 
path. The speed increased almost linearly up to 27.49 m/s in the frequency region of 10 – 25 Hz. At the frequency range 
of 25 – 30 Hz, the speed curve shows an inflection point corresponding to a maximum speed of around 28 m/s. A further 
increase in the frequency results in a decrease in the speed towards zero. 
 
We classify the precession behavior into three different motion phases: tumbling, helical and asynchronous swimming, 
based on the speed and precession angles of the swimmer, as shown in Figures 2B and 2C. The transformation of the 
nano-swimmer's locomotion from tumbling to helical motion is supported by the fact that the precession angle ߙ and ߚ 
dramatically decrease as the rotational magnetic frequency increases. The simulation results in [1] were in good agreement 
with the experimental results. 
The different dynamic behavior by in-plane tumbling or spatial helical klinotactic swimming can be switched by changing 
the magnetic field frequency and strength. The effects of the magnetic field strength, the Ni head length, and the hinge 
length on locomotion behavior were investigated by numerical simulation and experiments in [1], were in good fit. We 
will also present new analytical results of the system’s periodic solutions, their existence and stability conditions, for 
specific limit cases.  
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Summary. In this work, we investigate the effect of parametric noise on a classical two degree-of-freedom pitch-plunge aeroelastic
system and study the manifestation of stochastic resonance in the same. The non-dimensional form of the governing equations are
studied, considering nonlinear soft-springs. The reduced velocity of the flow is modelled as a stochastically varying parameter by the
Ornstein-Uhlenbeck (OU) process. This parametric noise significantly changes the qualitative dynamics of the system. One such new
qualitative dynamics that we observe is noise induced intermittency, where the system hops between two attractors– ~0 fixed point and
a stable limit cycle oscillation (LCO). Next, we fix the mean reduced velocity near the onset of bifurcation and examine effect of noise
intensity. We see that the signal to noise ratio (SNR) of the system responses reaches a maxima for an optimum value of the noise
intensity. This characteristic feature in the aeroelastic system perturbed by parametric noise indicates the phenomenon of stochastic
resonance.

Introduction

The response of an elastic structure in a fluid flow is a very important research area as the applications range from aeroe-
lastic system design to design of tall buildings, bridges [1]. The design of these structures requires careful consideration
as there is interplay between three kinds of forces — inertial, elastic and aerodynamic forces. The interaction between the
three forces can cause the structure to exhibit LCOs, which is undesirable as it can cause fatigue failure in the structure
[2]. These self-excited LCOs of the structure is termed as the flutter phenomena. Recently, a lot of importance is being
given to the role played by parametric noise in such engineering systems [3, 4]. Noise is known to bring drastic qualitative
changes in the dynamical behaviour of such systems. One important feature in physical and biological systems subjected
to noise is the phenomenon of stochastic resonance [9, 10], which manifests due to a change in noise intensity. It is known
that such systems attain a maximum SNR at an optimum noise intensity. Inspired from these works, we make an attempt
to study the effect of parametric noise and the role played by the noise intensity on a classical pitch-plunge aeroelastic
system.

Methodology

The aeroelastic system is modelled as an airfoil undergoing motion in the pitch and plunge degrees-of-freedom under a
steady, uniform incoming flow and is based on the model by Lee et al [6, 7]. The non-dimensional governing equations
of motion are given in Equation 1.
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U

)
ϵ′ +
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2
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)
CM (τ) (1)

where xαb is the distance between the elastic axis and the centre of mass of the airfoil, rαb is the radius of gyration of
the airfoil, b is the semi-chord length of the airfoil. ′ denotes differentiation with respect to non-dimensional time, ϵ is the
non-dimensional plunge of the elastic axis, α is the pitch of the elastic axis, U is the reduced velocity, ω̄ is the ratio of
uncoupled natural frequencies in the plunge to the pitch mode, µ is the mass ratio, βα and βǫ denote the coefficients of
the cubic term of stiffness in the pitch and plunge modes respectively, ζα and ζǫ are the damping ratios in the pitch and
plunge modes respectively. CL and CM are the lift and moment coefficients respectively, which are derived based on the
Wagner function formulation [5]. The springs are assumed to be soft springs (βα is −ve).

Noise model
The reduced velocity U in Equation 1 is stochastically modelled as an OU process, which is generated by the Stochastic
Differential Equation (SDE) given in Equation 2

dU = λ(Um − U) dt+ σ dW (2)

where Um is the mean reduced velocity, λ is the inverse of the correlation time, σ is the noise intensity – parameters
of the OU process, W represents the standard brownian motion. The generated process has a correlation RUU (∆τ) =
exp(−λ∆τ) with variance σ2/(2λ). The entire system when cast in state space form looks like Equation 3

d ~X = f( ~X,U, τ) dτ

dU = λ(Um − U) dτ + σ dW (3)

where ~X consists of the system and auxillary variables (see [6, 7]). The Equations in 3 are interpreted as an Itô SDE and
are integrated by using the Euler-Maruyama method [8, 9].
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Results and Discussions

Firstly, the bifurcation behaviour of the deterministic system is studied by varying reduced velocity (U ). The system
undergoes a sub-critical Hopf bifurcation (flutter point, U = 6.29) beyond which it gets attracted to a stable LCO. The
unstable LCO takes a turn and becomes the stable LCO branch (turning point, U = 5.93). Now we investigate how
these responses get altered in the presence of parametric noise. Figure 1 (a) and (b) show time histories of U(τ), α(τ)
respectively for σ = 0.37 and Figure 1 (c) and (d) shows the same for σ = 0.27. For Um = 6.25 the system starts to
display hopping dynamics (Figure 1 (b) and (d)), wherein it intermittently switches between the~0 fixed point and the LCO.
This effect is solely due to the presence of parametric noise in the system and is dubbed as noise induced intermittency
in the literature [3, 11]. Next, we fix Um = 6.25 and vary the noise intensity σ. As σ is increased, the SNR value of
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Figure 1: Time histories for α(τ) and U(τ). (a) and (b): σ = 0.37, (c) and (d): σ = 0.27

the response increases as the system starts spending greater amounts of time in the LCO attractor. Further increase in σ
leads to a decrease in the value of SNR due to frequent switching between the attractors and the dynamics gets dictated
by the noise. This is further confirmed by plotting the power spectra and mean residence times of the responses. This
phenomenon where the SNR reaches a maxima for an optimum value of intensity of the noise is termed as stochastic
resonance [9, 10] and is being reported in the aeroelastic system for the first time.

Conclusions

We have investigated the effects of parametric noise on the considered aeroelastic system. The introduction of parametric
noise in U , modelled as an OU process brings about drastic changes in the system dynamics. The system starts hopping
between the two attractors and displays a new state of intermittent oscillations. The phenomenon of stochastic resonance
is observed when the noise intensity σ is varied. These changes in the system dynamics and the manifestation of stochastic
resonance brought on due to the parametric noise presents new challenges during design and use of aeroelastic systems.
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Influence of friction damping on frequency lock-in in cyclic structure

Miroslav Byrtus∗ and Štěpán Dyk ∗

∗Department of Mechanics, University of West Bohemia, Pilsen, Czech Republic

Summary. The paper deals with modelling and investigation of lock-in phenomena in bladed cyclic structure which is further influ-
enced by friction damping couplings. The investifation is focused on how the friction can affect the unstable behaviour during frequency
lock-in regimes.

Introduction

The fliud-structure interaction (FSI) phenomenon arises when an elastic structure interacts with the embracing fliud flow.
A particular case of FSI in which an alternate shedding of vortices forms the vibration of the structure is Vortex-Induced
Vibration (VIV). The natural vortex shedding frequency is dependent on the velocity of the flow. The vortex sheddding
exerts a periodic unsteady force on the body. As the vortex shedding frequency approaches the the natural frequency of
the body, the two frequencies lock-in for a small range of the velocity flow [2]. Experimental characterization of lock-in
is performed in [1].
The FSI plays significant role in modern aerofoils and turbine blades which are designed for higher efficiencies and higher
power under higher operational temperatures and flow rates. Higher operational safety and economical demands force
the designers to be more precise during phase of design with respect to operational condition laying out of the area with
loss of stability [3, 4, 5]. The fluid-induced forces create an aero-elastic couplings between the aerofoils and the fluid
flow. Moreover, in the case of periodical structures (gas or steam turbine blades in bladed disks) the aero-elastic coupling
influences not only the single blade but the adjacent blades as well. There are many experimental works investigating
experimentally the conditions of instability origin, e.g. [7, 8]. The paper deals with the modelling and dynamical analysis
of a periodic blade system influenced by VIV and friction-damping in inter-blade couplings.

Cyclic structure of blade profiles influenced by VIV

Further, it is assumed the cyclic structure formed by a bladed disk hasNB blades which are created by identical airfoil pro-
files. Each blade is modelled by the approach presented in the previous section, i.e. it comprises two degrees of freedom
(bending and torsion) and moreover these two motion are mutually coupled by so called bending-torsion coupling, see
[6]. Usually, in steam turbine applications, the bladed disks are equipped with different kinds of shrouding, which causes
that the system of blades mounted on a rotating disk become more stiff, especially with respect to axial flow direction.
The time-varying vortex force due to the alternating sheddin of vortices in the wake causing the VIV is modeled by the
van der Pol equation. The van der Pol model has two significant properties: i) self-sustained stable limit cycle oscillation
and ii) the lock-in with the frequency of external forcing [2].
In Fig. 1, the blade cascade of a bladed disk is depicted in a plane view. The axis of rotational symmetry designates
the axis of rotor symmetry which is the bladed disk attached to. Further, it is assumed that the flow direction is parallel
with the blade chords. The shrouding is supposed to be mounted at tips of the blades and it is modelled by means of two
lumped springs representing bending kshb and torsional ksht stiffness of each shrouding section between two adjacent
blades.
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Figure 1: Bladed cascade section with contact-friction shrouding coupling modelling.

The derivation of the linearized mathematical model of a bladed disk with the influence VIV is based on the methodology
presented in [2]. Here, it is extended for a cyclic structure and completed by the influence of interblade damping-friction
forces which are incopororated in shrouding coupling. It can be advantageously written in matrix form

MBDq̈BD +CBDq̇BD +KBDqBD = fEBD + fFCBD , (1)
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where MBD, CBD and KBD are rectangular of order 3NB mass, damping and stiffness matrices of a complex bladed
disk model. Right hand side of (1) contains force vectors of friction coupling fFCBD . Vector of generalized coordinates is
of following form qBD = [. . . , xi, φi, qi, . . . ]

T ∈ R3NB , where index i = 1, . . . , NB designates the particular blade.
The coordinate qi is governed by van der Pol equation which is used for the wake dynamics.

Lock-in in the cyclic structure

The figures below show multiple frequency lock-in reagarding different mode shapes of the structure (left). Real parts
of the eigen values witness of the stability. It is clear that when the frequency lock-in happens, the system exhibit can
unstable vibration.
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Figure 2: Frequency lock-in areas and stability charts for cyclic structure created of identical air-foil profile connected by shrouding.

Conclusions

The paper presents phenomenological model of vortex-induced vibration in a cyclic structure which is formed by blade
profiles. The attention is paid on the investigation of lock-in phenomenon using linearized model, which will further
completed by nonlinear friction terms based on LuGre friction model. There is obvious in the presented results, that the
system losses its stability during the lock-in phases. The future aim is to propose suitable damping mechanism which is
based on friction dampers and complete the analyses with experimental data.

Acknowledgement: This work was supported by the GA CR project No. 20-26779S "Study of dynamic stall flutter insta-
bilities and their consequences in turbomachinery application using mathematical, numerical and experimental methods".
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Iran 
** Associated professor, Faculty of Aerospace Engineering, Amirkabir University of Technology, 

Tehran, Iran 

 
Summary. In this paper a new method is presented for computation of nonlinear normal modes (NNMs) of damped nonlinear systems. 
Pseudo arc length continuation of periodic solution method is well accepted as a strong tool for computation of NNMs and in many 
literature is used as reference solution. However, this method is limited to conservative systems and its application to damped nonlinear 
systems is still an open field of problem and very few attempts were made to solve that. In this article a new algorithm based on 
combination of force appropriation technique and a modified version of pseudo arc length continuation method called efficient path 
following method (EPFM) is presented to compute NNMs of damped nonlinear system. In order to investigate the capability of the 
algorithm, NNMs of a two D.o.Fs damped mass-spring system was calculated. It was observed that the results were in very good 
agreement to those obtained in other references.  

Introduction 

In recent decade, NNMs have attracted many researchers and comprehensive article reviews are published on the 
concept, theory and application of them. Nowadays, there are two common definitions for NNMs: a) periodic motion of 
nonlinear autonomous system b) two dimensional invariant manifold in phase space. As Renson et al. mentioned, The 
role played by damping in the dynamics of nonlinear structures is not yet completely uncovered and its effect on the 
modal interactions and invariant manifolds are largely unanswered [5].  
Pseudo arc length continuation is used to compute NNMs based on periodic motion definition of them. However in 
general autonomous motions of damped systems are not periodic. This makes it difficult to use pseudo arc length 
continuation for computation of damped NNM. Kuether and Allen used combination of Force appropriation technique, 
complex Fourier expansion and numerical continuation to compute NNMs of damped systems [3]. They compute 
NNMs up to moderate levels of energy, but they couldn’t capture internal resonances. Krack added an artificial 
damping proportional to mass matrix to the equation of motion of the system with suitable sign to cancel the effect of 
system’s damping[2]. By adding this artificial damping, he made the solution of the system periodic and used pseudo 
arc length continuation for computation of NNMs. This method was limited to low damped systems and he didn’t 
capture any modal interactions.  
In this paper a novel method is presented based on force appropriation technique and EPFM. EPFM is a modified 
version of pseudo arc length continuation method which Sadr et al. showed that, it is up to 70% faster than similar 
algorithms [4]. This new method is capable to compute damped NNMs and their interactions with no limitation on 
energy level. In order to use this algorithm 

Theory and application 

One of the most important properties of NNMs is that force resonances occur near them. The governing equation of 
motion under harmonic force in state space is written as equation (1) in which z is vector of state variables defined as             where    is velocity vector and   is vector of displacements. F0 is the amplitude of external force, VF is 

the shape of external force and   is frequency of external force which could be defined as       where T is the period 

of the external force.                          
The shooting function would be defined as follow:                             
So the Tylor expansion of H and correction vector of initial guess maybe found by formula of equation (4). The matrix       and 

     are computed according to [4] and 
      is computed by means of finite difference method.                                                                                                                                             

Among all possible periodic solution of forced vibration, solutions satisfying phase quadrature lag criterion are NNMs 
of the nonlinear systems. It means that each harmonic in the excitation must be 90 degrees out of phase with each 
harmonic in the response. From energy point of view, phase quadrature lag criterion is defined as equation (6)[1].            
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Because the periodic solution of the system is invariant wrt linear shift of time origin, a phase condition equation may 
be used. In pseudo arc length continuation method, to make the convergence faster, the correction vector is forced to be 
perpendicular to the prediction vector. So the correction vector is calculated from following set of equations in which j 
is the continuation index and k is the iteration index in each step of continuation. Prediction vector of each continuation 
step is defined as               . 

    
                                   

                           
 
In order to implement the algorithm, forced response of the system at two near constant force amplitude are calculated 
using method developed by Sadr et al. and solutions satisfying energy condition defined by equation (8) are selected.   
is the acceptable tolerance. Then prediction vector is constructed using these tow point. Then continuation procedure is 
applied as stated before.                                                           

 

Results 

The method is applied to a two D.o.Fs Damped cubic nonlinear mass spring system and its first NNM is investigated. 
As stated in many references, NNMs of very lightly damped systems are similar to that of corresponding conservative 
systems. As seen in the results, when the damping is very low, the NNM is very close to conservative NNM. As the 
damping increases the modal interaction tong gets shorter and wider. It is observed that, the obtained solutions 
completely satisfy energy condition of equation4.  
 

   
(a) (b) (c) 

 
Figure 1: (a) damped cubic nonlinear mass spring system (b) forced response of the system at constant amplitude of force (c)energy 

condition of the forced response 

   
(a) (b) (c) 

 
Figure 1: (a) FEP of First NNM for different values of damping (b) Detail view of first NNM (c)energy condition for obtained results 

conclusion 

in this paper a new method based on force appropriation technique and pseudo arc length continuation is presented for 
computation of damped NNMs of nonlinear system. The method applied to a two D.o.Fs system. As observed the 
accuracy of results was very good. The method can capture the modal interactions without any difficulties. It was seen 
from the results as the damping of the system increases, the FEP tongs becomes shorter and wider. 
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Bifurcations and stability transitions in nonlinear dynamics of a planar undulating 

magnetic microswimmer 

 Jithu Paul*, Yizhar Or* and Oleg Gendelman* 

*Faculty of Mechanical Engineering, Technion–Israel Institute of Technology, Haifa, Israel 

  

Summary. A microswimmer, motivated from biological microorganisms or cells motion, which has two links representing a tail and a 

magnetized head is studied. The links are connected by a passive elastic joint and the microswimmer is actuated by an external time –

periodic magnetic field. This simple system is very rich in dynamics and we identified that there exists co-existing periodic solutions-

symmetric as well as asymmetric, and stability transitions with pitchfork bifurcations. There is optimum observations for the displacement 

and velocity of the swimmer with respect to the system parameters, may enable significantly improving the design aspects of the robotic 

microswimmer.  

The micro swimmers are motivated by biology [1], and their dynamics is always interesting . Among the simplest and most 

efficient techniques for actuation of robotic microswimmers , is by applying time-varying external magnetic fields [2]. One of 

the important milestones in the field of magnetically actuated microswimmer is given in by Dreyfus et. al  [3]. Inspired from 

the classical work of Purcell  [4], a very simple model of two-link swimmer has been presented by Gutman et. al  [5], with an 

external magnetic actuation on the head as shown in Fig. 1. The external magnetic field, 𝐵ሺ𝑡ሻ = ,ߛ] ߚ sinሺ𝜔𝑡ሻ]𝑇 has an 

oscillating component in y direction and a constant x component, ߛ. The same model with paramagnetic excitation is studied 

in [6] with interesting observations on bistability and analogy of ti lted Kapitza pendulum. We revisit the model in [5] and 

explore co-existence of periodic solutions as well as their bifurcations, stability transitions, and symmetry-breaking. 

The system in Fig. 1 has four coordinates: body position (x,y) and two angles 𝜃 and 𝜙, which represent body orientation 

angle and relative angle between the l inks , respectively. Invariance with respect to x and y enables reduction of the 

system into two dimensional state equations in two variables, 𝜃 and 𝜙  only. The stiffness of the torsional spring at the 

passive elastic joint is given by k. Coming to the major assumptions, the swimmer is submerged in a Newtonian fluid 

and it remains neutrally buoyant (no effect due to gravity). The micron size of the swimmer allows assuming low 

Reynolds number hydrodynamics where viscous forces dominate while inertial effects are negligible. The resistive force 

theoƌy foƌ slendeƌ ďodies goveƌns the net foƌĐes and toƌƋues aĐting at the l inks’ Đenteƌs due to visĐous dƌag .  In the work 

of Gutman et. al  [5],  fixed, ߛ = ͳ and small ߚ ≪ ߛ  are assumed, and focused only on symmetric periodic solutions with 

mean ሺ𝜃, 𝜙ሻ = ሺͲ,Ͳሻ. 

Here, as an extension to  [5], as shown in Fig. 2, we extracted other co-existing solutions, symmetric around mean ሺ𝜃, 𝜙ሻ =ሺ𝜋, Ͳሻ, as well as asymmetric, and their stability transitions (Fig. 2(a)) and bifurcation (Fig. 2(b)). Upon varying the actuation 

parameters (ߚ, ,ߛ 𝜔), the results are obtained by numerical analysis using the MATLAB tools ODE45 and fsolve. There 

are also optimum plots (for stable region) for 𝑋, net displacement in x versus ߚ , amplitudes of excitation (Fig. 2(c)) and 𝑉, 

mean velocity versus 𝜔, frequency (Fig. 2(d)), where all  the parameters are in experimentally relevant region. It can be 

analytically studied since there exists small amplitudes for 𝜃,  𝜙 for ߛ ≪ ͳ. These stable optimum regions and indications 

towards stability transitions can improve designing a simple efficient two link robotic microswimmer, which can be used for 

a wide range of applications. 
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Fig. 1. Model system, (a) shows two link microswimmer which are connected by torsional spring and its head receives magnetic actuation. (b) shows 

the details of magnetic actuation 

 

 

Fig. 2. (a) shows Stability transition in ߚ − 𝜔 plane at ߛ = Ͳ.ͳ, (b) shows possibility of a subcritical pitchfork bifurcation at the stability transition where 𝜔 = ʹ, ߛ = Ͳ.ͳ, (c) shows optimum displacement plot with respect to amplitude of actuation oscillations ߚ and (d) shows the optimum velocity plot 

versus frequency 𝜔. 
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 Stability of Nonlinear Normal Modes under Stochastic Excitation  
 
 Yuri V. Mikhlin * and  Gayane V. Rudnyeva* 

*National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine 

  
Summary. Two-DOF nonlinear system under white noise excitation is considered. It is assumed that the system allows from two up to four 
nonlinear normal modes (NNMs) with rectilinear trajectories in the system configuration space. Influence of the random excitation to the 
NNMs stability is analyzed by using the analytical-numerical test, which is an implication of the well-known Lyapunov stability 
criterion. Boundary of the stability/ instability regions is obtained in place of two parameters, namely, a connection between partial 
oscillators, and the excitation intensity. Stability of the NNMs under deterministic chaos excitation is also considered.  

Introduction 

Investigation of nonlinear normal modes (NNMs) is an important part of general analysis of dynamical systems. 
Different theoretical aspects of the NNMs theory and applications of the theory are presented in numerous publications, 
in particular, in review [1]. NNMs having rectilinear trajectories in configuration space (so-called similar nonlinear 
normal modes) were first found in some essential nonlinear systems by Rosenberg [2].  
Numerous publications are dedicated to investigation of behavior of dynamical systems under stochastic excitation. In 
this regard, different theoretical and numerical procedures are developed. We cite here only few publications on the 
subject, namely, books [3-5]. In [6] the dynamics of aerospace vehicles and/or other structures subject to random 
excitation is investigated using a reduced order model in terms of its nonlinear normal modes. Evolution of NNMs is 
studied by the continuation algorithm and presented in the plot “energy-frequency”.  
Here some numerical-analytical test [7] which is a consequence of the well-know Lyapunov criterion of stability is used 
to analyze a stability of NNMs in two-DOF nonlinear system under white noise excitation. We assume that the system 
allows from nonlinear normal modes with rectilinear trajectories in the system configuration space. We analyze also a 
stability of the NNMs under deterministic chaos excitation.  

Principal model under consideration 

The following two-DOF nonlinear system under stochastic excitation is considered:  

   
   

33
1 1 1 2 1

33
2 2 2 1 2

,

,

x x x x t

x x x x t

      


     
       (1) 

where İ is the small parameter, and the functions ( )ξ1 t , ( )ξ2 t  represent stochastic excitation. When İ=0 the system 

allows so-called similar NNMs in the form 𝑥ଶ = 𝑐𝑥ଵ, where c is the modal constant. We can note that the equations (1) 
always allow two similar NNMs, where 𝑐ଵ,ଶ = ±1. The solution 𝑐ଵ = +1 corresponds to the in-phase nonlinear normal 

mode, and the solution 𝑐ଶ = −1 corresponds to the out-of-phase (anti-phase) one. We consider the external excitations 
which save the in-phase and out-of-phase NNMs but can change their stability and point of bifurcation.  

Test of stability as implication of the Lyapunov stability criterion 

Consider the well-known Lyapunov definition of stability which can be presented in the simplest variant as the 
following: the solution y = 0 is stable if for any positive İ there a positive į exists such that for all  0Ny0   and 

0t  we have the following:    tNty   where stated neighborhoods can be determined using norms in some 

functional space. Here the variable y has meaning of variation with respect to the solution studied for stability. Later a 
modulus of the function is used as the norm. One introduces a relation between the quantity İ and the initial value of the 
variable y; it corresponds to a sense of the definition by Lyapunov when the initial variations must not tend to zero. Let  

( )0y const            (2) 

We can note that a value of į is not arbitrarily small; it corresponds to essence of the Lyapunov definition because in 
this definition the initial values of variations cannot tend to zero. One has from the Lyapunov stability definition that 

   0yty   for a case of stability. 

We introduce the following test for the system under consideration [6]: Instability of the solution y = 0 is fixed if 

     0 0 .y t y t T         (3) 

In contrast to the Lyapunov definition a time of numerical calculations T is limited in the test (3). It is necessary to 
discuss a choice of values of ρ and T. There is some arbitrariness in a choice of the value ρ. In fact, in the instability 
region the variations leave the solution İ-neighborhood under increase of t for any choice of the parameter ρ. We can 
choose, for example, ρ = 10. One discusses now a choice of the constant T. Note that all concrete calculations are 
realized by using the standard Runge-Kutta procedure. These calculations are made at points on some chosen mesh of 
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the system parameter space. Calculations are conducted as long as boundaries of stability/instability regions in a chosen 
scale on the system parameter space are variable. This is a principal criterion for the choice of the calculation time T [7].  
Taking into account a specific character of the stability problem under stochastic excitation, we are introduced some 
important modification to the proposed test (3). Namely, we can observe that in the last case some variations can leave 
the İ-neighborhood and then return back to one. Thus, we will allow that some small part of variations (not more than 
10 percent) is out of the neighborhood during each fixed interval of time.   

Stability of the similar NNMs: results of simulation 

To investigate the stability/instability of the in-phase and out-of-phase nonlinear normal modes, we pass to the systems 
in variations by means of change of variables in (1), namely:  
for the out-of-phase NNM       1 2( ) / 2, ( ) / 2x u v x u v    , 00 ,u u v v v    ,  2 1   ; 

for the in-phase NNM     1 2( ) / 2, ( ) / 2x u v x u v      , 0 , 0u u u v v    , 2 1   . 

Some results of numerical simulation for the presented NNM stability problem by using the stability criterion (3) are 
presented. Figs. 1 and 2 demonstrate boundaries of stability/instability of the out-of-phase nonlinear normal mode for 
different values of parameters. Figs. 3 and 4 show a behavior in time of the out-of-phase NNM simulated for different 
values of the connection parameter: γ=0.24 and γ=0.26, correspondingly. Fig.5 shows boundaries of the stability/ 
instability regions in the place (γ,İ). Note that such results are obtained for four different kinds of stochastic excitation. 

                    
Figure 1          Figure 2 

      
    Figure 3               Figure 4     Figure 5 

Stability of NNMs under excitation in the form of determined chaos 

Determined chaotic excitation can be obtained, in particular, by solution of the non-autonomous Duffing equation for 
some values of the equation parameters. Numerical simulation shows that excitation in the form of the determined 
chaos does not influence to stability of the NNMs in the system under consideration.  

Conclusions 

It is shown that the analytical-numerical test, which is an implication of the Lyapunov stability criterion, can be 
successfully used in analysis of stability of NNMs in two-DOF system under white noise excitation. Boundary of the 
stability/ instability regions is obtained in place of the system parameters, including parameter of the excitation 
intensity. It is shown also that the deterministic chaos excitation does not affect to the NNMs stability.  
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SIR model for rumor propagation

Cristiane M. Batistela∗, Manuel A. M. Cabrera∗, Antonio C. B. Godoi∗ and José R. C. Piqueira∗
∗ Control Engineering Department, São Paulo University, São Paulo, Brazil

Summary. Similarities exist between rumor propagation and disease spreading. In analogy with the SIR (Susceptible-Infected-
Removed) epidemiological model, the ISS (Ignorant-Spreader-Stifler) rumor model has been developed. Here, the SIR model was
modified with the new compartment, originating the ISSV (Ignorant-Spreader-Stifler-Verifier) rumor model. In this work, the model
is presented and how its parameters are related to network characteristics is explained. This paper presents a system of differential
equations that describes the spreading of a rumor in a new model, with a novel compartment, the verifier. By using concepts from
Dynamical Systems Theory, equilibrium point is calculated, the stability and bifurcation conditions are derived. According parameters
and initial conditions, the model is validated with numerical experiments. The relations among the model parameters in the several
bifurcation conditions allow a rumor propagation design minimizing risks.

Introduction

With the rapid development of the Internet, the way to acquire information changed. There are a lot of platforms for this,
as a typical example, social networks and they have been widely recognized. The media commonly releases their latest
information through social networks, consequently can bring efficiency to daily life and information exchange, but it also
results in gradual prevalence of online rumor.
Rumor, as a part of everyone is daily life, has often been defined as a type of social phenomenon with which some
unconfirmed elaboration or annotation of the public interested events or issues spread on a large scale within a relatively
short period of time through various channels, whether it is true or false [3].
People disseminate rumors as a mean of increasing awareness, orienting society, slandering others and so on. The spread
of rumors can shape the public opinion and impact finantial markets and change population behavior [10].
The research on rumor propagation models started with development the stochastic rumor propagation proposed by Daley-
Kendall, wich divided people into classes: ignorant, spreaders and stiflers, based on the infectious disease research method
[1]. Maki-Thompson believed that rumors were disseminated through the two-way contact between the disseminators and
other people in the crowd based on Markov chain [11]. Zanette first studied the dynamic behavior of rumor propagation
in small world networks, and similarly to disease models he obtained the spreading threshold [17].
Based on the fact that social behavior and biological diseases are a result of interaction between individuals, many re-
searchers have studied the dynamics of social systems by applying epidemiological models.
The epidemiological model proposed by Kermack and McKendrick, the SIR (Susceptible-Infected-Removed) compart-
mental model [7, 8, 9], has been used in several areas and modifications of this work allowed Daley and Kendall (DK) to
propose a rumor spread model [1], the ISS (Ignorant-Spreader-Stifler) model wich shares commons characteristics with
epidemic model [2], being important mark in rumor propagation.
The equations that model are similar with the ignorant and spreading populations from ISS model being analogous to
susceptible and infected populations of the SIR model, respectively. The main difference between in the models, is that,
in ISS, the stifler population plays a different role from the removed population because they does not propagation the
rumor and remains in a constant state. In the other way, in SIR models, the removed individuals can be transformed into
susceptible ones.
Based on the DK model, in which the participants were divided into three groups: one group of people who never heard
the rumor (ignorant), one knowing and spreading the rumor (spreader), and one knowing the rumor but never spreading it
(stifler). Afterwards, the rumor spreading model was refined with consideration of the forgetting mechanism [14] and by
incorporating the effects of remembering mechanism in complex networks [18].
Various mathematical models for the propagation of a rumour within a population have been developed: the rumor spread-
ing process with denial and skepticism [5], rumor spreading model with skepticism mechanism in social networks, epi-
demiological approach to model viral meme propagation [16], deterministic models for rumor transmission with constant
and variable rumor in an age-independent population, models considering limited information exchange, which two types
of rumors spread simultaneously among the crowd, stochastic rumor propagation model [6]. Recently, based on the clas-
sical SIR rumor propagation model, a new Susceptible-Infected-Hibernator-Removed model by adding a direct link from
ignorants to stiflers and a new group hibernator [18].
Here, assuming an ISS model as a generalization of DK model and with analogies with the SIR model, the rumor spreading
is studied, considering a new compartment, the verifier, ISSV (Ignorant-Spreader-Stifler-Verifier). The different dynam-
ical propagation behaviors are possible, depending on how the nodes are connected. Furthermore, the model is studied
under the assuming homogeneous distribution of social network that gives plausive qualitative results.
First, the differential equations representing the ISSV model are presented, followed by the stability analysis of the
equilibrium points and the possibility of the bifurcation. Numerical experiments are performed to validade the analytical
results. Finally, we present our conclusions and discuss some implications of the results.
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ISSV Model: hypothesis and equations

The model proposed here is based on the original SIR model with analogies in epidemiologic models. A quantitative
version of this model associated with compartmental model was analised by Moreno et al. [13].
By using concepts from Dynamics Systems Theory and assuming the ISS (Ignorant-Spreader-Stifler) models as general-
ization of DK model, the rumor spreading representation was studied, the several asymptotic behaviors are discussed and
the possible bifurcations are shown by Piqueira [15] with the total population (T ), divided into three groups: ignorants
(I), spreaders (S) and stiflers (R).
Here, the proposed models have a new compartmant and each of the elements of the network can be one of the four
different states: the first class are ignorants, and represents those individuals that never heard the rumor and are susceptible
to be informed (I); the second group contains the individuals that are spreading the rumor, the spreaders (S); the third
compartment, the verifier (V ), can verify the rumor and finally, stiflers are those who know the rumor but that are no
longer spreading it (R). This model is shown in Figure 1.

S RI

V

�

� ��

��

Figure 1: ISSV model.

The dynamical behavior of the spreading process depends on the way the individuals encounter each other. When a
spreader meets an ignorant, the latter becomes a new spreader with probability α. Similar to the SIR model, the decay of
the spreading process could be either when a spreader meets a stifler and contacts are supposed to have a probability equal
to β or became verifier with the rate coefficient γ; in addition, verifier transform into stiflers with the rate coefficiente δ.
The dynamic equation for the populations I , S, V and R are:





İ = −αIS;
Ṡ = αIS − γS − βS;
V̇ = γS − δV ;

Ṙ = βS + δV.

(1)

The initial conditios are assumed to be S(0) ≥ 0, I(0) ≥ 0, V (0) ≥ 0 and R(0) ≥ 0. It is noticed that, for the model
represented by (1), the total population T = I + S + V +R remains constant and one of the equations can be expressed
by a linear combination of the other three.

Bifurcation of the equilibrium states

In order to explore the influence of the verifiers during the rumor propagation, the dynamic system can be studied consid-
ering the equilibrium point of the model represented by (1).
The local stability of these points is analysed using Hartman-Grobman Theorem and the Jacobian derivative is calculated
for each equilibrium points and the eigenvalues is calculated.
Examining the dynamical equation for the model, it is possible to determine that there is no spreader equilibrium point,
i.e., equilibrium with spreaders nodes. This equilibrium states, spreader-free, corresponding to the absence the spreaders
(S = 0) and the models in study presented one equilibrium condition, P = (I, S, V,R) = (I∗, 0, 0, R∗).
To analyze the stability of this point, the general Jacobian (J), for the model (1), is constructed as:

J =




−αS −αI 0 0
αS αI − γ − β 0 0
0 γ −δ 0
0 β δ 0


 .

The Jacobian calculated in the equilibrium point P is reduced to:
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JP =




0 −αI 0 0
0 αI − γ − β 0 0
0 γ −δ 0
0 β δ 0


 .

Using MATLAB R2013a [12], the eigenvalues can be calculated: λ1 = 0, λ2 = αI − γ − β, λ3 = −δ and λ4 = 0.
Considering the eigenvalues in JP , for λ1 = 0 and λ4 = 0, one zero eigenvalue corresponds to the fact that the order
of the dynamical system is three and other represent the central manifold [4] represented by the degenerated equilibrium.
The eingenvalue λ2 = αI − γ − β, suggesting the detailed analyses because of the bifurcation possibility.
Examing the eigenvalue λ2 = αI − γ − β and considering T = I +R for the equilibrium point, the λ2 can be rewritten
as λ2 = αT − γ − β.
Analysing the signal of the second eigenvalue, the equilibrium point is asymptotically stable if T < (γ + β)/α and if
T > (γ + β)/α, the equilibrium point is unstable.

Numerical Experiments

To quantitative analyze the influence of verification nodes on the rumor network, numerical simulations of the model are
performed considering the unitary total population (T = I + S + V + R = 1). Thus, the instantaneous values of the
populations I , S, V , and R are expressed in percentage.
By using the Simulink tool from MATLAB R2013a [12], model simulations were performed to confirm the analytical
results, showing the possible behaviors of the dynamical system when verifier compartments are present. The chosen
parameters must be corrected to reproduce the results for different population sizes.
In order to simulate the stability of equilibrium point, the parameters must respect the condition T < (γ + β)/α. Then,
for α = 0.5, β is chosen equal 0.3, γ = 0.25 and δ = 0.5.
Starting with a condition with at least one percent spreader, the asymptotically stable equilibrium, P , is reachable and the
rumor is not propagated. Figure 2 shows the time evolution of the model starting with I0 = 0.99 and S0 = 0.01. The
spreaders become stiflers as well as a small percentage of ignorant. The resulting time evolution obtained and ending at
the spreader-free equilibrium P .
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Figure 2: Simulating near stable equilibrium (α = 0.5; β = 0.3; γ = 0.25; δ = 0.5).

Remaining with the same parameter values and changing the initial conditions, the Figure 3 shows the spreader-free
equilibrium P being reached for the initial conditions I0 = 0.89, S0 = 0.10 and V0 = 0.01. In this situation, the
spreaders and verifeirs become stiflers and some ignorants came to know the rumors.
Satisfying the condition T < (γ+β)/α, the rumor is contained and decreasing the parameter α or increasing the parameter
γ or β, rumor propagation dynamics are not changed.
In order to study the dynamics of the rumor propagation by varying the parameters, the initial condition is considered
I0 = 0.99 and S0 = 0.01 and the β value was changed to 0.03. Then, for α = 0.5, γ is chosen equal 0.25 and δ = 0.5.
Even decreasing the transformation rate of spreaders into stiffler, the rumor propogation occured by the increase of the
stiflers. Figure 4 shows part of the ignorats become stifflers and in this situation T > (γ + β)/α.
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Figure 3: Simulating near stable equilibrium changing the initial percentage of spreader.
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Figure 4: Changing β (α = 0.5; β = 0.03; γ = 0.25; δ = 0.5).

Changing the parameter α and considering the initial condition I0 = 0.98, S0 = 0.01 and V0 = 0.01, Figure 5 shows the
unstability of the equilibrium point P . The parameters are: α = 5; β = 0.03; γ = 0.25; δ = 0.5 and in this situation all
the population become stiflers.
Considering δ = 0.05 and the initial condition I = 0.98, S = 0.01 and V = 0.01, Figure 6 shows the influence of this
parameter in the dynamics of the rumor propagation. The others parameters are: α = 5; β = 0.03; γ = 0.25; δ = 0.05
and in this situation all the population become stiflers. With the decreasing of this rate, the time evolution is changed but
the qualitative behavior is the same.

Conclusions

The analysis of the ISSV model shows that, for a given total population, T, the main control parameters are probabilities
α, β and γ measuring the efficient communication ignorant-spreader (α), spreader-stifler (β) and spreader-verifier (γ),
respectively.
Perturbing near the equilibrium point with at least one spreader, for any combination the parameters, satisfying the con-
dition T > (γ + β)/α , the steady state is composed of a few ignorants, a lot of stiflers, and no spreaders, meaning that
almost all the population heard the rumor.
Under the same initial conditions but satisfying the condition T < (γ+β)/α, the equibrium point is not changed meaning
that the rumor is not propagated.
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Figure 5: Changing α (α = 5; β = 0.03; γ = 0.25; δ = 0.5).
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Figure 6: Changing α (α = 5; β = 0.03; γ = 0.25; δ = 0.05).

Changing the δ parameter, wich transform verifier into stifler, does not change the qualitative behavior associated with the
spread of rumors.
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Dynamics and minimalistic control of a flexible structure  
containing bi-stable elements 

 Yamit Geron*, Sefi Givli*, Yizhar Or * 
*Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel. 

  
Summary. This study aims  to design and analyze a system of mechanically-coupled bistable elements such that transitions between 
states (different equilibrium branches) take place in a desirable order by controlling a single degree of freedom. Such systems may 
be useful in a range of applications, e.g. soft robots or foldable structures, where a complex sequence of movements or configurations 
needs be achieved by minimal control. The theoretical part involves analytical and numerical investigation of the non-linear dynamic 
response of an array of bistable elements connected in series. The model accounts for the non-linear behavior of the bistable elements 
assuming linear damping and negligible inertia where the only control input is the displacement at the end of the chain (ݑ). The 
quasi-static and dynamic response of a chain of two elements is studied. Focus is put on the multiplicity of equilibrium states, 
stability, and conditions for transition between stable states. Special attention is given to identifying critical rates that separate 
between different transition sequences, and how they are influenced by the properties of the bistable elements and the variability 
between them. We show, and demonstrate experimentally, that by clever design of the bistable elements, one can robustly control 
the order of transitions between states by merely varying the rate (speed) of the applied overall extension. 
 

Introduction  

A bi-stable mechanical element has two stable equilibrium states for the same external load and allows transition 
between states. The behavior of a chain of bistable elements has been studied extensively in various contexts. For 
example, in [1] the quasi-static behavior and stability of equilibrium configurations of a chain of identical bistable 
elements was investigated. Recently, robotic systems with bistable elements have been proposed for achieving 
controlled transitions using minimalistic control [2]. In another recent work [3], such concept was demonstrated 
on a system of identical hyper-elastic thin-walled balloons connected in series, where a desirable state is attained 
by a sequence of quasi-static inflations and deflations using a single flow control input.  
 
 
 
 
 
 
 
 
 
 

Results 

The dynamic equations of a system comprising two bistable elements connected in series were formulated by 
assuming linear damping and negligible inertial forces. A thorough investigation revealed that the sequence of 
transitions between stable equilibrium branches can be dictated by merely controlling the input (elongation) speed. 
 

 

   
 

 

 

 

 

 

 

 
 
 
 
 
For example, during stretching, the condition for generating a sequence of transition events that differs from that 
of the quasi-static (or slow) loading is that the first element reaches the negative-stiffness branch (right of the red 
vertical line in Fig. 3b) before the second element does (above the horizontal gray line in Fig. 3b).  
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Figure 2: (a). Dynamic model; ݑ is the input control and 𝜀𝑖 is the elongation of element i. (b). Equilibrium curves (dashed – unstable) 
and dynamic trajectories on the map of the elongation of the elements. (c). The force – elongation relation of the elements in the system.  
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Figure 1: (a). A 3D-printed bistable element made of ABS material. (b). The measured force–elongation relation of the 3D-
printed bistable element. 
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Let us define the following non-dimensional parameters: 𝜏 = 𝑘భ𝑐 ,ݐ ݑ̄ = 𝑐𝑣ଶሺ𝐹maxభ+𝐹maxమሻ , 𝛽 = ሺ𝐹maxభ−𝐹maxమሻሺ𝐹maxభ+𝐹maxమሻ . The 

condition for changing transition sequence is  𝛽 + ݑ̄ ቀ𝑒−భ�̄� − ͳቁ > Ͳ. We find that for relatively small values of , 

even up to =0.18, the critical speed may be well approximated by ݒ > ଶሺ𝐹max భ−𝐹max మሻ𝑐 .  

To test the theoretical predictions, we designed and built an experimental setup. The bistable elements were 
manufactured by 3D-printing, and the details of their bistable behavior (including the desired difference between 
the two) were tailored by careful design of the geometry of the parallel bending beams. Damping was introduced 
by strong magnets attached to each element and hovering over a copper plate (see Fig. 4).  
 
 
 
 
 
 
 
 
 
 
 
The dynamic response was recorded using a digital camera and then analyzed by means of standard image 
processing tools. The experimental results, in terms of elongation of each of the two bistable elements, are shown 
in Fig. 5, and display a very good agreement with the theoretical predictions.  
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Figure 5: Comparison of the results of the experiment measured in image processing to the results of the simulation. 
Purple dots (experiment results), red line (stretching simulation) green line (compression simulation), dashed line black 
(unstable equilibrium), black line (stable equilibrium). 

Figure 4: (a). Experimental system. (b). Two bistable elements are printed on a 3D printer made of ABS material. 

  

Figure 3: (a). It can be seen in the graph that there is a critical speed which changes the trajectory of the movement from the 
trivial trajectory to the non-trivial trajectory. (b). Shows the requirements for the transition to the non-trivial route on a force – 
elongation profile. (c). Algebraic transition conditions according to the conditions in graph b. 
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Optomechanical cavities: from synchronization to mode locking

Eyal Buks∗
∗Andrew and Erna Viterbi Department of Electrical Engineering, Technion, Haifa 32000 Israel

Summary. We experimentally study a fiber-based optical ring cavity integrated with a mechanical resonator mirror and an optical
amplifier. The device exhibits a variety of intriguing nonlinear effects including synchronization and self-excited oscillation. Passively
generated optical pulses are observed when the frequency of the optical ring cavity is tuned very close to the mechanical frequency of
the suspended mirror. The optical power at the threshold of this process of mechanical mode locking is found to be related to quantum
noise of the optical amplifier.
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 Analytical study of interfacial three dimensional gravity waves in presence of current  
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** Laboratoire revêtements, Matériaux et Environnement, Université M'Hamed Bougara de 
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***  Faculté de physique, Laboratoire mécanique des fluides théoriques et appliqués, Université des 
Sciences et de la Technologie Houari Boumediene, B.P.32 El Alia, Alger 16111, Algeria. 

  
Summary. Analytical study of short crested interfacial gravity waves propagating between two infinite fluids layers has been carried out. 
These waves are the simplest form of three dimensional waves and are obtained through a reflection of a 2D wave train into a vertical wall. 
The fluids have different densities and the upper is moving relative to the lower with horizontal and uniform velocity U. The fluids are 
taken to be incompressible and inviscid and the motion assumed to be irrotational. Using a perturbation method, the forth order solutions 
was obtained. Using this method attention was focused for the determination of the harmonic resonance of short-crested interfacial waves. 

Introduction 

For several years efforts have been devoted to the study of the two dimensional interfacial gravity waves in the presence 
of current. The most interesting approach to this issue has been proposed by Saffman [1], where he identified the critical 
current which limiting the existence of steady solutions. However, modeling some aspects of three dimensional 
interfacial gravity waves in the presence of current is essential for more realistic descriptions. Applying this modeling to 
appropriate cases of practical interest is the main goal of the present work. Most of the work published for three 
dimensional waves often deals with short crested waves which represent the simplest form, that is why, in our study we 
focused in this wave form. Using perturbation method an analytical approach has been presented up to the fourth order 
for the case of interfacial waves between two infinite fluid layers with different densities. 
 
System of equations. 
Considering Cartesian coordinate composed of the horizontal plane (x-y) of propagation's interfacial three dimensional wave between two 
infinite fluid layers (fig.1.a). Herein, short crested-wave field generated from the nonlinear interaction of two wave trains propagating to 
each other's having the same amplitude and wavelength. L is the wavelength of the incident wave,   is the angle between the direction of 
incidence and the normal to the wall. U is the uniform current paralleling to the direction of propagation on the upper layer as shown in 
(fig.1.b). 
    (a)         (b)     

    
Figure.1: schematic presentation of a short crested wave in presence of current. 

 
The two fluids with densities 1  and 2 are assumed to be inviscid, incompressible and the motion is irrotational. However, with this 

assumptions the fluid motion can be described by the velocity potential ( , , )1 X Y Z  and ( , , )2 X Y Z , which satisfy the dimensionless 

Laplace's equation in the two fluid layers domain. 

1 0 0 ,for Z                                                  (1)                                                                                                   

2 0 0 .for Z                                                                                                                                                             (2)                                      

  
And due to the presence of a current on the upper layer, herein, the total velocity potential can be expressed by: 

1 1( , , ) ( , , ).T X Y Z pUX X Y Z                                                                                                                                                     (3)                                      

Solutions of equations (1) and (2) are obtained using some boundary conditions for each layer of fluid, they are summarized in 
dimensionless form as below: 

Kinematic boundary conditions at the interface:
2 2

1 1 1( ) 0 ,X X X Y Y ZpU p q                                                          (4) 

                                                                         
2 2

2 2 2 0 ,X X X Y Y Zp q                                                          (5) 
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Dynamic boundary condition resulting from the Bernoulli's theorem where C is the Bernoulli's constant:       

 2 2 2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2

1 1
( ) ( ) ( ) 0,

2 2X X Y Z X X Y ZpU p q p q C                                                    (6) 

Bottom boundary conditions: 1 0 ,Z at Z                                                                                                            (7)                                         

                                              2 0 .Z at Z                                                                                            (8)                                    

Perturbation method 

The problem is solved by the perturbation method. Such an analysis assumes that the non linearities present a small corrections to linear 
wave theory. The parameters of the problem are developed in power series based on a small parameter h: 

( , , ), ( , ), ,
1 1 1

r r r r r
h X Y Z h X Y h ri ir r r

     
  
    
  

                                                                                           (9) 

Where the wave steepness defined by     1
0, 0 0, .

2
h      

In the first order, we retain only the linear terms. Thus, the linear solution is: 
(1)
1 0

(1)
2 0

(1)

0

( ) sin cos

sin cos ,

cos cos ,

2 2 2 1 1,

,Z
pU X Y e

z
X Y e

X Y

pU p U

 

 



    

 





     









                                                                                                                                        (10)                                         

The dispersion relation for the linear interfacial wave can be expressed by:  
2 2

0 0( ) 1 ,pU                                         (11) 

From this relation the value of the critical current is given by: 2( 1) .U pcl                                                                     (12) 

As clU U the three-dimensional waves cannot be observed in regular form, in other words steady solutions no longer exist and the wave 

profile becomes unphysical. 
In the higher order, the linearization of kinematic and dynamic equations is carried out by performing a Taylor series expansion of the 
potential velocities in the neighbourhood of     .  After solving the system of equations, the following solutions are obtained in each 
order: 

( ) ( ) ( ) ( )
1, 0 1, 0 2,( )

2 2 2 2 2
0 0 0

( )
,

( 2 ) ( 1)

r r r r
mn mn mn mn mnr

mn
mn

m pUf f f F
a

m p U pU

   

     

  
 

    
                                                                                                  (13)                                          

( ) ( )2 ( )
0 0 0 0( ) 2, 1,

2 2 2 2 2
0 0 0

( ) ( ) ( )
,

( 2 ) ( 1)

r rr
mn mn mn mnr mn mn

mn
mn mn

pU m f pU mF m f
b

m p U pU

      

      

     


      
                                                                      (14) 

( ) ( ) ( )2 ( ) 2 2 2 2
0 0 0 .0 0( ) 1, 2, 2,

2 2 2 2 2
0 0 0

( ) ( 2 ) ( 1)
,

( 2 ) ( 1)

r r rr
mn mn mnr mn mn mn

mn
mn mn

pU m f mF p U pU m f f
c

m p U pU

         

      

      
 

      
                                   (15)   

A secular term appears when the denominator of the coefficients becomes zero. This condition is called harmonic resonance. The 
appearance of secular terms is characteristic of nonlinear short crested waves. Roberts [2] was the first to discover the phenomenon of 
harmonic resonance of short crested surface waves, and then extended by Allalou, Debiane and Kharif [3] for 3D interface waves in finite 
depth. When the resonance occurs, we have:    

2 2 2 2 2
0 0 0( 2 ) ( 1) 0.mnm p U pU                                                                                                                                      (16)                                                

Relationship (16) is considered an extension of Allalou's, study in the presence of a uniform current. 

Conclusions 

In this work, we presented the internal three-dimensional gravity waves in the presence of a parallel current. The latter gave 
an original aspect to this study. Based on previous work mainly that carried out by N. Allalou & al. [3] it was found that our 
results were in good agreement. We presented all the physical aspects of the internal three-dimensional wave and we were 
able to extend our analytical results to the fourth order. We deduced the values of the critical velocity that did not exceeded 
throughout the study. Moreover, we were able to determine the neighbourhood of the harmonic resonance, and the 
observation of the wave profile was made by varying several parameters. 
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Control-Oriented Modeling of a Planar Cable-Driven Parallel Robot
with Non-Straight Cables
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∗‡, Hassan Omran∗†, Iuliana Bara∗†, and Edouard Laroche∗†

∗ICube, engineering science, computer science and imaging laboratory, Strasbourg, France
†University of Strasbourg, France

‡INSA of Strasbourg, France

Summary. This communication deals with the control-oriented modeling of cable-driven parallel manipulators when the cables are
not considered as straight but show transverse deflections due to fast movements of the platform. The model has been derived from
Euler-Lagrange equations with multipliers in order to deal with the kinematic constraints (DAE model). The number of generalized co-
ordinates have been reduced by performing a transformation of the DAE model to an ODE model. The ODE model has been linearized
and an H∞ controller has been synthesized to control the cable tension and enable the platform to track a reference trajectory.

Introduction

Cable-driven parallel robots (CDPR) are composed of a platform attached to fixed points by cables. The movement of the
platform is obtained by winding the cables. One usually distinguishes fully-constrained robots where the number of cables
exceeds the number of degrees of freedom and suspended robots. Notwithstanding the commercially available CableCam
system1, CDPR are considered in a number of research projects for applications such as aircraft and ship construction,
building facade cleaning and rescue in open air [1].

We are interested here in the modeling of cable robots taking into account cables deflections. More precisely, we take
into account the cables inertial effects on the transverse displacements. A planar robot model with three cables made it
possible to assess the effects of transverse displacements and the limits of a conventional control strategy [2]. The model
was developed from the Lagrangian calculation by approximating the transverse displacements of the cables by parabolic
functions.

Albeit this model allows to evaluate the system in simulation, it cannot be readily used to determine the stability properties
and properly assess the system performance during a path-following task due to a lack of controllability. This communi-
cation discusses three possible methods to obtain such a control-oriented model from a model derived from the laws of
physics, taking the example of the planar CDPR.

CDPR description and model

A planar robot with three cables holding a point mass is considered. The dynamic model has been obtained with the
Lagrange method with multipliers that suit for dynamic systems with kinematic constraints. Each of the three cables is
considered without elongation as depending on three variables: its length lk (for the cable #k), its transverse displacement
(only one mode is considered, corresponding to a parabolic transverse displacement equal to wk

lk
x2 for cable #k and

x ∈ [0; lk]) and its orientation at the attachment point. The x and y coordinates of the platform are also included, thus
yielding a geometric representation based on 11 variables stacked in the generalized coordinates vector q. The three loop-
closure equations of the parallel robot provide six kinematic constraint equations A(q) q̇ = 0. This model, described in
details in [2], is given as [

M(q) −AT(q)
A(q) 0

][
q̈
λ

]
=

[
F(q, q̇,Γ)
−Ȧ q̇

]
(1)

where λ is the multiplier vector, Γ is the vector of the winder torques, M is the kinetic energy matrix and F is the
generalized force vector.

From the laws of physics to a control model

Whether based on the Hamiltonian or the Lagrangian [9], the methods of analytical mechanics render possible to deter-
mine models of poly-articulated systems with continuous displacements [3]. In addition to the dynamic equations, the
model often includes algebraic equations, resulting in a system of differential-algebraic equations (DAE). This is gener-
ally the case for parallel robots (including CDPR) when we consider the geometric and kinematic constraints linking the
displacements of cables and those of the platform [2, 4].

The control methods allow to study the stability and performance of systems governed by dynamic equations, with the
advantage of providing results that are independent from a considered trajectory, thus allowing to reduce the number of
simulations to be made in a validation step. Powerful methods allow to evaluate the stability and the performance of ODE

1See http://cablecam.fr.
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Figure 1: Simulation results

systems with uncertainties on parameters. However, a basic prerequisite is that the model is both controllable and observ-
able [5]. Properties can be established globally, for example using methods based on Lyapunov functions which mimic
energy functions [6], or more simply locally in which case a linear model, approaching the behavior in a neighborhood of
an equilibrium point, is enough [7].

Starting from the nonlinear DAE model, several ways can be followed in order to get a model suitable for control:

A1. The left-hand side matrix in the model (1) can be inverted in order to reveal a second order ODE model q̈= f (q, q̇,Γ)
depending on 11 state variables. But it was not possible to conclude on the controllability of the resulting model:
the tests on its linearized version failled due to ill-conditioned matrices of the state-space representation. Moreover,
standard tools were not able to provide a controllable and observable reduced-order model.

A2. Rather than making the linearization after inversion of the left-hand side matrix as described in A1, model (1) can
be directly linearized so as to obtain a linear descriptor model for which analysis and controller synthesis methods
are available [8]. However, the linearized descriptor system was also found uncontrollable and unobservable.

A3. When possible, algebraic equations A(q) q̇ = 0 could be solved in order to obtain a description based on a reduced
generalized position vector q̃. This leads to a fewer number of equations of higher complexity (transformation of
the DEA model to an ODE model).

Controller synthesis

Approach A3 has been implemented and has lead to a model depending on only 5 generalized coordinates. This ODE
linear model was found controllable and observable and an H∞ control synthesis has been performed in order to control
the cables mean tension and the end-effector position (x,y) (refer to [10] for details on the control strategy). Considering
a 1 kg platform and a linear density of cables is 0.17 kg/m, the performance of the H∞ closed-loop non linear ODE model
for a square reference trajectory at a speed of about 1 m/s has been depicted in Fig. 1. The results show a good trajectory
tracking and disturbance rejection.
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Experimental verification of the crossover between the time-fractional and standard 
diffusion in a hierarchical porous material 
 
 Alexey Zhokh* and Peter Strizhak* 
*L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, 

Kiev, Ukraine 
  
Summary. A transport process may cross over from the standard to anomalous diffusion. Herein, we experimentally verify the relevant 
changes of the diffusion regimes via an analysis of the diffusion concentration profiles in a hierarchically porous material. It is shown that 
at relatively short times the transport process experiences anomalous diffusion, whereas the standard Fickian diffusion is obeyed at 
relatively long times. The anomalous diffusion is described by the time-fractional diffusion equation with the superdiffusive anomalous 
diffusion exponent. The observed transitions seem to be associated with the transport in different components of a porous material. 

Objectives 

The transitions between the diffusion regimes in a porous medium are fairly typical. In a geometrically restricted 
environment, e. g. microchannels, an increase in the width of a channel governs the change of the diffusion regime from 
the single-file to the standard Fickian. This phenomenon has been experimentally verified for the transport process in 
single-wall carbon nanotubes [1]. Moreover, the analytic approaches for evaluation of the transition time have been 
established [2]. The effect of the pore size may not be the only reason for the diffusion regime transitions. The 
crossover between different diffusion regimes may also depend on the evolving time. The experimental investigation on 
the diffusion of silicon atoms in bulk germanium demonstrated the change in the diffusion kinetics from the anomalous 
superdiffusion to the standard Fickian versus observation time [3]. To this end, investigating the transport peculiarities 
through a porous material at various time scales is important for better understanding the fundamentals of the 
anomalous transport. 

Linearized solutions of the standard and time-fractional diffusion equations 

The experimental configuration is subjected to the following initial and boundary conditions: C(x, 0) = C0 = const, 
∂C(0, t)/∂x = 0, – D·∂C(L, t)/∂x = γ·C(L, t). The relevant linearized solutions of the standard and time-fractional 
diffusion equations, which are suitable for medium and long times, may be expressed as follows [4]: ln ቈln ܽ − ln ቈܮ)ܥ, ܥ(ݐ  = ln ቈܦ ∙ ଶ4ߨ ∙ ଶܮ  + ln  (1) ݐ

ln ቈܮ)ܥ, ܥ(ݐ  = ln ቈ 4 ∙ ଶܮ ∙ ଶߨܽ ∙ ܭ ∙ Γ[݉ − [ߙ − ߙ ∙ ln  (2) ݐ

Herein, L is the thickness of a solid porous particle, γ is the penetration coefficient, D and K are the standard and time-
fractional diffusion coefficients, respectively, a is a coefficient defined by the initial and boundary conditions, α is a 
fractional order, m is 1 for 0 < α < 1, and m is 2 for 1 < α < 2, Г(z) is the Euler gamma function. For the standard 
diffusion, the corresponding solution (eq. (1)) is linearized in the bi-logarithmic coordinates with slope that equals 
unity. In contrast, the solution of the time-fractional diffusion equation (eq. (2)) admits linearization in the logarithmic 
coordinates possessing the slope directly proportional to the time-fractional order. To this end, if the slope of the 
experimental data under the relevant bi-logarithmic transformations deviates from unity, the standard diffusion equation 
fails to describe the experimental transport kinetics. 

Experimental procedure 

To identify different transport regimes, a combined porous material with hierarchical porous structure was used. The 
used porous solid consisted of ZSM-5 zeolite and alumina with zeolite/alumina ratio equal to 1/1 by mass. The porous 
material was prepared using extrusion technique. The as-prepared porous material was characterized by the low-
temperature nitrogen adsorption-desorption isotherm. The textural properties estimated from the isotherm data are as 
follows: BET surface area is 272 m2/g; pore volume is 0.22 cm3/g; BJH pore diameter is 3.9 nm; external surface area is 
21 m2/g; micropore volume is 0.04 cm3/g; mesopores surface area is 177 m2/g. The X-ray diffraction revealed the 
presence of the crystalline phase relevant to ZSM-5 zeolite and γ-alumina. The latter demonstrated rather low amount of 
crystalline phase. 
Methyl alcohol was utilized as a diffusing agent. The methanol transport through the porous solid material was studied 
using commercial LHM-72 gas chromatograph with the flame ionization detector equipped by the diffusion cell instead 
of the chromatograph column. The detailed description of the diffusion cell design, as well as the experimental 
procedure, may be found in our previous report [5]. The mass transfer was investigated under the following 
experimental conditions. The purge flow rate (argon) was 30 cm3/min; the temperature inside the diffusion cell was kept 
120 °C. The methanol amount injected into the diffusion cell using the syringe for gas chromatography was 0.4 μl. The 
thickness of the porous zeolite/alumina particle was 2 mm. 
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Results 

Fig. 1a demonstrates the relative methanol concentration decaying in time obtained in the experiment. At relatively 
small times, i.e. C(L, t)/C0 < 0.30, the standard diffusion equation fails to describe the experimental data because the 
experimental slope in the bi-logarithmic coordinates significantly deviate from unity (Fig. 1b). At these times, the time-
fractional diffusion equation may be successively utilized (Fig. 1c). The decrease of the relative concentration at the 
starting point of the calculation from 0.30 to 0.15 results in the change of the diffusion regime from the time-fractional 
to the standard Fickian (Fig. 1d). Therefore, the transport process studied in the current paper exhibits the anomalous 
time-fractional diffusion at shorter time crossing over to the standard diffusion at a long time. This phenomenon may be 
associated with the fact that the standard diffusion equation admits the infinite propagation velocity, which is physically 
unreliable. To eliminate this issue, the Cattaneo-type diffusion equation has been proposed. The Cattaneo diffusion 
equation implies finite propagation velocity, which is recovered by introducing a relaxation time τ. The time-fractional 
Cattaneo diffusion equation is given by: ߬ఈ ∙ ߲ఈାଵݐ߲ܥఈାଵ + ݐܥ߲߲ = ܦ ∙ ߲ଶݔ߲ܥଶ  (3) 

The relaxation time is individual for each diffusing substance and porous material. The higher is the crystallinity of a 
material, the lower is the relaxation time. The solid porous particle used in the present study consists of the two phases, 
particularly, the crystal phase of ZSM-5 zeolite and the partially amorphous phase of the alumina. To this end, the 
relaxation times may be different in different parts of the porous material, e.g. in the micropores of zeolite crystallites 
and the mesopores of the amorphous alumina matrix. In this respect, the diffusion in zeolite micropores seems to be 
characterized by smaller relaxation time compared to the diffusion in the alumina mesopores. The pores may be also 
formed by the cavities between the amorphous alumina globes and zeolite crystallites. In these pores, the relaxation 
time may be different from the relaxation times in either zeolite micropores or alumina mesopores. 

(a) (b) 

(c) (d) 
Figure 1: Concentration evolution versus time (a), short time, i.e. C/C0 < 0.30 (b) and (c), and longtime, i.e. C/C0 < 0.15 (d) analysis 

Conclusions 

Investigation of the mass transfer in a hierarchically porous material consisting of crystalline and amorphous parts 
provides experimental evidence of the crossover between the anomalous diffusion at relatively short times and the 
standard diffusion at long times. The time-fractional diffusion equation is successively applied to describe the mass 
transfer kinetics at relatively short times. Unequal relaxation times in crystalline and amorphous parts of a combined 
porous material allows obeying either time-fractional or the normal diffusion behavior. 
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Investigation of vibro-impact dynamics in PILine® ultrasonic motors

Simon Kapelke*, Felix Hartenbach* and Wolfgang Seemann**
*Physik Instrumente (PI) GmbH & Co. KG, Karlsruhe, Germany

**Institute of Engineering Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Summary. PILine® ultrasonic motors belong to the group of standing wave ultrasonic motors and, as common for this kind of drives,
use certain eigenmodes of a piezoelectric actuator to generate motion. The motion of the actuator is transmitted to a moving slider by
means of friction using a coupling element, which performs a high-frequency oblique or elliptical motion. Within this contribution, the
possible onset of impact oscillations in standing wave ultrasonic motors is investigated. After introducing a basic motor structure, cor-
responding experimental results are presented accounting for low-frequency dynamics. Subsequently, a simple mechanical model for
normal oscillations of the piezoelectric actuator is evaluated by means of numerical integration. The derived results are compared qual-
itatively to experimental observations and provide good insight into the relevant dynamics.

Introduction

Piezoelectric motors are commonly used in several commercial, industrial or research related applications. Depending on
the specific driving principle, piezoelectric motors can be divided into different categories, such as ultrasonic, stepping
or inertia type drives. Ultrasonic motors, and in particular standing wave ultrasonic motors, are known for their high
dynamics and accuracy in motion and positioning while providing long travel ranges and self-locking capabilities at rest.
These basic properties are achieved by exciting certain eigenmodes of one or more piezoelectric actuators, such that a
coupling element attached to the piezoelectric actuator performs a high-frequency oblique or elliptical motion, which is
transmitted to a linear or rotational slider by means of friction [1].
The underlying dynamic processes are highly non-linear and, among others, include electro-mechanical coupling, vibro-
impact dynamics and friction. Nevertheless, some effort has been spent in the past in order to establish mathematical
descriptions of the corresponding dynamics [2, 3]. While most publications assume quasi-static behaviour of the piezo-
electric actuator, the exceptional role of actuator inertia properties and, accordingly, the possible onset of impact oscilla-
tions has been pointed out recently [4].
Within this contribution, both experimental and model-based investigations related to vibro-impact dynamics of standing
wave ultrasonic motors are carried out. Based on the schematic structure of PILine® ultrasonic motors and corresponding
experimental observations, a simple mathematical model is presented accounting for vibro-impact dynamics. The model
can be investigated either by separating slow and fast system dynamics or in terms of direct numerical integration and,
together with the experimental observations, gives good insight into relevant dynamic processes.

Basic motor structure and experimental observations

The basic structure of PILine® ultrasonic motors is depicted in Fig. 1 and contains a rectangular piezoelectric actuator (1)
and the attached coupling element (2). Due to electrical excitation of the piezoelectric actuator, the coupling element
performs an elliptical motion, which is transmitted to the slider (3) with horizontal guiding by means of dry friction. The
actuator has a pre-stressed elastic foundation, while transverse motion is suppressed by a corresponding suspension (4).
Under certain driving conditions, many ultrasonic motors show undesired vibrations in the audible range, although typical
driving frequencies can easily exceed 100 kHz. Among undesired noise phenomena, this behaviour can even cause a loss
of performance and is mostly handled by using advanced driving or control techniques [5]. However, in terms of system
modelling and for improved control design, deeper understanding of the corresponding dynamics is required.
A recent publication has pointed out the possible onset of impact oscillations resulting from the high-frequency motion of
the piezoelectric actuator in combination with the non-linear contact mechanics between coupling element and slider [4].

(1)

(3)

(2)

(4)(5)

Figure 1: Schematic PILine® motor structure (1–4)
and vibrometer measurement beam (5)

f

fe

t
0

Figure 2: Experimental results for linearly increasing (first
half) and decreasing (second half) excitation amplitude
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Figure 3: Average normal contact force
for different excitation amplitudes
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yA yA+yC

Figure 4: Exemplary solutions for different excitation amplitudes: floating
type (left) and period-n solution (right)

Corresponding experimental results, where the normal motion of the piezoelectric actuator has been investigated using a
Polytec VibroFlex Xtra laser vibrometer (5), are shown in Fig. 2. Herein, the frequency content of the normal actuator
motion has been recorded, while increasing and decreasing the excitation amplitude at fixed driving frequency. Apart
from the basic driving frequency fe, the results contain several lower frequencies and other non-linear characteristics,
which can be used to validate model-based approaches. Important observations are related to bifurcations, co-existing
stable solutions, amplitude-dependent frequencies and the non-linear amplitude evolution.

Modelling approach and first numerical results

In order to simplify the mathematical description and focus on normal oscillations of the actuator, normal and tangential
components are investigated separately. This approach appears suitable, since the friction type coupling of normal and
tangential motion is mainly unilateral. According to the basic structure of the ultrasonic motor introduced before, the
equation for normal actuator motion can be stated as

mÿA + dẏA + cAyA +N = 0 with N =

{
cP (yA + yC − h), contact

0, separation
. (1)

Herein, yA is the normal displacement of the actuator, m is the corresponding mass and d, cA are damping and stiffness
coefficients of the foundation. N is the normal contact force with local contact stiffness cP , yC = a sinωt is the high-
frequency motion of the coupling element and h corresponds to the location of the slider.
The system can be investigated by using separate descriptions for slow and fast system dynamics. This approach results
in a compact formulation for the slow dynamics and allows for further (semi-)analytical investigations, e. g. smoothing of
the normal contact force as depicted in Fig. 3 or evaluation of the corresponding amplitude-dependent natural frequency.
However, for a first qualitative comparison between model-based results and experimental observations, simple numerical
evaluation appears more suitable. Fig. 4 shows two exemplary solutions of the system depending on the chosen parameters
and initial conditions: The first one is a typical floating type solution without low-frequency motion and one contact phase
per period of the excitation. This kind of solution is commonly regarded as the desired mode of operation of standing
wave ultrasonic motors. The second solution is obtained for the same model parameters and initial conditions, but with
increased excitation amplitude. The resulting motion can be referred to as a period-n solution of the system showing large
low-frequency oscillations together with the high-frequency excitation. Herein, long separation phases can be observed
and the interval between two contact phases is mainly determined by the low-frequency actuator motion.

Conclusions and outlook

The given results can be regarded as a first local analysis of the presented model showing possible mechanisms for the
non-linear system behaviour observed experimentally. However, further investigations require a global analysis of the
modelling approach and improved experimental validation. First results as well as practical experience indicate the im-
portance of considering further compliant properties of the slider. Otherwise, many of the previously observed phenomena
are limited to transient behaviour or minor basins of attraction. Nevertheless, the presented results give good insight into
relevant dynamic processes and their impact on the basic driving principle of standing wave ultrasonic motors.
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Summary. We propose a new model order reduction (MOR) approach to obtain effective reduction in the context of transport-
dominated problems or hyperbolic partial differential equations. The main ingredient is a novel decomposition of the solution into (i) a
function that tracks the evolving discontinuity and (ii) the residual part that is devoid of shock features. This decomposition strategy is
then combined with Proper Orthogonal Decomposition which is applied to the residual part only to develop an efficient reduced-order
model representation for problems with multiple moving and possibly merging discontinuous features. Numerical case-studies show
the potential of the approach in terms of computational accuracy compared with standard MOR techniques.

Problem Description

Hyperbolic partial differential equations (PDEs) are ubiquitous in science and engineering. Applications encompassing
the fields of chemical industry, nuclear industry, drilling industry, etc., fall within this class. Moving discontinuities
(such as shock-fronts) are representative features of this class of problems and pose a major hindrance to obtain effective
reduced-order model representations [1]. As a result, standard Model Order Reduction techniques [2] do not fit the
requirements for real-time estimation and control or multi-query simulations for such problems. This motivates us to
investigate and propose efficient, advanced and automated approaches to obtain reduced models, while still guaranteeing
the accurate approximation of wave propagation (and wave interaction) phenomena.
The main contribution of the work is to propose a new decomposition ansatz that decomposes the solution into (i) a basis
function that tracks the evolving discontinuity (wave front) and (ii) the residual part that is expected to be devoid of shock
features. This decomposition renders the residual part to be amenable for efficient basis generation. We, then, use these
generated bases to apply Proper Orthogonal Decomposition (POD) on the residual part and later reconstruct the solution
by lifting it to the high-dimensional problem space. We finally assess the combined performance of decomposition,
reduction and reconstruction approach (as opposed to conventional reduction and reconstruction approach) in the scope
of transport-dominated problems with moving and interacting discontinuities.

Mathematical Formulation

We discuss the proposed decomposition ansatz and outline the whole procedure in order to obtain a reduced-order model.

Decomposition step
We consider a scalar 1D conservation equation of the form:

∂tu(x, t) + ∂xf(u(x, t)) = 0, u(x, 0) = u0(x). (1)

We assume that u(x, 0) = u0(x) already has S number of shocks at locations x1(0), ..., xS(0) with values u−(xs(0), 0),
s = 1, ..., S from the left and values u+(xs(0), 0), s = 1, ..., S from the right. We associate a single basis function
σs(x− xs(t)) to each discontinuity at their respective locations. This basis function has a jump of height 1, i.e., σ+

s (0)−
σ−
s (0) = 1, at the location of the discontinuity. We now decompose the solution, u, in the following way:

u(x, t) =

S∑

s=1

js(t)σs(x− xs(t)) + ur(x, t),

js(t) = u−(xs(t), t)− u+(xs(t), t). (2)

When xs(t) exactly matches the location of the shocks and (2) is exactly fulfilled, then ur(x, t) represents a function
without any shocks (discontinuities) and hence is amenable to a low-rank approximation.
The time-stepping scheme can be defined in the following manner. In each time step, we first compute updated shock
locations xs(tn+1), jumps js(tn+1) and then compute the residual part ur(x, tn+1) from

ur(x, t
n+1)− ur(x, tn) =

S∑

s=1

js(t
n)σs(x− xs(tn))−∆t∂xf(u(x, t

n))−
S∑

s=1

js(t
n+1)σs(x− xs(tn+1)). (3)

Reduced Order Model
The standard way to construct a reduced-order model (ROM) is to reduce (1) by applying Galerkin projection on u.
Instead, we apply POD on the residual part, i.e., we reduce (3) via Galerkin projection onto VN ⊆ Vh (where VN is a
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reduced space and Vh is a high-fidelity space). Upon considering the projection operator PN : Vh → VN , the reduced
scheme on the residual part is:

uk+1
r,N = ukr,N + PN

( S∑

s=1

js,N (tk)σs(x− xs,N (tk))−∆t∂xf(P
′

Nu
k
N )−

S∑

s=1

js,N (tk+1)σs(x− xs,N (tk+1))
)
, (4)

where k indicates the time-instant, ukr,N ∈ VN , u0r,N = PN (u0r) with ukN defined as:

P
′

Nu
k
N =

S∑

s=1

js,N (tk)σs(x− xs,N (tk)) + P ′
Nu

k
r,N . (5)

Numerical Experiments

We reduce the Burgers equation given by: ∂tu + ∂x(
u2

2 ) = 0, x ∈ [0, L], for illustrating the potential of the proposed
approach. The case studies under consideration assume that the shock is already present in the initial data, which for
single and multiple wavefront scenarios, is respectively given by:

u(x, 0) = u0(x) =

{
x, 0 ≤ x ≤ 1,

0, otherwise
and u(x, 0) = u0(x) =





x− 2, 2 ≤ x ≤ 4,

(x− 5)/2, 5 ≤ x ≤ 7,

0, otherwise.

We consider the spatial domain to be of length L = 10 and use an upwind finite volume scheme for the spatial discretiza-
tion and a first-order Forward Euler for the time-stepping. We take 8000 steps in time for the scenarios under consideration
i.e., t ∈ [0, 4] with a timestep of 0.0005. We consider three different spatial mesh resolutions (spatial step size of 0.005,
0.002 and 0.001) to assess the performance of the standard (POD without decomposition) and the proposed approach.

Figure 1: ROM error for the single wavefront scenario (left) and multiple wavefront scenario (right) under different mesh sizes.

We consider that js,N = js and xs,N = xs and use these jumps and shock locations during the ROM time-stepping. We,
further, use the computed residual part to generate the bases and build a ROM. Figure 1 demonstrates the decay of the
’L2 in space and L2 in time’ (absolute) error (between the full-order model governed by (1) and the reconstruction given
by (5)) for the scenarios of interest. Firstly, the initial error incurred via the proposed approach is lower than that of the
standard approach. This is attributed to the fact that our decomposition approach associates a basis function corresponding
to the travelling discontinuity. Secondly, the rate of decay of the error is better for the proposed approach compared to
the standard approach. Moreover, the ROM error for the proposed approach stagnates later for finer mesh-sizes. It is also
observable that the mesh refinement reduces the ROM error obtained via proposed approach in contrast to the ROM error
obtained via standard approach. The difference in the order of magnitude of the ROM error (at a certain number of basis
function) computed via standard and proposed approach is even more pronounced for fine mesh-sizes.

Conclusions

We have proposed a decomposition ansatz for problems with moving discontinuities and combined it with POD applied
to the residual part only. We have show-cased the performance of the proposed approach on the Burgers equation. The
proposed approach is able to resolve the discontinuities and also offers reduction in ROM error by using much less number
of basis functions. We will perform numerical experiments on many other mathematical models (falling within the class
of transport-dominated problems) in the near future.
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ABSTRACT 

 

In Nuclear Power Plants, storage tanks are used to contain a large volume of borated water which can be 

injected into the reactor pool and the spent fuel pool cooling system. Considering they are subjected to 

the hydrostatic pressure only in normal service conditions, these components are usually designed as 

thin-wall large shell, which presents the characteristic of being more sensitive to dynamic excitation 

loads, such as the ones arising from earthquakes. 

The most common damages caused to steel tanks of industrial facilities in recent earthquakes are the 

͞elephaŶt foot͟ ďuĐkliŶg aŶd the ͞diaŵoŶd shape͟ ďuĐkliŶg, both phenomena are located at the lower 

part of the cylindrical shell, close to the anchorage. These two kinds of buckling are well-known and 

usually analyzed within the engineering practice. Nevertheless, the current design standards do not 

cover another type of instability which is sometimes observed after an earthquake: the shell buckling at 

the upper part of the cylindrical wall, near the liquid free level, due to the sloshing motion. 

The present paper describes the numerical investigations performed on a typical storage tank of the 

nuclear industry to assess whether the upper shell buckling can lead to a severe damage or not (collapse, 

cracks). The EUROPLEXUS software is used for the modelling and computation considering its very 

efficient fluid-structure interaction algorithms and liquid-gas flow models. As a first step, the 

EUROPLEXUS explicit time integration scheme capability of simulating sloshing motion for a long 

duration (typically up to 30 s) is validated reproduĐiŶg the HiŶatsu’s experiŵeŶtal tests. As a seĐoŶd 
step, several simulation tests are run on a full 3D model of the tank to analyze the structure post-

buckling states during and after the seismic event. 

The numerical results show that the vibration amplitudes on the shell buckling modes are small enough 

to keep the structure globally in the elastic range, even for strong earthquake with a Peak Ground 

Acceleration of 0.5g. Only low plastic strains confined near the liquid free level are calculated. It is noted 

that the deformed shapes at the end of the computation are consistent with the post-seismic 

observations on actual tanks. 
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Summary. This paper investigates the nonlinear dynamic behavior of a rotating ring that forms an essential element in MEMS ring-based 
vibratory gyroscopes that utilize oscillatory nonlinear electrostatic forces. Mathematical model that incorporates geometric nonlinearities for 
the MEMS ring structure as well as a model that represents nonlinear electrostatic forces that act on the ring structure are formulated. 
Galerkin’s procedure is employed to reduce the equations of motion to a set of ordinary differential equations. Understanding the effects of 
nonlinear actuator dynamics is considered important for characterizing the dynamic behavior of such devices.  For investigating the dynamic 
response behavior of a ring-type vibratory angular rate, the equations of motion are simplified by ignoring the extensional vibrations, since 
the second resonant flexural mode is excited in this class of applications. Dynamic responses in the driving and the sensing directions are 
examined via time responses, phase diagram, and Poincare’ map plots when the input angular motion and the nonlinear electrostatic force 
are considered simultaneously. The analysis is envisaged to aid fabrication of this class of devices as well as for providing design 
improvements in MEMS-based Ring-type Gyroscopes. 

 Concept and Modeling 

In the present paper, nonlinear dynamic behavior of rotating thin circular rings for use in vibratory angular rate 
sensors have been investigated via numerical simulations. A homogenous, isotropic ring is chosen for the angular rate 
sensor. Cho [1] developed mathematical models for rotating ring based angular rate sensors for the purpose of 
investigating linear as well as  nonlinear dynamic behavior and dynamic stability of angular rate sensors which are 
subjected to external excitation. In the past, Huang and Soedel [2] and Natasiavas [3], among others, have also studied 

the nonlinear dynamic behaviour of rotating thin circular rings. Dynamic response behavior of rotating thin circular rings 
for use in vibratory angular rate sensors was investigated by Gebrel et al [4] via numerical simulations by employing the 
linearized model considering the second mode. In this study, a suitable theoretical model is developed for the purposes 
of representing the nonlinear electromagnetic actuation forces that are used for exciting the ring from two positions to 
obtain improved device sensitivity. Figure 1(a) illustrates the geometry and parameters used in the present study 

while Figure 1(b) illustrates the two degenerate modal configurations associated with the second flexural mode, 

and are separated by 45 degrees. The schematic of the rotating ring geometry used in present study have been described 
in detail in [1, 4].  
 

                         
(a)                                                                                       (b)                                                                                       

Figure 1: (a) schematic of the rotating ring geometry, and (b) Visualization of second flexural modes of ring 
 
In the present paper, the nonlinear equations of motion in terms of the generalized coordinates associated with the flexural 
coordinates ܣ𝑛 and ܤ𝑛 [1, 5] are developed for the purposes of illustrating the dynamic behavior. The discretized equations 
of motion that govern the dynamics with suitable nonlinear harmonic electrostatic forces are derived:  
ߨℎߩ]   + ߨℎߩʹ ቀ݊𝛾ʹݎቁଶ 𝑛ଶܣ ] 𝑛ሷܣ + ߨℎߩʹ ቀ݊𝛾ʹݎቁଶ 𝑛ሷܤ𝑛ܤ𝑛ܣ + ሶ𝑛ܣ𝜔ߞʹ + [ 𝐸𝐼ܾݎସ ሺ݊ଶ − ͳሻ݊ଶ + ℎΩଶሺ݊ଶߩ − ʹሻ + 𝑘] 𝑛ܣߨ + 

[ 𝐸2 + 𝑘] ቀ𝑛𝛾ଶቁଶ 𝑛ଶܣ] + 𝑛ܣߨ[𝑛ଶܤ + ߨℎߩʹ ቀ𝑛𝛾ଶቁଶ ሶ𝑛ଶܣ] + 𝑛ܣ[ሶ𝑛ଶܤ − Ωሶߨℎߩ ͳ݊ ݊ܤ − ℎπΩߩʹ ͳ݊ ܤ ሶ݊ =  �݂�௦ ሺܣ𝑛, 𝑛ܤ , 𝜃𝑖ሻܿݏሺ𝜔ݐሻ           (1)                                 

ߨℎߩ] + ߨℎߩʹ ቀ𝑛𝛾ଶቁଶ [𝑛ଶܤ 𝑛ሷܤ + ߨℎߩʹ ቀ𝑛𝛾ଶቁଶ 𝑛ሷܣ𝑛ܤ𝑛ܣ ]+ሶ𝑛ܤ𝜔ߞʹ+ 𝐸𝐼4 ሺ݊ଶ − ͳሻ݊ଶ + ℎΩଶሺ݊ଶߩ − ʹሻ + 𝑘] 𝑛ܤߨ +[ 𝐸2 + 𝑘] ቀ𝑛𝛾ଶቁଶ 𝑛ଶܣ] + 𝑛ܤߨ[𝑛ଶܤ + ߨℎߩʹ ቀ𝑛𝛾ଶቁଶ ሶ𝑛ଶܣ] + 𝑛ܤ[ሶ𝑛ଶܤ + Ωሶߨℎߩ ଵ𝑛 𝑛ܣ + ℎπΩߩʹ ଵ𝑛 𝑛ሶܣ = Ͳ                                                          (2)                        

where ߩ  is mass density, 𝐸I represents flexural rigidity, ܣ is the cross sectional area of ring,  ܾ denotes axial thickness of 
ring, ℎ is radial thickness, ݎ is the mean radius of the ring, and 𝑘 support spring stiffness in the radial direction. The 

 𝑛ܤ
 𝑛ܣ
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quantification of the nonlinear terms are governed by the parameter 𝛾. Oscillatory external nonlinear electrostatic actuator 
force that acts along the ܣ𝑛 direction is considered to have a magnitude   �݂�௦  and frequency 𝜔  , while input angular 

velocity and acceleration, respectively, are denoted by Ω and Ωሶ  . The area moment of inertia of the ring cross section 
about its neutral axis is expressed as 𝐼 = ܾℎଷ ͳʹ⁄ . The parameter ߞ  represents the mechanical damping ratio, and ݊ 
denotes the number of modes which is taken to be 2 in the present study. The angular positions of electrostatic forces that 
excite the ring in the primary direction is denoted by 𝜃𝑖 , 𝑖 = ͳ,ʹ,͵,Ͷ. In order to represent the oscillatory electrostatic 
force, a suitable theoretical formulation is employed:  

 �݂�௦ = ∑ ሺcosሺ݊𝜃𝑖ሻ − ቀ𝑛𝛾ଶቁସ𝑖=ଵ 𝑛ሻܣ ∗ [ 𝜀0𝑉2ଶ{ௗ−𝑛 c୭sሺ𝑛𝜃𝑖ሻ−𝑛 si୬ሺ𝑛𝜃𝑖ሻ+𝑛𝛾4𝑅[𝑛2 +𝑛2]}2 ]           ,                                                               (3)                          

where the parameter ߝ represents the permittivity of air, 𝑉 represents the applied voltage between the electrode and the 
ring, ܽ  represent the electrode width which represents the space between electrode and the surface of the ring,  ݀ is the 
distance between electrode and ring 
 

Results and Discussion 
 

For the purposes of predicting the nonlinear response characteristic of MEMS ring-type gyroscope, equations (1) and (2) 
have been solved numerically. Parameters associated with a typical MEMS ring-type gyroscope are considered. The 
following ring design parameters: radius of 500 𝜇݉, thickness of 12.5 𝜇݉  , and a height of 30 𝜇݉ with Young's modulus 
of 210 𝐺ܽ and the density of 8800 𝐾݃ ݉ଷ⁄  have been chosen. At a nominal input angular rate of ʹ ݀ܽݎ ߨ ⁄ܿ݁ݏ  and a 
typical device high quality factor of ͳ × ͳͲହ , the resulting frequencies have been evaluated as 𝜔ଵ = ʹ.ͳͶʹʹ × ͳͲହ ሺ݀ܽݎ ⁄ܿ݁ݏ ), and 𝜔ଶ = ʹ.ͳͶʹ8 × ͳͲହ ሺ݀ܽݎ ⁄ܿ݁ݏ ). The generalized coordinates ݍଵ = 𝑛ܣ ℎ⁄ ଶݍ , = 𝑛ܤ ℎ⁄  have 
been used for the non-dimensional equations. For an input angular velocity Ω = ʹ ݀ܽݎሺ ߨ ⁄ܿ݁ݏ  ሻ, under nonlinear 
oscillatory electrostatic excitation, the time response of the ring in the sensing direction in the presence of geometric 
nonlinear terms is depicted in Figure 2(a). Figure 2(b) depict the phase portrait based on the steady-state response in the 
sensing direction. The effects of nonlinearities due to the nonlinearities of the system as well as nonlinear electrostatic 
force are evident from the plots. Furthermore, nonlinearity can be seen in the Poincare’ map results as shown in Figure 
2(c), where the Poincare’ maps appear as a cloud of unorganized points in the phase plane in Figure 2(b) due to the 
influence of nonlinear terms in the model as well as nonlinear actuator. Internal resonance behavior is not analyzed in this 
study since the natural frequencies are close to each other and cannot be equal in the typical device operating range. 

 
                                         (a)                                                             (b)                                                                (c)  

Figure 2: (a) Time Response , (b) Phase diagram, and (c) Poincare’ map.  

Conclusions 

Nonlinear dynamic behavior of a MEMS-scale ring-type vibratory gyroscope has been examined via numerical 
simulations. The device exhibits nonlinearity in the presence of geometric nonlinear term in the model which may be 
attributed to high vibration amplitudes. In addition, nonlinearities due to electrostatic actuation have also been 
incorporated. Results on the dynamic response obtained via time-response, Phase portraits and Poincare’ maps indicate 
significant influence of geometric nonlinearities on the resulting steady state behavior. The analysis is envisaged to aid 
fabrication of this class of devices as well as for providing design improvements in MEMS Ring-based Gyroscopes. 
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On the solution of the Mathieu equation with multiple harmonic stiffness: parametric
amplification for constant and harmonic forcing.

Eddy Abboud∗,†, Aurélien Grolet†, Hervé Mahe ∗ and Olivier Thomas†
†Arts et Metiers Institute of Technology, LISPEN, HESAM Université, F-59000 Lille, France

∗Valeo Embrayages, 81 Avenue Roger Dumoulin, 80009 Amiens Cedex 1, France

Summary. In this abstract, we focus on the study of a single degree-of-freedom Mathieu-type differential equation, which can be found
in engineering examples such as in the modelling of geared systems. We consider that the variable part of the stiffness is composed
of several harmonic components and that the forcing terms contain a constant component along with an harmonic component. The
phenomenon of parametric amplification is described in the case of a single harmonic force, as well as in the case of a purely constant
force. The combination of both forces is also considered in the study

Introduction

This abstract presents a study of a Mathieu type equation arising, for example, when modelling the meshing of two gears
mounted on rigid shafts [1] or when studying a pendulum attached to a moving point [2]. The equation represents the
motion of a (damped and forced) single degree-of-freedom attached to the ground through a periodically time varying
stiffness and is given by the following:

ẍ+ µẋ+ [ω2
0 + g(t)]x = h(t), (1)

where x(t) represents the variable under interest, µ is the damping coefficient, ω0 is the natural angular frequency, g(t) is
the periodic time varying stiffness (with zero mean) and h(t) is the external force.
In the following, we will assume that the stiffness g(t) is periodic with fundamental pulsation Ω, such that it can be
represented by its Fourier series: g(t) =

∑
p 6=0 χ̂pe

ipΩt, where χ̂p ∈ C is the complex amplitude of the p-th harmonic of
the stiffness. The external force h(t) will be considered to be the sum of a constant part h0 and an harmonic part hn(t) at
a given order n ∈ N: h(t) = h0 + (ĥne

inΩt + c.c.), where ĥn ∈ C is the complex amplitude of the n-th harmonic of the
external force, and c.c. stands for complex conjugate.
After introducing some scaling using a small parameter ǫ, the multiple scale method [3] can be used to derive approximated
solutions to Eq.(1) under the form x(t) = x0(t) + ǫx1(t) + .... In this study, one supposes that the damping coefficient
(µ), the variable part of the stiffness (g) and the variable part of the force (hn) are of order ǫ (all the other terms remaining
at order 1). The application of the multiple scale method up to order one, leads to two linear differential equations for
x0 and x1, and the cancellation of the secular terms inside the second equations allows to identify the coupling that can
occurs between the different harmonics of the stiffness and the force, along with the computation of the approximated
solution x0(t).
In this study, we consider the solution to Eq.(1) for three different kinds of forcing: i) harmonic forcing only (h0 = 0)),
ii) constant forcing only (hn = 0) and iii) combination of constant and variable forcing. In each cases, we describe the
phenomenon of parametric amplification exposed by the multiple scale method and we use numerical methods to validate
our results. Note that in this study, one will consider that the damping coefficient µ is sufficiently high to avoid parametric
instabilities.

Results

Harmonic forcing only
Here we first consider that the system is forced harmonically (h0 = 0 and ĥn ̸= 0) close to its resonance (nΩ ≈ ω0). The
cancellation of the secular terms shows that, at first order in ǫ, the p = 2n-th harmonic of the stiffness interacts with the
(n-th) harmonic of the force, leading to the following form for the approximated solution:

x(t) ≈
(
N̂(Ω)ĥn + ĥ∗nχ̂2n

D(Ω)
einΩt + c.c.

)
, (2)

with N̂(Ω) ∈ C and D(Ω) ∈ R. It can be seen that, for a given Ω (e.g. nΩ = ω0), the amplitude of the solution can
be made maximum (resp. minimum) if the phase between the complex numbers N̂(Ω)ĥn and ĥ∗nχ̂2n is zero (resp. is
π). This phenomenon is known as the parametric amplification effect: by choosing conveniently the complex amplitude
χ̂2n on can create an amplification, or an attenuation of the vibration amplitude for a given excitation frequency (usually
around resonance) [4, 5].

Constant forcing only
Here, we consider that the system is only statically forced (h0 ̸= 0 and ĥn = 0), and that the fundamental pulsation of the
periodic stiffness is such that pΩ ≈ ω0 (for a given p ∈ N such that χ̂p ̸= 0). The cancellation of the secular terms shows
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that, at first order in ϵ, the p-th and the 2p-th harmonic of the stiffness interacts together, leading to the following form for
the approximated solution:

x(t) ≈ h0
ω2
0

[
1 +

(
N̂(Ω)χ̂p + χ̂∗

pχ̂2p

D(Ω)
eipΩt + c.c.

)]
, (3)

again with N̂(Ω) ∈ C and D(Ω) ∈ R. It can be seen that, for a given Ω (e.g. pΩ = ω0), the amplitude of variable part
of the solution can be made maximum (resp. minimum) if the phase between the complex numbers N̂(Ω)χ̂p and χ̂∗

pχ̂2p

is zero (resp. is π). This phenomenon appears to be very similar to the parametric amplification effect presented before:
adjusting the phase between the p-th and 2p-th harmonic of the stiffness can lead to amplification or attenuation of the
vibration level (see Fig.1). To our knowledge, this phenomenon is not often refereed to (one explanation might be that,
most of the time, researchers consider Mathieu’s equation with only a single harmonic variable stiffness along with an
harmonic forcing only), and we think it might be useful to understand and/or design gear systems.

Figure 1: Constant forcing only. Left plot: amplitude of the variable part of the solution in Eq.(3) for different value of the phase
between the p-th and 2p-th harmonic of the stiffness. Right plot: Amplitudes at the resonance as a function of the phase difference, an
amplification takes place at φ1 = −π

4
and an attenuation at φ1 = π

4
. In this example p = 1 and φ2 = 0 (the second harmonic of the

stiffness is the origin for the phase)

Constant and Harmonic forcing
Here, we consider that the system is statically and harmonically forced (h0 ̸= 0 and ĥn ̸= 0) around its resonance
(nΩ ≈ ω0) and that χ̂p ̸= 0 and χ̂2p ̸= 0. Due to the linearity of Eq.(1), the solution to this case can be obtained by
summing the results of Eq.(2) and Eq.(3). This leads to interactions between the harmonics of the force and/or the stiffness
resulting in parametric amplification or attenuation effect, depending on the relative phase between ĥn, χ̂n and χ̂2n, that
will be described in the presentation.

Conclusions

In this study, we have shown that parametric amplification in Mathieu’s oscillators is possible for in the case of an
harmonic forcing as well as in the case of a pure constant forcing. The parametric amplification is due to interaction
between harmonics of the stiffness and/or of the forcing. This can be interesting for various fields of applications where
the modification of the phases between the harmonics of the stiffness may cause a reduction in vibration levels. In
particular, we think that this phenomenon might be of interest for understanding and/or designing geared systems.
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Optimization Process for Ride Quality of a Nonlinear Suspension Model Based on
Newton-Euler’s Augmented Formulation
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Summary. This paper addresses modeling a Double A-Arm suspension, a three-dimensional nonlinear model has been developed
using the multibody systems formalism. Dynamical study of the different components responses was done, particularly for the wheel
assembly including the tire body and the knuckle. To validate those results, a similar model was constructed and simulated by Re-
curDyn; a professional multibody dynamics simulation software. The model has been used as an Objectif function that generate an
optimization algorithm for ride quality improvement.

Introduction

Modern systems are often very complex and consist of many components interconnected by joints and force elements.
These systems are commonly called multibody systems (MBS). Vehicles can be considered as MBS and the dynamic
equations that govern their motion are highly nonlinear which in most cases cannot be solved analytically. One must
resort to the numerical solution of the resulting dynamic equations. Nikravesh work in [1] can be considered as an
interesting reference about the Newton-Euler equations and its most suitable forms.
The aim of this study is the implementation of the augmented formulation in a dynamical model of the double A-Arms
suspension. This system contains two lateral control arms to hold the wheel where the length between the upper and
lower arms is not the same [2]. The upcoming sections represent a suspension mathematical model witch can be used as
an Objectif function that generate an optimization algorithm for ride quality improvement.

Dynamic Equations of motion

From [1], The equation of motion for the mass center of a rigid body is directly obtained from Newton’s second law as

M.q̈ = h (1)

For a system of nb constrained bodies, we must revise Equation 1 by including the reaction (constraint) forces

M.q̈ = h → M.q̈ = h + (c)h (2)

Assume that the position constraints between the nb bodies form nc constraint equations that are expressed in general
form as

Φ(q) = 0 (3)

The velocity and acceleration constraints are expressed as

Φ̇ = Φq.q̇ = 0 (4)

Φ̈ = Φq.q̈−α = 0 (5)

Where Φq is the Jacobian matrix. According to the method of Lagrange multipliers, the array of reaction forces (c)h can
be presented as

(c)h = ΦT
q .λ (6)

λ is a vector of nc Lagrange multipliers. Then Equation 2 is rewritten as

M.q̈ = h +ΦT
q .λ (7)

This system contains nb equations and nb+nc unknowns, accelerations and Lagrange multipliers.

THREE-DIMENSIONAL NONLINEAR MODEL OF DOUBLE A-ARM SUSPENSION

To well understand the selected approach, three-dimensional nonlinear model of double A-Arm suspension will be pre-
sented. The system contains four (04) moving bodies that are connected with each other by kinematic joints and driven
by a set of forces, Figure 1. With this formulation the number of unknowns is n+m, since not only q but also λ needs to
be calculated.

q = (q1 q2 q3 q4)
T (8)

where
qi = (xi yi zi γi βi φi)

T (9)

For validation, RecurDyn software is used. It provides realistic simulation of multibody dynamics.
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Figure 1: Three-Dimensional Double A-Arm Suspension system

Type of joint Notation bodyi-bodyj Constraints Eqts = 0

Translational Φ
(2tr,3rot)
CoG1

GRF-1 along Z-axis
(

x1 y1 γ1 β1 ϕ1

)T

Revolute in c Φ
(3tr,2rot)
c 1-2 about x-axis

Φ3tr (c1, c2)
Φ2rot

1 (−→u 1,
−→u 2) or Φ

2rot
2 (−→u 2,

−→u 1)

Spherical in b Φ
(3tr)
b 2-3 Φ3tr (b2, b3)

Spherical in d Φ
(3tr)
d 3-4 Φ3tr (d3, d4)

Cylindrical in a Φ
(2tr,2rot)
a 4-1

{
along x− axis
about x− axis

Φ2tr (a4, a1) = 0
Φ2rot

4 (−→u 4,
−→u 1) or Φ

2rot
1 (−→u 1,

−→u 4)

Driving in e Φ1D
A 3-A in Z-direction zA − f (t)

Table 1: Constraints configuration of the double A-arm system.

OPTIMIZATION PROCESS

The chassis vertical acceleration is minimized, while the design constraints on the suspension working space and dynamic
tire load should be satisfied. The RMS of the acceleration of a sprung mass Z̈1 is frequently used to evaluate the riding
quality of a vehicle. A rider’s comfort improves as the acceleration decreases. Ride comfort is chosen to be the design
criterion. The design optimization problem can be described as: Minimize Z̈1(m1, m2, m3, m4, Ks, Ns, Kt, Nt).
We choose the fmincon function in MATLAB to execute this simple optimization process which .

Figure 2: Optimized and origin vertical accelerations.

Conclusions

This paper has focused on the vertical motion of the Nonlinear planar model of the Double A-Arm suspension. The
comparison between the responses of the three-Dimensional nonlinear model and the one in the simulation software
shows that a precise setting in the multibody modeling of mechanical systems can offer great results in short period of
time with low processing capacity requirements.
As a final step in the process, this model was transformed to an Objectif function. The use of this function allowed us
to generate an optimization algorithm capable of calculating the optimal suspension to improve vehicle ride quality. The
vertical acceleration of the chassis was reduced but the process has some difficulties because of the set of the differential-
algebraic equations and the constraints violation

References

[1] Nikravesh, P.E. (1988) Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, New Jersey.

[2] Reza, N.J. (2014) Vehicle Dynamics, Theory and Application. Second Edition. Springer, New York.

ENOC 2022, July 17-22, 2022, Lyon, France

1089



ENOC 2020, July 5-10, 2020, Lyon, France

Passive suppression of parametric excitation of cables using a nonlinear vibration
absorber (NVA)
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Summary. The usage of non-linear vibration absorbers is a rather new but practical way to prevent a fatigue failure of a structure
exposed to especially broad banded dynamic loading. In this work, a non-linear vibration absorber will suppress the response of a
flexible rod under parametric excitation. Therefore, a mathematical model is derived using the extended Hamilton’s principle. A
reduced-order model (ROM) is obtained after the application of the Galerkin’s method and is numerically integrated aiming at observing
the Mathieu’s instability and its suppression. This excitation scenario is common in offshore engineering where parametric excitation
appears on risers of TLP tethers, slender structures linked to the seabed and the floating unit. Nonlinear vibration absorbers can be
designed, built and installed with a relatively small effort compared to other methods and provide a positive effect on the sustainability
of the rod [1]. The results show a suppression of the oscillation is possible to a certain degree, when the NVA reaches a sufficient mass
ratio.

Introduction

Besides the academic interest, the studies of parametric excitation have a technological importance on off-shore and ocean
engineering. Especially for the dynamic of risers and tendons of TLPs (Tension Leg Platforms), buoyant platforms held
in place by a mooring system as can be seen in figure 1. Even though the considered structures are always under tension,
the value varies with time due to the vertical movement of the platforms and the change of lifting force.

Figure 1: TLP [4] and system of flexible cable with NVA at x = x̄

Parametric excitation
In contrast to external excitation, parametric excitation leads to homogenous differential equations with a parameter de-
pending only on time on the left side. Of significance is that even a small parametric excitation produces a large response
when the frequency of excitation Ω resembles twice the natural frequency ω of the system (principle parametric reso-
nance)[2]. Therefore, an efficient suppression device is to be designed.

Non-linear suppression
A non-linear vibration absorber (NVA) as can be seen in figure 1 has the advantage to be able to react to a broad band
loading. Due to the absence of a linearizable natural frequency, the NVA uses internal resonances for a spacial transfer
of energy and its dissipation. This process is known as energy pumping, or TET (Targeted Energy Transfer). Further
information can be found in papers by Lee [3] and Vakakis [5].

Mathematical model

Consider a flexible cable with a diameter D, mass per unit length µ and the structural damping ratio c. A rotative NVA
(mass m, radius r) is attached to the cable at the height x̄ by a dashpot (cΘ), as can be seen in figure 1. The kinetic energy
T and the potential energy V with ϵ = u′ − zw′′ + 1

2w
′2 are regarded for the Lagrangian, as well as the virtual work
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for extended Hamilton’s principle. Using Galerkin’s method by considering one degree of freedom (1-DOF) and placing
the NVA at midspan, the non-dimensional equations of motion can be written as seen in equation 1 for the system and
equation 2 for the NVA.

(
1

2
+ m̂)Ä1 + ζsȦ1 +K3Ȧ1|Ȧ1|+ [K0 + K̄cosητ ]A1 +K2A

3
1 = r̂m̂(Θ̈sinΘ+ Θ̇2cosΘ) (1)

Θ̈− 1

r̂
sinΘÄ1 + 2ζΘΘ̇ = 0 (2)

Results and discussion

After a numerical Runge-Kutta based integration with MATLAB, the behaviour of structure and NVA can be observed.
In figure 2 the time histories can be divided in three main sections, where A and B show the typical behaviour of energy
pumping, while C describes a more or less steady oscillation. Figure 2 also shows that depending on given parameters a
NVA might also lead to an increase of the main amplitude. To give an overview over the choice of parameters m̂ and r̂,

Figure 2: Time history and NVA sections with m̂ = mass NVA
mass cable , r̂ = r

D

the ratio of standard deviations with and without NVA can be seen in figure 3, where red areas show an increase and blue
areas a significant reduction of the main structures vibration.

Figure 3: Maps
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TWMS synchronization network simulation with parallel computing
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Summary. Synchronization networks play important roles in Engineering and Physical systems, allowing information distribution and
exchange between the components of computation, communication and complex dynamical systems. In the recent decades the growing
need for data communication led to the development of a world wide communication and data transmission network. The clock signal
distribution network is an important part of these networks. The Phase-Locked Loop (PLL) is the circuit that synchronizes the local
oscillator (clock) to a reference signal (phase and frequency scale). Usually, the PLL networks are build in Mutually-Connected or in
Master-Slave topologies. In many cases the Master-Slave is used due to its simplicity and low cost. The nonlinear behavior of PLLs
makes the design of clock signal distribution networks a difficult task, therefore, numerical simulation is an important tool. In this
work, a Two-Way Master-Slave network is build using parallel computation, aiming to develop a more efficient simulation strategy, and
to study the effects of the interacting PLLs running in a parallel computation system.

Introduction

Complex systems can be thought as a set of a large number of connected, usually simple, elements, exchanging signal
(information), and producing new behaviors difficult to predicted from the components or boundary conditions. The
study of dynamical systems arise from the need to understand phenomena, and to build mechanisms or circuits, such as
the complex systems. Synchronization networks are complex systems with growing interest given the need for global
communication systems [1, 2, 3].
The PLL is the fundamental component of clock signal distribution networks, and consists of a closed-loop control system
that synchronizes a local oscillator, or clock, to a reference signal. The PLL block diagram, shown in Fig. 1, is composed
of a Phase Detector (PD), of a Low-Pass Filter, and of a Voltage-Controlled Oscillator (VCO) [4].

Figure 1: PLL block diagram.

Given the input and output signals in Eqs. 1 and 2, the multiplier type PD generates an error signal vd(t) with the same
sign of the phase difference θi(t)− θo(t).

vi(t) = vi sin(ωM t+ θi(t)) (1)

vi(o) = vo cos(ωM t+ θo(t)) (2)

The LPF controls the VCO phase and frequency, according to the relation in 3, around the free-running frequency ωM ,
tracking the input phase θi(t) and filtering noise, jitter and wander frequency fluctuations [2, 5, 6].

d

dt
θo(t) = kovc(t) (3)

Considering the foregoing relations the PLL mathematical model is given by Eq. 4,

L [θo(t)] +GQ [sin (θo(t)− θi(t))] = GQ [sin (2ωM t+ θi(t) + θo(t))] , (4)

where G = 1
2kmkovivo is the loop gain and the operators L and Q depend on the LPF transfer function [1, 2].

TWMS PLL network

There are many strategies for synchronization of clocks. Each strategy depend on the choice for the network topology. In
Mutually-Connected networks all the nodes (PLLs) contribute to the phase and frequency scale of the network, however,
in Master-Slave networks, the master clock dictates the phase and frequency scales for the whole network. In most cases
the Master-Slave strategy is used due to its simplicity and low cost [2, 7].
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In One-Way Maste-Slave network the master node alone dictates the phase and frequency scales for the whole network.
On the other hand, in the Two-Way Master-Slave strategy, the slave nodes also contribute to the determination of the phase
and frequency scales of the network. In Fig. 2(a) the PLL block diagram for a TWMS network is shown. Differently
from Fig. 1, the error signal depends on the average phase between the previous and of following nodes, as it shown in
Fig. 2(b).

(a) TWMS PLL. (b) TWMS network.

Figure 2: TWMS Clock signal distribution networks.

Following a procedure similar to the previous section the mathematical model of the slave-nodes in a TWMS network is
given by

L(j)
[
θ(j)o (t)

]
+Q(j)




j+1∑

ℓ=j − 1
ℓ 6=j

G(j,ℓ) sin
(
θ(j)o (t)− θ(ℓ)o (t)

)

 = Q(j)




j+1∑

ℓ=j − 1
ℓ 6=j

G(j,ℓ) sin
(
2ωM t+ θ(ℓ)o (t) + θ(j)o (t)

)



(5)
where j = 2, 3, · · · , N , G(j,ℓ) = 1

2aℓ,jk
(j)
m k

(j)
o v

(j)
o v

(ℓ)
o is the loop gain and the operators L(j) and Q(j) depend on each

slave node LPF transfer function.
As it can be noticed from Fig. 2, the phase and frequency scales for the slave nodes depend on the master clock and on the
parallel interaction of the slave nodes. Although this is a MS strategy, there is a mutual connection of the slave nodes. The
nonlinear and simultaneous interactions generate complex dynamic behaviors. In this case parallel computing is helpful
to study and to build more realistic synchonization networks models.

Parallel Programming

Parallel computation consists of solving parts of the system concurrently, that is, in parallel, and in different processors
(or cores), in order to reduce the simulation time. In addition, this technique gives more flexibility to build the network
[8].
MATLAB’s Parallel Computing Toolbox (PCT) allows the developer to work with memory sharing and distributed mem-
ory architecture. Within this tool, the development of the “local” infrastructure is built inside a multi-core computer [9].
Generally speaking, hardware architectures are commonly two-, four-, or eight-core versions.
PCT delivers functions to MATLAB such as parallel loop execution, creation and/or manipulation as well as enabling
the construction of animal arrays of parallel logic. PCT allows you to use even the cores of the machine on which they
all run as they enable interactive development and debugging of code in parallel logic. As a possibility of expanding the
work developed on this platform, the largest developed can scale to a number of cores using the MATLAB Distributed
Computing Server [10] . Fig. 3 shows a division of the sections into desktop system and cluster computer.
Using MATLAB’s PCT, a program with parallel logic can be expressed in three different ways [11]:

1. by the parfor feature, which executes a for loop in parallel;

2. by the spmd feature, which creates a synchronous process of cooperation;

3. by the task feature, which creates multiple, independent programs.

Among the PCT functions, parfor (parallel for)-loop stands out, which is very useful in situations that require several
iterations in a loop, with a simple function being executed between these iterations, such as Monte Carlo simulations and
image processing. In order to run the parfor, it is necessary to use PCT, adapting the original code to the new commands
of that toolbox [12].
The iterations that run in parfor are independent and run in independent instances of MATLAB, running them separately
from the operating system process. That way, the function that will be executed at each iteration cannot depend on results
that are found in that loop. This is due to the construction of parfor inside the PCT, which does not share memory during
execution. The application of this solution is feasible for different computers connected via the network because the PCT
is able to transform each core of this network into a processing unit of parfor iterations [9, 12, 13].

ENOC 2022, July 17-22, 2022, Lyon, France

1093



ENOC 2020+2, July 17-22, 2022, Lyon, France

Figure 3: The Parallel Computing Toolbox and MATLAB Distributed Computing Server [10].

Proposed Algorithm

For the development of the work, the necessary calculation steps for the execution of the PLL were followed. Thus, in the
first moment, the phase comparison of the input signal and the output signal of the VCO of the PLL itself was performed.
This signal is called VD and it feeds the LPF filter of the PLL, in which the fourth-order Runge-Kutta integrative method
is used, in which the implementation was based on [14]. Finally, the output signal from the LPF, called VC, is directed to
the VCO, closing the loop. The proposed algorithm for running the simulations has three main sections:

1. Definition of initial and simulation parameters – the following questions are answered: What is the input signal;
What is the size of the network; What is the start time, end time and sample rate of the simulation; What are the
filter parameters;

2. TWMS network simulation – the calculations referring to the constructed TWMS network are performed, in which
the calculation of the LPF output is performed in parallel;

3. Construction and presentation of the results obtained – creation of an output file with the simulation results and
graphs of the system’s behavior.

In this work, the development of parallelism via TPC was chosen through the function parfor. Basically in the PLL
integration loop, the repetitive structure that advances in time according to the sample rate is a for structure. This structure
directs the “round” the system is in, that is, it manages the integration step. In this case, we call it the main program.
Within the main program, due to the LPF operation, we need an integration, so that the control signal for the VCO (which
in this case is the LPF output) is found. In this step, the parfor was applied, that is, the calculation of all PLLS of the
TWMS network is performed simultaneously.

Simulation features

The simulated TWMS network is formed by a PLL Master, a PLL Slave, called Slave 1, whose input signal vi(t) depends
on both the Master and Slave 2, and another PLL Slave, called Slave 2, whose signal depends only on the output signal
vo(t) of Slave 1,as described in [15].

Results to step

The simulated TWMS network contains a PLL Master, Slave 1 (having its input signal dependent on the output signals of
the PLL Master and Slave 2) and Slave 2 (having its input signal dependent only on Slave 1). The simulations followed
the models found in [4, 15, 16, 17].
When analyzing Fig. 4, we see that the PLL Master and Slave 2 are in sync with the input signal because the phase error
of θo with respect to θi is zero. This fact is confirmed by observing Fig. 5 which are results of the steady state of the
network. In this case, the Lissajous figure in the post-transient regime demonstrates that the PD input (vi(t)) and the
VCO output (vo(t)) of Master and Slave 2 are signals periodic, with the same frequency and quadrature phase, implying
synchronization.
Slave 1, in the studied interval, does not reset the phase error of the output in relation to the input. This fact evidenced by
Fig. 4 and 5. The signal of Slave 1, when looking at the Lissajous graph, the behavior of the PD input (vi(t)) and the VCO
output (vo(t)) Slave 1 has θo(t) equal to 180ë, thus being out of phase in relation to θi(t), implying non-synchronization.
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Figure 4: TWMS: Phase error of the step response.

Figure 5: TWMS: Lissajous of the step response.

Results to ramp

When we apply a ramp to the network and observe the behavior of the network, we see that in the TWMS model that the
phase of θo in relation to θi follows the ramp. In Fig 9, we notice that the Master, Slave 1 and Slave 2 replicate the ramp
applied to the PD (vi(t)), causing the VCO output (vo(t)) has the same behavior, not synchronizing any of the network
PLLs.

Figure 6: TWMS: Master’s response to ramp.
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Figure 7: TWMS: Slave 1’s response to ramp.

Figure 8: TWMS: Slave 2’s response to ramp.

Figure 9: TWMS: Phase error of the ramp response.

Conclusion

In the TWMS network, composed of 3 PLLs, when we apply a step to the input signal phase, we notice that through the
phase error and the Lissajous figures that the Master and Slave 2 synchronize with this signal, having a jitter due to the
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characteristics of the simulated system. Slave 1 has as a response the non-synchronization with the input signal, a fact
observed in the phase error and also by its Lissajous, whose arrangement indicates a phase delay in the order of 180ë, as
shown in [17].
When applying a ramp to the input phase, it is noted that both the Master and Slaves do not find a control voltage capable
of tuning the output signal with the input applied. As shown in [15, 17], the ramp signal causes synchronization failures
in all PLLs.
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Stability Analysis of Rotary Drilling Systems Associated with Multiple
State-Dependent Delays
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Summary. This paper presents an algorithm to conduct numerical linear stability analyses of rotary drilling systems equipped with
a realistic Polycrystalline Diamond Compact (PDC) bit. The interaction between a PDC bit and the rock introduces up to 100 state-
dependent delays into the differential equations governing the rotary drilling system, here represented by a discrete multiple degrees
of freedom model. A bit trajectory function is proposed to convert the time delays into their corresponding angular delays that are
embedded in the PDC bit design. The proposed algorithm has the potential to be used for optimizing PDC bit design with the goal of
postponing the occurrence of torsional stick-slips.

Introduction

Torsional stick-slip vibrations are destructive dynamic phenomena encountered during rotary drilling of oil and gas wells.
The torsional stick-slips are characterized by alternating stick phases with the bit at rest for a period of time and slip phases,
during which the angular velocity of the tool increases up to two times the nominal angular velocity. The root cause of
the torsional stick-slip oscillations lies in the nature of bit-rock interaction as both laboratory and field measurement data
have shown that PDC bit design has a significant influence on the torsional stick-slips. However, it is a challenging
problem to model the interaction between a realistic PDC bit and the rock, which is associated with two major sources of
nonlinearities: (i) the regenerative rock cutting process introduces up to 100 state-dependent delays due to the complex
layout of PDC cutters; (ii) the unilateral nature of the frictional contact process introduces a discontinuity in the boundary
conditions [1]. The search for the numerous state-dependent delays in numerical simulations is, however, CPU intensive,
which renders the computational efficiency of conventional solution strategies unacceptable.
This difficulty has recently been overcome by Tian et al [1], who employed a bit trajectory function [2, 3], to reformulate
the time delay-related variables. In this way, the state-dependent time delays are converted into the corresponding angular
delays that are known from the PDC bit designs. The evolution of the bit trajectory function is governed by a partial
differential equation (PDE), which is coupled by the system of ordinary differential equations (ODEs) that governs the
dynamics of the discretized drillstring. By the application of the Galerkin method, the coupled system of PDE-ODEs are
transformed into a system of ODEs, which can be efficiently integrated. The drillstring in [1] is, however, simplified as a
low-dimensional (LD) discrete model that solely consists of two degrees of freedom (DOFs). This LD drillstring model
considers only one torsional DOF, which is thus unable to capture the higher modes of torsional resonance that are usually
responsible for the occurrence of torsional stick-slips [3].
This paper extends the LD drillstring model in [1] to a high-dimensional model (HD) with multiple DOFs. Instead of
pursuing the time simulation of the HD model with strong nonlinearities, this paper focuses on its linear stability analysis,
which provides useful information regarding the growth rate of torsional vibrations into stick-slip oscillations by the
examination of unstable poles. The linear stability analysis thus has the potential application in the optimization of PDC
bit designs in terms of postponing the occurrence of torsional stick-slips due to its high computational efficiency.

Numerical Stability Analysis

The PDC bit-rock interaction model is adopted from [1], while the HD drillstring model is the same as that in [3]. A
combination of both leads to a system of nonlinear coupled PDE-ODEs governing the dynamics of the HD model. The
reader is referred to the references [1, 3] for a full description of the derivation. Linearization of this nonlinear system
is carried out around the equilibrium point by imposing small perturbations to the steady-state variables. The system of
linear coupled PDE-ODEs that governs the perturbation of bit trajectory h̃ (θ, τ) function and state variables reads

∂h̃

∂τ
+ ω0

∂h̃

∂θ
+ φ̇b

v0
ω0

= 0, (1)

Îü+ Ĉau̇+ K̂au = Ŵ , (2)

Îφ̈+ Ĉtφ̇+ K̂tφ = T̂ , (3)

where v0 (ω0) is the non-dimensional nominal axial (torsional) velocity; φ̇b is the perturbed bit angular velocity; Î is the

unit diagonal matrix; Ĉa

(
Ĉt

)
and K̂a

(
K̂t

)
are the dimensionless damping and stiffness matrices for axial (torsional)

motion; u, φ, Ŵ , T̂ represent, respectively, the vectors of dimensionless axial and angular displacement, external axial
force and torque. The perturbed bit trajectory function h̃ (θ, τ) can be approximated by
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Figure 1: Stability map in the space of the operating parameters (weight-on-bit and rotary speed) for two PDC bit designs:
(a) bit A and (b) bit B. The red color denotes the region of operating parameters with large real parts, while the green
color represents the region with smaller real parts.

h̃ (θ, τ) = ã0

(
1− θ

2π

)
+ ã1

θ

2π
+
N−1∑

k=1

ãk+1 sin

(
kθ

2

)
, θ ∈ [0, 2π) , (4)

Substituting the approximation (4) into the linearized PDE (1) and invoking the Galerkin method to minimize the resulting
residual R̃ yields a system of first-order ODEs that governs the evolution of the perturbed coefficients

∫ 2π

0

R̃ θ

2π
dθ = 0,

∫ 2π

0

R̃ sin

(
mθ

2

)
dθ = 0, m = 1, ..., N − 1. (5)

This systems of ODEs together with the system of ODEs in (2)-(3) can be written in the matrix-vector form as

A
˙̃
X +BX̃ = 0 (6)

where A and B are coefficient matrices and X̃comprises the perturbed state variables and coefficients ãi, i = 1, 2, ..., N .
The linear stability analysis of the system of coupled PDE-ODEs (1)-(3) has thus been replaced by the equivalent stability
analysis of the linear system of ODEs (6). If the system is stable, the perturbed vector X̃ converges to the null vector;
otherwise, X̃ grows exponentially. The instability of the linear system of ODEs (6) is indicated by positive real part of
the eigenvalues of the matrix A−1B.

Numerical results

Surface rotary speed (RPM) and weight-on-bit (WOB) are two operating parameters that are commonly adjusted to allevi-
ate drillstring vibrations. Preliminary linear stability analyses have shown that the drillstring system is unstable within the
practical ranges of the operating parameters (weight-on-bit and rotary speed). This indicates that the torsional vibrations
will always degenerate into stick-slips given enough time.
Extensive simulation results have shown that the most unstable pole with the maximum real part of the system (6) corre-
sponds to the axial dynamics of the drillstring. The magnitude of the real part of the most unstable pole determines the rate
at which the axial dynamics evolves eventually to the axial stick-slips. Therefore, the values of the operating parameters
that lead to smaller real parts of the most unstable poles will delay the occurrence of axial stick-slips. Figure 1 presents the
distributions of maximum real parts of the eigenvalues for different combinations of operating parameters for two PDC
bit designs. It is observed that different PDC bit designs have different optimum pairs of the operating parameters.
Furthermore, the unstable axial dynamics influences the torsional dynamics via the coupling caused by the bit-rock in-
teraction. It is observed from the time simulation results that the axial stick-slips always precede torsional stick-slips.
Therefore, the occurrence of torsional stick-slips can be possibly delayed by selecting PDC bit designs for which the most
unstable pole has the smallest real part for prescribed values of the operating parameters.

Conclusions

This paper presents an algorithm for the stability analysis of a high-dimensional drillstring model in conjunction with
PDC bit-rock interaction. It is shown that PDC bit designs affect the stability of the drillstring. By recognizing that the
most unstable pole corresponds to the axial dynamics and that the axial stick-slips always precede torsional stick-slips, it
is possible to delay the occurrence of torsional stick-slips by optimizing PDC bit design that leads to the smallest real part
of the most unstable pole. The validity of this approach is currently being verified by time domain simulations.
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Abstract. The work is devoted to balancing a two-stroke single-cylinder engine by installing two elastic 

hinges with a given characteristic (the dependence of the restoring moment on the angle of rotation) between the 
strut and the crank and between the crank and the connecting rod. The hinge is an elastic element (spring or 
pneumatic spring) that moves between the guides of the calculated shape. The characteristic of the elastic hinge 
between the crank and the connecting rod is such that the lateral force acting on the piston decreases many times 
during engine operation. With certain parameters of the engine under consideration with a hinge between the crank 
and the connecting rod, the lateral force acting on the piston is zero at any angle of rotation of the crank. The 
characteristic of the elastic hinge between the strut and the crank is such that the angular velocity of the crank will 
be constant. In this case, you can either completely abandon the flywheel in the engine design or significantly reduce 
its weight. Flywheel inertia can now account for up to 80 percent of all moving parts in an engine. Such parameters 
of the proposed two-stroke single-cylinder engine are selected, at which it becomes fully balanced. At the moment, 
the considered problem has been solved for a certain constant angular velocity of the crank. For a different angular 
velocity, a different characteristic of the elastic hinge will be required. A possible solution to this problem can be the 
use of a pneumatic spring as an elastic element of the proposed hinges. By changing the pressure in the pneumatic 
spring in an appropriate way with a change in the angular velocity of the crank, it is possible to achieve the proper 
coefficient of uneven operation of the considered two-stroke engine. The approach proposed here for balancing a 
two-stroke single-cylinder engine can also be applied to balancing four-stroke engines. 

 

The problem of balancing internal combustion engines (ICE) based on a crank mechanism (CM) has been 
the subject of many works, for example [1-4]. This work is devoted to a two-stroke single-cylinder engine (TSSCE) 
with two elastic hinges with preset force characteristics [5] located between the crank and connecting rod at point A 
(with characteristic       ) and between the crank and connecting rod at point 0 with characteristic       (Fig. 1, 
(а)). The dependence         on the TSSCE crank shaft was taken from [6] and was approximated by the analytical 
function (1), where   is in degrees.                                                                                                                                                                                                                                                                  

                                                                                           (1)                                                                                                                                                                                                                                                                                                                                                                                                                       . 
In this formulation of the problem, a CM with a counterweight on the connecting rod is considered. We 

consider that the weight of the counterweight is   , and its length is   . Rod weight     was not taken into account 
(Fig. 1). 
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Fig. 1. 

 

To determine the dependence        in steady state, taking into account the operating resistance      , the 
horizontal force       acting on the piston from condition (2) was determined. 

                                                                                      ,                                                         (2) 

where                                      - potential component of the moment on the shaft of the ICE 

(                   ) in the steady state of the engine, taking into account the resistance (Fig. 1, (a)).  

It is assumed that dependence (1) and, consequently, dependence (2) can be determined for any TSSCE. 

Figure 2 shows the dependencies         (dependence 1 according to formula (1)) and            (dependence 2) at 
one turn of the crank. 

 

1 -        ; 2 -           . 
Fig. 2. 

 

Omitting calculations for dependence (2), we write an expression for          (          ). 

                                                                                                         ,                                  (3) 

where    – distance from point 0 to the center of mass of the crank;         – crank length;                 ;    – 

distance from point A to the center of gravity of the connecting rod AB;         – crank length AB. 

To determine the dependence        (4), in which the lateral force     acting on the piston is equal to 0 at 
any angle of rotation of the crank (Fig. 1, (b)), the sum of the moments of active forces (  ,      ,      ), inertia 

forces (        ,          ,          ,          ,          ), torque inertia of the connecting rod (         ) 
relative to point A. It was assumed that the angular velocity of the crank   is constant. The direction of rotation of 
the crank is counterclockwise (Fig. 1, (a)). 
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                                                                                               ,                                             (4) 

where                                   ;                  ;             ;                              ;                                             ;                                                                            ;                                ;                                        ;                     ;                                       ;                             . 
In the absence of an elastic hinge at point А, the lateral force      will be determined by the dependence 

(5). 

                                                                                                                     (5) 

Dependence (4) turned out to be such that               . It should be noted that              does 

not depend on the angular velocity of the crank. To obtain such dependence            that                , 

dependence (6) can be used.  

                                                                                                                                        (6) 

When the elastic hinge is located with characteristic (6), the lateral force acting on the piston        (Fig. 
1, (b)), is determined by the following expression. 

                                                                                            (7)  

Fig. 3 shows the dependencies       ,        ,        ,        obtained by dependences (4), (5), (6), (7), 
respectively. Options (а) and (с) were obtained with      and     . Variants (b) and (d) were obtained with 
such values of    and    (       ,         ) that the center of mass of the system “counterweight at point   -
rod-piston” is at point A. 

         ;         ;         ;    = 0,2 m;        ;        ; 

1 -           ; 2 -           ; 3 -           ; 4 – dependence         according to (5). 

Fig. 3.  
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As can be seen from Figure 3, the dependences        (without a prime) and         (with a prime) 
practically coincide. Installing an elastic hinge with a given characteristic between the crank and the connecting rod 
reduces the lateral force acting on the piston        hundreds of times. It should be noted that the reaction R_43 (φ) 
is practically independent of the angular velocity of the crank for these parameters. It was possible to select such 
parameters of the system under consideration, in which the lateral force        is equal to zero at any angle of 
rotation of the crank. Figure 4 shows such dependencies. Option (a) obtained with        . Option (b) with         и     0.1 m. For the case when the center of mass of the system “counterweight at point   -rod-slider” 
is at point A, select such parameters for which          at any angle  , failed.  

         ;         ; 1 -           ; 2 -           ; 3 -           ; 
a)         ;    = 0,2 m;           ;        ; 
b)         ;    = 0,4 m;        ;           . 

Fig. 4.  

 

The case was considered when the angular velocity of the crank is constant. To determine the 
characteristics of the elastic hinge at point 0 (     , Fig. 1, (a)) the Lagrange equation of the second kind was 
compiled. 

                                                                            
                   ,                                                                      (8) 

where               – kinetic energy of the mechanism in Fig. 1, (a));  

                                                                                                            

                                                                              

                                                                          ;       – reduced moment of inertia of the mechanism in Fig. 1, (a));                                                                                                              
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                                                                                                                                                                                                                                                                                                                                                  ;                               ;  
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

                                                                                            

                                                                                                                                                                                                                                                             
                                                                                                   ; 

  ,   ,   ,    – the weights respectively of the crank, connecting rod, counterweight at point    and counterweight 
at point   ;     is the coordinate that determines the position of the center of mass of the crank;     is the coordinate that determines the position of the counterweight at point   ;         – ordinates of points    and    respectively (Fig. 1);                  ;                                               ;                                                                          ; 
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Let us rewrite equation (8) in the following form. 

                                                                                               .                                                   (9) 

From equation (9) we obtain the dependence of the moment on the crank on its angle of rotation (    ). 

                                                                          

                                                                                                      (10) 

                          

                                                                          . 
Variants were considered in which            , that is, in the presence of an elastic hinge with the 

characteristic            between the crank and the connecting rod. It turned out that not for all parameters of the 

considered system           . For example, for the data on which Fig. 3, (b),                    under the 

condition of vertical balancing (Fig. 5, (a), - according to equation (10)). Vertical balancing of the CM in Fig. 1, (a) 
was determined by the following equation 

                                                                                          (11) 

 The weight    from equation (11) is given by the following expression 

                                                                                                                                    (12) 

           ;                ;         ;         ; 

a)                  ;         ;    = 0,2 m;       ;        ;        ;        ;           ; 

b), c), d)         ;         ;         ;    = 0,45 m;                ;        ;        ;           . 

Fig. 5. 
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For option (b)           , while                 ((c), - according to (4)). As can be seen from the 

figure 5, the lateral force acting on the piston ((d), - according to (7)), is quite small. 

 The condition for finding the center of mass of the system in fig. 1, (a) at point 0 the following 

                                                                                      ,                                             (13) 

where                          (the condition for finding the central mass of the system “counterweight at 
point   -rod-posun” at point A, Fig.1). 

Figure 6, (a) shows the dependence       in the case when the center of mass of the system in Fig.1, (a) is 
at point 0 (condition (13) is satisfied). Figure 6, (b) shows the dependence of the lateral force acting on the piston on 
the angle of rotation (in the presence of an elastic hinge at point A, Fig. 1, b). 

         ;         ;         ;           ;         ;         ;    = 0,45 m;                 ;        ;        ;        ;            ;            . 

Fig. 6. 

 

An elastic hinge with a given characteristic is an elastic element, a spring or a pneumatic spring, moving 
between the guides of the given form (Fig. 7). For option (a), the elastic element is a spring; for option (b) the elastic 
element is a pneumatic spring. The shape of the guides is such that the reactions    and    create a calculated 
restoring moment depending on the angle of rotation of the elastic element relative to the guides  . For an elastic 
hinge at point 0, the angle   is equal to the angle of rotation of the crank  . For a hinge at point A:      , or                    . The method for calculating the shape of the guides of an elastic hinge is presented in the 
article [7]. At first, the guides are calculated assuming that the radius of the rollers in contact with the guides is zero. 
Then equidistant guides are built to the obtained ones, taking into account the radius of the rollers. For example, 

according to the dependences            and       derived in this article, it is possible to calculate the guides of the 
elastic hinges, which will be located between the crank and the connecting rod and between the strut and the crank, 
respectively. For the steady-state operation of the engine at different constant angular velocities of the crank, elastic 
hinges with different characteristics are required. From this point of view, elastic hinges are preferable, in which a 
pneumatic spring is used as an elastic element. Then, with a small change in the magnitude of the angular velocity of 
the crank, it is possible to achieve the proper coefficient of uneven operation of the considered engine by calculating 
the pressure change in the air spring [7]. 

 

Fig. 7. 
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Conclusions. 

1. Installation of an elastic hinge with a given characteristic between the crank and the TSSCE connecting rod can 
reduce the lateral force acting on the piston by hundreds of times. For certain parameters of the system under 
consideration, the lateral force acting on the piston during the operation of the TSSCE is equal to zero at any angle 
of rotation of the crank. 

2. Installation of an elastic hinge with a given characteristic between the strut and the crank, in the presence of an 
elastic hinge between the crank and the connecting rod, makes it possible to obtain a constant angular velocity of the 
TSSCE crank with a minimum lateral force acting on the piston. 

3. For CM with counterweights on the connecting rod and crank with elastic hinges located between the strut and the 
crank and between the crank and the connecting rod, it is possible to obtain a fully balanced TSSCE with a constant 
angular velocity of the crank 
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When friction and vibro-impact makes music: physical model of the tromba marina

Frédéric Ablitzer, Joël Gilbert, François Gautier
Laboratoire d’Acoustique de l’Université du Mans, CNRS UMR 6613, Le Mans, France

Figure 1: Representation of a
tromba marina (adapted from [1]).

The tromba marina (Fig.1) is a bowed string ancient instrument able to imitate
the sound of a brass instrument [2, 3]. The functioning of the instrument takes
advantage of two non-linear phenomena: dry friction, which allows the emer-
gence of self-sustained oscillations, and vibro-impact mechanism, which makes
the “brassy” sound. In this study, a physical model of tromba marina is developed
to investigate the phenomenon of spectral enrichment caused by the collisions be-
tween one foot of the bridge and the soundboard.

The model consists of a perfectly flexible string fixed at both extremity, vibrating in
the plane parallel to the soundboard (Fig. 2a). The string is coupled to a soundboard
through the bridge (Fig. 2b). The foot of the bridge located under the string is
considered rigidly linked to the soundboard, whereas the other foot is free to move
independently of the soundboard, except when they are in contact. The dynamic
behavior of the assembly is represented by a set of Ns +Nb modal equations. The
Ns modes of the string are known analytically, whereas the Ns modes of the body
(soundboard and bridge) are obtained with a finite element model.

(a) (b)

soundboard bridge string bow soundboard

bridge

Figure 2: (a) Top view of the simplified instrument. (b) Front view of the bridge. P1 is the coupling point with the string.
P2 and P3 are the points likely to enter into contact during playing.

The contact law used to produce the vibro-impact mechanism is the Hunt & Crossley model [4]. The model contains three
parameters (stiffness coefficient k, non-linear power exponent n and damping coefficient λ) and expresses the contact
force as

Fc =

{
kδp + λδpδ̇ if δ > 0

0 if δ ≤ 0 ,
(1)

where δ = u
z(b)
3 −uz(b)2 −ε is the indentation between the two bodies in contact (ε is a control parameter which represents

the initial gap between the bridge foot and the soundboard, see Fig. 2b). The friction law describing the interaction
between the bow and the string assumes that the string perfectly sticks to the bow during sticking phases and that the
friction coefficient during sliding phases depends on the relative velocity as

µ(∆v) = µd +
µs − µd

1−∆v/v0
, (2)

where ∆v is the relative velocity between the bow and the string, µs is the coefficient of static friction, µd the asymptotic
coefficient of dynamic friction and v0 a parameter controlling the shape of the friction curve.

Time-domain simulations are performed using an explicit numerical scheme of the form

x(ti+1) = Ax(ti) +Bf(ti) , (3)

where x is a vector containing all modal coordinates and their time derivatives and f is a vector containing the modal
forces. The coefficients in A and B are obtained using a piecewise constant approximation of the right-hand side of
modal equations. At each time step, the contact force Fc is calculated using the available solution at ti. The other
unknown forces (coupling force F ybridge between the string and the body, reaction force F yfinger of the finger stopping the
string, friction force FT exerted by the bow on the string) are obtained by enforcing constraints: continuity of displacement
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between the string and the body, zero displacement at finger location, sticking or sliding condition. Finally, the pressure
radiated by the soundboard is calculated using Rayleigh integral, assuming that it is surrounded by an infinite baffle.

To highlight the phenomenon of spectral enrichment, a crescendo is simulated by bowing the open string with linear
increase of the bow speed, after a short phase intended to establish a periodic regime, the Helmholtz motion [5, 6]. Figure 3
illustrates the results of the simulation. During a first phase of the simulation, no collision occurs. After t = 1.6 s, the
body response has sufficient amplitude so that the free foot of the bridge enter into contact with the soundboard. Figure 4a
shows the sound pressure radiated by the instrument for the same gesture and Figure 4b the corresponding spectrogram.
As expected, the occurrence of collisions from t = 1.6 s is accompanied by a strong spectral enrichment. To highlight
this, the evolution of the spectral centroid is shown on the same figure. The emergence of high rank harmonics during
the crescendo, making the sound perceived as “brassy”, is a common feature with brass instruments. However, the effect
appears suddenly in the case of the tromba marina, as seen by the abrupt increase in spectral centroid at t = 1.6 s, whereas
a progressive spectral enrichment is typically observed when a crescendo is played on a brass instrument. This significant
difference is due to the fact that different physical phenomena are at the origin of the spectral enrichment: non-linear wave
propagation in the air column contained in the brass instrument [7], vibro-impact mechanism for the tromba marina.
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Figure 3: (a)-(d) Velocity of the string at bowing point, (b)-(e) displacement of point P2 and P3 (see Fig. 2b), (c)-(f)
contact force Fc.

Figure 4: (a) Sound pressure (normalized) radiated dur-
ing a crescendo and (b) its spectrogram. The superim-
posed red curve is the spectral centroid.
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Parametric study of a switching control model of stick balancing

Dalma J. Nagy∗,†, László Bencsik†,‡ and Tamás Insperger ∗,†

∗Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest,
Hungary

†MTA-BME Lendület Human Balancing Research Group, Budapest, Hungary
‡MTA-BME Research Group on Dynamics of Machines and Vehicles, Budapest, Hungary

Summary. We are interested in understanding the control mechanism employed by the central nervous system during stick balancing
on the fingertip. Although this is a relatively simple balancing task, the underlying control law is still not yet fully understood. In
this research, predictor feedback is applied in the mechanical model of stick balancing by taking into account the dead zone of human
perception of the stick’s state and the reaction delay. Using these assumptions, we derive a switched control model whose behaviour is
then investigated as the function of the system parameters.

Introduction

In recent years, the interest on studying human balancing from an engineering point of view is constantly growing [1].
The results of this research can be beneficial in helping people living with balance disorders and in the therapeutic motor
control development of children. Stick balancing on the fingertip represents the key features of dynamic balancing,
namely, an unstable equilibrium should be stabilized in the presence of reaction time delay and sensory uncertainty.
Therefore, in this paper the stick balancing task is studied by developing the mechanical model and performing numerical
analysis using the semidiscretization method for time-delay systems [2]. There are several control concepts to model
the balancing mechanism, e.g. delayed PD controller [3], PDA controller [4], intermittent controller [5]. Measured time
signals of stick balancing tasks suggest that nonlinearities due to switching-type control may be a key feature of human
balancing [6]. Here, a switching-type predictor controller is applied to model the control force exerted by human subjects.

Mechanical model and applied controller

Our research group has developed a device, in order to have a simplified measurement setup, where planar stick balancing
can be carried out by human subjects. The stick is mounted on a cart via a pin joint and the cart is only allowed to move
along a 1-meter-long rail. Subjects sit in a chair so their shoulders are parallel to the rail, therefore, the balancing occurs
in the subject’s medio-lateral plane [7]. It is assumed, that humans move only their forearm in this balancing task and not
their upper arm. The mechanical model of the system is shown in Fig. 1a), where the forearm of the subject is modelled
by a truncated cone [8]. The inertia of the forearm and hand can be modelled by a cart of equivalent mass ma which is
added to the mass of the cart mc and thus, the system is reduced to a two-degree-of-freedom pendulum-cart model shown
in Fig. 1b), where me = ma +mc.

(a)

F
x, ẋ, ẍ

C

me

m, l

E

ϕ, ϕ̇, ϕ̈

g

(b)

Figure 1: a) Schematic 3D figure of the stick balancing task. The cart is linearly driven on a rail and the stick is pinned
onto the cart via a planar joint. The subject controls the cart with their hand using a handle that is rigidly fixed to the cart.

b) Reduced mechanical model of the stick balancing task.

By taking the generalised coordinates x - the position of the cart - and ϕ - the angular deviation of the stick -, the equation
of motion can be derived for the 2 DoF system. However, x is a cyclic coordinate, and therefore can be eliminated from
the equation. After linearisation, the equation of motion reads

ϕ̈(t) =
6g

c l
ϕ(t)− 6F (t)

(m+me)c l
, (1)

where c = 4− 3m/(m+me), m is the mass of the stick, l is the length of the stick, me is the equivalent mass of the cart,
g is the gravitational acceleration and F (t) is the control force applied by the human. When applying predictor feedback,
it is assumed that the internal model of the human is exact, that is it matches the actual system parameters as a result of a
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long enough learning process. In this case, the feedback of the predicted state eliminates the delay from the control loop
[4] and the control force of the switching-type model predictor feedback is:

F (t) =





0 if|ϕ(t− τ)| < Πφ and |ϕ̇(t− τ)| < Πφ̇,

Pφ(t) if|φ(t− τ)| ≥ Πφ and |φ̇(t− τ)| < Πφ̇,

Dφ̇(t) if|φ(t− τ)| < Πφ and |φ̇(t− τ)| ≥ Πφ̇,

Pφ(t) +Dφ̇(t) if|φ(t− τ)| ≥ Πφ and |φ̇(t− τ)| ≥ Πφ̇,

(2)

where it is assumed, that the angular deviation and the angular velocity of the stick is sensed by the human perception and
the prediction is made based on these measured values. The human sensory dead zone is also accounted for in the model
of the control force, hence the switching. Different sensory dead zones are applied for the angle and angular velocity of
the stick denoted by Πφ and Πφ̇, respectively. The switching of the control force occurs with a time delay τ , since it
takes a finite time for the human to detect that the stick is out of the dead zone, which is equal to the reaction delay of the
subject. Substituting F (t) into Eq. (1) gives a nonlinear model of human balance control.

Numerical study

A numerical study on the stability of the system is carried out using the semidiscretization method [2] as a function of the
system parameters P , D and τ . The values of me = 1.73 [kg], m = 0.1 [kg] and l = 0.9 [m] are held constant during the
analysis. The equivalent mass is determined by anthropometric data from [9] and by measuring mc = 0.12 [kg]. Because
of the model predictor feedback, the discrete map corresponds to a sampled output system without any feedback delay,
where the stability diagram depends on the sampling time ∆t. The sampling time was set to ∆t = 0.01 [s]. Fixed value
of sensory dead zone is applied for the angle Πφ = 1 [deg] and the sensory threshold for the angular velocity is varied
between Πφ̇ = 0.02...2 [deg/s].

Conclusions

The parametric study leads to the detection of solutions converging to pseudo-equilibria that lies on the switching line
determined by the size of the dead zone for the angle if the sensory dead zone of the angular velocity is sufficiently small
and τ = 0 [s]. However, if the size of the dead zone of the angular velocity is large, a stable periodic orbit determined
by both sensory dead zones can be observed for the parameter combination P = 30 [N], D = 5 [Ns] and τ = 0 [s].
Nevertheless, τ = 0 [s] is not physiologically feasible for the case of human balancing. For a feasible value of time delay
a stable symmetric orbit with a long period is found for the control gains P = 30 [N], D = 5 [Ns], and τ = 0.3 [s].
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Figure 2: a) Numerical solution for control parameters τ = 0.3 [s], P = 30 [N], D = 5 [Ns]. b) Stable symmetric orbit
in phase plane for the numerical solution.
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Bistability in nonlinear elastic robotic arms subject to delayed feedback control
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Budapest University of Technology and Economics, Budapest, Hungary
‡Dynamics and Control Department, Ideko, Elgoibar, Spain

Summary. Stability and bifurcation analysis of a non-rigid robotic arm controlled with a time delayed feedback loop is addressed in
this work. The study aims at revealing the dynamical mechanisms leading to the appearance of limit cycle oscillations existing in the
stable region of the trivial solution of the system, which are related to the combined dynamics of the robot control and its structural
nonlinearities. An analytical study of the bifurcations occurring at the loss of stability enables the development of strategies to eliminate
this undesired bistable phenomenon by the implementation of special additional nonlinearities in the control force.

Introduction

Robots are increasingly adopted in modern manufacturing facilities, thanks to their versatility and relatively low cost [1].
Milling operation is one of the operations robots are intended to be used for, where complicated tool trajectories can
be realized in a large workspace, with a relatively low cost. The relative vibrations between workpiece and tool are a
troublesome phenomenon in milling that is mainly caused by the so-called regenerative vibration. The main solution to
avoid them is to increase stiffness and damping and try to disturb time delays introduced by the regenerative effect [2].
Generally, increasing the stiffness is hardly achievable, since robotic arms are naturally slender and not especially stiff
structures [3]. This makes them particularly prone to vibrations. The main method to mitigate these vibrations should
consists of implementing an active controller working collaboratively in the robot original feedback loop. This envisioned
controller online reads the acceleration of the end effector (EE, see Fig. 1a) as input and sends a proportional signal to the
robot controller in order to counteract and suppress the arising oscillations. This signal is combined to the signal of the
position controller of the robot required to make the robotic arm follow the prescribed path during machining.
Although this procedure is rather straightforward to be implemented, there are several aspects that can undermine the
effectivity of such combined system if the followings are not properly accounted for: (i) Robotic arms are naturally
slender and they cannot be assumed to be rigid, especially if they are subject to strong periodic forces, as in the case of
machining. (ii) Since the actuators are placed at the joints of the arm, the system is underactuated. Depending on the
position of the sensors, either near the motor or near the EE, the system can be considered as collocated or non-collocated,
which have relevant consequences on the system stability [4, 5]. (iii) Robot configuration changes continuously during
operation and the drive components of the robot generate non-negligible nonlinearities; as we will illustrate in this study,
these nonlinearities might have important consequences on the system robustness. (iv) Robot’s controller is unavoidably
subject to time delay in the feedback loop. Although this is often negligible, if large control gains are required to counteract
strong forces, time delay can still generate instabilities.
This study is motivated by the appearance of unexpected vibrations in a real industrial robotic arm in milling operation.
This robot is equipped with a built-in controller (most probably a proportional-derivative controller) for its correct posi-
tioning and with an additional controller proportional to the EE acceleration, to counteract machining vibrations (Fig. 1a).
Although the control parameters of the system were set such that the system was stable (Fig. 1b), when subject to very
small external forcing, in some occasions the robotic arm exhibited either large or small oscillations, which suggests that
it was in bistable conditions (see Fig. 1c). The objective of this work is to define and study a general simplified model of
this system in order to understand the origin of the bistability and define methods to avoid it. From a broader prospective,
this seed research aim at providing a reliable modelling of robotic manufacturing.

Mathematical model

The mathematical model adopted is a two degrees of freedom (DoF) system (Fig. 1a), consisting of two lumped masses
m1 and m2, connected by a linear damper c, and a nonlinear spring knl. The two DoF of the system represent the two
dominant DoFs measured for the actual robotic arm in a certain frequency bandwidth. The nonlinearity models a stiffness
nonlinearity observed during measurement, most probably originated in the joints. This simplified equivalent mechanical
model captures the most important features of the real robotic arm considered in the study. The model is equivalent since
during a simple dynamic measurement on the EE the source of the stiffness, damping and nonlinearities are hard to be
traced. A prescribed reference trajectory xd is programmed, such that, in ideal circumstances, an identical constrained
motion xr is imposed to m1 via a spring of stiffness k with a certain time delay τr. This enables the robot to follow the
prescribed path. The equations of motion has the following form:

m1ẍ1 + c (ẋ1 − ẋ2) + knl(∆x) (x1 − x2) + kx1 = kxr,

m2ẍ2 + c (ẋ2 − ẋ1) + knl(∆x) (x2 − x1) = 0,
(1)

where knl(∆x) = k2 + κ∆x2 (∆x := x2 − x1). Apart from the position controller integrated in the robot, an additional
signal xf, proportional to the acceleration of the EE, is added to xr. This generates a final constrained motion xr(t) =
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K

Figure 1: a) shows the sketch of the 2 DoF model with the additional acceleration feedback control ; b) stability chart in the (τ,K)
space for ω1 = ω2 = 2π rad/s, r = 1, χ =: (50, 10, 5, 1)%, Kcr = 0.0253 s2, c) time evolutions for different initial conditions.

xd(t − τr) + Kẍ2(t − τr − τf), where τf is the delay of the acceleration feedback. In order to focus on the instabilities
generated by the acceleration feedback control, in this work we assume constant desired position, that is, xd(t) := xd,
which results in the equilibrium (x1, x2) = (xd, xd). By introducing the perturbations x1 := x1 + u1 and x2 := x2 + u2,
the stability of the local equilibrium can be studied. Via a standard non-dimensionalization procedure, the equations
of motion around the equilibrium are reduced to the equation, where r := m2/m1, ω2

1 := k1/m1, ω2
2 := k2/m2,

χ := c/(2m2ω2), µ := κ/m2, ü2τ := ü2(t− τ) and τ := τr + τf.

ü1 + 2χrω2 (u̇1 − u̇2) + ω2
2r (u1 − u2) + µr(u1 − u2)3 + ω2

1u1 = ω2
1Kü2τ ,

ü2 + 2χω2 (u̇2 − u̇1) + ω2
2 (u2 − u1) + µ(u2 − u1)3 = 0,

(2)

Stability and bistable behavior

By linearising (2) and setting χ := 0, the linear stability of the corresponding neutral equation can be investigated (see
Fig. 1b). A naive necessary condition of stability for neutral equation is to have the neutral coefficient (here ω2

1K) less
than one in its magnitude with |Kcr| ≤ ω−2

1 . However, the investigated robotic arm is non-collocated; therefore, the
neutral condition is always fulfilled, thus, the stability domains overtakes Kcr . In the case of small damping, repeating
lobe structure significantly erodes the stable region, which is limited to a narrow region around K = 0.
Apart from the local stability of the trivial solution, time simulations show that the nonlinearity of the system has signif-
icant impact on its global stability. In particular, if the system is subject to a stiffening nonlinearity (µ > 0) simulations
for parameter values within the stable region tend to diverge if initial conditions are sufficiently large. This phenomenon
is caused by the subcritical characteristic of the bifurcations occurring at the stability limit and it is probably directly
related to the bistable behaviour observed in real robotic arms. The detailed analysis of the bifurcation behaviour of the
system enables us to design additional nonlinearities to be included in the control force algorithm to enforce supercritical
behaviour; therefore, eliminating the bistable behavior in the stable region.

Conclusions

The stability and bifurcation analysis of a simplified model of the robotic arm subject to acceleration feedback was
performed. Results illustrated that the stability chart is characterized by a critical value of the control gain, which is
a necessary condition to guarantee stability, and by a repeating stability limit pattern, which strongly depends on the
time delay and on system damping. The mechanism connecting bistable behavior and hardening nonlinearity was also
identified. The full understanding of this mechanism enables the development of a control algorithm, based on nonlinear
functions, which forces the bifurcation to be supercritical, suppressing bistable behaviour in the stable region.
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Summary. We investigate theoretically the multi-frequency dynamics observed experimentally in an excitable microlaser subject to
delayed optical feedback. We perform a bifurcation analysis of a suitable mathematical model using advanced numerical methods. This
demonstrates that the modulated dynamics can be interpreted as quasiperiodic oscillations on a stable torus and hat it originates in the
interplay between the delay time and the internal slow timescales of the microlaser.

As sources of short, high-amplitude light pulses, self-pulsing lasers are central to many applications, including telecom-
munications and neuromorphic photonic computing. We consider a semiconductor micropillar laser with integrated sat-
urable absorber subject to delayed optical feedback [2]. The solitary microlaser is excitable [1]: it is in its non-lasing
state, but displays an all-or-none response to external perturbations, in the form of a short, high-amplitude light pulse,
depending on whether or not the perturbation amplitude exceeds the so-called excitable threshold [3]. In the presence of
a feedback loop, recent theoretical and experimental work demonstrated that a first excitable pulse can regenerate itself
when reinjected in the laser after the delay time [5, 4]. As such, a single external perturbation can trigger a train of pulses
whose repetition rate is close to the delay time. It has recently been shown [4] that several pulse trains can be triggered
and sustained simultaneously: in such a case, a very slow convergence is typically observed towards a pulsing pattern
where the pulses are equidistant in the laser cavity. In other words, the system is slowly attracted towards one of the stable
pulsing periodic solutions with periods close to submultiples of the delay time.
Here, we show theoretically and experimentally that the delayed feedback can also induce complex multifrequency dy-
namics. In particular, we provide experimental evidence of the existence of pulsing regimes with a strong modulation of
the pulse amplitude on a slow timescale compared to the delay time.

Figure 1: Experimental intensity time series, represented over reduced time (top) and in the pseudo-space (bottom) where the x-axis
represents one delay time and the y-axis represents the number of roundtrips in the laser external (feedback) cavity.

We focus on the theoretical investigation of such multifrequency dynamics and perform a numerical bifurcation analysis of
the Yamada model with feedback. This system of three delay-differential equations (DDEs) for the gain G, the absorption
Q and the intensity I is written as follows in the dimensionless form:

Ġ = γG(A−G−GI);
Q̇ = γQ(B −Q− aQI);
İ = (G−Q− 1)I + κI(t− τ).

(1)

Here, A is the pump parameter, B is the non-saturable absorption, a is the saturation parameter and γG and γQ are the
carrier recombination rates in the gain and absorber media, respectively. The values of γG and γQ are typically small, and
the model (1) is then a slow-fast dynamical system with two slow variables (the gain G and the absorption Q) and one fast
variable (the laser field intensity I). The optical feedback is described by the delayed term in the intensity equation, where
κ is the feedback strength and τ is the feedback delay. This model has been shown to describe accurately the dynamics
observed experimentally [6, 4].
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Figure 2: Simulated intensity time series represented over reduced time (left) and in the pseudo-space (right), for κ = 0.39 (top), κ =
0.3805 (middle), and κ = 0.38 (bottom). The delay is τ= 965.

Time domain simulations of the Yamada model with feedback, in figure 2, demonstrates its ability to reproduce the
modulated pulsing dynamics observed in the experiment. We perform an in-depth bifurcation analysis of the model (1)
with advanced numerical methods [7], considering both the feedback strength κ and feedback delay τ as bifurcation
parameters. It demonstrates that the modulated dynamics can be interpreted as quasiperiodic oscillations on a stable
torus. The bifurcation analysis unveils an interplay between the delay time and the internal timescales of the microlaser
(related to the carrier recombination rates in the gain and absorber sections) as the main reason behind the emergence of
such multifrequency dynamics. Moreover, time-domain simulations of the Yamada model with delay show that chaotic
dynamics exists in small regions of the parameter space.
Overall, our results provide a better understanding of pulsing dynamics in an excitable laser with delayed feedback. As
such, they constitute a step toward an all-optical control of pulse trains, which may prove useful for optical memories
or neuromorphic photonic computing. Despite its simplicity, the Yamada model with feedback describes accurately the
complex dynamics observed in the experiment and displays complex dynamics, including chaotic behaviour. Importantly,
the only ingredients, excitability and feedback, are very general [1]. Therefore, we believe our results may be of interest
beyond the scope of laser dynamics.
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Summary. The stability analysis of generic retarded differential equations is a difficult question since their asymptotic behavior
depends on a non-trivial way on parameters and delays. From a control point of view, the main difficulty is that one has infinitely many
spectral roots but only finitely many parameters in the system. A natural question is then to design techniques of assigning a finite
number of roots guaranteeing that the rightmost root is among the ones assigned. One such a technique is to place roots of maximal
multiplicity, which are often also dominant, a property known as multiplicity-induced-dominancy (MID). This paper proves that the
MID property holds for some classes of systems by using a priori bounds on the imaginary part of roots on the right half-plane, a
suitable factorization of the characteristic equation in integral form, and the analysis of crossing imaginary roots.

Introduction

This paper is interested in linear time-invariant differential equations with delays which can be written under the form

y(n)(t) +

N∑

j=0

n−1∑

k=0

αj,ky
(k)(t− τj) = 0, (1)

where n and N are positive integers, αj,k ∈ R, and τj ≥ 0. With no loss of generality, we assume 0 = τ0 < τ1 < · · · <
τN . Equation (1) is said to be retarded since the highest order derivative only appears in the non-delayed term y(n)(t).
The stability analysis of time-delay systems has attracted much research effort and is an active field [4, 5, 8, 9, 11]. The
asymptotic behavior of (1) can be studied through spectral methods by considering the complex roots of the corresponding
characteristic function ∆ : C→ C defined for s ∈ C by

∆(s) = sn +
N∑

j=0

e−sτj
n−1∑

k=0

αj,ks
k. (2)

Functions such as ∆ that can be written under the form Q(s) =
∑ℓ
j=0 Pj(s)e

λjs for some non-zero polynomials with
real coefficients P0, . . . , Pℓ and pairwise distinct real numbers λ0, . . . , λℓ are called quasipolynomials. The integer D =

ℓ+
∑ℓ
j=0 dj is called the degree ofQ, where dj denotes the degree of Pj . A classical result on quasipolynomials provided

in [10, Problem 206.2] implies that the multiplicity of any root of Q does not exceed D.
A root s0 of ∆ is said to be (strictly) dominant if every other root of ∆ has a real part (strictly) smaller than Re s0.
It has been observed in several works that real roots of maximal multiplicity tend to be dominant, a property known
as multiplicity-induced-dominancy (MID) (see, e.g., [1, 3] for the case N = 1 and n = 2 using approaches based on
factorization and Cauchy’s argument principle). The interest in considering multiple roots does not rely on the multiplicity
itself, but on its connection with dominance and its implications for stability analysis and control design.

Main results

The main results of this paper prove that the MID property holds for some classes of systems under the form (1).

Theorem 1 Consider the quasipolynomial ∆ given by (2) in the case N = 1. Let s0 ∈ R. The number s0 is a root of
multiplicity 2n of ∆ if and only if, for every k ∈ {0, . . . , n− 1},





α0,k =

(
n

k

)
(−s0)n−k + (−1)n−kn!

n−1∑

j=k

(
j

k

)(
2n− j − 1

n− 1

)
sj−k0

j!τn−j1

,

α1,k = (−1)n−1es0τ1
n−1∑

j=k

(−1)j−k(2n− j − 1)!

k!(j − k)!(n− j − 1)!

sj−k0

τn−j1

.

(3)

Moreover, if (3) is satisfied, then s0 is a strictly dominant root of ∆.

Thanks to the change of variables z = τ1(s − s0) transforming ∆(s) into ∆̂(z) = τn∆(s0 + z
τ1
), it suffices to prove

Theorem 1 in the case s0 = 0 and τ1 = 1. Its first part can be obtained by solving the system of linear equations
∆̂(ℓ)(0) = 0 for ℓ ∈ {0, . . . , 2n − 1}. As for the second part, when (3) is satisfied and z = 0 is a root of multiplicity 2n
of ∆̂, one can factorize ∆̂ as ∆̂(z) = z2nI(z), where I(z) is an entire function which can be written as an integral, for
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instance I(z) =
∫ 1

0
t(1− t)2e−zt dt when n = 2. A direct study of I , making use of the a priori information that roots z

of ∆̂ in the closed right half-plane C+ must satisfy |Im z| ≤ 2π, shows that it cannot have roots in C+. A detailed proof
is provided in [6].

Theorem 2 Consider the quasipolynomial ∆ given by (2) in the case N = 1 and n = 2. Let s0 ∈ C, σ0 = Re s0, and
θ0 = Im s0 and assume that θ0 ̸= 0. The numbers s0 and s0 are roots of multiplicity 2 of ∆ if and only if





α0,0 = σ2
0 + 2σ0θ0

τ1θ0 − sin (τ1θ0) cos (τ1θ0)

τ21 θ
2
0 − sin2 (τ1θ0)

+ θ20
τ21 θ

2
0 + sin2 (τ1θ0)

τ21 θ
2
0 − sin2 (τ1θ0)

,

α0,1 = −2σ0 − 2θ0
τ1θ0 − sin (τ1θ0) cos (τ1θ0)

τ21 θ
2
0 − sin2 (τ1θ0)

,

α1,0 = 2θ0e
σ0τ1

(
σ0

sin (τ1θ0)− τ1θ0 cos (τ1θ0)
τ21 θ

2
0 − sin2 (τ1θ0)

− τ1θ
2
0 sin (τ1θ0)

τ21 θ
2
0 − sin2 (τ1θ0)

)
,

α1,1 = 2θ0e
σ0τ1

τ1θ0 cos (τ1θ0)− sin (τ1θ0)

τ21 θ
2
0 − sin2 (τ1θ0)

.

(4)

Moreover, if (4) is satisfied, then s0 and s0 are a pair of strictly dominant roots of ∆.

Similarly to Theorem 1, one may reduce the proof of Theorem 2 to the case σ0 = 0 and τ1 = 1, with (4) being again
proved by solving a linear system of equations. As θ0 → 0, (4) converges (3) with n = 2, and one can thus prove
dominance of the complex conjugate pair ±iθ0 by proving that, as θ0 increases from 0, no roots of ∆̂ may lie on the
imaginary axis other than ±iθ0, and hence no roots can cross to the right half-plane. See [7] for a detailed proof.

Theorem 3 Consider the quasipolynomial ∆ given by (2) in the case N = 2 and n = 1. Let s0 ∈ R. The number s0 is a
root of multiplicity 2n of ∆ if and only if

α0,0 = −s0 −
1

τ1
− 1

τ2
, α10 = es0τ1

τ2
τ1(τ2 − τ1)

, α20 = −es0τ2 τ1
τ2(τ2 − τ1)

. (5)

Moreover, if (5) is satisfied, then s0 is a strictly dominant root of ∆.

One obtains (5) using the same arguments from Theorems 1 and 2. The second part of the statement can be proved by
considering the limit τ2 → τ1 and proving that s0 is dominant for the limiting quasipolynomial and that, as τ2 increases,
no roots other than s0 may have real part s0, excluding the possibility of any other root becoming dominant.

Conclusion

We further explored the MID property for generic single-delay retarded systems of arbitrary order, showing that a real
spectral value with maximal multiplicity is necessarily dominant. For a scalar equation with two delays, it is shown that
the MID property still applies. Further, in the second-order case, we contributed by extending the MID property for
complex conjugate pairs of spectral values.
In recent studies, the applicability of the MID property in reduced-complexity delayed controller design was shown, where
the attenuation of the dominant vibrating modes of flexible mechanical structures was considered [2]. In future work, the
MID property will be further exploited in the problem of vibration quenching.
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Summary. We are concerned with the generation of periodic light pulses in semiconductor lasers with saturable absorber through
delayed re-injection of the pulse via a reflecting mirror. More specifically, we consider the Yamada model with delayed feedback
and study the generation of periodic pulse trains via repeated self-excitation after passage through the delayed feedback loop. We
employ numerical continuation and analytical methods for delay differential equations to characterize these periodic solution and their
bifurcations.

Surely everyone is familiar with chain reactions of falling domino tiles. After careful preparation of upright rectangular
tiles along some path and in close proximity to one another, toppling the first tile leads to a chain reaction that hopefully
causes all dominoes to fall. Such setups shall serve as an analogy for directed networks of delay-coupled excitable
systems. Here, a sufficiently large perturbation (toppling the first tile) is capable of producing an excitation, in the form
of a pulse, a spike or some kind of localized change in a physical quantity (momentum in the case of dominoes), which
propagates to a subsequent node in the network and itself serves as a perturbation. If this perturbation is again large
enough, a secondary excitation is created and the process continues. The speed of this propagation is finite and can be
modeled via time delays between the nodes. Specific examples of this kind of relay are networks of semiconductor lasers
with saturable absorber; another is the human brain consisting of millions of connected neurons, which are hard to study
both experimentally and analytically.
Motivated by experiments with a micropillar semiconductor laser with saturable absorber and a reflecting mirror [1],
we are concerned with the simplest network motif allowing for sustained re-excitation: a single node with delayed self-
coupling. We modify the Yamada model [2] for an excitable or self-pulsating laser to incorporate delayed optical self-
feedback [3]. Although seemingly simple, this setup allows for the generation of periodic light pulses that constitute the
basis for modern telecommunication, material processing and high energy physics.
Here, we present an analytical tool that characterizes the onset and termination of such light pulses as a bifurcation in this
system of delay differential equations (DDE). In dimensionless form, the model reads

G′(t) =γ (A−G(t)[1 + I(t)]) , (1)

Q′(t) =γ (B −Q(t)[1 + aI(t)]) , (2)

I ′(t) = [G(t)−Q(t)− 1] I(t) + κI(t− τ). (3)

Equations (1)–(3) describe the time evolution of the laser output intensity I(t), as well as the gain G(t) and absorption
Q(t) of photons in the laser cavity. The parameter A is the pump strength (the amount of energy provided to the laser),
B, a, γ > 0 describe physical properties of the laser; and they differ from device to device. The time delay τ reflects the
distance from the mirror to the laser cavity and the feedback strength κ accounts for the losses along that feedback loop.
We fix parameters A = 6.5, B = 5.8, a = 1.8, and γ = 0.04 as in [4] and refer the interested reader to [1, 2] for the
physical details.
The excitability of Eqs. (1)–(3) is governed by a homoclinic bifurcation [4]. For the considered parameter values, the
stable manifold of a steady state locally separates the state space of the system [5]. The laser is essentially off, yet a
sufficiently large perturbation that brings the system above this manifold, causes a fast increase in I that is followed by
fast relaxation. Such an orbit is referred to as a pulse in the context of lasers; see Fig. 1(a, black) for an example. At
the homoclinic bifurcation, the stable and unstable manifold of the equilibrium intersect transversally and give rise to a
periodic orbit [4].
In the following, we focus on the full system (1)–(3) and study the effects of delayed feedback to the system in the
excitable configuration. A detailed bifurcation analysis of Eqs. (1)–(3) has been carried out earlier by some of the authors
[6], and we present here a refined analysis with regard to periodic orbits that are generated by sustained self-excitation
after one delayed feedback loop. To illustrate our results, we fix τ = 5000 and κ = 0.52 and prepare the pulse in Fig. 1(a)
as the initial condition for system (1)–(3). We observe sustained pulsation: each pulse travels along the delayed feedback
loop and triggers a subsequent pulse after approximately one delay interval. Remarkably, the pulsed solution reached
from this initial condition has a higher peak intensity than the original pulse of the solitary system, and we observe a
different profile; see Fig. 1(b, blue). Our formal analysis reveals that these solutions correspond to different periodic
orbits, which coexist for the chosen parameter values. In fact, there is a third type of small pulsed solution present for the
chosen parameter values; see Fig. 1(c, red).
We employ numerical continuation to reveal that these solutions correspond to different branches (black, blue, red) of
periodic orbits when the time delay is varied as a parameter; see Fig. 1(d). The branches of periodic orbits share a
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Figure 1: Panels (a)-(c) show the I-component of coexisting pulsed solutions with large period for large delay τ = 5000. Panel (d) is
the corresponding bifurcation diagram for small values of the delay; shown are the period of the periodic orbits (solid curves), points
of Hopf bifurcations (circles), and indicated loci of Homoclinic bifurcations (squares). Other parameters are A = 6.5, B = 5.8, a =
1.8, γ = 0.04, and κ = 0.52.

remarkable property: their period scales effectively linearly with the delay. More precisely, the period T along a given
family satisfies T = τ + δ, where δ ≪ τ and δ/τ = T/τ − 1 → 0 as τ → ∞. The intuition is clear: the I-component
of the pulsed solutions is close to zero throughout most of their period. Therefore, a pulse that is emitted at time t, travels
the length of the delay loop and only affects the system at time t + τ . Additionally, there is a certain response time δ
of the system to build up in intensity and to produce a subsequent pulse. Such periodic solutions are also referred to as
Temporal Dissipative Solitons (TDS) in DDEs [7]. Each branch of pulsed periodic orbits in system (1)–(3) corresponds
to a family of periodic solutions of the so-called profile equation, given by Eqs. (1)–(2) and

I ′(t) = [G(t)−Q(t)− 1] I(t) + κI(t+ δ), (4)

which undergoes a homoclinic bifurcation. Figure 1(d) shows that for each branch of periodic orbits (black, blue, black)
with T > τ, for τ > 0, there is a branch (red, blue, black) of periodic orbits with τ < 0 exhibiting a homoclinic
bifurcation. This correspondence can be seen by using the concept of reappearance of periodic orbits for DDEs [8].
Hence, we study the pulsed solutions of Eqs. (1)–(3) indirectly via bifurcations and codimension-two points of homoclinic
orbits in Eqs. (1),(2) and (4). We show that the onset and termination of such pulse trains correspond to a bifurcation of
countably many saddle-node periodic orbits with infinite period; moreover, we show these bifurcations coincide with
codimension-two points along the family of homoclinic orbits as κ is varied as a parameter. This approach allows us to
compute the corresponding critical coupling strengths that give rise to pulsed solutions in Eqs. (1)-(3). Our methodology is
relevant for the rigorous analysis of delay-coupled excitable systems in general. Future applications will include recurrent
networks of lasers and neurons, which are in a similar excitable configuration when at rest.
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Ploughing-limited post-critical dynamics under chatter in turning.
Harmonic balance based investigation

Mikhail Guskov∗

∗PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University,
151 boulevard de l’Hopital, 75013 Paris (France)

Summary. At chatter onset, as many works show, vibrations magnitudes grow until the tool exits the continuous cutting. Another
magnitude limitation mechanism, namely ploughing is investigated in the present contribution, in a harmonic balance + continuation
framework

Chatter problematics

Regenerative chatter instability in metal cutting processes such as turning is known to possess subcritical behaviour [1],
inducing bistable regions in the vicinity of the bifurcation. Investigations of post-critical vibrations have shown growing
magnitude until the tool exit [2]. Once the cut becomes intermittent due to tool exit, the dynamics are much more complex
due to the interrupted surface regeneration. Nevertheless, in some cases magnitude is limited by other mechanisms, such as
ploughing [3]. In the present work we investigate post-critical dynamics of a 1 degree of freedom (DOF) with a piecewise
linear ploughing model via a harmonic balance method (HBM) framework coupled with arclength continuation.

1DOF cutting system

The investigation is carried out on a system schematized on Fig. 1, giving place to the following equation of motion:

mẌ + cẊ + kX = Fc(h) + Fp(Ẋ), (1)

Fc = −Fc0
(
h

f

)α
, h = f +X −XD, XD = X(t−D), (2)

Fp = −H(∆Γ)Fp0 ∆Γ, ∆Γ =
Ẋ

Vc
− Γ, (3)

with m mass, c damping, k stiffness, f feed, Vc cutting velocity, D delay period, Fc and Fp cutting and ploughing force,
Fc0, Fp0, α, Γ respective tool-workpiece interaction parameters, H Heaviside step function.
Cutting force definition (2) is based on the assumption of uninterrupted cut. The ploughing force model (3) features a
unilateral penalty term corresponding to a closure of effective clearance angle ∆Γ at high magnitude oscillations.

XD

Xf

X(t)

hVc

k

m

c

(a) 1DOF system

h

Fc

O

Fc0

f

(b) cutting law

Ẋ

Fp

O ΓVc

(c) ploughing law

Figure 1: Cutting system model illustration

By introducing, for a given oscillation frequency ω, time and length scaling τ = ωt and x = X/f , the equation (1) can
be rewritten in adimensional form:

Ω2x′′ + 2Ωζx′ + x+ κ (x− xD + 1)α + ZpΠp(Ωx
′ − φ) = 0, Πp = H(Ωx′ − φ) (4)

In the present work, the system is based on a case described in literature [4], with chatter onset parameters ζ = 0.01,
Ω = ω/

√
k/m =

√
1− 2ζ, ωD = 3π/2, ακ0 = 0.02, the cutting law being a power law with exponent α = 3/4.

HBM approach with continuation

The HBM approach used in this work is a variant of trigonometric collocation [5]. The solution is sought in the form of a
trigonometric polynomial or order N (N -truncated Fourier series):

x(τ) = T(τ)x, T =

[
1

2
, cos τ, sin τ, ..., cosNτ, sinNτ

]
, x = [a0, a1, b1, ..., aN , bN ]T (5)
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In the case of chatter, constituting an auto-oscillation of a priori unknown frequency Ω, a phase condition is used (b1 = 0).
For variation of κ in the vicinity the chatter onset configuration at a given delay D, the following continuation condition
("arclength") is used for neighbouring points:

‖∆x‖2 +∆Ω2 +∆κ2 = s2 (6)

with s a given (small) step distance.

Investigation of ploughing parameters

The postcritical oscillations were analyzed in a range κ ∈ [0, 2κ0] for a wide set of ploughing parameters Zp and φ was
simulated, with N = 7 and time discretization of 1024 points. The response is essentially mono-harmonic and thus are
shown as the magnitude of the fundamental component on fig. 2. As for other variables, it can be noticed that Ω remains
very close to 1 and the static component a0 shows a slight variation with κ.
The upper limits of the plots are due to the cut interruption. The left branch of the plots, especially in cases of high
ploughing thresholds φ ≥ 0.7, corresponds to a "no ploughing" behavior. The ploughing term comes in at a1 ≈ φ/Ω. As
a general trend, the oscillation magnitudes tend be lower for higher ploughing coefficient Zp and for small φ. In particular,
for the lowest values of Zp combined with big φ, the tool gets to exit the cutting process in the given range of κ (top limits
of the plots). At the extreme opposite, one can notice for Zp ≥ 3 a quasi-constant oscillation magnitude is maintained.

(a) Zp = 0.1 (b) φ = 0.5

Figure 2: Postcritical response of (4) for κ ∈ [0, 2κ0]
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Suppression of synchronous spiking in two interacting populations of excitatory and
inhibitory quadratic integrate-and-fire neurons

Kestutis Pyragas, Augustinas P. Fedaravičius, and Tatjana Pyragienė
Department of Fundamental Research, Center for Physical Sciences and Technology, Vilnius,

Lithuania

Summary. Collective oscillations and their suppression by external stimulation are analyzed in a large-scale neural network consisting
of two interacting populations of excitatory and inhibitory quadratic integrate-and-fire neurons. In the limit of an infinite number of
neurons, the microscopic model of this network can be reduced to an exact low-dimensional system of mean-field equations. Bifurcation
analysis of these equations reveals three different dynamic modes in a free network: a stable resting state, a stable limit cycle, and
bistability with a coexisting resting state and a limit cycle. We show that in the limit cycle mode, high-frequency stimulation of an
inhibitory population can stabilize an unstable resting state and effectively suppress collective oscillations. We also show that in the
bistable mode, the dynamics of the network can be switched from a stable limit cycle to a stable resting state by applying an inhibitory
pulse to the excitatory population. The results are confirmed by numerical simulation of the microscopic model.

Introduction

Synchronization processes in large populations of interacting dynamical units are the focus of intense research in physical,
technological and biological systems. In neural networks, synchronization can play a dual role. Under normal conditions,
synchronization is responsible for cognition and learning, while excessive synchronization can cause abnormal brain
rhythms associated with neurological diseases such as Parkinson’s disease, epilepsy, and others. Various algorithms have
been developed to suppress unwanted synchronized network oscillations. A therapeutic procedure clinically approved for
the treatment of Parkinson’s disease is a high-frequency (HF) deep brain stimulation (DBS). The mechanism of action of
DBS is still poorly understood. Clinical observations show that the effects of lesions and DBS of the same target area are
similar. This suggests that HF stimulation suppresses neuronal activity in the target area. In this context, the effect of HF
stimulation can be explained in terms of stabilization of neuron’s resting state [1]. However, there is no clear theoretical
understanding of how HF stimulation affects synchronization processes in neural networks.
Recent advances in dynamical systems theory have allowed us to better understand the effects of synchronization in large-
scale oscillatory networks. A major breakthrough in these studies was achieved by Ott and Antonsen [2], who showed that
the microscopic model equations of globally coupled heterogeneous phase oscillators (Kuramoto model) can be reduced
to a low-dimensional system of ordinary differential equations that accurately describe the macroscopic evolution of the
system in the infinite-size (thermodynamic) limit. Later this approach was extended to a particular class of heterogeneous
neural networks composed of all-to-all pulse-coupled quadratic integrate-and-fire (QIF) neurons [3]. In thermodynamic
limit, a low-dimensional system of mean-field equations was derived for biophysically relevant macroscopic quantities:
the firing rate and the mean membrane potential. The approach has been further developed in recent publications to
analyze the occurrence of synchronized macroscopic oscillations in networks of QIF neurons with a realistic synaptic
coupling [4], in the presence of a delay in couplings [5] and in the presence of noise [6].
Here, we demonstrate that mean-field equations are useful not only for understanding the occurrence of collective oscilla-
tions in large-scale neural networks, but also for understanding the effect of stimulation on synchronization processes [7].
As an example, we consider a network of two interacting populations of excitatory and inhibitory QIF neurons.

Microscopic model and low-dimensional mean-field equations in the thermodynamic limit

The microscopic state of the QIF network is determined by the set of 2N neurons’ membrane potentials {V (E,I)
j }j=1,...,N ,

which satisfy the following system of 2N ordinary differential equations:

τ V̇
(E,I)
j = (V

(E,I)
j )2 + η

(E,I)
j + I(E,I)j , if V

(E,I)
j ≥ Vp then V

(E,I)
j ← Vr. (1)

Here, τ is the membrane time constant and V (E,I)
j is the membrane potential of neuron j in either the excitatory (E) or

the inhibitory (I) population. For simplicity, we set the number of neurons N and the time constant τ the same for both
populations. The heterogeneous parameter of excitability η(E,I)j is a current that specifies the behavior of each isolated

neuron and the term I(E,I)j defines the synaptic coupling between neurons as well as external stimulation. The isolated

neurons (I(E,I)j = 0) with the negative value of the parameter η(E,I)j < 0 are at rest, while the neurons with the positive

value of the parameter η(E,I)j > 0 generate instantaneous spikes, which are approximated by the Dirac delta function.

The spikes are emitted at the moments when the membrane potential V (E,I)
j reaches a peak value Vp. Immediately

after the spike emission the membrane potential is reset to a value Vr. We assume Vp = −Vr → ∞. The values

of the heterogeneous parameter η(E,I)j for both populations are independently taken from the Lorentzian distributions:
gE,I(η) = ∆E,I/{π[(η − η̄E,I)

2 + ∆2
E,I ]}, where ∆E,I and η̄E,I are respectively the width and the center of the
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distribution for the excitatory (E) and inhibitory (I) populations. The last term I(E,I)j in Eqs. (1) describes synaptic
coupling and an external stimulation. For the excitatory and inhibitory populations, this term respectively is

I(E)
j = −JIESI(t) + IE(t), I(I)j = JEISE(t)− JIISI(t) + II(t). (2)

Here, SE(t) and SI(t) determine the mean synaptic activation of E and I populations:
SE,I(t) =

τ
N

∑N
j=1

∑
k\(tkj )E,I<t

δ(t− (tkj )E,I), where (tkj )E,I is the time of the kth spike of the jth neuron in either E

or I population and δ(t) is the Dirac delta function. The positive parameters JEI , JIE and JII define synaptic weights.
The current −JIESI(t) inhibits E neurons due to synaptic activity of I population, while the current JEISE(t) excites I
neurons due to synaptic activity ofE population. The term−JIISI(t) determines recurrent inhibition of neurons within I
population. The currents IE(t) and II(t) represent external homogeneous stimulation of the excitatory and the inhibitory
populations, respectively.
In the thermodynamic limit N →∞, the microscopic model (1) can be reduced to the exact system of four ODEs [3]:

τ ṙE = ∆E/π + 2rEvE , τ v̇E = η̄E + v2E − π2r2E − JIErI + IE(t), (3a)

τ ṙI = ∆I/π + 2rIvI , τ v̇I = η̄I + v2I − π2r2I + JEIrE − JIIrI + II(t), (3b)

where rE,I(t) and vE,I(t) are respectively the spiking rates and the mean membrane potentials of E and I populations.

Results and conclusions

Relatively simple mean field Eqs. (3) make it possible to conduct a thorough bifurcation analysis of various dynamic
modes of a free network and to reveal the mechanisms of action of various stimulation algorithms. We performed a
bifurcation analysis of a free network depending on the coupling strengths JEI and JIE of the bidirectional interaction
between excitatory and inhibitory populations and the coupling strength JII , which determines the interaction within the
inhibitory population. We also built a bifurcation diagram in the plane of the parameters (η̄I , η̄E), which determine the
centers of the distributions gE,I(η) of the excitability parameter η for I and E populations. As a result of this analysis,
three different modes were established. Depending on the values of the parameters, the system can have a single stable
fixed point, a single stable limit cycle, or be in a bistable mode with these two coexisting attractors.
As the next step in our analysis, we looked at the problem of controlling network synchronization. Some neurological
diseases are successfully treated with high-frequency stimulation. Here, we tested the effectiveness of the HF algorithm
for suppressing synchronous spiking in the network of excitatory and inhibitory QIF neurons. We have shown that HF
stimulation of the inhibitory population is very effective, whereas HF stimulation of the excitatory population cannot
suppress the oscillations. The mechanism of action of HF stimulation is explained using mean-field equations averaged
over the stimulation period. The averaged mean-field equations are equivalent to the free mean-field equations, but with a
modified parameter η̄I or η̄E , depending on which inhibitory or excitatory population is stimulated. When HF stimulation
is applied to the inhibitory population, changing the η̄I parameter increases the proportion of spiking neurons in that
population. This leads to the stabilization of the state of rest of the network. The averaged mean-field equations made
it possible to obtain an analytical expression for the threshold amplitude of HF stimulation, which stabilizes the resting
state. This amplitude is proportional to the frequency of stimulation.
HF stimulation of the excitatory population is ineffective, since changing the η̄E parameter increases the proportion of
spiking neurons in the excitatory population and cannot stabilize the resting state of the network. Nevertheless, stopping
the network oscillation by controlling the excitatory population can still be achieved if the system parameters are in the
bistable area. By applying a rectangular inhibitory pulse to this population, the network state can be switched from the
stable limit cycle to the stable state of rest.
To test the performance of the above stimulation algorithms for finite-size networks, we numerically simulated the equa-
tions of the microscopic model. Modeling networks with 2000 excitatory and 2000 inhibitory QIF neurons gave results
that are in good agreement with the results obtained from the mean-field equations. Based on our research, we believe that
mean-field equations derived from the microscopic dynamics of interacting QIF neurons can serve as an effective tool for
developing various stimulation algorithms to control synchronization processes in large-scale neural networks.
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Synchronization of a Self-Excited Inertia-Wheel Pendula Array

Gilad Yakir and Oded Gottlieb
Dept. of Mechanical Engineering, Technion – Israel Institute of Technology, Haifa, 32000, Israel

Summary. We investigate synchronization of a self-excited inertia wheel pendula array. The dynamical system exhibits asymptotically
stable equilibria, periodic limit cycle oscillations, and non-stationary rotations. The analysis reveals that synchronous periodic oscilla-
tors are in-phase whereas quasiperiodic oscillators are out-of-phase. Furthermore, the non-stationary rotations exhibit combinations of
oscillations and rotations of the individual elements which are asynchronous.

Introduction

Self-excited synchronous oscillations in multibody dynamical systems have been documented since the middle of the sev-
enteenth century with the observation of Christiaan Huygens that two pendulum clocks hanging from a common flexible
support swung together periodically approaching and receding in opposite motions[1]. Examples of synchronization in
rigid-body and continuous dynamical systems have been documented for coupled mechanical metronomes[2], coupled
pendula suspended from a moving beam[3], and a nano mechanical cantilever array[4]. We examine the complexity of
coexisting synchronous and asynchronous self-excited oscillations in an array of three planar pendula augmented with ro-
tating inertia wheels governed by a linear feedback mechanism. We formulate the dynamical system using a Lagrangian
approach (Fig. 1 left). A linear stability map analysis of the zero equilibria yields a transition from an asymptotically
stable region (Fig. 1 right-red) to a region of self-excited oscillations (Fig. 1 right-blue), culminating with a region of
rotations (Fig. 1 right-white). We note that the saddle-node bifurcation (Γ3 = 0) for both a stationary array (x ∈ R5) is
identical to that of a moving array (x ∈ R11). However, the Hopf bifurcation between a stable zero equilibria and periodic
oscillations reveals a slightly larger region of self-excited limit cycles (Fig. 1 right-dashed).
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Figure 1: Definition sketch (left), stability map (right) of the inertia wheel feedback gains
(
Γ3(Γ1)

)
for a stationary (solid)

and moving (dashed) array

Results

By enforcing the analytical constraints[7] we find the Hopf threshold (Fig. 1 right-solid) of the stationary array. The Hopf
threshold of the moving pendulum array is obtained numerically for varying values of the gain Γ1 (Fig. 1 right-circles).
Area IA yields asymptotic stability for the moving array, and area IB together with IA yields asymptotic stability for the
stationary array. We simulate the dynamics of the array for gain values Γ3 both near and far from the Hopf threshold
Γ3H(Γ1H) for an arbitrary constant gain parameter Γ1 = const. For gains Γ3 near the Hopf threshold we obtain periodic
motion of the array elements which reveals in-phase synchronization (Fig. 2 left). As the gain Γ3 increases we obtain
quasiperiodic dynamics of the individual elements and out-of-phase synchronization (Fig. 2 center). The quasiperiodic
motion leads to asynchronous chaotic oscillations (Fig. 2 right). The behavior of the dynamical system was examined
through Poincaré maps (Fig. 2 bottom) portrayed by the system conjugate momenta (pψ, pθi, pϕi) and sampled every
positive zero crossing of the central inertia wheel velocity which is bounded.
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Figure 2: Time histories (upper) and conjugate momenta Poincaré maps (lower) for an in-phase periodic response (left)
and an out-of-phase quasiperiodic response (center), and asynchronous chaotic oscillations (right)

Discussion

Non-stationary rotations occur first in the periphery pendula (Fig. 3 left), while the center pendulum exhibits chaotic
oscillations. After a threshold gain value Γ̂3R all three pendula rotate while the base oscillates chaotically (Fig. 3 center).
The chaotic oscillations of the base culminate with rotations of all system elements (Fig. 3 right). We note that the
linear feedback governing inertia wheel dynamics was synchronized with the pendula array periodic (out-of-phase) and
quasiperiodic/chaotic (in-phase) oscillations, the non-stationary rotations were found to be asynchronous.

Figure 3: Time histories for non-stationary rotations combined with oscillations of the array elements (left) and (center),
and non-stationary rotations of all elements (right)
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Summary. In this work we present a method for controlled synchronization of networked nonlinear systems based on nonlinear
integral couplings. For a class of nonlinear systems and network topologies, this method allows one to design synchronizing nonlinear
couplings with noticeably lower coupling gains (understood in a nonlinear sense) than for the case of linear diffusive couplings. This
results in lower control values and energy consumption needed for synchronization as well as lower sensitivity to measurement noise.
The method is illustrated by application to synchronization of Hindmarsh-Rose oscillators.

Synchronization and nonlinear integral couplings

In this abstract we consider N identical nonlinear systems of the form

ẋi = f(xi) +Bui, yi = Cxi, i = 1, . . . N, (1)

with xi ∈ Rn, yi, ui ∈ R, C1 function f(x) and matrices B and C of appropriate dimensions. The problem of controlled
synchronization considered in this abstract is to find control laws for each ui such that for any initial conditions of the
closed-loop system, state vectors xi(t), i = 1, . . . , N are bounded and

|xi(t)− xj(t)| → 0, as t→∞, ∀i, j. (2)

For each system i, ui is allowed to depend on the system’s output yi and on the outputs yj of the systems j ∈ Ni, where
Ni is the set of systems that can communicate to system i. The setsNi specify the communication graph G for the network
(there is an edge from node j to node i if j ∈ Ni). It is required that for identical outputs y1 = y2 = . . . = yN , the
controls satisfy u1 = u2 = . . . = uN = 0, such that in exact synchrony the systems exhibit dynamics of the unforced
(with zero input) system (1).
In this work we propose synchronizing control laws ui in the form of nonlinear integral couplings:

ui =
∑

j∈Ni

∫ yj

yi

λ(s)ds, i = 1, . . . , N, (3)

where λ(s) ≥ 0, ∀s, is a nonlinear coupling gain—the main design parameter in this scheme. Note that (3) is a general-
ization of conventional linear diffusive coupling, which is obtained from (3) with constant λ(s) ≡ C.
Contrary to the linear diffusive coupling, nonlinear integral coupling (3) allows one to differentiate the coupling strength
depending on the location of the system’s outputs in space, applying higher coupling gains only where the systems’ non-
linearities counteract synchronization, while employing lower (or even zero) coupling gains where the nonlinearities do
not have significant negative effects on synchronization. From the closed-loop performance point of view, the immediate
consequences of this flexibility can be lower average synchronizing gains, lower coupling actions and energy needed to
achieve and maintain synchronization and, consequently, lower sensitivity to measurement noise in outputs yi. From the
analysis point of view, this can provide better estimates of what should be the minimal coupling needed for synchroniza-
tion. As couplings in physical, engineering and biological networked systems can have nonlinear nature (with their linear
approximation studied in diffusive coupling), such estimates can shed more light on how synchronization is or can be
achieved in such systems.

Main result

Let us first formulate notions and assumptions that delineate the considered class of systems (1) and the class of network
topologies. The first assumption specifies the class of systems (1).

Assumption 1 There exist P = PT > 0, R = RT > 0 and a scalar continuous function γ(s) such that

P
∂f

∂x
(x) +

∂fT

∂x
(x)P − 2CTCγ(Cx) ≤ −R, PB = CT , ∀x ∈ Rn, (4)

These conditions are satisfied for a class of incrementally minimumphase nonlinear systems [1]. Next, we formulate
conditions on the communication graph G. The conditions are linked to the notion of relaxed balanced coloring of the
nodes of G.
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Definition 1 A coloring of the nodes with k ∈ {1, . . . , N} colors c1,. . . , ck is called a relaxed balanced coloring if each
node is assigned a color, and every ci-colored node receives an equal number of edges from cj-colored nodes for all
j ∈ {1, 2 . . . , k}\{i}.
A communication graph can be colored according to relaxed balanced coloring in multiple ways. The two trivial colorings
are given by a) assigning each node an individual color and b) by assigning all nodes the same color. We call the graph
sequentially decolorable if there exists a sequence of N − 1 relaxed balanced colorings, starting from the coloring a) and
ending with coloring b), such that each coloring is obtained from the previous one by taking two groups of nodes with
two different colors are assigning them the same color. Examples of sequentially decolorable graphs include graphs with
two nodes with bi- and unidirectional couplings; bi-directionally coupled rings with 3 and 4 nodes, a graph with N nodes
with all-to-all couplings. There are algorithms that allow one to verify whether a graph is sequentially decolorable in a
computationally efficient way. Now we can formulate our main result.

Theorem 1 Consider N systems of the form (1) satisfying Assumption 1 and interconnected through nonlinear integral
coupling (3) with a sequentially decorolable communication graph G. Suppose the coupling gain function λ(s) satisfies

λ(s) ≥ max(0, γ(s)), ∀s ∈ R,

∫ +∞

−∞

λ(s)ds ≤ +∞. (5)

Then all solutions of the closed-loop system (1), (3) are bounded and satisfy (2).

Remark: The condition (5) can be relaxed by taking into account quantitative characteristics of communication graph.
For example, for a graph with N nodes and all-to-all interconnections, the first condition in (5) can be substituted by
λ(s) ≥ max(0, γ(s)/N).

Synchroniztion of Hindmarsh-Rose oscillators

We demonstrate our results with synchronization of Hindmarsh-Rose oscillators, which represent a simplified model of
neuron dynamics [2]:

ż1 = c− dy2 − z1, ż2 = ε(m(y + y0)− z2), ẏ = −ay3 + by2 + z1 − z2 + I + u, (6)

where y, z1 and z2 represent various states of a neuron and external stimulation is provided by input u. All other parame-
ters are positive constants. Analysis of synchronization in a network of such oscillators with linear coupling is presented
in [3]. For numerical simulations we choose the following values of system parameters: a = 1, b = 3, c = 1, d = 5,
m = 4, I = 2.8, y0 = 1.618, ε = 0.005 [3]. In this abstract, we consider 4 systems interconnected in the following
way: N1 = {2, 4}, N2 = {3}, N3 = {2, 4}, N4 = {1}. System (6) satisfies Assumption 1 with some P = PT > 0,

R = RT > 0 and γ(s) = ǫ − 3as2 + 2bs + (1−δds)2

2(δ−ǫ) , for any sufficiently small ǫ > 0 and, for the chosen system
parameters, with δ = 0.2, [1]. Thus, if we select λ(s) = max(0, γ(s)), the function λ(s) will satisfy (5) and, by Theorem
1 synchronization will be achieved. Simulations results are shown in Figure 1. The results demonstrate the synchronizing
system states yi, z1i, z2i and control inputs ui, i = 1, . . . 4. The last plot shows variable gain g12(t) of the nonlinear

integral coupling defined as g12(t) =
∫ y2(t)
y1(t)

λ(s)ds/(y2(t) − y1(t)), [1]. According to the simulations, the gain varies
from 3 down to 0. The higher coupling gain is applied whenever it is needed to achieve synchronization. It is reduced
and even set to zero in accordance with system’s dynamics while maintaining synchronization. The average gain over
the simulation of 500s equals 1.09 (shown as red dashed line in Figure 1). The lower coupling gains (instantaneous and
average) is a distinctive feature of the proposed method over linear diffusive couplings. The best estimate of the linear
diffusive coupling gain that we are aware of is 3, which can be computed using the results of [4].

Figure 1: Synchronization of 4 Hindmarsh-Rose oscillators.
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Vibration control of underactuated 3-DOF systems inspired by tuned vibration
absorbers: the non-linear Euler-Lagrange controller

Jasper Juchem∗ and Mia Loccufier∗
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Summary. The concept of the non-linear Euler-Lagrange controller aims to combine the advantages of passive and active vibration
control. The flexibility and adaptability of active control is combined with the intuitive design of a passive tuned vibration absorber.
To verify this statement, an intuitive tuning procedure, which is inspired by the tuned vibration absorber, is stated. An energy-inspired
approach is used to proof (asymptotic) stability using Lyapunov’s direct method. A three-link planar manipulator with one actuator at
the base is controlled to mitigate vibrations in the unactuated links. The controller contains a non-linear damper. Finally, some different
experiments should give insight whether it is necessary to capture all modes, with the disadvantage that the number of controller
parameters increases drastically. Also, a non-linear damper is compared to a linear one.

System description

The system that needs to be controlled, also referred to as the process, is a planar three-link manipulator. The joints are
assumed to be frictionless. Between the links a spring creates a restoring force. At the base of the first link no spring is
attached. The equation of motion is given by the general differential equation:

D(q)q̈ + C(q, q̇)q̇ +K(q) = −Mu (1)

with the generalized coordinates the relative angles between the links q =
[
q1 q2 q3

]′
and ·′ the transpose. The

inertia matrix D(q) = D(q)′ > 0 ∈ Rnp×np with np = 3 the number of generalized coordinates of the process,
C(q, q̇) ∈ Rnp×np the coriolis/gyroscopic and damping terms, stiffness matrix K(q) ∈ Rnp , and u ∈ Rnp . The matrices
for this system can be found in [3].
The controller consists of two blocks that are placed in parallel: a proportional controller u1 = KpM

′q and an Euler-
Lagrange controller {

D0z̈ +
∂F
∂ż (ż) +K0(z) = −N1M

′q −N2M
′q̇

u2 = ν1z + ν2ż
(2)

with z ∈ Rnc the generalized coordinates of the controller, D0 ∈ Rnc×nc the inertia matrix, ∂F/∂ż ∈ Rnc non-linear
damping function, K0(z) ∈ Rnc stiffness matrix of the controller, N1, ν

′
1 ∈ Rnc×np the amplification of the position

coupling with the process in the input and output equation respectively, and N2, ν
′
2 ∈ Rnc×np the amplification of the

velocity coupling with the process in the input and output equation respectively.
The controller effort in (1) is then given by u = u1 + u2. Notice the similarity with adding a mechanical structure to the
system. However, the difference with adding a tuned vibration absorber is the way of connecting the controller and the
process. Furthermore, in the differential equations M = diag({0, 1}) ∈ Rnp×np forces a collocated control strategy.
For the compound system to be an Euler-Lagrange system, the following must hold: ν1 = N ′

1.

Asymptotic stability: Lyapunov’s direct method

The stability is proven using Lyapunov’s direct method. Let xe be an equilibrium point for

ẋ(t) = f(x(t)) (3)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn, with xe ∈ D. Let VL : D → R be a
continuously differentiable function, such that

VL(xe) = 0, VL(x) > 0 in D \ {xe}, V̇L(x) ≤ 0 in D, and V̇L(x) < 0 in D \ {xe} (4)

with V̇L(x) =
∂VL(x)
∂x f(x). Then xe is asymptotically stable.

Here, the HamiltonianH is chosen to be the Lyapunov function. This leads to four conditions for the controller parameters
that need to be fulfilled:

1. dK0

dz should be continuous, invertible and positive definite,

2. dK(q)
dq +MKp −Mν1

dK0(z)
dz

−1
ν′1M

′ > 0,

3. ν′2 = −N2, and

4.
(
∂F
∂ż

)′
ż ≥ 0.
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Controller tuning

This research focusses on mitigating vibrations due to impulse impacts on the third link. After impact, the open-loop
system will vibrate infinitely, as there is no damping present. It is not possible to apply a controlled torque to the second
or third joint, what complicates diminishing these vibrations. The topology of the controller allows the introduction of
tuning techniques from passive vibration control. One can try to make the controller sensitive to the main system, such
that easy energy transfer occurs from the process to the controller. Once the energy is transferred, it can be dissipated in
this controller [1].

Eigenfrequency matching
To facilitate an easy energy flow from the process to the controller, eigenfrequency matching is well-known strategy [2]. In
this work, this is done in two steps. Firstly, the eigenfrequencies of the substructures are matched by tuningKp in the case
that ν1 = ν2 = 0. Secondly, the eigenfrequency of the process and controller are matched. Let Ω2 = diag(ω2

1 , ω
2
2 , ω

2
3)

with ωi an eigenfrequency of the process. Now, the controller is tuned to have the same eigenfrequency

K0(z) = D0Ω
2z (5)

Notice that depending on np the number of modes that are captured can be altered. To achieve stability, ωi ̸= 0, as all
conditions on dK0

dz are then fulfilled. The second condition leads to the expression kp,1−ν2111/ω1−ν2112/ω2−ν2113/ω3 > 0

with Kp = diag(kp,1, kp,2, kp,3) and ν1 =



ν111 ν112 ν113
ν121 ν122 ν123
ν131 ν132 ν133


 =



ν111 ν112 ν113
0 0 0
0 0 0


 , which is equivalent as only

the first link can be actuated.

Optimization
Without loss of generality it can be assumed that D0 is an identity matrix [4]. This leaves us with three unknown
matrices: ν1, ν2, and ∂F

∂ż . As ν2 introduces a conservative coriolis force and due to non-linear damping, the analysis is
too complex to be carried out analytically [5, 6]. Therefore, the remaining parameters will follow from an optimization.
The optimization algorithm will use four objective functions:

f1 = Ts,1ω1; f2 = Ts,2ω1; f3 = Ts,3ω1; f4 =

∫ H(t)
maxHdt (6)

with settling time Ts,i of link i the time after which the time signal stays within 5% of the maximal deviation around
equilibrium, and ω1 the slowest eigenfrequency.
As mentioned before, the controller’s damping will be a non-linear function

∂F

∂ż
= c1ż + c2 arctan

(
c0 − c1
c2

ż

)
≈
{
c0ż if ż ≈ 0

c1ż + cst if |ż| → ∞ (7)

with ci > 0. Then
(
∂F
∂ż

)′
ż > 0 if c0 > c1.

Results

In this section different controllers are compared. First of all, increasing the number of generalized coordinates of the
controller, nc, leads to capturing all modes of the process. However, it also increases the number of controller parameters
drastically, thus increasing the optimization time. Next to that, a non-linear Euler-Lagrange controller will be compared
to a linear one. All simulations will be the result of an impulse on the tip of the third link.

Conclusions

A planar underactuated three-link manipulator will be controlled with a non-linear Euler-Lagrange controller. Next to
stability, a tuning strategy based on tuned vibration absorbers will be validated. The number of generalized coordinates
of the controller (nc) will be varied from one to three to observe whether the increase in tuning parameters leads to an
significantly improved result. Also, the difference between linear and non-linear damping is examined.
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Summary. Two sampled based methods, i.e. the basin stability and basin entropy used to describe the dynamics of multistable systems will 
be presented. Both methods are based on integrating the system's equations of motion for a large set of different initial conditions and 
classifying the solutions based on final attractors. The main difference between the two approaches is the different sample methods of initial 
conditions for each trial. In the first one, we use the random initial conditions. In contrast, for the second one, the phase space should be 
uniformly divided into boxes of equal size. We show under which conditions it is possible to calculate the basin entropy using random 
samples of initial conditions. Moreover, the basin entropy method assumes the identical size of the investigated box in all directions of multi-
dimensional phase space. In many real-life systems, it is impossible to achieve; hence we introduce the scaling of the box to overcome this 
problem. To summarize, we show under which conditions we can accomplish the reliable value of basin entropy using random initial 
conditions and rescaled size of the box.  

Introduction 

Non-linear ODEs describing dynamical systems can be solved analytically, but it often requires simplifying equations 
or imposing strong assumptions on the solution. Hence, nowadays, most non-linear ODEs are tackled with numerical 
methods. The are several approaches that allow to investigate of the multi-stability of the systems. The problem appears 
for higher dimensional systems, where we can present only two-dimensional cross-sections of multidimensional phase 
space. Again, it is possible to overcome that, with a method proposed by Menck et al. [1] called basin stability. It can be 
used to characterize the volume of basins of attraction in the multidimensional phase space. To estimate the basin 
stability measure, one has to perform a large number of Bernoulli trials each time, drawing initial conditions randomly 
and checking which attractor is reached. This method is rather new, but was already successfully applied in a numerous 
different scenarios. The main advantages of this method are that it can be applied to all types of systems, and it is a 
straightforward procedure, thus a person who is not an expert on non-linear dynamics can use it to estimate the risk of 
unwanted behaviour. In 2017, the experimental validation of the basin stability approach has been performed [2] and 
results proved that the accuracy of basin stability approach is comparable with classical methods. 
 
The disadvantage of the basin stability approach, is that it does not take into consideration the structure of the analysed 
basins. In 2016 Daza et al. [3] proposed a new method that include the information about the structure of the phase 
space. It is called a basin entropy measure and it provides information about the unpredictability of the dynamical 
system. To obtain basin entropy, one has to build a grid on the phase space and, in each part, estimate basin stability. 
Then, this value is used to obtain Gibbs entropy for every part of the grid. Summing the entropies, leads to a 
quantitative measure of the uncertainty associated with the state space. 
 
The motivation is to combine these two metrics for an analysis of a dynamical system. The aim is to show, that it is 
possible to estimate the basin entropy accurately without distinct simulation for every part of the grid. To prove that, we 
will show that the basin entropy calculated using the data obtained during the estimation of basin stability is a good 
approximation of the one calculated classically. 

Basin stability 

Basin stability is defined for a n-dimensional dynamical system with N attractors in an analysed region of the state 
space Ω ⊂ ܴ𝑛. Then, integrating the system equation of the motion multiple times  with random initial conditions from Ω allows to estimate the probability of reaching each attractor. The proportion of initial conditions that reach certain 
attractor to the overall number of trials is the estimation how the attractor is stable, and called basin stability ܤ𝑠ሺܣሻ of 
attractor ܣ. The application of the method is presented on an archetypal model of externally excited oscillator, the Van 
der Pol-Duffing system: 𝑥ሷ − αሺ1 − 𝑥ଶሻ𝑥ሶ + 𝑥ଷ = 𝐹݊݅ݏሺωݐሻ, 
where 𝛼, 𝐹 and 𝜔 are positive constants.  
 

Basin entropy 

 
Basin entropy is defined for a n-dimensional dynamical system with N attractors in an analysed region of the state space Ω ⊂ ܴ𝑛. We then cover Ω with ݇ ∈ 𝑁 disjoint n-dimensional hypercubes of linear size ε in each dimension. Each of 
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these boxes, in principle contains infinitely many trajectories. Moreover, each of such trajectory lead to one of N 
attractors mentioned before. For such a formulation, the basin entropy is given by ܵ𝑏 = 1𝑁 ∑ ܵ

=ଵ = 1𝑁 ∑ ∑ ,𝑁𝐴
=ଵ


=ଵ 𝑔݈ ቆ  ,ቇ1

Where , is the basin stability of a ݆-th attractor numbered ݆ ∈ {1, … 𝑁𝐴}  calculated in ݅-th box. The application of the 
method is again presented on the Van der Pol-Duffing system. Furthermore, it is shown that the value of basin entropy 
is not affected by scaling the state space. This is helpful in the cases, where the ranges of initial values for some state 
variables differ significantly from the other ones. 

Estimating basin entropy with sample based methods 

 

Basin entropy requires the initial conditions to be distributed over the state space, so that every box created during the 
calculation of basin entropy contains the same amount of trials. On the other hand, the basin stability initializes all trials 
at random, thus it cannot be ensured that the basin entropy calculated on such data matches the one equally distributed. 
The analysis of the relative error of basin entropy for a single multidimensional box was performed, followed by the 
comparison of basin entropy calculated with three different types of input data: two types of equal distribution of points 
per box (25 points and 100 points) and random sampling using 4,000,000 trials. It is summarized that one can accurately 
estimate the value of basin entropy using the random sampling method. 

Trial based basin entropy for a double pendulum model 

The idea behind basin stability type metrics, is to evaluate the asymptotic behaviour of a general system, where one cannot 
in principle visualize the results. Hence, in this section we  present previously discussed metrics for a double pendulum 
model which is a paradigmatic example in nonlinear dynamics. We based on the real experimental rig which has been 
designed, constructed and tested in our laboratory. This rig was also used to experimentally validate the basin stability 
approach [2]. The physical model of the system is shown in Figure 1 
 

Figure 1: The physical model of the double pendulum system and its realization in laboratory. 
 
 

Conclusions 

The basin stability and the modified basin entropy was then used to analyse the double pendulum system. Due to the 
described modifications, we were able to calculate the basin entropy on the scaled state space, using the randomized trials 
obtained with the procedure of calculating basin stability. To choose the proper number of simulations, we performed the 
analysis of entropy for randomized subsets of the state space. The values of basin stability for the main attractors of the 
system were also presented. We detected two most stable periodic attractors, both with period 1. Finally, we calculated 
the basin entropy, concluding that the analysed basins are neither fractal, nor regular. 
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Dynamics and Control of a Rotating Beam with Active Element

Jerzy Warminski∗, Andrzej Mitura∗, Lukasz Kloda∗
∗Department of Applied Mechanics, Lublin University of Technology, Lublin, Poland

Summary. Dynamics of a rotating flexible beam with an embedded active element is studied in the paper. The beam model is
based on Bernoulli-Euler theory but it is extended taking into account beam’s extensionality and large transversal deformations with
nonlinear curvature. The macro fibre composite (MFC) embedded into the structure is applied to control or reduce externally excited
vibrations. The model of MFC element is considered in a few variants of simplifications. The complete model takes into account
electromechanical properties of MFC element including hysteresis and also properties of a voltage amplifier. The influence of the MCF
model simplifications on the effective vibration control ispresented.

Introduction

Rotating structures are of interest in many engineering applications. One of the classical examples are rotors of heli-
copters [1], drones or wind turbines. The blades of such rotors can be subjected to various loadings, for example can be
excited by aerodynamic forces leading to flutter oscillations, and then large amplitude vibrations may arise. In order to
avoid unwanted vibrations a special design of blades is proposed. The good possibility to obtain specific properties of
the blade can be achieved by application of modern compositematerials which enable creating specific mechanical fea-
tures of the blade as presented in paper [2]. An additional option of a vibration reduction is to apply actuators embedded
into the rotating blade which may reduce unwanted vibrations by use of dedicated control algorithms. The effectiveness
of selected linear and nonlinear algorithms tested numerically and experimentally for a cantilever composite beam with
active Macro Fibre Composite (MFC) elements was presented in paper [3]. The nonlinear saturation control and the pos-
itive position feedback control were demonstrated as the most powerful methods to suppress beam vibrations. However,
the methods were tested for a fixed (non-rotating) structure. The proportional (P) and derivative (D) control method for
the rotating beam was proposed in [4]. A pair of piezoelectric actuaturs/sensors were used to reduced vibrations of the
structure. The analysis showed that typical P control method did not reduce vibration but only PD algorithm enhanced
vibration damping of the rotating beam. The goal of this paper is to study dynamics of a rotating structure which takes into
account more precise nonlinear model of the rotating beam (the plant) together with nonlinear properties of the emended
MFC actuator. Then, the model will be used to propose and testa proper control algorithm, including linear and nonlinear
control strategies.

Model formulation and results

A model of the rotating structure is composed of a rigid hub and a flexible blade oscillating in the rotating frame(x, y)
which has position defined by a preset angleθ measured from the axisZ0 of the rotating hub (Fig. 1a). A lumped mass
mt is added to the beam tip which allows to study more general case with dynamic boundary conditions. The beam with
a rectangular cross-section is made of material having isotropic and linear properties. The beam is assumed to be thin and
its model is based on Bernoulli–Euler beam theory. However,due to possible large deformations a nonlinear curvature
and furthermore its extensionality is taken into account which, in case of rotating structure may play an important role.
At the present study it is assumed that the hub rotates with constant angular speeḋψ(t) = Ω and, in addition, the beam is
excited periodically by periodic loading distributed along the beam’s spam.
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Figure 1: Model of the rotating hub–beam structure with tip mass (a) and schematic model of the MFC actuator (b).

The equations governing the beam dynamics are given as a set of partial differential equations (PDE) with associated
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dynamic boundary conditions. The equations have been solved analytically by the multiple time scale method. The
resonance curves obtained analytically for the first and thesecond bending mode are presented in Fig. 2. The curves are
computed for rotating structure forΩ = 10 rad/s and selected preset anglesθ = 300, θ = 450 andθ = 600. The rotating
beam demonstrates nonlinear beahaviour with hardening effect for the first mode (Fig. 2a) and softening for the second
(Fig. 2b). The first resonance curve is sensitive for varied preset angle while the influence for the second is minor, almost
invisible.
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Figure 2: Resonance curves against frequency detuning parameterσv around the first (a) and the second (b) bending mode. Angular
velocityΩ = 10 rad/s and preset angle:θ = 300 - black,θ = 450 - red,θ = 600 - blue.

To control the rotating beam and reduce vibrations the active MFC elements are embedded into the beam structure. The
model of piezoelectric MFC element and its amplifier is presented schematically in Fig. 1b. In the scheme two elements
kamp andR describe amplifier properties. The gainkamp is related to voltageUcontrol, resistorR models the output
resistance of the amplifier. The piezoelectric actuator is represented by a capacitor with capacityCMFC . The direct and
indirect (converse) piezoelectric effect transform the actuator deformation into chargeqEM and actuator voltageUMFC

into mechanical forceFEM , respectively. The model also takes into account nonlinearproperties of the piezoelectric
actuator including the hysteresis phenomenon which schematically is represented byH element. The nonlinear and
hysteretic piezo-element is added to the main structure (the plant) and the obtained combined electro-mechanical system is
studied in order to select the most effective control algorithm enabling active vibration suppression for selected resonance
states. Linear and nonlinear control strategies are testedand some of them are verified in laboratory.

Conclusions

The developed model of the nonlinear rotating beam which takes into account influence of angular velocity and preset
angle is studied in the paper. Due to nonlinear geometrical nonlinearities hardening or softening effects are observedfor
the first and the second bending modes, respectively. It has been shown that varied preset angle affects mainly the first
mode resonance observed by a shift of the resonance zone. Thesecond mode resonance is almost not affected, just a
very minor change is present. Apart from the nonlinear rotating beam model (the plant) also the model of active MFC
element is proposed. The model takes into account two-way electromechanical coupling as well as hysteresis of the active
element. The control strategy for active vibration dampingwith linear and nonlinear control algorithms is analysed.
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Utilizing Noise to Manipulate Energy Localization in a Circular Oscillator Array

Gizem Dilber Acar∗, Abdulrahman Alofi∗ and Balakumar Balachandran ∗

∗Department of Mechanical Engineering, University of Maryland, College Park, 20742, USA

Summary. In this work, energy localization in an array of Duffing oscillators with periodic boundary conditions is studied. Each
oscillator in this array can exhibit multi-stable behavior, and the localized mode of the forced array exists in a certain frequency range.
For a specific excitation frequency, Gaussian noise is applied in addition to the harmonic forcing to move the system response from the
localized mode to a low-amplitude mode. Through this study, the authors shed light on how noise can be used to design the desired
dynamics of coupled oscillator arrays, such as a circular array of rotor blades.

Introduction

Coupled oscillator arrays represent numerous mechanical systems including multi-bladed rotors and micro- electro- me-
chanical resonators [1]. Understanding nonlinear behavior of oscillator arrays is important for designing such systems.
Energy localization is a nonlinear phenomenon that can be observed in oscillator arrays, wherein the system’s energy is
spatially focused in one or more oscillators. Although spatial energy localization can happen in discrete systems due to
imperfections, it can be observed in homogeneous discrete systems due to nonlinearity [2]. Depending on the application,
spatial localization of energy can be desirable or harmful.
Cyclically symmetric, discrete systems can exhibit localization behavior when the coupling between the discrete elements
is weak [3]. In this study, the responses of an array subjected to a harmonic forcing and harmonic forcing with noise are
numerically examined. The system exhibits multi-stable behavior in a particular frequency range, and depending on the
initial conditions, one of these responses can correspond to energy localization. The array has a circular configuration (i.e.,
periodic boundary conditions), and each oscillator is coupled with two neighbors. Furthermore, energy can flow through
the boundaries without interruptions. Here, the system is excited with a harmonic forcing so as to excite a localized
mode. Then, Gaussian noise is added to the harmonic forcing in order to steer the system to a non-localized response. By
using the numerical studies, the authors show that the Gaussian input can be used to move the system from the localized
mode to a low-amplitude mode, wherein all the oscillator move with the same amplitude, and the energy is uniformly
distributed across the array. For different noise intensities, the authors explore the possibility of using noise to destroy
energy localization.

Numerical Experiments

A circular array of six identical hardening Duffing oscillators are considered, wherein each oscillator has associated linear
stiffness, cubic stiffness, and linear damping. Each oscillator is coupled with the neighbors through linear springs, as
shown in Figure 1a. The system is cyclically symmetric with periodic boundary conditions. The localized mode of the
system is found using the anti-continuous limit method [4], according to which the localized mode is first found for the
system with zero coupling stiffness. Then, by gradually increasing the coupling in small steps, and using the numerical
shooting method at each step, the localized mode of the coupled system is found. The array is excited with a harmonic
forcing that can induce energy localization in the system. A representative amplitude profile of the localized mode is
shown in Figure 1b. The localized mode is symmetric about the high-amplitude oscillator, and each oscillator moves
out-of-phase with its two neighbors. In this analysis, the authors chose the 3rd oscillator for the localization. It is noted
that with a different choice of initial conditions, the system energy can be localized in another oscillator. Although energy
localization can be observed in systems with smaller numbers of degrees of freedom, the authors analyzed an array with
six oscillators to show that the amplitude of oscillations varies drastically around the localization, and it decreases as one
moves away from the high-amplitude oscillator. For arrays with larger numbers of oscillators, the amplitude profile may
become more uniform across the oscillators that are away from the high-amplitude oscillator.
In order to analyze the system behavior under noise, a Gaussian input is added to the harmonic forcing, as shown below.

ẍn + cẋn + k1xn + k3x
3
n + kc(2xn − xn−1 − xn+1) = F0 cos(ωt) + σẆ (t), (1)

for n = 1, . . . , N , where the periodic boundary conditions imply that the N + 1 oscillator coincides with the first oscillator.
The incremental noise is represented with σẆ (t). In this study, each oscillator is excited with the same forcing function
to avoid inducing asymmetry into the system through forcing. The system equations with noise are put into Langevin
form, and the Euler Maruyama method is used to numerically integrate the noise-influenced system equations [5]. For
three different noise intensity levels, the obtained energy distribution in the oscillator array is shown in Figure 2. For each
chosen noise intensity, the energy distribution plots are provided by using an average of the responses of the oscillator
array to 400 different noise vectors. Although depending on the noise vector, it might take longer or shorter for the
noise to suppress localization, the averaged dynamics show that for higher noise intensities (σ = 0.01 and σ = 0.006),
the Gaussian input can destroy the energy localization, and push the system to a state with uniform energy distribution.
However, for a smaller noise intensity (σ = 0.002), one is not able to use the noise to the unison amplitude mode, and the
localization persists.
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Figure 1: a) Coupled circular Duffing oscillator array with periodic boundary conditions. b) Amplitude profile of the localized mode:
The energy is localized in the 3rd oscillator, and the amplitude profile is symmetric about the oscillator with the highest amplitude.

Figure 2: Energy distribution in a circular Duffing oscillator array averaged over 400 simulations. In all three cases, the energy is
localized in the 3rd oscillator in the beginning. Addition of noise with intensity σ = 0.01 and σ = 0.006 can suppress the energy
localization, and lead to a uniform energy distribution in the array. However, a lower noise intensity (σ = 0.002) is found to be
inadequate for pushing the system to the unison-amplitude mode.

Conclusions

In this study, energy localization in a circular array of hardening Duffing oscillators with weak, linear coupling was
investigated. The system was first excited with a harmonic forcing frequency, for which the array can oscillate in a
localized mode. Then, various levels of Gaussian noise were applied along with the harmonic forcing, to explore the
effects of noise on energy localization. Through numerical studies, it was found that above a certain noise level, the
localization can be suppressed. The findings may provide a basis for suppressing energy localization in arrays of turbine
blades. The studies will be extended to larger systems in order to explore the effects of number of oscillators on the noise
required to drive the system between solutions with different energy distributions.
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Summary. In this work, we study a mathematical model for evaluating the resistant force of a vibro-impact capsule self-propelling in
the small intestine with a consideration of its anatomy. Circular fold is the main source of intestinal resistance that needs to be overcome
during the endoscopic procedure. Our model is able to calculate the resistance of such folds in different dimensions. Finite element
analysis and experimental testing are presented to validate the proposed model. Our investigation shows that the resistance reaches its
maximum immediately after the capsule is driven against the fold, and drops off gradually during the crossing motion.

Introduction

Diseases of surface lining of the small intestine are highly challenging to diagnose and treat. To develop new endoscopic
devices capable of self-propelling in the small intestine, endoscopic engineers need to take the complex anatomy of the
small intestine into account, in particular the circular fold of the small intestine, when evaluating the performance of their
designs. The purpose of the present work is to develop a mathematical model for accurately predicting the resistant force
of the capsule-type devices moving in the small intestine and use the model to test the vibro-impact self-propelled capsule
developed in the Applied Dynamics and Control Lab at the University of Exeter [1, 2].

According to the movement of the small intestine, most of the research works (e.g., [5, 4]) assume that the capsule distends
the intestine in the radial direction when assessing the intestinal resistance. However, this assumption is only valid for
a very short time interval during the intestinal movement. For most of the time of diagnosis, the capsule is in one-sided
contact with the intestinal wall, so the resistance from the hoop pressure does not apply. For this reason, Guo et al.
[7, 8] estimated the intestinal resistance for a self-propelled capsule by considering both partial and full capsule-intestine
contacts. In the present work, we use the cylindrical capsule as an example and take the circular fold of the small intestine
into consideration to study the required driving force for self-propulsion and the capsule’s dynamics in clinical scenario.
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Figure 1: (a) 3D schematic of an endoscopic capsule moving towards a circular fold on a flat tissue substrate. (b) Cross section A-A
shows the horizontal and vertical location of the capsule by x0 and δmax, and the location, width and height of the ith fold by xi, wi
and hi. (c) Cross section B-B shows the capsule-substrate contact angle, θ ∈ [−α(x), α(x)]. (d) The stress, σ(x, θ), is exerted on the
capsule shell as a normal pressure. (e) Integrating the x and y components of the pressure yields the horizontal and vertical reactions,
where Fy is balanced by the capsule’s gravity, G, and Fx resists the capsule’s motion.
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Mathematical modelling and validation

The interaction between the capsule and a tissue substrate is schematically illustrated in Fig. 1. As seen, the capsule’s
hemispheric head and tail is connected by a cylindrical body with a length of L and a radius of R. When the capsule
moves horizontally in x-direction, it engages with the circular fold of the small intestine, resulting in complex interactive
forces and capsule motion. The detailed modelling procedure can be found in [9].
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Figure 2: (Colour online) Resistant force acting on the capsule as a function of capsule’s displacement when the capsule was pulled
on a cut-open synthetic small intestine consisting of two different circular folds in a constant speed of 8 [mm/s] obtained from the
mathematical model (blue line), the FE model (red line) and the experiment (black line). FE model can capture all of the six stages
of the capsule’s motion. Due to the limitations, experiment missed Stages 4© and 6©, and the mathematical model cannot capture
Stages 3© and 5©. Parameters for the mathematical and FE models were chosen as E = 100 [kPa], G = 33.96 [mN], µ = 0.2293,
R = 5.50 [mm], L = 15 [mm], H = 0.69 [mm], x1 = 12.66 [mm], h1 = 1.67 [mm], w1 = 1.665 [mm], x2 = 62.66 [mm],
h2 = 2.34 [mm] and w2 = 1.545 [mm], which were identified from the experimental setup in [8].

In order to validate the analysis, the mathematical and finite element (FE) models adopted the parameters corresponding
to the experimental setup described in [8]. Under the same position, the one-to-one correspondence between the capsule’s
posture and the resistant force is shown in Fig. 2. According to the FE result, the process of capsule’s crossing over
a circular fold can be divided into six stages. Although some stages were missed by the mathematical model and the
experiment due to their limitations, here we are interested with the maximum resistant force experiencing by the capsule
when it crosses over the fold.

Conclusions

In conclusion, the FE model captured all of the crossing stages, but the computation was so time-consuming that we only
adopted a 2D FE model to sacrifice its accuracy. Nonetheless, all these three (analytical, FE and experimental) methods
yielded consistent results for evaluating the maximum resistant force.
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Summary. Linear and nonlinear resonant states can be restrictive: they exist at particular discrete states in frequency and/or elasticity, 
under particular (e.g., simple-harmonic) waveforms. In forced oscillators, this restrictiveness is an obstacle to system design and 
control modulation: altering the system elasticity, or modulating the response, would both appear to necessarily incur a penalty to 
efficiency. In this work, we describe an approach for bypassing this obstacle. Using novel work-loop techniques, we prove and 
illustrate how certain classes of resonant optimisation problem lead to non-unique solutions. In a structural optimisation context, 
several categories of energetically-optimal elasticity are non-unique. In an optimal control context, several categories of 
energetically-optimal frequency are non-unique. For these classes of non-unique optimum, we can derive simple bounds defining 
the optimal region. These novel theoretical results have practical implications for the design and control of a range of biomimetic 
propulsion systems, including flapping-wing micro-air-vehicles: using these results, we can generate efficient forms of wingbeat 
modulation for flight control. 

1. Introduction 

A wide range of biological and engineering systems utilize nonlinear structural elasticity to shape and control an 
oscillatory forced response. Insects rely on strain-hardening thoracic elasticity to modulate flight motor muscular 
actuation [1, 2]. Micro-mechanical energy harvesters utilise nonlinear elasticity to improve harvesting efficiency 
[3–5]. Compliant bipedal robots utilise distributed elasticity to improve walking efficiency [6]. Among the 
multifaceted roles that nonlinear elasticity can play in such systems, energetic roles are often central: structural 
elasticity can absorb inertial loads and/or mitigate inertial power requirements, thereby increasing system 
efficiency. However, there is a sense in which the pursuit of efficiency can be restrictive. Energetically-optimal 
states tend to be discrete: located at particular states of elasticity (e.g., the resonant elasticity); or at particular 
discrete frequencies (e.g., the resonant frequencies), and particular (e.g., symmetric, harmonic) waveforms. For 
instance: as per classical analysis, linear resonance occurs at discrete frequencies, and under simple-harmonic 
forcing; and in nonlinear systems, such as the Duffing oscillator, frequency response magnitude peaks are also 
typically discrete. In both cases, deviating from the energetically-optimal frequency-elasticity match, or resonant 
state, incurs a penalty in efficiency. 
 
Here, we describe a novel technique for bypassing this efficiency penalty in some contexts. Using work-loop 
analysis techniques – showing several parallels with phase portrait techniques – we can illustrate and prove several 
key optimality results. These techniques allow us to prove how several classes of forward- and inverse-problems 
for energetic optimality necessarily lead to non-unique solutions; and to derive simple bounds defining this region 
of non-unique optimal solutions. These new theoretical results have significant implications for the use of 
nonlinear dynamics in engineering design. They describe ways to introduce nonlinear elasticities into a system to 
ensure energetic optimality, and illustrate how, for certain classes of energetic optimality, a whole space of optimal 
nonlinear elasticities exists. The choice of nonlinear elasticity within this space is a design tool that can be used 
to control other aspects of system behaviour. These results also describe methods for modulating the frequency 
of a resonant response, and/or breaking its symmetry, while maintaining energetic optimality. Improving the 
energetic optimality of these forms of response modulation is crucial to several forms of bio-inspired locomotion 
system: modulating the frequency of bipedal walking can govern the transition to running [7]; and modulating the 
wingstroke offset of a flapping-wing micro-air-vehicle (FW-MAV) can lead to body pitch control [8]. In this way, 
these theoretical techniques lead to new design and control principles for a range of engineering systems. 

2. Energy resonance in the time-domain 

In linear and nonlinear systems, the phenomenon of resonance is complex and multifaceted: representing a range 
of distinct, and often mutually-exclusive, states of optimality [9, 10] and interaction phenomena [11]. Energy, or 
global, resonance is one such resonant phenomenon that has key relevance to the design and operation of efficient 
resonators (biolocomotive systems, energy harvesters, etc.) [3–5, 9, 12]. Consider, for instance, a general 
nonlinear time-invariant single-degree-of-freedom (1DOF) parallel elastic actuation (PEA) system (Fig. 1): 𝐷ሺ𝑥, 𝑥ሶ , 𝑥ሷ , … ሻ + 𝑠ሺ𝑥ሻܨ =  ሺ𝑡ሻ. (1)ܨ
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Figure 1: Schematic of a general nonlinear time-invariant 1DOF PEA system 

with general system (i.e., plant, or load) dynamics 𝐷ሺ𝑥, 𝑥ሶ , 𝑥ሷ , … ሻ, linear or nonlinear elastic element ܨ𝑠ሺ𝑥ሻ, and 
actuator load input ܩሺ𝑡ሻ. The state of energy resonance in this system is easy to define, but hard to locate – it is 
the state: ܨሺ𝑡ሻ𝑥ሶሺ𝑡ሻ  Ͳ, ∀𝑡. (2) 

That is, the actuator power consumption should always be positive: power should flow from the actuator to the 
system, and never vice-versa. This unidirectionality of power flow represents both an intuitive state of energetic 
optimality, and a formal one. Intuitively, if we desire the largest possible system response, then we should seek 
always to use the actuator, ܨሺ𝑡ሻ, to feed energy into the system – rather than draw energy out of the system. 
Unidirectional power flow defines the condition that all of the actuator power consumption is directed towards 
increasing the total energy in the system. 
 
Formally, energy resonant states are optimal with respect to elasticity. Consider an energy resonant state for Eq. 
1 at some ܨ𝑠ሺ𝑥ሻ, and some 𝑥ሺ𝑡ሻ and ܨሺ𝑡ሻ that are periodic with common period 𝑇. The overall actuator mechanical 
power consumption at this state can be defined in multiple ways, for instance: 

the net power: P̅୬e୲ = ∫ ሺ𝑡ሻ𝑥ሶሺ𝑡ሻ𝑇ܨ
 𝑑𝑡, 

(3) the absolute power: P̅ୟୠୱ = ∫ ሺ𝑡ሻ𝑥ሶሺ𝑡ሻ|𝑇ܨ|
 𝑑𝑡, 

the positive-only power: P̅୮୭ୱ = ∫ ሺ𝑡ሻ𝑥ሶሺ𝑡ሻܨ]ሺ𝑡ሻ𝑥ሶሺ𝑡ሻܨ > Ͳ]𝐼𝑇
 𝑑𝑡, 

where [ ⋅ ]𝐼 is the Iverson bracket, [𝜆]𝐼 = 1 for 𝜆 true, [𝜆]𝐼 = 0 for 𝜆 false [13]. This difference between these 
metrics lies in their treatment of negative power, ܨ𝑥ሶ < Ͳ. The net power represents the mechanical power 
throughput of the system – the power dissipated to the system or plant, 𝐷ሺ⋅ሻ. It does not represent the mechanical 
power consumption of the actuation except in the case where the actuator is intrinsically capable of absorbing 
negative power, and storing this power for future use – for instance, in certain configurations of electrical actuator 
with power electronics. The absolute power represents the mechanical power consumption of the actuator if the 
actuator itself is responsible for drawing power out of the system – for instance, a rocket or jet engine, which must 
consume fuel to produce thrust, irrespective of the direction this thrust is oriented (whether to produce negative 
or positive power). The positive-only power represents the mechanical power consumption of the actuator if an 
additional dissipative braking system is responsible for generating negative power – for instance, in a vehicle with 
a dissipative braking system. A dissipative braking system can relieve the actuator from a responsibility to 
generate negative power, but cannot store this energy for future use. 
 
Note that further, more generalised, negative-power penalties can be defined, e.g., to represent the behaviours of 
biological muscles [12, 14, 15]. However, the penalty detail matters not: it is clear that, only under the energy 
resonant condition, Eq. 2, will the power throughput (net power) equal the actuator power consumption (absolute, 
positive-only, etc.). In any non-energy resonant state, the actuator power consumption will be greater than the net 
power; the difference in power representing wasted negative power. A key corollary of this is that, at an energy 
resonant state, there exists no other elasticity, ܨ𝑠ሺ𝑥ሻ, that could reduce the actuator power consumption (absolute, 
positive-only, etc.) required to generate 𝑥ሺ𝑡ሻ. This can be demonstrated in the following way. The elasticity, ܨ𝑠ሺ𝑥ሻ, 
cannot alter the net power required to generate a specified 𝑥ሺ𝑡ሻ – this can be confirmed by evaluating the net 
power integral: ∫ ሺ𝑡ሻ𝑥ሶሺ𝑡ሻ𝑇ܨ

 𝑑𝑡 = ∫ 𝐷ሺ𝑥, 𝑥ሶ , 𝑥ሷ , … ሻ𝑥ሶሺ𝑡ሻ𝑇
 𝑑𝑡 + ∫ 𝑠ሺ𝑥ሻ𝑥ሺ𝑇ሻܨ

𝑥ሺሻ 𝑑𝑥 = ∫ 𝐷ሺ𝑥, 𝑥ሶ , 𝑥ሷ , … ሻ𝑥ሶሺ𝑡ሻ𝑇
 𝑑𝑡. (4) 
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It is also impossible for the actuator power consumption to be less than the net power – this is a property of the 
definitions in Eq. 3. Therefore, there exists no elasticity ܨ𝑠ሺ𝑥ሻ, that could further minimise the actuator power 
consumption (absolute, positive-only, etc.) required to generate the output, 𝑥ሺ𝑡ሻ, of an energy resonant state. In 
this sense, energy resonant states are energetically-optimal. 

3. Energy resonance in work-loop planes 

Work loops are an analysis tool used frequently in applied contexts, but have not yet seen significant theoretical 
application. Their defining characteristic is that they display a metric of force against a metric displacement, and 
therefore have an area that is synonymous with work, i.e., energy. In biomechanics, work loops are used to 
visualise, and characterise the behaviour of muscle groups undergoing periodic motion – e.g., muscles within the 
insect flight motor [16–18]. In materials science, they are one of many forms of hysteresis loop, used to 
characterise viscoelastic and other hysteretic material behaviour [19]. Work-loop techniques can be applied to the 
dynamical system of Eq. 1: given some pair of 𝑥ሺ𝑡ሻ and ܨሺ𝑡ሻ for Eq. 1, it is possible to visualise this pair in the 
plane of ܨ against 𝑥 (Fig. 2). We denote this plane 𝑥-ܨ (abscissa-ordinate). If 𝑥ሺ𝑡ሻ and ܨሺ𝑡ሻ are periodic, with 
common period, then this pair will trace out a closed loop in the 𝑥-ܨ place: a work loop. This work loop may take 
many shapes.  For instance, any linear PEA system undergoing steady-state simple-harmonic motion shows an 
elliptical work loop (Fig. 2a). That is, for a system of the form: 𝑥ሷ + ʹ𝜁𝜔𝑥ሶ + 𝜔ଶ𝑥 =  ሺ𝑡ሻ, (5)ܨ

with 𝑥 = �̂� cosሺΩ𝑡ሻ, we can establish that: ܨଶ − ሺ𝜔ଶܨʹ − Ωଶሻ𝑥 + ሺሺ𝜔ଶ − Ωଶሻଶ + Ͷ𝜁ଶ𝜔ଶΩଶሻ𝑥ଶ = Ͷ𝜁ଶ𝜔ଶΩଶ�̂�ଶ, (6) 

describing an ellipse. However, categories of dynamical system do not directly translate to consistent work loop 
shapes. For instance, as we add additional harmonics to the motion of a linear system, the work loop rapidly 
becomes inexpressible in closed form. 
 
In our analysis, we will consider a system which is simultaneously more general and more restrictive than the 
nonlinear PEA system of Eq. 1. We consider a work loop that is a closed simple curve (i.e., no self-intersections), 
and is no more than bivalued at any 𝑥 (Fig. 2). Other than this, the shape of the loop can be arbitrary. Such a loop 
could arise from systems considerably more complex than Eq. 1, including, e.g., computational fluid dynamics 
(CFD) models. For instance, Fig. 2b illustrates a work loop arising from CFD analysis of Drosophila melanogaster 
wingbeat oscillation, derived from [20–22]. But, conversely, even the linear PEA system, Eq. 5, is capable of 
generating work loops which are more than bivalued at any 𝑥 – for instance, very simply, in cases where the 
output, 𝑥ሺ𝑡ሻ, is not composed of two monotonic half cycles.  
 
In cases where the work loop is a closed simple curve, as specified, it is representable as an upper and lower curve: ܨ+ሺ𝑥ሻ and ܨ−ሺ𝑥ሻ (Fig. 2a). These curves represent the two monotonic half-cycles of 𝑥ሺ𝑡ሻ, and, as such, are each 
associated with a particular sign of the velocity (𝑥ሶ). For a dissipative work loop (net power > Ͳ), over ܨ+, 𝑥ሶ > Ͳ, 
and over ܨ−, 𝑥ሶ < Ͳ. Going further, if we distinguish between the system’s elastic load, ܨሺ𝑡ሻ, and inelastic load, ܩሺ𝑡ሻ, as altered by a parallel (PEA) elasticity – that is, in the particular case of Eq. 1, as: 

inelastic load, ܩሺ𝑡ሻ: 𝐷ሺ𝑥, 𝑥ሶ , 𝑥ሷ , … ሻ =  ,ሺ𝑡ሻܩ
(7) 

elastic load, ܨሺ𝑡ሻ: 𝐷ሺ𝑥, 𝑥ሶ , 𝑥ሷ , … ሻ + 𝑠ሺ𝑥ሻܨ = ሺ𝑡ሻܩ + 𝑠ሺ𝑥ሻܨ =  ,ሺ𝑡ሻܨ

– then we can define work-loop equations of motion for this general PEA system: ܩ±ሺ𝑥ሻ + 𝑠ሺ𝑥ሻܨ =  ሺ𝑥ሻ. (8)±ܨ

These work-loop equations of motion describe not only Eq. 1, but also the load-requirement dynamics of a more 
complex system (e.g., the CFD model in Fig. 2b): elasticity, ܨ𝑠ሺ𝑥ሻ alters the load, ܨ±ሺ𝑥ሻ, required to generate the 
output response associated with the desired output, ܩ±ሺ𝑥ሻ. In simple cases, Eq. 7-8 can be expressed entirely in 
closed form. For instance, the linear PEA system undergoing simple-harmonic motion (Eq. 5): ܩ±ሺ𝑥ሻ = Ωଶ𝑥 ± ʹ𝜁𝜔Ω√�̂�ଶ − 𝑥ଶ ܨ±ሺ𝑥ሻ = ሺ𝜔ଶ − Ωଶሻ𝑥 ± ʹ𝜁𝜔Ω√�̂�ଶ − 𝑥ଶ 

i.e., ܩ±ሺ𝑥ሻ + 𝜔ଶ𝑥 =  ሺ𝑥ሻ. (9)±ܨ

The work-loop equations of motion, Eq. 8, permit a definition of the energy resonant condition, Eq. 2, in the work-
loop plane. We seek to define the condition ܨ𝑥ሶ  Ͳ (Eq. 2), and we know that over ܨ+, 𝑥ሶ > Ͳ, and over ܨ−, 𝑥ሶ <Ͳ, therefore, for energy resonance: 
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Figure 2: Schematic of work loops for (a) linear and (b) general systems, alongside (c) the conditions for energy resonance, in ܨ𝑠ሺ𝑥ሻ and ܩ±ሺ𝑥ሻ. ܨ+ሺ𝑥ሻ  Ͳ and ܨ−ሺ𝑥ሻ  Ͳ. (10) 

Or, via Eq. 8, for energy resonance: ܩ−ሺ𝑥ሻ  𝑠ሺ𝑥ሻܨ−   ሺ𝑥ሻ, (11)+ܩ

as illustrated in Fig. 2c. Eq. 11 is the elastic-bound condition for this general PEA system, describing the 
relationship between elasticity, ܨ𝑠ሺ𝑥ሻ, and the inelastic system work loop, ܩ±ሺ𝑥ሻ (a function only of the plant 
dynamics and desired output) that must exist in order for an energy resonant state to exist. Eq. 11 is an inequality 
condition, describing a continuum of states – whether in ܨ𝑠ሺ𝑥ሻ, or ܩ±ሺ𝑥ሻ – that are energy resonant. Notably, 
however, this condition contains within it a pair of equality condition. At max 𝑥 and min 𝑥 (±�̂� for simple-
harmonic motion), ܩ−ሺ𝑥ሻ =  ,ሺ𝑥ሻ, by virtue of the fact that the work loop is closed. Therefore, at these values+ܩ
the inequality in Eq. 12 becomes an equality: ܩ−ሺmax 𝑥ሻ = 𝑠ሺmaxܨ− 𝑥ሻ = ሺmax+ܩ 𝑥ሻ, ܩ−ሺmin 𝑥ሻ = 𝑠ሺminܨ− 𝑥ሻ = ሺmin+ܩ 𝑥ሻ. 

(12) 

Physically, peak inertial loads (inelastic loads at the 𝑥-extrema, where 𝑥ሶ = Ͳ) must always match peak elastic 
loads (elastic loads at the 𝑥-extrema). This equality condition, Eq. 12, is a useful commonality between the 
continuum of energy resonant states defined by Eq. 11 – we will illustrate its utility in Sections 4-5. 

4. Work-loop analysis for structural optimisation 

4.1. Elastic-bound optimisation principle 
Practical applications of work-loop analysis arise in a range of physical and analytical contexts. One such 
analytical context is that of structural optimisation in nonlinear oscillators – for instance, the optimisation of 
oscillator structural properties so as to generate a desired forced oscillatory response at maximum efficiency. 
Structural optimisation problems of this form arise in a range of physically-relevant oscillatory systems: for 
instance, flapping-wing micro-air-vehicles, involving the design of drivetrain elastic elements to ensure maximum 
efficiency [23–25]; and micro-mechanical energy harvesters, involving the design of oscillators for maximum 
energy absorption [3–5]. The elastic-bound conditions, Eq. 11, are directly applicable in a structural optimisation 
context. Consider a nonlinear oscillator, of the form 𝐷ሺ𝑥, 𝑥ሶ , 𝑥ሷ , … ሻ + 𝑠ሺ𝑥ሻܨ =  ሺ𝑡ሻ (Eq. 8), with some structuralܩ
elasticity, ܨ𝑠ሺ𝑥ሻ, that we have design control over. If we specify some desired system output, a periodic 𝑥ሺ𝑡ሻ, then, 
given some ܨ𝑠ሺ𝑥ሻ, we know the actuator load, a periodic ܨሺ𝑡ሻ, that is required to generate this desired output. The 
optimisation problem then is to select ܨ𝑠ሺ𝑥ሻ such that this load requirement, ܨሺ𝑡ሻ, is optimal in some way. If we 
are interested in energy-efficiency, then a key metric to optimise is the mechanical power consumption associated  
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with ܨሺ𝑡ሻ: for instance, the absolute power, P̅ୟୠୱ, or positive-only power, P̅୮୭ୱ, as per Eq. 3§. In either case, the 
elastic-bound conditions provide a direct solution to this optimisation problem: it is the elasticities, ܨ𝑠ሺ𝑥ሻ, 
satisfying Eq. 11, that ensure that P̅ୟୠୱ and P̅୮୭ୱ take their minimum values with respect to ܨ𝑠ሺ𝑥ሻ. This is a highly-
general principle, applicable to any PEA system that generates a closed, simple, bi-valued work loop, under the 
specified 𝑥ሺ𝑡ሻ (cf. Section 3). Fig. 3a illustrates this principle, alongside the two more specific cases studied below. 
 

4.2 Structural optimisation of a Duffing oscillator 
As an example of the work-loop structural optimisation process, consider the Duffing oscillator: 𝑥ሷ + 𝛿𝑥ሶ + 𝑥ߙ + 𝑥ଷߚ =  ሺ𝑡ሻ (13)ܨ

with damping 𝛿 > Ͳ, linear stiffness ߙ, cubic stiffness ߚ, and input loading ܨሺ𝑡ሻ which, in our analysis, may not 
necessarily be simple-harmonic. The energy-minimisation structural optimisation problem in this oscillator is to 
compute the elastic parameters, ߙ and ߚ, such that this specified output can be generated at a state of energy 
resonance, by some ܨሺ𝑡ሻ. As such, in a work-loop context, we can split Eq. 13 into an inelastic load, ܩሺ𝑡ሻ, and an 
elastic profile, ܨ𝑠ሺ𝑥ሻ: 𝑥ሷ + 𝛿𝑥ሶ = ,ሺ𝑡ሻܩ 𝑠ሺ𝑥ሻܨ = 𝑥ߙ +  𝑥ଷ (14)ߚ

More specifically, consider a steady-state simple-harmonic output, 𝑥 = �̂� cosሺΩ𝑡ሻ. In this case, the inelastic work 
loop is given by the elliptical profile: ܩ±ሺ𝑥ሻ = −Ωଶ𝑥 ± 𝛿Ω√�̂�ଶ − 𝑥ଶ. (15) 

The elastic-bound equality conditions (Eq. 12) translate to conditions on the stiffness parameters, ߙ and ܨ− :ߚ𝑠ሺ�̂�ሻ = ሺ�̂�ሻ±ܩ  ∴  Ωଶ�̂� = �̂�ߙ + �̂�ଷߚ  ∴ ߙ  = Ωଶ −  �̂�ଶ (16)ߚ

which is to say, the Duffing stiffnesses, ܨ𝑠ሺ𝑥ሻ that can generate this simple-harmonic output at a state of energy 
resonance are necessarily of the form ܨ𝑠ሺ𝑥ሻΩଶ = ሺͳ − �̂�ଶሻ𝑥∗ߚ + 𝑥ଷ∗ߚ

 (17) 

where ߚ∗ = ߚ Ωଶ⁄  is a free parameter. Note that the equality condition, yielding Eq. 17, is necessary for the 
existence of an energy resonant state, but no sufficient. We anticipate, based on the full elastic-bound conditions, 

 

§ Note that, even if the net power, P̅୬e୲, were to be relevant to the actuator under consideration, P̅୬e୲ is independent 
of ܨ𝑠ሺ𝑥ሻ: the structural optimisation problem associated with P̅୬e୲ is irrelevant. This is further illustration of how P̅ୟୠୱ and P̅୮୭ୱ are more relevant metrics of actuator mechanical power consumption. 

Figure 3: Work loop analysis and energy resonance in a structural optimization context. (a) The general structural 
optimisation principle (Section 4.2); (b) a set of energy-resonant Duffing elasticities (Section 4.2); (c) and energy-resonant 
one-way-drive elasticity (Section 4.3). The Duffing oscillator inelastic parameters are 𝛿 = 4, 𝜔 �̂� ,ߨ2 = = 1. 
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that Eq. 17 should describe an energy-resonant state only over some range of ߚ∗. We may compute this range via 
the full elastic-bound conditions. Consider that, at the point at which the elastic-bound conditions fail, there exists 
the critical state: ܩ+ሺ𝑥ሻ = ሺ𝑥ሻ−ܩ 𝑠ሺ𝑥ሻ orܨ = 𝑠ሺ𝑥ሻ, for some 𝑥ܨ ≠ ±�̂�. (18) 

That this state necessarily exists is a property of the smoothness of this system. Again, with the elliptical inelastic 
work loop profile, Eq. 15, we can describe 𝑥 such that Eq. 18 is satisfied, as the roots of the quartic polynomial: 𝑥ସ − 𝑥ଶ�̂�ଶ + 𝛿ଶߚ∗ଶΩଶ = Ͳ. (19) 

Eq. 19 is a quadratic polynomial in 𝑥ଶ, and, as such, we can determine that the critical 𝑥 will exist (as a real 
number) if and only if the discriminant of this quadratic is positive. This leads to the condition: −ߚୡ୰i୲∗  ∗ߚ  ∗ୡ୰i୲ߚ , ∗ୡ୰i୲ߚ = ʹ𝛿�̂�ଶΩ (20) 

For the constrained Duffing elasticity, Eq. 19, to be capable of generating an energy-resonant simple-harmonic 
output, under some periodic forcing. The actual periodic forcing required is trivial to define – it is given by Eq. 
13 – though note that chaotic effects may necessitate a control system to maintain a steady-state output (and may 
even mean that such control is impractical). Nevertheless, Eq. 17 and 20 define the Duffing stiffnesses that are 
required for an energetically-optimal simple-harmonic output. Other non-simple-harmonic outputs can be 
optimised via the same work-loop analysis process, though numerical techniques may be required to compute 
both the form of the optimal elasticity (Eq. 17) and the range over which it is valid (Eq. 20) 
 

4.3 Special cases of energy-resonant structure 
In Section 4.2, we considered the optimisation of an elastic element of prescribed structure: the cubic elasticity of 
the Duffing oscillator. However, in a broader systems-design context, there may be no particular reason to restrict 
oneself to prescribed structures – considering elasticities with particular energy-resonant properties, irrespective 
of structure, may also be worthwhile. Work-loop analysis is a tool for identifying energy-resonant elasticities with 
special properties. As a notable example of this, consider again the elastic-bound conditions, Eq. 11. These 
conditions include, as an extremal case, the elasticities lying on the upper and lower boundaries of the loop: ܨ𝑠,ଵሺ𝑥ሻ = 𝑠,ଶሺ𝑥ሻܨ ,ሺ𝑥ሻ+ܩ− =  .ሺ𝑥ሻ−ܩ−

(21) 

By definition, these elasticities generate a resultant work loop, ܨ±ሺ𝑥ሻ, that has one half-cycle at zero load (Eq. 9, 
Fig. 3c): ܨ𝑠,ଵሺ𝑥ሻ = ሺ𝑥ሻ+ܩ−  ∴ ሺ𝑥ሻ−ܨ  = ሺ𝑥ሻ−ܩ − ሺ𝑥ሻ+ܨ   ,ሺ𝑥ሻ+ܩ = Ͳ,   ܨ𝑠,ଶሺ𝑥ሻ = ሺ𝑥ሻ−ܩ−  ∴ ሺ𝑥ሻ+ܨ  = ሺ𝑥ሻ+ܩ − ሺ𝑥ሻ−ܨ   ,ሺ𝑥ሻ−ܩ = Ͳ. 

(22) 

It follows also, that the other half-cycle will be at a state of unidirectional load: ܩ+ሺ𝑥ሻ −  ሺ𝑥ሻ can never change−ܩ
sign, if ܩ+ሺ𝑥ሻ  -ሺ𝑥ሻ as per our condition for no self-intersection of the work loop. The result is an energy−ܩ
resonant state requiring only unidirectional actuation: we term this, a one-way-drive state. An additional property 
of this state is that it the duty cycle of the actuator is reduced: over the region of zero load requirement, the actuator 
need not be activated or energised. With the proper selection of one-way-drive elasticity, the actuator duty cycle 
can be reduced to 50% or less, for any appropriate work loop  [12]. Both these properties make one-way-drive 
states systems ideal for certain classes of actuator: those which are capable of generating large intermittent loads 
in a single direction – such as combustion cylinders, explosive actuators, and solenoid actuators [26, 27]. 
Combustion cylinders, in particular, are more energy-dense than many forms of electromechanical actuator: 
utilising combustion cylinders to generate one-way-drive energy resonant oscillations in a flapping-wing aircraft 
may be an avenue to increasing the range and endurance of these aircraft. 

5. Work-loop analysis for optimal control 

5.1. Elastic-bound optimal control principle 
Another practical application of work-loop analysis arises in the context of optimal control. In contrast with 
structural optimisation, which deals variable system structural properties, optimal control problems typically relate 
to a fixed system structure, and consider variable responses within this structure – with the aim to locate output 
responses (and, input forces) that are optimal in some sense. Work loop analysis is particularly relevant to optimal 
control problems that are concerned with optimising power consumption, or energetic efficiency, as it allows an 
easy description, and visualisation, of the location and properties of energy-resonant states. One of the interesting 
properties of energy resonance is that, even in the simplest linear systems, energy resonance is a non-unique state. 
As per Section 4, the energy-resonant structural elasticity for a system undergoing a specified output is non-unique 
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– there exists a continuum of energy-resonant elasticities. So also, the energy-resonant output for a system with 
fixed elasticity is non-unique – there exists a continuum of energy-resonant outputs. This continuum of energy-
resonant outputs is defined directly by the elastic-bound conditions: for fixed elasticity ܨ𝑠ሺ𝑥ሻ, we seek ܩ±ሺ𝑥ሻ such 
that Eq. 11 is satisfied – ܩ±ሺ𝑥ሻ depending only on the desired output, 𝑥ሺ𝑡ሻ, and the inelastic dynamics of the 
system, 𝐷ሺ⋅ሻ**. We note that these different work loops may represent outputs at different amplitudes, frequencies, 
and symmetric or asymmetric waveforms. If then, as part of our control problem, we desire to modulate the 
frequency of our system output response, while maintaining a state of energy resonance (i.e., optimality in 
mechanical power consumption), then work-loop analysis techniques provide a strategy for doing so. We refer to 
this energy-resonant frequency modulation as frequency-band resonance, and note that other forms of energy 
resonant modulation (e.g., offset-band resonance, involving symmetry-breaking modulation [12]) are also 
available. 
 

5.2. Optimal frequency control of a Duffing oscillator 
Consider again the general Duffing oscillator, Eq. 14. As per our structural optimisation results (Eq. 16), the 
frequency, 𝜔e, at which a simple-harmonic output is energy resonant in this general system is:  𝜔eଶ = ߙ +  �̂�ଶ. (23)ߚ

As per our optimal control analysis, the question arises: can one maintain energy resonance while deviating from 
this energy-resonant frequency? As one instance of a deviation from a simple-harmonic output, consider the 
multiharmonic output given by: 𝑥ሺ𝑡ሻ = �̂�ሺͳ − ሻߩ cosሺΩ𝑡ሻ + �̂�ߩ cosሺ͵Ω𝑡ሻ, 𝑥ሶሺ𝑡ሻ = −Ω�̂�ሺͳ − ሻߩ sinሺΩ𝑡ሻ − ͵Ω�̂�ߩ sinሺ͵Ω𝑡ሻ, 𝑥ሷሺ𝑡ሻ = −Ωଶ�̂�ሺͳ − ሻߩ cosሺΩ𝑡ሻ − ͻΩଶ�̂�ߩ cosሺ͵Ω𝑡ሻ, (24) 

for small ߩ, this multiharmonic wave is qualitatively sinusoidal. More precisely: for the window −0.125  ߩ  
1, computed numerically, the global displacement extrema of 𝑥ሺ𝑡ሻ are ±�̂� (max 𝑥 = �̂� and min 𝑥 = −�̂�), and are 
located at 𝑡 = Ͳ, 𝑇 ʹ⁄ , 𝑇, …, where 𝑇 = ߨʹ Ω⁄ . For the more restrictive window −0.125  ߩ  0.25, also 
computed numerically, 𝑥ሺ𝑡ሻ is composed of two monotonic half-cycles (velocity reversal, where 𝑥ሶ = Ͳ, exists 
only at 𝑡 = Ͳ, 𝑇 ʹ⁄ , 𝑇, …). We require both these conditions to be true – thus limiting ourselves to the more 
restrictive of these windows. 
 
As part of a frequency-band analysis, we seek ߩሺΩሻ such that 𝑥ሺ𝑡ሻ is energy resonant at Ω. Note that, at the energy-
resonant frequency, 𝜔e, a simple-harmonic wave is energy resonant (Section 4.2), and thus ߩሺ𝜔eሻ = Ͳ. To 
compute the rest of ߩሺΩሻ, note that the elastic-bound conditions necessitate: ܩ±ሺ�̂�ሻ = ሺ−�̂�ሻ±ܩ 𝑠ሺ�̂�ሻ, andܨ =  𝑠ሺ−�̂�ሻ, (25)ܨ

where we have assumed that max 𝑥 = �̂� and min 𝑥 = −�̂�; an assumption we know to be valid over −0.125 ߩ  1. Over this window we know, in addition, that these extrema will be located at = Ͳ, 𝑇 ʹ⁄ , 𝑇, …, where 𝑇 ߨʹ= Ω⁄ . We can therefore translate Eq. 25 into a condition in the time-domain: ܩሺͲሻ = ሺ𝑇ሻܩ = 𝑠ሺ�̂�ሻܨ = �̂�ߙ + ሺ𝑇ܩ ,�̂�ଷߚ ʹ⁄ ሻ = 𝑠ሺ−�̂�ሻܨ = �̂�ߙ− −  ,�̂�ଷߚ
(26) 

which, combining with load profile: ܩሺ𝑡ሻ = 𝑥ሷ + 𝛿𝑥ሶ = −Ωଶ�̂�ሺͳ − ሻߩ cosሺΩ𝑡ሻ − ͻΩଶ�̂�ߩ cosሺ͵Ω𝑡ሻ− 𝛿Ω�̂�ሺͳ − ሻߩ sinሺΩ𝑡ሻ − ͵𝛿Ω�̂�ߩ sinሺ͵Ω𝑡ሻ, (27) 

yields the condition: ܩሺͲሻ = ሺ𝑇ሻܩ = ሺ𝑇ܩ− ʹ⁄ ሻ = −Ωଶ�̂�ሺͳ + ͺߩሻ = 𝑠ሺ�̂�ሻܨ− = �̂�ߙ− −  �̂�ଷ. (28)ߚ

From Eq. 28 we deduce that the relationship ߩሺΩሻ is: ߩሺΩሻ = ͳͅ ቆߙ + �̂�ଶΩଶߚ − ͳቇ = ͳͅ ቆ𝜔eଶΩଶ − ͳቇ. (29) 

This relationship ensures that the elastic-bound equality conditions (Eq. 12) will be satisfied in the Duffing 
oscillator. Again, we expect that this relationship will satisfy the full elastic-bound conditions (Eq. 11) only over 
a certain window of ߩ and Ω. The properties of this window are determined by the Duffing parameters ߚ ,ߙ, 𝛿,  

 

**  Note that this is the same as saying that we seek ܨ±ሺ𝑥ሻ such that Eq. 10 is satisfied. This latter formulation 
does not necessitate that the system be split into ‘elastic’ and ‘inelastic’ components. 
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and �̂�, but they are difficult to define analytically. The critical states defining the boundaries of this window are 
given as the solution of: ܩሺ𝑡ሻ =  𝑠ሺ𝑥ሻ, (30)ܨ−

with 𝑥ሺ𝑡ሻ as per Eq. 24, and ߩሺΩሻ as per Eq. 29. We compute these critical states numerically. For instance, for ߙ ߚ ,1 = = 3, 𝛿 = 2, and �̂� = 1, we estimate, conservatively, that frequency-band resonant states exist within 
0.693𝜔e < Ω < 1.163𝜔e, for which −0.0650 < ߩ < 0.0441. This range is illustrated in Fig. 4. This demonstration 
of frequency-band resonance raises the possibility of energetically-optimal frequency modulation in a range of 
physical systems – we refer, in particular, to insects and FW-MAVs, for which wingbeat frequency modulation 
can be an important form of lift and thrust control. This illustrates the phenomenon that energetically-optimal (i.e., 
energy resonant) operation of linear and nonlinear systems is not restricted to a single resonant frequency, but is, 
in fact, available over a window of frequencies. Not that this effect is not a result of nonlinearity (it exists, for 
instance, when ߚ = Ͳ), but is a result of the damping in the system (𝛿: the width of the work loop in the elastic-
bound conditions, cf. Eq. 15). Damping allows energy-resonant behaviour over a range of frequencies – a 
remarkable physical phenomenon. 

7. Conclusion 

In this work we present several novel techniques of work-loop analysis, and demonstrate their theoretical and 
practical significance. Utilising them, we prove new optimality results for a wide class of nonlinear system, with 
implications for optimal system design and optimal control modulation in a range of engineering systems, 
including FW-MAVs. These optimality results have a range of implications in structural optimisation and optimal 
control – defining new designs for optimal biolocomotion system, and new principles for biolocomotive optimal 
control. They also illustrate a remarkable phenomenon. Energy-resonant states are not discrete, e.g., restricted to 
particular frequencies, but in fact, are available in windows of frequency. The existence of these windows is due 
not to system nonlinearity, but to system damping – damping allows energetically-optimal frequency modulation. 
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Summary. A novel friction model is introduced in order to describe lubricated sliding contact under unsteady or transient dynamic 

conditions. It is based on a state variable friction model consisting on a friction force equation and a state ones. Effective film thickness is 

introduced as the internal variable. Relaxation behaviour to reach the steady state film thickness is introduced via a first order differential 

equation. To obtain friction force, film thickness is interpreted as a sharing effect between solid interaction or confined lubricant and the 

lubricant film itself. Experimental results consisting on free dynamic responses of a sliding oscillating system under lubrication confirm the 

phenomenon captured by the proposed theoretical approach.  

Introduction 

Friction is a nonlinear phenomenon that occurs in a lot of mechanical systems including contacts. This is in particular  

the case of mechanisms which are often making use of contacting surfaces in relative motion (gears, cam and cam 

follower systems, rolling bearings, piston ring/cylinder liner contact, universal joints, etc.) for transforming input forces 

and motion. In order to simulate and analyze the dynamic behavior of such systems, it is necessary to choose friction 

law that can be able to describe and model it. A classical way to describe friction is to use the Coulomb friction or 

viscous friction models, or the combination of both [1]. Such friction models are very useful thanks to their simplicity. 

However, in many circumstances, they cannot accurately describe tribological behaviors. In the case of lubricated 

contacts, other models have been used to reproduce the well-known Stribeck behavior, but they usually ignore the 

dynamic effects [2]. In this context, the principal aim of this study is to introduce a novel approach which can describe 

lubrication in a relative simple way, and capture the dynamic lag effect of the film thickness settling [3]. Finally, 

comparisons between numerical and experimental results obtained from an original dynamic tribometer has been 

reported in this study. 

 The suggested friction model 

The proposed model is based on introduction of an internal state variables in the constitutive friction law. In this 

approach, modelling consists on a friction force equation coupled to a state equation, which can be formally written as  

 
𝑇 = ℱ(𝑣, 𝑦)

𝑦 = 𝒢(𝑣, 𝑦)
 (1) 

where 𝑦 is the internal state variable and ℱ(⋅) and 𝒢(⋅) are two nonlinear functions to be precise. The well-known rate-

and-state-variable friction law [4] which is formulated in term of an average contact lifetime as the internal state 

variable is a good example of this kind of formulation. In our novel model, we heuristically suggest to introduce the  

instantaneous film thickness as the internal state variable 𝑦. Indeed, this is the key to interpret transition between 

boundary and full film hydrodynamic regimes revealed by the popular Stribeck curve [5]. For the state equation, we 

propose a simple relaxation process governed by the following differential equation 

 𝑦 = (𝑌!! 𝑣 − 𝑦) 𝜏 (2) 

where 𝑌!! 𝑣  represents the film thickness to be reached. In this way, it corresponds to the steady state film thickness 

associated to the instantaneous sliding velocity 𝑣(𝑡). In addition, 𝜏 is the relaxation time associated to the exponential 

decay introduced by the equation (2). Concerning the friction equation, we introduced a mixed law given by 

 𝑇 = 1 − 𝛼 𝑇!" + 𝛼𝑇!" (3) 

Thus, the total friction force is assumed to be sharing between friction force 𝑇!" associated to the lubricant film itself 

and friction force 𝑇!" associated to solid interaction through surface roughness. In agreement with the Stribeck curve 

interpretation, the weight function 𝛼 = 𝛼(𝑦) introduces the effect of the film thickness 𝑦. Basically, it consists on a 

sigmoid function which increases monotonically from 0 to 1. Finally, the friction force component 𝑇!" is assumed to be 

constant, i.e. 𝑇!" = 𝜇𝑁sign(𝑣), and the friction force component 𝑇!" is assumed to be velocity-dependent through a 

power law 𝑇!" = 𝜂𝑁 𝑣
!sign(𝑣). 𝑁 represents the applied normal load and 𝜇, 𝜂 are two constants. 

The dynamic transient oscillating response under study 

As reported in previous works [1,6,7], we have designed and 

built a dynamic tribometer in order to quantify general trends of 

friction as a function of the sliding velocity. This experimental 

setup, described in Figure 1, is based on the measurement of 

transient responses 𝑥(𝑡) of an underdamped frictional single-

degree-of-freedom mass-spring oscillator. In the principle, a 
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moving mass 𝑚 slides in contact with the tribological system under study. 

The governing equation of motion can be written as follows 

 𝑚𝑥 + 𝑘𝑥 = −𝑇 (4) 

where 𝑘 is the spring stiffness. By considering the proposed friction model, it follows the first order equations 

 

𝑥 = 𝑣

𝑣 = −𝑘𝑥 − 𝑇 𝑣, 𝑦

𝑦 = (𝑌!! 𝑣 − 𝑦) 𝜏

 (5) 

with the friction force 𝑇 𝑣, 𝑦  defined by equation (3). In order to integrate equations (5), we have used a Runge Kutta 

numerical scheme of order 4.  

Results 

Figure 2 (a) shows example of an experimental velocity response. We can observe that it begins with a convex envelop 

and finish by a concave one. As shown in Figure 2 (b), this behavior is well captured by our model. From Figure 2 (d), 

this particular envelope can be interpreted by a transition from a full lubricant film force contribution to a dominant 

solid force contribution. This interpretation is confirmed by measurement of the electrical contact resistance (ECR) 

presented in Figure 2 (c). At the beginning, the separation between solids is total (the ECR is very high) and at the end 

full electrical contact is observed (the ECR has a low value). 

 

 

 
Figure 2: (a) Experimental and (b) simulated velocity responses; (c) experimental contact resistance; (d) ratio (1 − 𝛼) of the lubricant 

film force contribution. 
 

Conclusions 

The relevance of the proposed model is demonstrated in the light of comparison between numerical results and 

experimental ones. In particular, our new model can capture the transition related to the instantaneous film thickness 

which separates the two sliding surfaces, including the lag effect of the thickness dynamics. Now, ongoing work is 

conducted in order to relate the model parameters to the physical properties of the tribological contact. 
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Figure 1: Experimentally measured frequency response curves of the membrane with increasing excitation levels, in the 
vicinity of internal resonance conditions. 

 Nonlinear damping in graphene resonators undergoing internal resonance 
 
 Ata Keşkekler1, Oriel Shoshani2, Peter Steeneken1 and Farbod Alijani1 

1Precision and Microsystems Engineering, TU Delft, Delft, The Netherlands 

2Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 
  
Summary. We study the nonlinear damping of a nanomechanical graphene drum resonator. Laser interferometry is used to measure and 
optothermally actuate the resonator near an internal resonance condition. An unconventional nonlinear damping behavior is observed at the 
internal resonance frequency. A multimodal analytical model is constructed to understand the nature of this phenomenon and to relate the 
observed nonlinear damping to the physics of the system. 

Introduction 

Micro/Nano-mechanical systems are utilized in many technologies and often have been used for their sensing capabilities. 
An ideal framework for sensitive nanomechanical devices is 2-D materials, and especially graphene, due to its exceptional 
mechanical, electrical and thermal properties. By their atomically thin nature, these systems are fundamentally nonlinear. 
In addition to the geometric nonlinearities, graphene membranes also have nonlinear energy decay mechanisms[1]. 
Nonlinear damping in these devices is a fundamental limitation to their sensing capabilities yet its full understanding is 
an open question. Among different dissipation mechanisms, an important factor that is hypothesized to affect damping 
properties of graphene nanodrums is the intermodal couplings[2]. In this work, we study the nonlinear dynamics of a 
nanomechanical graphene resonator near its internal resonance condition to amplify the intermodal effects and uncover 
the physics between nonlinear damping and mode coupling. 
 
Experimental method and observations  
 
Experiments were conducted by optothermally actuating a graphene nanodrum while measuring its motion using laser 
interferometry. Optothermal actuation results in modulation of membrane tension, effectively creating a parametric 
excitation to the fundamental mode of the membrane that has an eigenfrequency 𝜔ଵ and direct excitation to a secondary 
mode of the membrane that has an eigenfrequency 𝜔ଶ ≈ 2𝜔ଵ. We take advantage of this to investigate the effects of 
intermodal couplings and internal resonance on the nonlinear damping by exciting the membrane with an actuation 
frequency of 𝜔ி ≈ 2𝜔ଵ, which drives both modes resonantly. We experimentally study the membrane frequency 
response curves (Figure 1). By increasing the excitation level, we utilize the hardening type geometric nonlinearity of 
the system to match the internal resonance condition between these two modes. At the vicinity of internal resonance, we 
observe frequency “locking” at higher drive powers, where the increase in resonance peak with respect to the excitation 
amplitude is almost zero. We found that forcing the system even further breaks the “locking” barrier, causing a dramatic 
increase in amplitude and frequency of the parametric resonance, which we refer as “shooting”. 
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Figure 2: Steady state frequency response of the analytical model revealing the 
source of “shooting” behavior observed in the experiments, which is annihilation 
of saddle-node bifurcations. 

Figure 3: Effective nonlinear damping with respect to intermodal coupling 
strength and excitation frequency. Nonlinear damping is maximum at the 
internal resonance condition. 

Analytical model and results 
 
Parametric resonance of nanomechanical systems is commonly modelled by using a single Mathieu-van der Pol-Duffing 
equation [3]. This model is only viable for nonlinear dynamic characterization far from the internal resonance as it will 
imply a varying intrinsic nonlinear damping for high driving powers in the vicinity of internal resonance, which has no 
physical foundations. This is clearly because of the intermodal effects, that necessitate multimodal modelling of the 
system. To capture the dynamics at the vicinity of internal resonance, we add to the Mathieu-van der Pol-Duffing single-
mode model, a secondary linear oscillator that is directly driven by the excitation. We couple two modes by terms that 
arise from the nonlinear potential of 2:1 internal resonance 𝑈 = 𝛼𝑥ଵଶ𝑥ଶ (i.e., the coupling terms are: −𝜕𝑈/𝜕𝑥ଵ for 
the primary mode, and −𝜕𝑈/𝜕𝑥ଶ for the secondary mode): 
                  �̈�ଵ + 𝜔ଵଶ𝑥ଵ + 𝛾𝑥ଵଷ + 2𝛼𝑥ଵ𝑥ଶ = 𝐹ଵ𝑥ଵ 𝑐𝑜𝑠(𝜔ி𝑡) − 2�̇�ଵ(𝜏ଵ + 𝜏𝑥ଵଶ) �̈�ଶ + 𝜔ଶଶ𝑥ଶ + 𝛼𝑥ଵଶ = 𝐹ଶ 𝑐𝑜𝑠(𝜔ி𝑡) − 2𝜏ଶ�̇�ଶ 

 
where 𝛾 is the Duffing coefficient, 𝛼 is the intermodal coupling strength, 𝐹ଵ is the parametric excitation level, 𝐹ଶ is the 
corresponding direct forcing level and 𝜏, 𝜏  are the linear and nonlinear damping coefficients respectively. By analyzing 
the slow dynamics of the system, we reveal the modification of system parameters due to modal coupling, near the internal 
resonance condition (2𝜔ଵ ≈  𝜔ଶ). Using the intrinsic parameters of the modes for analysis, characterized by analyzing 
the uncoupled nonlinear response measurements, it is possible to see that the biggest effect of modal coupling is on the 
nonlinear damping. Additionally, the nature of the dramatic amplitude increase after the internal resonance is discovered 
by the bifurcation analysis of stationary solutions. The stationary (steady-state) solutions of the equations cease to exist 
in the vicinity of the internal resonance (see Figure 2) due to saddle-node bifurcation points. The annihilation of the 
bifurcation points connects two solutions branches, triggering the “shooting” phenomenon and can be used to characterize 
the coupling strength between the modes.  
 
 
 
 
  

 

 

 

 

 

 
Conclusion 

We report on nonlinear damping variation via 2:1 internal resonance in graphene nanomechanical resonators. We observe 
a massive increase in damping in the vicinity of internal resonance that is followed by a bifurcation causing a dramatic 
increase of amplitude and resonance frequency. To understand this phenomenon, the resonator has been modeled by a 
two-modes dynamical system undergoing a 2:1 internal resonance, which successfully explained the observations. This 
work shows a possible nonlinear dynamics methodology to characterize the intermodal coupling of nonlinear resonators 
by operating them in an internal resonance condition. 
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Parametric resonance of a shallow arch microbeam for sensing applications
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Summary. In this work a clamped-guided shallow arch microbeam is considered. The actuation of the microbeam is both through a
transverse and axial electrostatic forces. The considered equation of motion takes into account the initial rise of the microbeam and
the sliding degree of freedom at the guided side. The static and free vibration problems are solved using the Differential Quadrature
Method. The results are validated with previously published experiments found in the literature. The model is able to reproduce
experimental findings regarding fundamental resonance and parametric resonance of the first mode.

Introduction

Parallel-plate based MEMS actuators are limited by the occurrence of pull-in in the static and dynamic regimes. An exam-
ple of design improvement was proposed by Abu-Salih and Elata [1], where they introduced a curved microbeam obtained
by buckling. Ouakad and Younis [2] proposed to analyze the nonlinear dynamics of curved microbeam using perturbation
techniques. They concluded that the initial deflection of the curved beam strongly affects its behavior. Therefore, it can
be used as control parameter to tune the response of the device. Recently, Ramini et al. [3] developed and experimentally
tested a design in which the initial gap of the arched microbeam can be tuned using a transverse electrostatic parallel plate
actuator. The design allows also the introduction of a parametric excitation through the applied axial force. Excitations
at secondary resonances generate large stroke actuation generally unachievable by classical MEMS actuators. The device
fabricated and tested by Alcheikh et al. [4], depicted high tunability up to 160% for the first and third mode shapes.
Ouakad et al. [5] demonstrated that three-to-one and one-to-one internal resonance are achievable by controlling the ini-
tial rise of the arched microbeam. The proposed work aim to model an arched microbeam with an applied electrostatic
axial force. The proposed mathematical model should reproduce the experimental finding of the previously fabricated
shallow arch microbeams.

Problem Formulation

Figure 1: Clamped-guided shallow arch microbeam with transverse and axial excitations.

We consider a clamped-guided shallow arch given by Figure 1, of initial shape w0(x), width b, thickness h, length L,
modulus of elasticity E, cross sectional are A = bh, moment of inertia I , mass density ρ and M and k are the mass
and stiffness of the moving side electrode. The axial displacement is denoted by u(x, t) and the transverse displacement
is denoted by w(x, t) and assumed to be around the initial curvature w0(x) (Figure 1). Using the Euler-Bernoulli beam
theory and the von Karman nonlinear strain, the extended Hamilton’s principle is used to derive the governing equations
and boundary conditions. They are given as follows:

ρAẅ + EIw′′′′ + cẇ = NL (w′′ + w′′
0 ) +

ǫbV 2
1

2(d+ w + w0)
2 (1)

M ẌL + kXL =
ǫApp(V2 + VAC cos(2nπft))2

2(g −XL)
2 −NL (2)

w(0, t) = 0, w′(0, t) = 0, w(L, t) = 0, w′(L, t) = 0 (3)

NL(t) =
EA

L

[
XL +

1

2

∫ L

0

(
w′2 + 2w′w′

0

)
dx

]
(4)

where n = 1 or 2 for the fundamental and parametric excitations, respectively.
Equations 1 to 4 are solved using the Differential Quadrature Method (DQM) for the space derivative and then the Finite
Difference Method (FDM) is used to calculate limit cycle solution [6].
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Figure 2: (a) Variation of the static deflection w(L/2) with respect to V2 for d0 = 2.6µm. (b) Variation of the first natural frequency
for d0 = 2.6µm.

Figure 3: Frequency-response curves of the midspan transverse deflection and axial displacement for V2 = 3V and VAC = 5V when
d0 = 2.6µm and f1 = 15.27kHz. (a) Fundamental resonance, (b) Principal parametric resonance of the first mode.

Static and free vibration of the microbeam

The static response of the microbeam is shown in Figure 2-a. Only the effect of the side voltage V2 has been considered
here. As shown, the static response of the transverse deflection at midspan w(L/2) is highly constrained when the
microbeam recover a straight position at w(L/2) = d0. The axial displacement at x = L, expressed by XL, is responding
as a classical electrostatic parallel plate actuator. The dashed branches denote unstable solutions. The free vibration
problem is also solved under the effect of the applied side voltage V2. The results shown in Figure 2-b are compared with
those obtained experimentally by Alcheikh et al. [4]. As shown, very good agreement is obtained.

Fundamental resonance and parametric resonance of the first mode

The frequency-response curves for the fundamental resonance are shown in Figure 3-a for the midspan transverse deflec-
tion and axial displacement. A softening behavior is deduced from the simulations. A similar behavior is observed for the
parametric resonance of the first mode in Figure 3-b. Also here, dashed branches denote unstable solutions.

Conclusions

We proposed a nonlinear dynamic analysis of a clamped-guided shallow arch microbeam. The governing equations and
associated boundary conditions are derived and the solved using a combination of Differential Quadrature Method, for the
space derivative, and the Finite Difference Method for the limit-cycle solutions. The static and free vibration responses
have been simulated for the transverse and side displacements. The variation of the fundamental frequency with respect
to the applied side voltage is compared and validated with published experimental results. The frequency-response curves
showed that both fundamental and parametric resonances are possible in accordance with previously reported experimental
analyses.
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Summary. This study investigates the nonlinear damping in in-plane micromachined electromechanical resonators theoretically and 
experimentally. More specifically, precise experiments are performed on an electrically actuated micromachined bridge resonator and the 
response of the system in the primary resonance region is captured at various AC voltage levels. For the theoretical part, a nonlinear Euler-
Bernoulli beam theory is utilised taking into account the geometric, electrostatic, and damping nonlinearities. A general cubic damping model 
and a Kelvin-Voigt model are considered in the theoretical model. A high-dimensional discretisation is carried out by retaining 10 modes in 
the Galerkin discretisation. Extensive comparisons are conducted between the experimental data and the theoretical results at different AC 
voltage levels. It is shown that the resonator exhibits strong nonlinear damping. Different damping models are compared to examine the 
performance of each model in capturing the damping nonlinearity. 

Introduction 

Nonlinearly driven micro-electromechanical (MEMS) resonators have drawn increasing attention in the recent decades 
by wide-spreading potential applications, such as frequency stabilization, filtering, and sensing [1]. Nonlinear vibration 
of these movable structures has been intensely investigated theoretically and experimentally, chiefly for the 
electrostatically driven MEMS resonators. A key property affecting the nonlinear vibration of MEMS resonators is 
damping, in which a variety of physical mechanisms could contribute (e.g., thermoelastic, squeeze film damping, 
nonlinear mode coupling, and linear viscous damping) [2,3]. As driven the system nonlinearly, the energy dissipation 
tends to deviate from the linear viscous dissipation and start to vary nonlinearly. Despite the deep study of the nonlinear 
energy dissipation (or nonlinear damping) in the recent decades [4,5], there is still no comprehensive study on nonlinear 
damping in MEMS resonators electrostatically driven with relatively large gaps. The present study thoroughly 
investigates the nonlinear damping in micromachined electromechanical resonators using carefully conducted 
experiments and an accurate nonlinear theoretical model.  

Experimental set-up and theoretical model 

In this study, a clamped-clamped in-plane microbeam made of silicon is considered, which is of length 𝐿, width ܾ, cross-
sectional area 𝐴, second moment of area 𝐼, Young’s modulus 𝐸, mass density 𝜌, and material damping coefficient 𝜂,. 
The microbeam is excited by a stationary electrode separated from the microbeam with a large transduction gap, Fig.1(a). 
To minimize the effect of squeeze film damping, the microbeam is placed in a vacuum chamber with a pressure of 
950mTorr set throughout the experiments. Hence the squeeze film damping effect will be neglected in the theoretical 
study. The nonlinear equation of motion for the MEMS resonator under consideration is derived using the Euler-Bernoulli 
beam theory and utilising a Kelvin-Voigt model, resulting in a nonlinear damping mechanism. Apart from the Kelvin-
Voigt damping, a general nonlinear cubic damping mechanism (for the transverse motion ݓ) is modelled as well. The 
equation of motion can be derived as 𝜌𝐴߲𝑡𝑡ݓ + ܿଵ߲𝑡ݓ + ܿଶ߲𝑡ݓ|߲𝑡ݓ| + ܿଷሺ߲𝑡ݓሻଷ + 𝐸𝐼 �߲�𝑥𝑥𝑥ݓ + 𝜂𝐼߲𝑡𝑥𝑥𝑥𝑥ݓ − 𝐸𝐴2𝐿 �߲�𝑥ݓ∫ ሺ �߲�ݓሻଶ d 𝐿ݔ

− 𝜂𝐴2𝐿 �߲�𝑥ݓ∫ 2 �߲�߲ݓ𝑡𝑥ݓ dݔ𝐿
 − 𝜀ܾ[𝑉DC + 𝑉AC cosሺ߱𝑡ሻ]ଶ2ሺ݀ − ሻଶݓ = 0, 

in which ܿଵ, ܿଶ, and ܿଷ are damping coefficients and ݀ is the MEMS gap width. 

(8) 

The equation of motion is first recast into nondimensional form and then discretised into a set of nonlinearly coupled 
ordinary differential equations via use of Galerkin technique, considering 10 degrees of freedom. The resultant set is 
solved using a continuation technique. 

Results and Discussion 

In this section, the nonlinear resonance response of the MEMS resonator is examined in detail and thorough comparisons 
are conducted between the theoretical predictions and experimental data. Different linear and nonlinear damping models 
are examined to determine which model better predict the dissipation in the system. All models are calibrated once and 
then the damping coefficients are kept fixed as the AC excitation level is increased. Four cases are examined, namely the 
linear viscous damping model, Kelvin-Voigt damping, cubic nonlinear model (ܿ ଵ and ܿଷ) and general quadratic-cubic 
model. In the results shown in Figs.1(b)-(e), ߱ଵ denotes the primary nondimensional natural frequency of the microbeam, Ω stands for the nondimensional frequency of excitation, and ݓ𝑑  indicates the nondimensional midpoint transverse 
oscillation amplitude (with respect to ݀), measured from the deflected configuration. In all the theoretical results, solid 
and dashed lines denote stable and unstable periodic solutions, respectively. 
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Figure 1: (a) Experimental setup with 3D schematic of the microbeam with length 800 µm, thickness 2.9 µm, width 25 
µm, and transduction gap 8 µm. (b, c) Frequency responses of the MEMS resonator at 𝑉ୈେ = 5 V and three AC voltages 
(shown on the curves) based on linear and Kelvin-Voigt damping models, respectively. (d, e) Frequency responses of the 
MEMS resonator at 𝑉ୈେ = 5 V and various AC voltages (denoted on the curves), based on cubic and general quadratic-
cubic models, respectively. 
 
Figs.1(b) and (c) correspond to linear and Kelvin-Voigt damping, respectively. For both cases, the frequency response 
for 𝑉Aେ = 5.5 V is used to calibrate the damping coefficient which is then kept fixed as the AC voltage is increased to 
larger magnitudes. As seen, both damping models overestimate peak oscillation amplitudes for both AC excitation levels. 
The results for the cubic damping model are shown in Fig.1(d); for this damping model, the coefficients ܿଵ and ܿଷ are 
calibrated using the two lower-amplitude frequency responses, i.e. those for 0.4 and 5.5 V. The damping coefficients are 
then kept fixed and the frequency responses at other AC voltages are obtained and compared to the experimental data. It 
is seen that the cubic model captures the nonlinear damping in the system with a good accuracy; however, it slightly 
underestimates the peak amplitude, and this becomes more visible at higher AC voltage levels. The final model examined 
is the general quadratic-cubic damping model and the result for this case is shown in Fig.1(e). This model requires three 
frequency responses for calibration of three damping coefficients. As seen, this model has the best accuracy in predicting 
the primary resonance response amplitudes at various AC voltages among all damping models examined. 

Conclusions 

This study conducted a theoretical-experimental investigation on the nonlinear damping in in-plane MEMS resonators. It 
was shown that both linear and Kelvin-Voigt models overestimate the peak amplitude at higher excitation levels. The 
general quadratic-cubic damping model showed excellent agreement with experimental data and worked best among 
different models. 
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Drag Forces in Non-Uniform Cantilever Beam Oscillating in Viscous fluid
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Summary. Sensitiveness of the micro-mechanical cantilever beams strongly depends on the fluid damping such as damping due to
drag and squeeze film. There have been many studies associated with drag force computation in uniform cantilever beam oscillating in
isolation. In this work, we are presenting drag force computation in non-uniform cantilever beam with linear and quartic converging
and diverging widths. Finally, we find the variation of added mass effect and quality factor based on drag force as a function of degree
of non-uniformity, i.e., tapering parameter. It is found that the quality factor increases for converging beam and decreases for diverging
beam. The effect is found to be more in quartic varying beam.

Introduction

Micro-Electro-Mechanical Systems (MEMS)/ Nano-Electro-Mechanical Systems (NEMS) such as biosensors, atomic
force microscope, etc., generally operate in fluid. Therefore it is essential to compute drag forces due to fluid and structure
interaction [1]. To compute drag forces in uniform cantilever beam, there exist formulas to compute fluid damping and
added mass effect of a rigid circular cylinder oscillating with certain frequency in air [2]. To generalize the formula for
arbitrary cross-section, Tuck [3] had developed formulation to compute drag forces and added mass effect. Although,
generalized formula is written in terms of unknowns pressure and vorticity it appears little complex. However, he also
extended it to a thin ribbon having zero thickness. To further include the effect of mode shape and rectangular section,
Sader [4] modified hydrodynamic function for cantilever beam with rectangular section by modifying the hydrodynamic
function of circular cylinder given in [2]. Zhang et al. [5] obtained more explicit form of drag force and add-mass
effect in cantilever beam. However, all the previous study are limited to uniform cantilever section with circular or thin-
rectangular sections. In this study, we compute the drag forces in non-uniform cantilever beam based on the mode-shapes
and frequencies of corresponding converging and diverging beams and compare it with that of uniform beam.

Theoretical model for non-uniform beam

The oscillations of a cantilever beam in a viscous fluid is governed by a linearized unsteady Stokes equation −iωρv =
−∇p + µ∇2v,∇.v = 0. Fourier transformed unsteady Stokes equation is solved using the stream function [3], where,
ω frequency of oscillation, velocity v and pressure p is obtain by transforming above equation into vorticity equation
and pressure harmonic equation ∇2p = 0 [3]. Assuming the velocity of vibrating beam in z-direction with velocity,
u = u0e

iωt[1], where, u0 is the maximum amplitude of the vibration, the hydrodynamic function is found by integrating
pressure along beam width in terms of Reynold’s number (Re = ρωb2

µ , where, b is the width of beam) [3]. Subsequently,
damping coefficient at each section of the beam is found from imaginary component of hydrodynamic function and then
the modal damping. To compute the force for a thin beam with converging and diverging widths, we use the corresponding
frequencies and mode shapes obtained by Sajal et al.[7]. Here, the beam width is taken as b = b0(1 + α xL )

n, where,n =
1(linear),n = 4(quartic), α is tapering parameter varying from -0.5 to 0.5. For converging beam, it is negative and for
diverging beam it is positive. The mode shape of non-uniform beam is given by w(x) = v(x)

σ(x) , where, v(x) is the exact
mode shape of the uniform beam, σ(x) is function to capture non-uniform effect which is taken for linear variation in width
as σ(x) =

√
1 + α xL and for the quadratic as σ(x) = (1 + α xL )

2 [7]. The area and area moment of inertia of the beam

section also vary with width. The different modal frequencies ω = (λl )
2
√

EI
ρbA

of the non-uniform beam are obtained

by solving the characteristic equation of the beam [7, 6], where, λ for linearly tapered beam are 4.3119, 4.0978, 3.922,
3.7710, 3.6420, 3.5160, 3.4129, 3.3208, 3.2368, 3.162, 3.0958 for tapering parameter are -0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1,
0.2, 0.3, 0.4, 0.5. The corresonding λ for quartic case are 7.558, 6.2981, 5.3361, 4.5882, 3.9940, 3.516, 3.1241, 2.7989,

2.5259, 2.294, 2.0961. Finally, quality factor (i.e Q = mass×ω
Cdavg

) and the modal damping coefficient Cdavg =
∫ L
0
cdxw

2(x)dx
∫ L
0
w2(x)dx

are computed.
Results and Discussion

For a non-uniform microbeam as shown in Figure 1(a) undergoes vibration in ambient air of viscosity of 1.8× 10−5 kg
m−s

) which induces fluid damping and added mass. To compute these quantities, we take a microbeam of density ρ =
2300kg/m3, elastic modulus, E = 62.5Gpa, width at fixed end as b0 = 40µm, length L = 200µm, and thickness
h0 = 0.965µm. To compare the influence of drag forces and added mass, we plot the hydrodynamic function per velocity
for free end width corresponding to tapering parameters of (α = −0.5, 0, 0.5) as shown in Fig 1(b)-(e) for both linear and
quartic converging diverging beam. Figure 1(b) and Fig 1(c) represent the added-mass and damping effect, respectively,
for a linear converging diverging beam. The trend of both the curve show decrease in their value as Re increase. Similarly,
for the quartic converging diverging beam, Fig 1(d) and Fig 1(e) show that the added-mass and damping effect similar
trend. However the effect is more pronounced in quartic beams. For validation, we have also compared the results
of uniform beam (α = 0) results with circular cylinder case mentioned in [2]. Subsequently, for frequency variation
as shown in Fig 1(f) from [7], Fig 1(g) and Fig 1(h) show variation of damping coefficient and added-mass of non-
uniform beam with different tapering parameters for linear and quartic varying beams. As the tapering ratio increases,
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Figure 1: (a) A typical cantilever beam; Variation of hydrodynamic function with Re for α = −0.5, 0, 0.5 to capture (b)added-mass and
(c)damping coefficient of linearly varying beam, and (d) added-mass and (e) damping coefficient of quartic varying beam. Variation of
(f) non-dimensional frequency, (g) coefficient of drag, (h) added mass, (i) Quality factor of converging-diverging beam with tapering
ratio α.

overlaping/wet area increases which lead to increase in damping and reduction in added mass effect. Finally, the variation
of quality factor for liearly and quartic beam are shown in Fig 1(i). It shows that quality factor increases for converging
beam and decreases for diverging in both types non-uniform beam. The results presented here will be useful in designing
non-uniform beam based mass sensors [8].

Conclusions

We have computed damping coefficient and added mass effect due to drag forces in non-uniform cantilever beam based
on semi-analytical method. For free-end width of non-uniform beam corresponding to α = −0.5, 0, 0.5, we compare the
hydrodynamic functions corresponding to damping and added mass effect per unit length. Subsequently, we find modal
damping coefficient and modal added mass effect linear and quartic varying beam with α = −0.5, 0, 0.5. It is found that
damping effect increases with increases in tapering parameter. The corresponding quality factor increases with decrease
in tapering parameter. Such variation can be useful in optimizing the performance of non-uniform cantilever sensor.
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Data driven identification of tip-sample interaction in atomic force microscopy
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Summary. Dynamic AFM is transitioning from a high-resolution imaging tool to a nanomechanical probe that can perform precise
quantification of matter in fields as varied as microbiology, molecular metrology, and material science. To date, this has been achieved
by estimating the nanoscale forces that exist between the probe and the sample, using empirical models that are merely approximations
of the true probe-sample interaction physics. Here, we go beyond such approximations by making use of the recent advances in data-
science and machine learning to distil nonlinear governing equations of dynamic AFM, and thus predict tip-sample forces directly from
experimental raw deflection data. Our data-driven algorithm obtains physics-based models from experiments and is able to estimate
time-resolved nanoscale interactions with sub-microsecond resolution.

Introduction

Dynamic atomic force microscopy (AFM) has become an indispensable tool for resolving mechanical, chemical and bi-
ological properties of samples at nanoscale. The precise quantification of materials at the nanoscale is achieved with
accurate estimation of the tip-sample interaction force. However, dynamic AFM in contrast to its name does not measure
directly the interaction force while imaging in any of its modalities. Instead, the interaction force is often reconstructed in-
directly by combining different information channels like the frequency, amplitude and phase of the oscillating cantilever,
while modulating the height of the probe above the sample surface [4]. The existing reconstruction techniques in dynamic
AFM posses several drawbacks such as inability to resolve instantaneous tip-sample force, requiring a priori knowledge
on the transfer function of the cantilever or large number of harmonics, which makes them cumbersome and inefficient
to study the fast processes encountered in biological and chemical systems [3]. Thus a generalized approach for dynamic
AFM that allows direct access to time-resolved surface forces irrespective of the chosen probe-sample configuration is
currently missing.
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Figure 1: Schematic of the identification process. The data (orange trajectories) from the AFM setup is used as input
to the sparse identification algorithm. The algorithm determines the governing model of the system and predicts the
corresponding dynamics as shown by the blue phase space trajectories.

In this regard, here we demonstrate that data-driven identification applied to dynamic AFM experiments can provide phys-
ically interpretable models and simultaneously estimate the time-resolved interaction forces. We make use of the recent
advances in sparse identification [1] and machine learning [2] techniques to identify the governing equations directly from
the experimental measurements. In contrast to existing methods, the data-driven approach has no inherent assumptions on
the type of interactions or mathematical models but relies solely on the measurements and thus can be generalized to any
cantilever-sample configuration. Furthermore, based on the identified governing equations, our method also quantifies
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the tip-sample force with a sub-microsecond resolution. We showcase this experimentally by using the data-driven algo-
rithm on the temporal data obtained from a silicon cantilever interacting with a two-component polymeric sample made
up of Polystyrene (PS) and Low-Density-Polyethylene (LDPE). The results and insights obtained from the identification
procedure are in excellent agreement with the expected tip-sample interaction mechanism in polymers. In particular, we
showcase the variation in contact duration, peak loading forces in stiff and compliant materials as well as highlight the
ability of the technique to probe transient surface forces and capture the hysteresis phenomenon. A schematic of such an
identification is shown in Fig. 1.

Methods and Results
In order to characterize the tip-sample force in experimental scenario, we first begin by training the algorithm on several
standard AFM models such as Derjaguin-Muller-Toporov (DMT), Johnson, Kendall and Roberts (JKR) and Lennard-
Jones (LJ) among others. This step allows us to expand the library of functions which is used to reconstruct the tip-sample
nonlinearities from polynomials, trigonometric terms to specific nonlinear functions that are capable of describing the
nano-scale forces encountered in dynamic AFM. We present in Fig.2 the identification results on synthetic data obtained
from DMT model. Here, Fig.2(a) shows the identified dynamics (Orange) and the original dynamics (blue) of the system
in a 2D phase-space portrait. Whereas, Fig.2(b) shows the identified versus the original co-efficients of the dynamical
system governed by DMT tip-sample interaction force. The difference in the identified co-efficients is attributed to the
noise added to the synthetic data to mimic the experimental conditions. By utilizing the co-efficients of the identified
system, the tip-sample force is re-constructed with sub-microsecond resolution.
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Figure 2: Identification of DMT model dynamics. (a) Identified (orange) trajectories from data driven analysis superim-
posed on the original trajectories (blue) obtained from simulations. (b) Map showing the strength of identified versus the
original coefficient values used in the simulations.

Conclusion

We report here a novel approach at identifying the governing equations of motion and the associated tip-sample force
in dynamic AFM using machine learning and data science techniques. The data driven algorithm based on sparse iden-
tification is trained on standard AFM models and a condensed library of functions capable of identifying experimental
tip-sample interaction mechanics is determined. To highlight the capability of the technique, numerical simulations with
noise corrupted synthetic data and experiments on polymer materials are performed. The analysis of the results show that
the technique is able to obtain the dynamical trajectory of the underlying system without any prior assumption on the na-
ture of tip-sample interaction. The method thus opens a completely new window into using machine learning algorithms
in AFM nano-characterization with real-time data as well in developing novel feedback architectures and high-speed
imaging.
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 Asymptotic solutions of singular perturbed system of transport equations 
with small mutual diffusion in the case of many spatial variables 

  
 
 Nesterov Andrey 

* PLEKHANOV Russian University of Econonics, Moscov, Russia 

 
  
Summary. We construct an asymptotic expansion on a small parameter of the solution of the Cauchy problem for a singularly 
perturbed system of transport equations with small nonlinearity and mutual diffusion describing the transport in a multiphase medium 
for many spatial variables.  The asymptotic expansion of the solution is constructed as a series in powers of a small parameter and 
contains a functions of the boundary and inner layers. The main part of the asymptotics is described by one equation, which under 
certain requirements on the nonlinearity and diffusion terms is a generalization of the equation Burgers -Korteweg-de Vries in the 
case of many spatial variables. 
 

 Statement of the problem 

The asymptotic expansion  (AE) of the solution of the Cauchy problem for a singularly perturbed system of transport 
equations with small nonlinearity and diffusion is constructed 

2 3

1 1

( ) ( ) ( ) , , 0,

( ,0) .

i i j

m m

t i x ij x x
i i

U DU AU F U B U U x t

x
U x H

  




 

      

   
 

 
                     (1)-(2) 

Here U ={u1,...,un} is the solution, 0<İ<<1 is a small positive parameter, Di   is a diagonal constant matrix, the function 
F(U)  and  the matrix Bij(U)  are smooth enough, smooth function ω(x) is rapidly decreasing together with all 
derivatives. Matrix A has a single zero eigenvalue, which corresponds to the eigenvector h0 , vector h*0 - eigenvector of 
the matrix AT, corresponding to the zero eigenvalue, non-zero eigenvalues of the matrix A is imposed condition Re λ <0. 
Below, without limiting generality, we put (h0,h0*)=1 . Additionally, it is required that  

     0 0, * 0,   * 0  , , 1,..., ,Re 0 0. T

ijF Z h B Z h Z i j m                            (3) 

Such systems of equations can describe the transfer of substances in multiphase media. 
The AE of the solution  up to order N  (determined by the smoothness of the input data) is constructed by the method of 
boundary functions [4] and has the form 

 0

2

0 0 0 0

( , ) ( ( , ) ( , )) ,

( ) / , / , / , {( , ) / ( , ), 1,..., }.

N
i

i i N N N
i

i

U x t s t R U R

x Vt x t V D h h h h i m

    

     


 

    

     


                                           (4) 

The construction of AE members is described in detail in [1], [2], [3] and others. In accordance with the boundary layer 
method of A. V. Vasilyeva and V. F. Butuzov [4] we present nonlinear function F(U) in the form 

( ) ( )  ( ) ( ( ) ( ))  ( ( ) ( ))

( ( ) ( ) ( ) ( )) .

F U F U S R F U F U S F U F U F U

F U S R F U S F U F U F SF F RF

           

            
                                                                      

A similar representation is made for B(U)  
( )  .B U B SB B RB     

 Construction of asymptotic expansion of the solution 

  
Construction     regular part  AE   
Regular part  AE  have the form   

0

( , ) ( , ).
N

i

i
i

U x t u x t



                                                                                                                             (5) 

The term   U plays a supporting role.     
Substitute the expantion  (5) in the system (6)  

 
2 3

1 , 1

( ) ( ) ( ) , ,1 , 0,
i i j

m m

t i x ij x x i
i i j

U DU AU F U B U U x i m t  
 

                              (6)                                             

and  we obtain the equations for the terms of the expansion [4]:  
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 The equation at İ is solvable by   condition (3). 
Hence 

0 0 0

1 1 0 0

( , ) ( , )

( , ) ( , ) ( ),

u x t u x t h

u x t u x t h GF u


    
 Here G is a pseudo-inverse to A operator, u0 and u1 are some scalar functions. 
We write down the condition of solvability of the equation at İ2: 

0, 0, 0 1 0
1

( ( ) , * ) 0.
i

m

t i x u
i

u Du F u u h


  
                    

From condition (3) follows 0( ( ) , * ) 0 .uF Z h     

 Therefore the solvability condition gives the equation for u0 

     
0, 0, 0 0

1

0, ( , ).
i

m

t i x i i
i

u Vu V Dh h


  
                                                                                                       (7) 

 From the regular part of initial conditions
0( ,0) 0u x   it follows 0( , ) 0 , .u x t x t   

Similarly, all other  ui  are zero.  The values 
iV will be used below. 

 
Construction S function 
S function have the form  

  0

( , ) ( , ), ( ) / , 1,..., .
N

i

i i i i
i

S t s t x Vt i m    


   
                                                                  (8) 

Vi defined by the formula (7). 
Function S is the solution of the system  

2 3

1 , 1

( ) , , 0.
i i j

m m

t i x ij x x
i i j

S D S AS SF SB S t   
 

       
                                                       (9) 

Moving to the variables ( , )t   taking into account 0,U  we get 

   

2 3

1 , 1

( ) ( ) ,

.

i i j

m m

t i ij
i i j

i i i

S S AS F S B S S

D V

     
 

    

  

 

                                                                (10) 
 
Than we obtain the equations for the terms of the expansion [4]  
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From here, taking into account the condition (3), we get 

 

0 0 0

1 1 0 1

( , ) ( , ) ,

( , ) ( , ) .

s t t h

s t t h GQ

  

  



 
 

We write down the solvability conditions of the equation at İ2: 

2 0 0, 1, 0 1 1, 0
1 , 1

( , * ) ( ( ) , * ) 0.
i i j

m m

t i u ij
i i j

Q h s s F s s B s h  
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 Substituting here the expression for s1 and taking into account the conditions (3) as well as equality 

0 0 0 0( , * ) (( ) , * ) 0, i i ih h D V h h   
     

 we obtain equation for determining0 . Let's introduce notation 

 

0 0 0 0 0 0

, 0 0 0 0

, 0 0 0 0 0

( , * ) ( , * ) , ( , * ),

( ) ( ( ), * ),

( ) ( ( ) , * ).

ij i j j i ii i i

i eff i

ijk eff k ij

M G h h G h h i j M G h h

F GF h h

B GB h h h

 

 

          

  

  
 

Then the equation for determining0   can be rewritten as 

 
0, 0, , 0 , 0 0,

, 1 1 , , 1

( ( )) ( ( ) ) 0.
i j i i j k

m m m

t ij i eff ijk eff
i j i i j k
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                                                           (11) 

In the expanded form the equation has the form 

0, 0, , 0 0,
, 1 1

, 0 0, , 0 0, 0
, , 1

( )

( ( ) ( ) ) 0.

i j i

i j k i k

m m

t ij i eff
i j i
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ijk eff ijk eff
i j k

M F

B B

  

     

   

    

 



  

  

 


                                                                                (12) 

We will impose an additional condition  

2

, 1 1

0 0.
m m

ij i j i
i j i

M z z z
 

   
 

To obtain the equation for sn, n≥1, we write the expansion terms of order İn, İn+1 and İn+2  : 

 2,: , , 1, 2,j

j j t jAs s Q j n n n     
 

where Q 1 is defined above, and Q p  for p>1  is expressed in terms of previously found  sp-1   

1, 0 1 1,
1 , 1

( ) , 2,3,...
i i j

m m

p i p u p ij p
i i j

Q s F s s B s p    
 

     
 

From the relations for j=n,n+1 it follows that 

 0 ( , ) , , 1,j j js h t GQ j n n    
 

where φ n, φ n+1 are as yet unknown functions. 

Writing the solvability condition  , 2 0, * 0n t ns Q h  of the equation for s n+2   

after exception of s n+1  , we obtain the equation for s n .    Adding a designation 

 , 0 0 0 01 ( ( ) , * ),i eff iF GF h h h  
 

taking into account the notations introduced earlier, the linear equation for  φ n  can be rewritten as 

   

, , , , 0 ,
, 1 1 , , 1

, 0 0
, , 1

( 1 ) ( ( ) )

(( ( )) ) ( , ), 1.

i j i i j k
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i j i i j k

m

ijk eff n n
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M F B
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                                                             (13) 

where Φ n is expressed by the previously found φ j, j<n. 
 
Construction Π function 
To satisfy the initial conditions the function П  is constructed.  
Π function have the form  

2

0

( , ) ( , ), / , / ,
N

i

i
i

p x t        


   
                                                                                  (14) 

produced as standard [4].  Function Π is the solution of the system  

1 , 1

, , 0,
i i j

m m

i ij
i i j

D A F В       
 

            
                                                           (15) 

together with satisfies the initial conditions and is a boundary layer function 

( ,0) ( ,0) , ( , ) 0.
x

S H


    
 

     
    

ENOC 2022, July 17-22, 2022, Lyon, France

1168



 

4 

 

ENOC 2020, July 5-10, 2020, Lyon, France 
 

The main term is defined as the solution of the system 

   
0, 0, , 0.p Ap    

                                                                                                                 (16) 
The initial conditions for φ 0 and  p 0 are defined together, with the addition of the constraint condition p 0 at τ→∞: 

0 0 00
( ,0) , ( , ) .

t

x
p U x H p  



      
                                                                                          (17) 

 From conditions (17), we obtain the initial conditions for  φ 0  and  p 0  .The solution of problem (16) with initial 
condition (17) and condition at infinity exists and satisfies the estimate  

  0( , ) exp( ), 0.p С     
                                                                                                                  (18) 

The remaining p i are defined as solutions of linear inhomogeneous ODES and satisfy similar estimates: 

, , 1, , 0.i i ip Ap P i      
   

( , ) exp( ), 0.ip С     
                                                                                                            (19)                                         

Here   Pi  is expressed through previously found p j, j<i . 
The initial conditions for the functions φ i  and  p i  are obtained together from the conditions 

1 1

( ( ,0) ( ,0)) 0, ( , ) 0,i i

i i i
i i

s p p


     
 

 


   
 

what gives 

( ,0) ( ,0) 0, ( , ) 0 0.i i is p p i


   


    
                                                                                (20) 

From conditions (21) we obtain the initial conditions for  the functions φ i  and  p i.   
 

Evaluation of the residual member  

The residual term is estimated by the residual term in the problem. 
The question of the existence of a solution and exponential estimates of the solution of equations (1)-(2), (11)-(17)  
under rapidly decreasing initial conditions for the variable ζ   not considered here.  
The residual term was estimated by residual. 
Let the function ω(z) have derivatives up to N+3rd order, the function F(z) have derivatives up to N+3rd order in the 
domain ||U||<C, C>0, and let ||U(x, 0)||<C-į, į>0.    
Theorem.   The solution of the problem (1) - (2) is represented as 

   0

( , ) ( ( , ) ( , )) ,
N

i

i i N N N
i

U x t s t p R U R   


    
                                                                   (21) 

where UN =SN +ΠN  is the constructed AE, and the residual term RN  satisfies the Cauchy problem    

  

2 3

1 , 1

( ) , , 0,

( ,0) 0, ( ).

i i j

m m

t i x ij x x
i i j

N

R D R AR RF RB R r x t

R x r O

  


 

       

 

 

 
 

  Conclusion   

1. The solution of the problem (1) - (2)  at   t> t0, where  t0 >0 is some fixed (independent of İ), has the form 

 
0 0 0

0

( , ) ( ( , ) ( , )) ( , ) ( ) ( , ) ( ),
N

i

i i N
i

U x t s t p R s t O t h O        


      
 

where the principal term AE   φ0(ζ, t) is the solution of the equation   

  
0, 0, , 0 , 0 0,

, 1 1 , , 1

( ( )) ( ( ) ) 0
i j i i j k

m m m

t ij i eff ijk eff
i j i i j k

M F B         
  

      
  

 (generalized Burgers – Korteweg – de Vries equation).  For a quadratic function F (u) and constant matrics  B (u), 
equation (13) is a generalization of the Burgers - Korteweg – de Vries equation [5] to the multidimensional case: 

       
0, 0, 0 0, , 0,

, 1 1 , , 1

0.
i j i i j k

m m m

t ij i ijk eff
i j i i j k

M k B         
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For the case of a single spatial variable, the equation (13) differs from the BKdF equation only in the numerical values 
of the coefficients 

0, 0, 0 0, 0, 0.t M k B           
 

2. Very interesting properties of the spatial part (the relationship between the degree of degeneracy of the parabolic part 
of the operator and the dimension of the system (1) are obtained in [1],[3]. 
 
3. For the dissipativity of the equation (11), the condition is sufficient  

2

, 1 1

( ) 0 0.
m m

ij i j i
i j i

M z M z z z
 

                                                                                                      (22) 

It is shown in [1] that the set of matrices A that satisfies the conditions imposed above and satisfies the condition (22) is 
not empty. 
 
4. When B (U) =0, the system (1) becomes a system of transfer equations, i.e. a hyperbolic type system. 
In this case, the equation (11) that defines the main AE term has the form  

0, 0, , 0
, 1 1

( ( )) 0,
i j i

m m

t ij i eff
i j i

M F    
 

                                                                                                        (23) 

In [1], a class of matrices A is allocated for which the quadratic form( )M z ,defining the spatial part of the equation, is 

sign-positive, and the equation (23) i.e. becomes a parabolic equation (such as the Burgers equation). The nature of the 
evolution of the principal term  of the AE can be described as the movement with some "effective speed"  Veff  

0 0{ ( , ), 1,..., }eff i iV V D h h i n    

with simultaneous pseudodiffusion, the nature of which is determined by the coefficients Mij , which is influenced by 
nonlinearity.  
The spatial part with the second derivatives is determined by the symmetric matrix M. In [1] it is obtained that   the 
quadratic form ( )M z  can be degenerate, and the degree of degeneration depends on the ratio of the number of 

equations n and the number of spatial variables m. For a class of matrices A  allocated in [1], for m=3 (three spatial 
variables) and for n=2, the matrix M has two zero eigenvalues and one negative, for n=3 - one zero and two negative, 
for n=4 and more , all eigenvalues of the matrix M become negative.  
Figure 1 shows the evolution of the main AE member for m=3 and n=2, n=3. 
 

                                                                      
                                                                Figure 1. n=2, n=3. 
 
In the case of three-dimensional space, the picture of the solution evolution  of the principal term  of the AE will  have 
the following view. In a two-phase environment, pseudodiffusion processes develop along    one axis (the direction of 
which is given by the vector

1 2  V   V    ). Accordingly, the initial local perturbation will move in space with an 

"effective" average speed Veff and simultaneously deform, diffusing into a "cloud" extended in the direction of the 
vector Δ. In the case of three phases (a system of three equations), the initial perturbation will move to the Pro- 
travel with the averaged speed and diffuse in the plane of vectors 

1 2 1 3V   V , V   V ,  forming a flat "cloud". 

In the case of four or more phases (a system of 4 or more equations), the initial perturbation will move at the effective 
velocity Vef and diffuse over all three axes. 
 
5. For the case of B(U) =0 and a slightly different type of nonlinearity, an AE of a similar problem is constructed in [1]. 
When a number of additional conditions are imposed, it is possible to prove the estimate of the residual term of the 
constructed AE in the norm C. 
 
6. The obtained result (11) allows us to identify non-obvious patterns of behavior of the solution of the Cauchy problem 
for singularly perturbed systems of type (1), as well as to identify non-obvious patterns of transfer processes in 
multiphase media in the case of rapid exchange between phases. 
7. The numerical solution of the Cauchy problem for equation (11) requires significantly less computational resources 
than the solution of the original problem (1), due to the fact that equation (11) is not singularly perturbed. 
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Dynamic of the wind powered walking vehicle  
 
 Mikhail Garbuz  *, Liubov Klimina* and Vitaly Samsonov* 

*
 Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia 

  
Summary. This paper presents the modelling of novel walking vehicle which aims to move against the wind flow using only the energy of 
the wind. The vehicle consist of the body, four legs, and wind propeller installed on it. When it is situated in a wind flow, propeller begins 
to rotate and transmits the energy to the main crank of the legs.  
A mathematical model of the system is constructed. Aerodynamics of the propeller is described using a quasi-steady approach basing on 
available experimental data. It is shown that for certain values of parameters the apparatus can perform motion in upwind direction. 
Sufficient conditions of existence of periodic regimes are obtained. It is shown that the system can possess two types of periodic regimes 
corresponding to upwind motion. The average velocity of the body depending on the geometrical parameters is investigated. Evolution of 
attracting and repelling regimes of motion is analyzed. To demonstrate the possibility of motion against the wind, the plastic prototype of 
the vehicle is constructed and tested. 

Introduction 

The problem statement of a straight motion against the flow due to the energy of this flow for walking robots is unique. 
Nowadays Theo Jansen’s mechanical devices are widely known, which are able to walk and get energy from the wind 
[1, 2]. Such mechanisms can perform motion in downwind direction with a help of sails, or in perpendicular to the wind 
direction, using a propeller. 
In present work, we introduce the novel wind powered walking vehicle based on the Chebyshev plantigrade machine 
[3,4]. To realize the upwind motion, we upgraded mechanical scheme and supplemented a wind propeller on the body.  

Description of the mechanical system 

Scheme of the mechanical system is represented in Fig.1. The base of the walking mechanism consists of the body and 
four legs which are installed on it. This base is equipped with a wind turbine so that the shaft of the propeller is 
connected with the main shaft of legs by a warm gear. We suppose that this vehicle is located in the horizontal steady 
wind flow with the speed   . The vehicle moves straight along the wind over an absolutely rough plane in the gravity 
field. 

 
Figure 1: The scheme of the mechanism. 

 
We assume that there is no slipping of the supporting legs and there is no tilting of the body. With these assumptions, 
the vehicle has one degree of freedom. The angle   of rotation of the leg’s crank shaft is chosen as a generalized 
coordinate. Equations of motion of the system are derived using the Lagrange formalism:                                               
Here         is the Lagrange function, n is a gear ratio between propeller and cranks,   is a horizontal velocity of the 
body,   is the aerodynamic drag coefficient of the body.       and       are the aerodynamic torque and the drag force 
acting on the propeller, correspondently. These functions are described according a quasi-steady model and have the 
following form:                                                      
where                  is a tip speed ratio of the propeller,    is the air density, S and    are the characteristic area 
and the radius of the propeller.       and       are non-dimensional coefficients of torque and drag force, 
correspondingly. These coefficients are approximated using experimental data [5]. 
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Right hand side of the system is π-periodic with respect to  . Therefore, the phase space of the system is cylindrical. An 
attracting limit cycle with a positive value of    enclosing the phase cylinder corresponds to desired upwind motion 
regime.  
The following parameter is introduced:   . It is supposed to be a small value. This means that characteristic values of 
aerodynamic loads are significantly smaller than characteristic values of inertial forces. 

Main results 

We obtained sufficient conditions of existence of periodic upwind motion regimes using the Andronov-Pontryagin 
asymptotic method [6]. This method involves the averaging procedure. Notice that averaging is widely used in most 
powerful and demanded approaches of nonlinear dynamics [7, 8].  We performed analysis of limit cycles depending on 
parameters of the vehicle. The attraction properties of the regimes are studied. 

 
Figure 2: Bifurcation diagram for periodical trajectories. 

 
An example of bifurcation diagram is shown in Fig. 2 for the case     with other parameters of the system 
corresponding to the laboratory prototype constructed and tested in the Institute of Mechanics of Lomonosov Moscow 
State University. The description of the prototype and the video of its upwind motion are available [9]. In particular, the 
total length of the prototype is 225 mm. Fig. 2 illustrates how the average velocity the body depends on gear ratio  . 
Upper branch of diagram corresponds to attracting trajectories, and lower to repelling ones. Red cross corresponds to 
the bifurcation when a repelling periodic trajectory enclosing a phase cylinder merges with a separatrix and is destroyed 
as a result. Accuracy of asymptotic bifurcation diagram was checked by direct numerical integration of the system for 
the case       . In particular, the value of parameter   for which repelling trajectory is destroyed is determined with 
6% precession.  

Conclusion 

The mathematical model of a wind powered walking vehicle is constructed. Results of parametrical analysis of the 
model are used to adjust constructive parameters of the first prototype. Experimental testing of the prototype 
demonstrated the possibility of motion against the wind for a walking mechanism. 
 
The work was carried out within the framework of the research project “Development of methods for the study of 
controlled mechanical systems interacting with a continuous medium” (AAAA-A19-119012990123-0). 
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Methods of perturbation theory and their applications in nonlinear fracture mechanics 

and continuum damage mechanics 

 

 Larisa Stepanova* 
*Department of Mathematical Modeling in Mechanics, Samara University, Samara, 443086, Russia 

  
Summary. Perturbation theory techniques and their applications in nonlinear fracture mechanics (NFM) are discussed. This study summarizes 

an overview of the state of the art on the asymptotic description of fracture of nonlinear and damaged materials. The asymptotic stress, strain 

and damage fields near the crack tip for power-law materials and the influence of the damage accumulation processes on the stress-strain 

state in the vicinity of the crack tip are analyzed. The paper gives a detailed review of the fundamental results obtained in NFM by means of 

asymptotic methods and perturbation theory approaches. The main attention is paid to power-law materials and asymptotic stress and strain 

fields in the vicinity of the crack in both non-damaged materials and damaged materials under mixed mode loadings. The paper analyses the 

development of the asymptotic elastic-plastic crack-tip fields derived by Hutchinson, Rice and Rosengren as a singular dominant term of the 

asymptotic expansion for the stress and strain fields in a power-law hardening material and shows the current state of the asymptotic methods 

and their applications in NFM and continuum damage mechanics. 

Introduction 

Asymptotic methods have several essential advantages: universality, the analytical form of the solutions obtained and 

simplicity of further qualitative analysis. The asymptotic methods and perturbation theory are promising and effective 

approach of the derivation of approximate or even closed form solutions. Nowadays the perturbation theory techniques 

are applied to a wide variety of static and dynamic solid mechanics problems. Asymptotic methods have also been used 

with success in various nonlinear problems of fracture mechanics. The asymptotic analysis of the stress and strain 

distributions in the vicinity of the wedge-shaped domain is one of the most fundamental problems both in linear fracture 

mechanics and NFM. Thus, in linear fracture mechanics very important results have been obtained by use of the methods 

of asymptotic analysis. An excellent review of the most considerable contributions in this field is provided by A. 

Carpinteri and M. Paggi in their work [1]. The present study is aimed at analysis of the results recently obtained in NFM 

and continuum damage mechanics for power-law constitutive equations and the power-law damage evolution equation 

by means of asymptotic methods and perturbation theory.  

Asymptotic solutions to problems of NFM 

Crack-tip stress and strain singularities for pure power law material response ( )0 0/ / ,
n    = where  is a 

material constant, 
0  is the reference yield strength, n  is the strain hardening exponent, 

0 0 / E = is the reference 

yield strain, are investigated in [2-4]. The crack tip fields can be derived in the separable form [2-4] 

 

1/( 1) / ( 1) / ( 1)

1/( 1)

0 0 0( , ) ( , ), ( , ) ( , ), ( , ) ( , ),

n n n n n

n

ij ij ij ij i i

n n n

J J J
r n r n u r r u n

k r k r k r
            

+ + +

+     
= = =     

     
 (1)

 
where J  is the path-independent integral, 

nI

 

is the dimensionless J  -integral (an integration constant depending on n ), 

0 0n nk I =  . The asymptotic fields (1) are referred to as the Hutchinson-Rice-Rosengren (HRR) fields in the vicinity 

of the crack tip in power-law materials. The asymptotic solution (1) was sought in the separable form ( ) 1, ( ).r r f  +=

where ( ),r  is the Airy stress function: ( )1 1

, ,, , ,rr rr r rr r         − −= =  − = − . The resulting nonlinear 

ordinary differential equation following from the compatibility equation is homogeneous in ( )f  : 

( ) ( )  ( ) ( )  ( )

( ) ( ) ( ) ( ) ( )

( ) ( )
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C n f f f f f f f f C f f f f f f

   

    

          + − + − − + + − +     

             + − − + − + + + = = − + +       

(2) 

where the following notations are adopted:    1 24 ( 1) 1 , ( 1) ( 1) 2 .C n C n n   = − + = − − +  

The fourth order nonlinear differential equation (2) with traction-free boundary conditions  

 ( ) ( )0, 0f f   =  = =  =  (3) 

defines a nonlinear eigenvalue problem in which   is the eigenvalue and ( )f   is the corresponding eigenfunction. Thus, 

the eigenfunction expansion method results in the nonlinear eigenvalue problem: it is necessary to find eigenvalues 

leading to nontrivial solutions of Eq. (2) satisfying the boundary conditions (3). The eigenvalue corresponding to the HRR 

problem (1) is well known / ( 1).n n = +  The further development of NFM required analysis of eigenspectra and orders 

of singularity at a crack tip for power-law materials [5 – 8]. In [6] the necessity of introducing higher or lower order 
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singular terms to more correctly describe the asymptotic fields of crack tip is shown. The coordinate perturbation 

technique is employed to study the eigenspectra of creeping body. To attain eigensolutions a numerical scheme is worked 

out and the results obtained provide the information including the number of singularities, and their orders, as well as the 

angular distributions of stresses. The present study discusses different approaches to solve nonlinear eigenvalue problems 

arising in NFM for power-law materials. The main attention is paid to perturbation techniques to solve nonlinear 

eigenvalue problems (2), (3). Eqs. (2) and (3) form a nonlinear eigenvalue problem, where the unknown eigenvalue 
and the eigenfunction ( )f  depend on the boundary conditions and the hardening exponent. An analytical expression for 

the eigenvalues of the nonlinear equation can be derived by applying the perturbation method. For this purpose, the 

eigenvalue is split into 
0 ,  = +  where 

0  refers to the “undisturbed” linear problem and   is the deviation on 

account of the nonlinearity. The hardening exponent n  and the stress function ( )f 
 
are represented as power series 

2 3 2 3

0 1 2 3 0 1 2 3

0 0

... , ( ) ( ) ( ) ( ) ( ) ... ( )j j

j j

j j

n n n n n n f f f f f f             
 

= =

= + + + + = = + + + + =  , 

where 
0 1n =  and 

0 ( )f   are referred to the linear solution. This method allows us to find the closed form solution. 

Conclusions 

Recent activity is surveyed in the analysis of crack-tip stress and strain fields for stationary and growing cracks in power-

law materials. Some of the main subjects to further progress are discussed. In the study the detailed review of solutions 

for crack problems obtained for power law constitutive equations is presented. In NFM, one often needs to solve nonlinear 

differential equations about eigenfunction and eigenvalue. Many nonlinear eigenvalue equations have multiple solutions. 

Boundary value problems of these problems are not easy to gain by means of numerical techniques such as the shooting 

method. The perturbation and asymptotic approximations of nonlinear problems often break down as nonlinearity 

becomes strong [9, 10]. Therefore, they are only valid for weakly nonlinear ordinary differential equations and partial 

differential equations in general. The homotopy analysis method (HAM) is an analytic approximation method for highly 

nonlinear problems. Unlike perturbation techniques, the HAM is independent of any small/large physical parameters at 

all. The HAM provides us a convenient way to guarantee the convergence of solution series so that it is valid even if 

nonlinearity becomes rather strong. Thus, in fracture mechanics HAM may play a significant role in solving nonlinear 

eigenvalue problems. The book [9] shows the great potential and validity of the for highly nonlinear eigenvalue equations 

with multiple solutions and singularity. The HAM will provide us one of the promising approaches for nonlinear 

eigenvalue problem arising in fracture mechanics. The present review shows that asymptotic solutions of fracture 

mechanics problem will be connected with derivation of multi-term asymptotic series expansions for the crack-tip fields 

using effective computer algorithms and procedures [7,8]. The further development of NFM and continuum damage 

mechanics will evidently be connected with experimental determination of active damage accumulation zone in the 

vicinity of the crack tip via interference-optic methods [11], tomographic scanning techniques [12], acoustic emission 

methods [13] and, undoubtedly, with using highly accurate current perturbation theory and homotopy techniques [14]. 
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Energy model of free vibrations and resonance in elastic bodies 
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Mechanics based on the concepts of space, time, and energy with a single elastic modulus and a new average stress 

scale that takes into account the energy of particles in the initial state is used to analyze the energy features of free 

vibrations and resonance. When describing motion in the Lagrange form, the elastic energy is determined by the 

quadratic invariant of the tensor, whose components are partial derivatives of Euler variables with respect to 

Lagrange variables. The increment of the invariant due to elastic deformation is represented as the sum of two 

scalars, one of which depends on the average value of the relative lengths of the edges of particles in the form of an 

infinitesimal parallelepiped, the second is equal to the standard deviation of these lengths from the average value. It 

is shown that each of the scalars can be represented as two dimensionless kinematic analogs of elastic energy that 

participate in the implementation of the law of conservation of energy in different ways. One part of the elastic 

energy passes into kinetic energy and participates in the implementation of the law of conservation of energy for the 

body as a whole, taking into account external forces. The second part is not converted to kinetic energy, leads to a 

change in the deformed state of the particles in accordance with the equations of motion, while maintaining the same 

level of the elastic energy of the particles used for this purpose. Kinematic analogues differ from the corresponding 

types of energy by a multiplier equal to the elastic modulus, which is directly proportional to the density and heat 

capacity of the material and inversely proportional to the volume compression coefficient. Transverse, torsional, and 

longitudinal vibrations are considered in free and resonant conditions. A mechanism for converting forced vibrations 

into their own after the termination of external influences is proposed. Resonance occurs due to the superposition of 

free and forced vibrations with the same or similar frequency with the formation of a new free wave on each cycle 

with an increase in the amplitude and energy involved in the vibrations, which occurs mainly due to internal sources, 

and not external forces. 
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 Non-stationary dynamics of the sine-lattice consisting of three pendulums (trimer)  
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Moscow, Russia 

 
 Summary. We present an analysis of both low- and high-amplitude oscillations of nonlinearly coupled trimer, even when the quasi-linear 
approximation cannot be applied. The described models are fundamental for many areas of Mechanics and Physics (paraffin crystals, DNA 

molecules etc.). We obtained the conditions of stability of basic stationary solutions corresponding to nonlinear normal modes (NNMs). 
Supposing the NNMs resonant interaction we introduce a “slow” time-scale which determines a characteristic time of the energy exchange 

between the pendulums. Introducing the angle variables, we reduce the considered phase space. 

Introduction 

Dynamics of coupled nonlinear oscillators attracts the growing interest of scientific community because of its 
fundamental meaning and various applications.  
We will focus on the large-amplitude oscillations but not rotations of the pendulums. In current paper, in contrast to 
many works devoted to interacting nonlinear oscillators, non-linearity of both the pendulums and the coupling between 
them are not assumed to be small. Thus, research methods that involve quasi-linearity and the presence of a small 
parameter characterizing nonlinearity and/or coupling are not applicable. To overcome this difficulty a semi-inverse 
method was proposed [1]. Using this method and LPT concept the system of two identical linearly and strongly 
nonlinearly coupled pendulums was examined under different oscillation amplitudes [2]. Stationary and non-stationary 
transitions leading to a qualitative change in the dynamic behavior of the system were analytically described. This work 
continues the previous investigations for the more complex case, when the coupling between the pendulums cannot be 
assumed, and the number of degrees of freedom is equal three.  

The model and asymptotic procedure 

Hamiltonian of the system of three identic pendula coupled via cosine potential in the dimensionless form can be 
represented in the following form: 

     
2

2 3 2 1
1,2,3

1
1 cos( ) 1 cos( ) 1 cos( )

2
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j
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dq
H q q q q q

dt
 



  
             

       (1) 

We suppose that NNMs frequencies are close to each other, and the motion of the system happens with the frequency   
which is also close to those of Nonlinear Normal Modes (NNMs) of the system. The assumption of the closeness of the 
motion to the resonance with single frequency allows application of the semi-inverse approach, which was already used 
in our earlier works. Closeness to resonance allows us to introduce a small parameter and further apply a multi-scale 
procedure. In the slow time-scale we obtain a system of equations with new form of non-linearity: 
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where 1J  is Bessel function of the first kind. Using such reptresentation we can obtain analytical description of the 

NNMs’ frequencies in the system. We see a very good agreement for the initial excitation up to Q=9/10 . As we 
expected the frequency of the oscillations decreases with the increase of the initial excitation (due to the ‘soft’ 
nonlinearity effect). We should also emphasize that our assumption on the closeness of the NNMs frequencies appears 
to be valid for a wide range of the parameters and initial conditions. 

Non-stationary dynamics: Poincaré maps study 

To proceed with the study of the phase space we intend to reduce the dimensionality of the model. Similarly to the 
system of two pendula [2] asymptotic system (2) possesses an additional integral of motion  

3
2

1

| |k
k

X 


  

It allows us to introduce spherical coordinates  
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          (3) 

and using the fact that only the relative phases have physical meaning we reduce the system’s dimentionality:
12 1 2,    23 2 3    . The systems Hamiltonian: 

         2 2
4 0 0 0 0 0 1 0 0 2

1
sin cos cos cos sin .

4DH Q J Q J Q J Q J Q S J Q S               
 

  (4) 

System (8) is four-dimensional, and its dimensionality can be reduced using Hamiltonian (9), but the system remains 
non-integrable even in the slow time scale. However, the Poincaré  sections analysis of the reduced system can be 

provided. The section plane was defined as 1.53  , 23  was defined from (4) as H = h(β0).  

 
Figure 1: NNMs of the asymptotic system (solid lines) and comparison with the numerical results of the full system (dotted lines) 

 
We have constructed Poincaré maps for different values of the coupling parameter β. For low values of coupling the 
dynamics is regular; there are two stationary points on the map C1 and C2, which correspond to quasiperiodic dynamical 
regimes with energy localization on one of the side-oscillators (see Fig 2a). If the coupling increases the chaotic regimes 
occupy the most of the phase space, then a new periodic regime C3 of regular energy transport from one side-element to 
another appears in the chaotic region (see Fig 2b). We remind that this regime is called LPT, which is a phase 
trajectory that shows the possibility of the intensive regular energy exchange between the two edges of the short chain. 

  
Figure 2: Time-evolutions of different regimes of system (4): θ=1.53, ε=0.1, μ=10, a) β0 = 0.5, initial conditions correspond to C1; b) 

β0 = 2, initial conditions correspond to C3  

Conclusions 

We report the study of the non-stationary dynamics in the system of three pendulums coupled by cosine potential. In the 
earlier works the intensive beatings were reported in the systems with more than two degrees of freedom with the 
periodic boundary conditions but they characterize the energy exchange not between the coherent domains. Present 
work extends the phenomenon of the intensive periodic energy exchange between the two ends of the short oscillatory 
chains with more than two degrees of freedom. The physical meaning of the regime with excitation mostly localized on 
the side-element is similar to that of the discrete breather in the long chain of nonlinear oscillators 
Acknowledgements 
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Period approximation for nonlinear oscillators with Carleman linearization

Csanád Árpád Hubay and Tamás Kalmár-Nagy
Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of

Technology and Economics, Budapest, Hungary

Summary. A method for period approximation of nonlinear oscillators using Carleman linearization is presented. The approximation
of the amplitude-dependent period of a given nonlinear oscillator is calculated and compared to exact period values.

Introduction

Calculation of the period of a nonlinear oscillator is an important engineering problem. In this paper, a versatile tool, the
so-called Carleman linearization [1] is used to obtain the solutions of nonlinear oscillator ẍ + f(x, ẋ) = 0 and its exact
amplitude-dependent period is approximated. An example of such nonlinear oscillator is

ẍ+ (1 + ẋ2)x = 0, x(0) = A, ẋ(0) = 0. (1)

Mickens et al. [2] derived the formula of the exact period of the oscillator (1):

Texact(A) = 4A

∫ 1

0

dz√
exp(A2(1− z2))− 1

. (2)

An approximation of the exact period in case of small values of A is given in [3] as

Tapprox(A) ≈ 2π

(
1− 1

8
A2 +

1

256
A4 +

5

6144
A6 − 7

262144
A8 + . . .

)
. (3)

Small and large amplitude periodic orbits of Eq. (1) were investigated by Kalmár-Nagy and Erneux in [4].

Carleman linearization and period approximation

Eq. (1) can be written as
ẋ1 = x2,

ẋ2 = −(1 + x22)x1.
(4)

By introducing the notation

x[j] = (xj1, x
j−1
1 x2, x

j−2
1 x22, . . . , x

2
1x
j−2
2 , x1x

j−1
2 , xj2)

T, j = 1, . . . , n, (5)

and applying Carleman linearization [1] Eq. (4) is recast as

d

dt




x[1]

x[2]

x[3]

...
x[n−2]

x[n−1]

x[n]




︸ ︷︷ ︸
ẏn

=




B1,1 0 B1,3 . . . 0 0 0

0 B2,2 0
. . . 0 0 0

...
...

. . . . . .
...

...
...

0 0 0 . . . Bn−2,n−2 0 Bn−2,n

0 0 0 . . . 0 Bn−1,n−1 0

0 0 0 . . . 0 0 Bn,n




︸ ︷︷ ︸
Cn




x[1]

x[2]

x[3]

...
x[n−2]

x[n−1]

x[n]




︸ ︷︷ ︸
yn

,

y0(A) =
(
A, 0, A2, 0, 0, A3, 0, 0, 0, . . . , An, . . . , 0

)T
,

(6)

where Cn denotes the Carleman matrix of order n and y0 is the vector of initial conditions. The matrices Bj,j , j =
1, . . . , n and Bk,k+2, k = 1, . . . , n− 2 are constructed as follows

Bj,j =




0 −j

1 0 −j + 1 0
2 0 . . .

. . . 0 −2

0 j − 1 0 −1
j 0



, Bk,k+2 =




0 0 0 0 . . . 0 0
0 0 −1 0 . . . 0 0
0 0 0 −2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −k 0



. (7)

The approximation of the solution of Eq. (4) is written as

x̂1(t) = eT1 e
Cnty0(A), x̂2(t) = eT2 e

Cnty0(A), (8)
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where e1 and e2 are standard basis vectors. The approximate solution x̂2(t) can be written as power series of A, i.e.,

x̂2(t) =

n∑

k=1

x̃2,k(t)
Ak

k!
. (9)

The period T (A) of system (4) is approximated based on [5] as

T (A) = 2π +∆T (A) = 2π +

n∑

k=1

AkT̃k. (10)

The coefficients x̃2,k(t) in Eq. (9) at the period T (A) are expressed as

x̃2,k(T (A)) = x̃2,k(2π +∆T (A)) = x̃2,k(2π) +

n∑

m=1

x̃
(m)
2,k (2π)

∆T (A)m

m!
, (11)

where x̃(m)
2,k denotes the mth derivative. Since Eq. (4) is a conservative system [4], x̂2(T (A)) = 0 must hold . Balancing

the terms
A : 0 = x̃2,1(2π),

A2 : 0 = x̃2,2(2π) + x̃′2,1(2π)T̃1,

A3 : 0 = x̃2,3(2π) + x̃′2,2(2π)T̃1 + x̃′2,1(2π)T̃2 + x̃′′2,1(2π)
T̃ 2
1

2!
,

...

(12)

where the primes mean derivation. System (12) is solved for the unknown T̃k’s.
Using the Carleman linearization of order n = 9 of system (4) the approximation of the period reads as

T (A) ≈ 2π

(
1− 1

8
A2 +

1

256
A4 +

5

6144
A6 − 7

262144
A8

)
, (13)

the same as in Eq. (3). The following table shows some numerical results in case of n = 5, 7, 9 order Carleman matrices.

n = 5 n = 7 n = 9
A Texact(A) T (A) Rel. error [%] T (A) Rel. error [%] T (A) Rel. error [%]

0.01 6.2831 6.2831 6.2831 6.2831
0.1 6.2753 6.2753 6.2753 6.2753
1 5.5272 5.5223 0.088 5.5274 0.004 5.5273 0.001

1.5 4.6903 4.6403 1.065 4.6985 0.176 4.6942 0.085
2 3.7613 3.5343 6.036 3.8615 2.644 3.8186 1.522

2.2 3.4131 3.0568 10.44 3.6366 6.547 3.5445 3.850

Conclusions

A new way of calculation for the period of a nonlinear oscillator was introduced. Approximate period values of a given os-
cillator were calculated and compared to exact ones. We conclude, in the case of small amplitudes, Carleman linearization
can be used for approximation of the period of a nonlinear oscillator.
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Time integration based stability calculation for delayed periodic system with linear
time complexity

Daniel Bachrathy∗,Kristof Nagy∗

∗ MTA-BME Lendület Machine Tool Research Group, Department of Applied Mechanics, Budapest
University of Technology and Economics

Summary. In this work, the implicit subspace iteration method is combinded with direct time integration of linear periodic delay
differential equations. The linear time complexity of the proposed method is shown for different DDE solvers with higher order
convergence. The propoesed method is really efficinet for dynamical system with large time period.

Semi-Discretization Method

There have been many algorithms [1, 5, 6, 7] developed during the last 20 years for systems where the time-delay effect
is coupled with parametric excitation. The semi-discretization method (SDM) is one of the efficient ways to the analyze
stability [1, 2]. The basic idea of the SDM is the numerical discretization of the delayed terms only above the delay-time
interval. Consequently, the governing DDE becomes an ordinary differential equation (ODE) that can be solved in closed
form in linear cases for each time step within these discrete delay-intervals, and a linear discrete map is constructed that
describes the connection of the discretized state as a large vector over the discrete time instants within the delay interval.
The size of this mapping depends on the resolution of the delay discretization.
If explicit time-periodicity also appears due to the parametric excitation, the time-periodic coefficients (or even the delays)
should also be discretized in time over the time period, and the above procedure leads to different linear mappings at each
sampled instant of the time period:

zi+1 = Gizi i = 0, 1, . . . n− 1 (1)

Here, Gi denotes the coefficient matrix connecting states zi and zi+1, which are the vectors of the discretized states
sampled at the discrete time intervals at subsequent time instants. A discrete map can be defined between the initial
delay-discrete state z0 and the one zm a principal period later:

zn = Gm−1 . . .G2G1G0z0 = Φz0, (2)

where the transition matrix Φ is a finite-dimensional approximation of the infinite-dimensional monodromy operator.
Thus, the stability analysis is reduced to the problem whether the absolute values of all the eigenvalues of Φ are less than
one: |µi| < 1. In order to improve numerical accuracy, the delay resolution, the order of semi-discretization, and the time
periodicity resolution can be increased.

Implicit Subspace Iteration

Consider the general eigenvalue problem [4] ΦS = Sµ, where Φ is an Rn×n square matrix, µ is a diagonal matrix of size
Rn×n containing the eigenvalues of Φ on its main diagonal, and matrix S of size Rn×n consists of the eigenvectors of Φ
in its columns. A set of Ns < n dominant eigenvectors corresponding to the first Ns eigenvalues of the largest absolute
values can be approximated in an iterative way. Let Sj of size Rn×Ns denote the matrix of the Ns dominant eigenvectors
after the jth iteration step. Starting from a random set of initial conditions S0 and taking an iteration, a new set Vj of size
Rn×Ns can be calculated according to the following iteration [4]

Vj = ΦSj (3)

Vj ≈ SjHj → Hj =
(
SH
j Sj

)−1
SH
jVj (4)

Hj = GjλjG
−1
j (5)

Sj+1 = VjGj (6)

where Gj is the matrix formed by the eigenvectors of Hj and λj is a diagonal matrix of eigenvalues of Hj . Note, that in
a numerical implementation, the approximated eigenvectors should be normalized after each iteration steps.
If Sj is obtained after a sufficient number of iteration steps, it will converge to the dominant eigenvectors, and the basis
formed by the column vectors in both Sj and Vj span approximately the same space. Therefore, an approximate matrix
Hj of size RNs×Ns connecting Sj and Vj can be obtained using a pseudo-inverse calculation from the relation. After
several iteration steps, the eigenvalues of Hj provide a good approximation for the dominant eigenvalues of Φ. This way,
it is enough to compute the eigenvalues of a significantly reduced Ns-sized matrix Hj instead of the large n-sized matrix
Φ. The details of this iteration process can be found in [3, 4].
In this form, the Implicit Subspace Iteration iteration is just an iterative method to find the eigenvalues of a known matrix
Φ, however, the calculation of this matrix itself is the most time consuming operation if the time period is long m ≫ n.
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Figure 1: Convergence of thee spectral radius for the tradition SDM and for Implicit Sub Space Iteration combined with time integration
with Explicit Euler (EE) method and higher-order Runge-Kutta methods

Dute to the m number of matrix multiplication in Eq.(2), the time complexity is proportional to O(mn3), if a spares
representation of Gi is used then it can tend to O(mn2) [8, 9]. To decrease the computational need one can reduce the
stepsize (m and n together) and increase the order of semi-discretization, however, it is complicated to increase it above
2 [2].

Direct time integration

It is also possible to determine the mapping in Eq.(3) without calculating the whole matrix Φ. The vector Vj can be
calculated directly by means of the time integration of the equations of motion of the given system with O(m) time
complexity. Thus, the advantage of implementing the ISIM is that the transition matrix Φ does not have to be calculated.
During the time integration process, one can use the same approximation as in the SDM (constant coefficients within the
time step), then the final results for the eigenvalues will be identical.
However, if we apply time integration, then any advanced higher-order fixed-time-step computation scheme can be used
to increasre the reat of convergence of the eigenvalues, while the time complexity will be the same. This is presented for
the well-known delayed Mathieu equation:

ẍ(t) + κẋ(t) + (δ + ϵcos(ωt))x = bx(t− τ). (7)

In Fig.1 the error of the largest multiplier is shown for paramteres κ = 0.01, δ = 5, ǫ = 1, b = 1, τ = 2π, ω = 0.01 (note,
that m = 100n). The reference values for the eigenvalues is computed of n = 215.

Conclusions

The combination of the IISI with fixed-step-time-integration have only a linear time complexity and the convergence rate
of the eigenvalues is the same as the order of the integration scheme. The next research goal is to the implement integrators
with variable step size, which will have a great advantage in the case when the change of the coefficients of the governing
equation are not smooth, however, the non-uniform steps size leads to a difficulty in the computation of Hj in Eq.(4).
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Uni-directional wave propagation in time-modulated inerter-based lattice
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Summary. In this work, we investigate the uni-directional wave propagation in elastic locally resonant mechanical metamaterials with
inerter elements, where mass and stiffness properties are simultaneously modulated as periodic functions of time. Time-modulated
properties of inerter elements are adopted in order to highlight the effect of time-dependent inertia amplification on mass properties.
By considering the Bloch theorem and Fourier expansion, the system of Hill equations is reduced to the eigenvalue problem that gives
dispersion relations with asymmetric frequency band structures.

Formulation of the problem

Let us consider the mass-spring-inerter systems representing the locally resonant mechanical metamaterial (LRMM) lat-
tice as shown in Figure 1. The model consists of the periodically repeated mass-spring-inerter blocks connected into
an infinite chain. The local resonators are represented by small inner masses inside the host outer masses. The local
resonators are introduced into the lattice due to the well know properties of generating low-frequency band gaps in the
metamaterial structures. Bloch wave propagation analysis is performed for the corresponding unit cell by applying the
proper periodic boundary conditions. Figure 1 illustrates the n-th unit cell of the LRMM lattice, which is bounded by red
dashed rectangle and it consists of three identical mass-in-mass subsystems connected through time-modulated springs
and inerters. Moreover, each mass-in-mass subsystem is connected to the ground through pairs of time-modulated springs
and inerters. Note that internal resonators are also connected to the host mass through a time-modulated spring.

u  (t) 1 

n

n‐th unit cell

M M M 

m m m

u  (t)
2 u   (t) 3 

  n n

kR(t) kR(t) kR (t)

v   (t) 1 

n v   (t) 2 

n v   (t) 3 

n

kg1 (t) kg2 (t) kg3 (t)

k 1 (t) k2 (t) k3 (t)k3 (t)

B1 (t) B2 (t) B3 (t)B3 (t)

Bg1  (t) Bg2  (t) Bg3  (t) 

 1 2 3

Figure 1: The unit cell of the inerter-based LRMM lattice.

Mathematical model
The governing equations of the locally resonant lattice with time varying stiffness and inerter properties for the n-th unit
cell (Figure 1) can be expressed, in a general case, as a system of ordinary differential equations with time dependent
coefficients, known as Hill equations [1], as follows

Münr + kr−1(t)(u
n
r − unr−1) + kr(t)(u

n
r − unr+1) + kgr(t)u

n
r + kRr(t)(u

n
r − vnr ) +Br−1(t)(ü

n
r − ünr−1)+ (1)

Br(t)(ü
n
r − ünr+1) +Bgr(t)ü

n
r + Ḃr−1(t)(u̇

n
r − u̇nr−1) + Ḃr(t)(u̇

n
r − u̇nr+1) + Ḃgr(t)u̇

n
r = 0,

mv̈nr + kRr(t)(v
n
r − unr ) = 0, (2)

where r = 1, ..., R, R is the number of masses in the n-th unit cell.
In order to study the uni-directional wave propagation in the time-modulated one-dimensional lattice structure we limit
our analysis to the case when R = 3. The differential equation (1) describes the motion of the r-th point mass in the n-th
unit cell, and differential equation (2) describes the motion of the internal resonator.

Solution procedures
Plane wave method is applied by considering the Fourier series expansion of displacement vector and time-dependent
mass and stiffness matrices. We assume that mass and stiffness matrices are modulated with the velocity vm = λm

Tm
. The

terms λm and Tm are related to the spatial wave length and temporal period of modulation, respectively. By considering
the inverse method explained in [2], the plane wave solution of the time-varying lattice model presented in equations (1)
and (2) can be assumed in Bloch-Fourier form [3] as

un(t) = ei(−nµ+ωt)
∞∑

p=−∞

apeipωmt, (3)

where a(t) = a(t + Tm) is the vector of periodic amplitude function in time and µ = λmκ is the non-dimensional
wavenumber. Considering the truncated expansion from equation (3), the system of differential equations is reduced to
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Figure 2: The local resonant structure with time varying inerter and stiffness properties.

the system of (R + Nr)(2P + 1) algebraic equations. Therefore, by taking the values of P = 1 and Q = 2 in equation
(3) the system (1) is reduced to the following quadratic eigenvalue problem

(Ω2A1 +ΩA2 + A3)a = 0, (4)

where Ω = ω/ω0 and a are eigenvalues and eigenvectors of the system, respectively.

Numerical results

The aim of the numerical study is to verify the applicability of the above proposed method based on the Bloch-Fourier
expansion and to perform the dispersion analysis of the time-modulated periodic elastic lattice with local resonators
given in the form of one-dimensional chain with inerters (Figure 2a). Moreover, the uni-directional wave propagation
is observed based on the solution of the system of equations using the finite difference method for a specified excitation
frequency (Figure 2b).
By considering the simultaneous time-modulation of stiffness and inertia properties, the dispersion characteristic of the
lattice is presented in Figure 2a. The diagrams show many crossings and folding of dispersion branches within, and
at the edges of the first Brillouin zone. The fundamental branches are obtained by using the weighting and threshold
process. Moreover, the asymmetric band gaps can be observed for the presented configuration, from which we can find
specter of frequencies which can lead to asymmetric or uni-directional wave propagation. Finally, to demonstrate the
uni-directional wave propagation we apply the harmonic excitation on the center mass of the finite chain with the picked
frequency Ω = 1.7. The finite chain has 70 unit cells and Born–von Karman boundary conditions are applied at the ends
of the chain. We observe only the displacement amplitudes of outer masses of the chain. The spatial profile in Figure
2b indicates one way traveling of the primary wave in the positive direction +x. However, it can be noticed that a small
portion of wave energy is traveling in the opposite direction, which can be attributed to the fact that the corresponding
asymmetric band gap is influenced by internal resonators of the LRMM lattice.

Conclusions

In this study, we numerically demonstrate how uni-directional wave propagation can occur in time-modulated elastic
and locally resonant metamaterial lattices with inerters. We successfully included inerter elements in the lattice structure
demonstrating the shift of dispersion frequencies to lower values due to the inertia amplification effect. The Bloch-Fourier
based procedure is suggested to analyze the dispersion characteristics of systems with simultaneous time-modulation of
stiffness and mass properties. Dispersion characteristic is used to confirm the existence of asymmetric band gaps and then
applied as a basis for transient analysis and demonstration of uni-directional wave propagation.
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Energy flow characteristics of periodical orbits of nonlinear dynamical systems 
 
 Jing Tang Xing 

Maritime Engineering, Faculty of Engineering & Physical Sciences, Boldrewood Campus, 
University of Southampton, Southampton SO16 7QF, UK  

  
Summary. Based on energy flow theory, it is revealed that a necessary sufficient condition for nonlinear dynamical systems (NDS) 𝐲ሶ = ,ሺ𝐲 𝑡ሻ to have periodical orbits is that there exist a non-zero spin matrix and one closed orbit with a corresponding period T, 
along which the time averaged flows of generalised potential energy (GPE) and generalised kinetic energy (GKE) vanish. For 
autonomous systems, a necessary condition to have periodical orbits is the energy flow characteristic factors (EFCFs) must not be 
semi-positive or semi-negative. Three examples are given to support the above revealed characteristics.  
Keywords: Nonlinear dynamics, Periodical orbits, Energy flow matrices, Spin matrices, Generalised potential / kinetic energies. 

Introduction 

NDS investigated herein are generally sufficient to regard a second order differential equation with its initial conditions 
in a non-dimensional form, as discussed by [1-5], which can be transformed into the first order differential equation ݀𝐲 ݀𝑡 ≡ 𝐲ሶ⁄ = ,ሺ𝑡 𝐲ሻ,        𝐲ሺͲሻ = 𝐲.                                                             (1) 

We consider that 𝐲 = 𝐲ሺ𝑡ሻ א ܴ𝑛 is a vector valued function of an independent variable 𝑡 א 𝐼 = ሺ𝑡ଵ, 𝑡ଶሻ ⊆ ܴ and : ܷ →ܴ𝑛  is a smooth function of variable 𝑡 and vector 𝐲 defined on some subset ܷ ⊆ ܴ𝑛, an n-dimensional phase space, and 
we seek a solution 𝛗ሺ𝐲, 𝑡ሻ such that 

                   𝛗ሺ𝐲, Ͳሻ = 𝐲.                                                                                    (2) 

The solution  𝛗ሺ𝐲,∙ሻ: 𝐼 → ܴ𝑛  defines a solution curve, trajectory or orbit of Eq.1 based at 𝐲 as shown by Fig. 1(a).   
According to the basic local existence and uniqueness theorem [6], there exist no intersections of the trajectories of Eq.1 
in the solution space except at its fixed points. The solution curves 𝛗௧ሺܷሻ generate the flow shown by Fig. 1(b).To 
investigate the behaviors of NDS, Xing [5] developed an energy flow theory, which has discovered that i) GPE 
automatically plays a role of Lyapunov function for stability at fixed points of NDS, ii) generalised energy conservation 
law of chaotic motions [5,7], iii) behaviors of friction-induced vibrations [8]. This paper aims to tackle the periodical 
solutions of NDS to reveal its energy flow characteristics. 
 

 
 

Figure 1: (a) a solution curve  𝛗𝒕ሺ𝐲ሻ with its energy flow curve 𝐸𝒕ሺ𝐲ሻ, of which their tangent vectors at a point 𝐲 are 𝐲ሶ = and 𝐸ሶ  ,   
respectively; (b) the flow  𝛗௧ሺܷሻ  and the energy flow  𝐸௧ሺܷሻ in ܴ𝑛 (Xing [5, 7]). 

Fundamentals of energy flow analysis 

Energy flow variables, matrices, and equations 
In the energy flow theory, the following energy flow variables based on Eq.1 in phase space are defined,  GPE:   𝐸 = Ͳ.ͷ𝐲்𝐲;         GKE:   𝐾 = Ͳ.ͷ𝐲ሶ ்𝐲ሶ;     Force power ∶    𝑃 = 𝐲்(3)                              , 

of which the time averaged GPE and GKE as well as the time averaged GPE-flow (GPEF) and the time averaged GKE-
flow (GKEF) during a period (Ͳ, ܶ) are respectively defined by ۃ𝐸ۄ = ∫ Ͳ.ͷ𝐲்𝐲்

 ݀𝑡 ܶ⁄ ۄ𝐾ۃ        , = ∫ Ͳ.ͷ𝐲ሶ ்𝐲ሶ்
 ݀𝑡 ܶ⁄ ۄ𝑃ۃ      , = ∫ 𝐲்்

 ݀𝑡 ܶ⁄ 𝐸ሶۃ  , ۄ = ∫ 𝐸ሶ் ݀𝑡 ܶ⁄ = [𝐸ሺܶሻ − 𝐸ሺͲሻ] ܶ⁄ = ∫ 𝑃் ݀𝑡 ܶ⁄ =  (4)                                                , ۄ𝑃ۃ
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𝐾ሶۃ  ۄ = ∫ 𝐾ሶ்

 ݀𝑡 ܶ⁄ = [𝐾ሺܶሻ − 𝐾ሺͲሻ] ܶ⁄ = ∫ 𝐲ሶ ሶ்்
 ݀𝑡 ܶ⁄  .   

The corresponding energy flow equilibrium equations take the forms 𝐸ሶ = 𝑃,      𝐸ሶ = Ͳ.ͷ𝐲𝟎 𝐲𝟎,      ۸ = ∂ ߲𝐲்⁄ ,        𝐄 = Ͳ.ͷሺ۸ + ۸்ሻ,        𝐔 = Ͳ.ͷሺ۸ − ۸்ሻ,   𝐾ሶ = 𝐲ሶ ்𝐲ሷ = 𝐲ሶ ሶ் = 𝐲ሶ ்ሺ߲ ߲𝑡⁄ + ۸𝐲ሶሻ = 𝐲ሶ ் ߲ ߲𝑡⁄ + 𝐲ሶ 𝑻𝐄𝐲ሶ = ߲𝐾 ߲𝑡⁄ + 𝐲ሶ ்𝐄𝐲ሶ ,                               (5) 

where ۸ is Jacobian matrix, the partial derivative of vector  with respect to vector 𝐲் [5]. For autonomous NDS from 
Eq. 5 we have  𝐲ሶ = ሺ𝐲ሻ,         𝐾ሶ =  𝐲ሶ ்𝐄𝐲ሶ 𝐾ሶۃ             , ۄ = ଵ் ∫ 𝐲ሶ ்𝐄𝐲ሶ் ݀𝑡,                                              (6) 

since ߲ 𝐾 ߲𝑡 = Ͳ⁄ . Here 𝐄 is a real symmetrical energy flow matrice while 𝐔 is a real skew-symmetrical spin matrix, so 
that 𝐲்𝐔𝐲 = 𝟎 = 𝐲ሶ ்𝐔𝐲ሶ. Geometrically, GPE relates the position 𝐲 of a point in phase space, while GKE involves the 
velocity or tangent vector 𝐲ሶ  of solution curve, and the generalised force power 𝑃 gives the energy flow, the time change 
rate of GPE.  
 
Energy flow characteristic factors 
The energy flow matrix 𝐄 is a real symmetrical matrix, of which the eigenvalues and the corresponding eigenvectors are 
real, and its characteristic equation 

                    𝐄ઽ = ઽ,          |𝐄ߣ − |۷ߣ = Ͳ,                                                                            (7) 
can give the eigenvalue ߣ𝐼  and its corresponding eigenvector 𝛙𝐼 satisfying the orthogonal relationships 𝚿்𝐄𝚿 = 𝚲 = 𝐝𝐢𝐚ሺߣ𝐼ሻ,       𝚿்𝚿 = ۷,        𝚿 = [𝛙ଵ 𝛙ଶ ⋯ 𝛙𝑛].                                      (8) 

Normally, the eigenvectors with different eigenvalues span a complete subspace in the neighbor of the point where the 
matrix 𝐄 defined, so that the vector ઽ can be represented as 

                   ઽ = 𝚿ા,                                                                                             (9) 
which, when substituted into the term  ઽ்𝐄ઽ  and by using the orthogonal relationships in Eq.8, gives ઽ்𝐄ઽ = ા்𝚿்𝐄𝚿ા = ા்𝚲ા = ∑ 𝐼𝑛𝐼=ଵߣ 𝜁𝐼ଶ.                                                        (10) 

This result implies that the value of ઽ்𝐄ઽ about a point is totally determined by the eigenvalues and eigenvectors of 
energy flow matrix. We respectively call ߣ𝐼 and 𝛙𝐼 as the energy flow characteristic factors (EFCFs) and the energy 
flow characteristic vectors (EFCVs) of NDS. 
 
Spin matrix  
The spin matrix 𝐔 is a real skew-symmetric matrix and therefore its non-zero eigenvalues ߢ𝐼 must be conjugate purely 
imaginaries with the complex eigenvector matrix 𝐘 satisfying the following orthogonal relationships 𝐘∗்𝐔𝐘 = 𝐝𝐢𝐚ሺߢ𝐼ሻ,            𝐘∗்𝐘 = ۷,                                                             (11) 

Here * denotes a conjugate of complex number.  
 
Curl of a vector field  
The curl of a vector field , denoted by curl, or  ×  at a point O is defined in terms of its projection onto various ,
lines through the point. As shown in Fig.2, if  𝛎 is a unit vector, the projection of the curl onto 𝛎 is defined as a limited 
value of a closed-curve integral in a plane orthogonal to 𝛎, divided by the area A enclosed by the closed curve.  Here, 
the path C of integration is constructed around the point O, so that, when Eqs. 1 and 3 are introduced, we have ሺ × ሻ𝜈 = lim𝐴→ {∮  ∙ ݀𝐲𝐶 𝐴⁄ } = lim𝐴→ {∮ 𝐲ሶ ∙ 𝐲ሶ𝐶 𝐴⁄ } = lim𝐴→ {∮ ʹ𝐾݀𝑡𝐶 𝐴⁄ }.                         (12) 

 

 
 

Figure 2: Circulation integration of path C with its positive direction obeying the right-hand rule to define the curl of vector field . 
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For 3-dimensional space, the curl can be denoted in a tensor form 

        ሺ × ሻ = ݁ ݂,,                                                                          (13) 

where ijke is the permutation tensor [9,10]. The curl is a dual vector of a skew-symmetrical matrix 𝐔, spin matrix, 

satisfying the following relationship ሺ𝐔ሻ𝒊 = ܷ = −Ͳ.ͷ݁ሺ × ሻ = −Ͳ.ͷ݁݁௦ ௦݂, = −Ͳ.ͷ(𝛿𝛿௦ − 𝛿௦𝛿) ௦݂, = Ͳ.ͷ( ݂, − ݂ ,) = Ͳ.ͷሺ۸ − ۸்ሻ . (14) 

Periodical orbits 
For NDS, a periodical orbit is defined as a closed path governed by Eq. 1 in phase space, along which the phase point  𝐲ሺ𝑡ሻ with its velocity 𝐲ሶሺ𝑡ሻ, starting from a position 𝐲ሺ𝑡̂ሻ at time 𝑡̂, moves to the same position  𝐲ሺ�̂� + ܶሻ = 𝐲ሺ�̂�ሻ with the 
same velocity 𝐲ሶሺ�̂� + ܶሻ = 𝐲ሶሺ�̂�ሻ after a period T, and the motion repeats again, such as 𝑡̂ = Ͳ  shown in Fig.3. If we 
assume that ݀ܵ  denotes a differential line element with its unit outside normal vector 𝜈 and unit tangent vector 𝜏  at a 
point on the closed curve in Fig.3, so that 

   𝛕݀ܵ = 𝐲ሶ |݀𝐲| |𝐲ሶ |⁄ = 𝐲ሶ |𝐲ሶ݀𝑡| |𝐲ሶ |⁄ = 𝐲ሶ݀𝑡,                                                     (15) 

based on which the integrals along the curve in the next section hold. 
 

 
  

 Figure 3: The periodical orbit and the unit normal / tangent vectors of line element ݀ܵ on orbit. 
 
This definition implies that for a periodical orbit, its position vector should be a periodical function of time. Generally, 
this periodical function can be represented by a Fourier series of period T. For simplifying mathematic formulations but 
not losing generality, as an example, we consider this function is a sinusoidal function 𝐲ሺ𝑡ሻ = �̂� sinሺ߱𝑡 + �̂�ሻ,          𝐲ሶ ሺ𝑡ሻ = �̂�߱ cosሺ߱𝑡 + �̂�ሻ ,         ߱ = ଶగ்,                                  (16) 

where �̂� and �̂� denote the amplitude and phase angle,  ߱ is a frequency corresponding to the period. From Eq. 16, it 
follows that GPE and GKE respectively are 𝐸 = ଵଶ sinଶሺ߱𝑡 + �̂�ሻ �̂�்�̂� = ʹ�̂� sinଶሺ߱𝑡 + �̂�ሻ,            �̂� = 𝐲𝑇𝐲ସ ,                                                    (17) 𝐾 = ଵଶ cosଶሺ߱𝑡 + �̂�ሻ �̂�்�̂�߱𝟐 = ʹ�̂� sinଶሺ߱𝑡 + �̂�ሻ,            �̂� = 𝐲𝑇𝐲ସ ߱𝟐 = ߱𝟐�̂�.    

Energy flow characteristics of periodical orbits of NDS 

Based on the definition of periodical orbits governed by Eq. 1, if there exists a periodical orbit, the following energy flow 
characteristics must hold. 
 
Time averaged GPE ۃ𝐸ۄ = ଵ் ∮ 𝐸݀𝑡 = �̂�ௌ ,                                                                        (18) 

where �̂� is a positive constant representing the averaged distance of phase points on the orbit to the origin since E is 
positive and the motion repeats along the closed orbit. 
 
Time averaged GPEF ۃ𝐸ሶ ۄ = ଵ் ∫ 𝐸ሶ்+௧̂௧̂ ݀𝑡 = 𝐸ሺ்+௧̂ሻ−𝐸ሺ௧̂ሻ் = Ͳ = ଵ் ∫ 𝐲்்+௧̂௧̂ ݀𝑡,                                       (19-1) 

since for the periodical orbit S, 𝐲ሺ𝑡̂ + ܶሻ = 𝐲ሺ𝑡̂ሻ. If the vector field  takes a form   = 𝐁ሺ𝐲ሻ𝐲 = ሺ�̅� + �̅�ሻ𝐲,      �̅� = ሺ𝐁 + 𝐁்ሻ ʹ⁄ ,           �̅� = ሺ𝐁 − 𝐁்ሻ ʹ⁄ ,                          (19-2) 
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Eq. 19-1 requires the EFCFs of matrix �̅� not always being semi-positive or semi-negative in the period T. 
 
Time averaged GKE ۃ𝐾ۄ = ଵ் ∮ 𝐾݀𝑡ௌ = �̂� = ଵଶ் ∮ 𝐲ሶ ∙ 𝐲ሶ݀𝑡ௌ = ଵଶ் ∮ 𝐲ሶ ∙ 𝛕݀𝑡ௌ ,                                         (20) 

where �̂� is a positive constant, sine GKE is not negative. From this result, when Eq.12 noticed, it follows that  curl 
must not vanish, so that Eq. 14 implies  

      𝐔 ≠ Ͳ.                                                                                        (21) 

In a reverse case if Eq.21 holds, then Eq. 20 holds. Therefore, Eq. 21 is a necessary and sufficient condition for Eq. 20.  
 
Time averaged GKEF ۃ𝐾ሶ ۄ = ଵ் ∫ 𝐾ሶ்+௧̂௧̂ ݀𝑡 = 𝐾ሺ்+௧̂ሻ−𝐾ሺ௧̂ሻ் = Ͳ = ଵ் ∫ ሺ𝜕𝐾𝜕௧ + 𝐲ሶ ்𝐄𝐲ሶሻ்+௧̂௧̂ ݀𝑡,                              (22-1) 

For autonomous NDS, ߲ 𝐾 ߲𝑡⁄ = Ͳ, from Eq. 10, it follows ۃ𝐾ሶ ۄ = ଵ் ∫ ሺ𝐲ሶ ்𝐄𝐲ሶሻ்+௧̂௧̂ ݀𝑡 = ଵ் ∫ ሺા்𝚲ાሻ்+௧̂௧̂ ݀𝑡 = ଵ் ∫ ሺ∑ 𝐼𝑛𝐼=ଵߣ 𝜁𝐼ଶሻ்+௧̂௧̂ ݀𝑡 = Ͳ,                        (22-2) 

holds, implying that the EFCFs of NDS must not always be semi-positive or semi-negative in the period T.  

Above equations are valid if exsisting periodical orbits of NDS, so that they are necessary conditions. Considering GPE 
geometrically involves the distance of a phase point to the origin, we can confirm that for a periodical oribit curve, of 
which each point has its positive distance to the origin, so that Eq. 18 always is valid. Moreover, as discussed above, the 
condition in Eq. 21 can replace the Eq. 20, which implies that non-zero spin matrix of NDS is a necessary condition for 
its periodical orbits. 
 
Theorem A necessary sufficient condition for NDS, governed by Eq. 1, having periodical orbits is that its spin matrix  𝐔 ≠ Ͳ and there exists at least one closed curve with a corresponding period T, along which the time averaged GPEF 
and GKEF vanish. For autonomous NDS, the condition of time averaged GKEF can be replaced by that its EFCFs of 
energy flow matrix E are always not semi-positive or semi-negative in the period T.  

Examples 

A linear system 
As an example, we consider a system with one degree of freedom governed by equation 

ሷݔ      + 𝛼ݔሶ + ݔ = ݂ cos 𝑡,                                                                  (23-1) 
which can be rewritten in the form of phase space 

ሶݕሶݔ]    ] = [ Ͳ ͳ−ͳ −𝛼] [ݕݔ] + [ Ͳ݂ cos 𝑡],                                                  (23-2) 

with its Jacobian, energy flow, spin matrices and energy flow equation respectively as follows ۸ = [ Ͳ ͳ−ͳ −𝛼] = 𝐁, �̅� = [Ͳ ͲͲ −𝛼] , �̅� = [ Ͳ ͳ−ͳ Ͳ] , 𝐸ሶ = −𝛼ݕଶ + ݂ݕ cos 𝑡 , 𝐾ሶ = 𝜕𝐾𝜕௧ − 𝛼ݕଶ = −𝛼ݕଶ − ሶ݂ݕ sin 𝑡.   (23-3)        

The time averaged GPEF and GKEF of the system are respectively given by ۃ𝐸ሶ ۄ = ଵଶగ ∫ ሺ−𝛼ݕଶ + ݂ݕ cos 𝑡ଶగ ሻ݀𝑡,             ۃ𝐾ሶ ۄ = ଵଶగ ∫ ሺ−𝛼ݕଶ − ሶ݂ݕ sin 𝑡ଶగ ሻ݀𝑡.                   (23-4) 

It is not difficult to obtain the EFCFs of the system ̅ߣଵ = −𝛼,          ̅ߣଶ = Ͳ,                                                                  (23-5)                          

implying they are semi-positive for 𝛼 < Ͳ, semi-negative for  𝛼 > Ͳ,  and vanish when 𝛼 = Ͳ. Based on the above 
results, we discuss its two cases as follows. 

Non-forced case ݂ = Ͳ 
For this case, the time averaged GPEF and GKEF have the values 

𝐸ሶۃ ۄ = 𝐾ሶۃ ۄ = {> Ͳ,       𝛼 < Ͳ,< Ͳ,       𝛼 > Ͳ,= Ͳ,       𝛼 = Ͳ.                                                                         (23-6) 

As shown in Fig. 4, from this result it follows that the system is a divergence one when 𝛼 < Ͳ, due to time averaged 
GPEF and GKEF are always increasing and the orbit tends to infinite; while it is a converged one when 𝛼 > Ͳ, the orbit 
tends to the origin of phase space. There are no periodical orbits for non-zero values of parameter 𝛼 although the spin 
matrix of the system is not zero.  Also, EFCFs are semi-positive or semi-negative which do not satisfy the conditions in 
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Theorem. When 𝛼 = Ͳ the system has its periodical orbit of radius  𝜌 = ଶݔ√ +  ଶ depending on the initial conditionݕ
,ݔ)  .) shown in Fig.4ݕ
 

 
 

Figure 4: The orbits of 1-DOF system affected by the damping parameter 𝛼  and external force f. 
 
Forced case  ݂ ≠ Ͳ, 𝛼 > Ͳ 
For this case, since the system is linear, we know the solution of system is 

ݔ        =  𝜌 sin 𝑡,     ݕ =  𝜌 cos 𝑡,                                                                            (23-7) 

so that its time averaged GPEF and GKEF calculated by using Eq. 23-4 are ۃ𝐸ሶ ۄ = ଵଶగ ∫ ሺ−𝛼𝜌ଶ cosଶ 𝑡 + 𝜌݂ cosଶ 𝑡ଶగ ሻ݀𝑡 = −𝛼ఘ2+ఘ𝑓ଶ = 𝐾ሶۃ  ۄ = ଵଶగ ∫ ሺ−𝛼𝜌ଶ cosଶ 𝑡 + 𝜌݂ sinଶ 𝑡ଶగ ሻ݀𝑡.   (23-8) 

Therefore, both GPEF and GKEF vanish when 𝜌 = ݂ 𝛼⁄ , in which the work done by the external force is dissipated by 
the damping of the system and the system undergoes a periodical motion with radius 𝜌 = ݂ 𝛼⁄  shown in Fig. 4. 
 
Van der Pol’s equation  
Van der Pol’s equation provides an example of an oscillation with nonlinear damping, its energy dissipated at large 
amplitude but generated at low amplitude. The governing equation of Van der Pol’s system is given by [ݔሶݕሶ ] = 𝐁 [ݕݔ] ,     ۸ = [ Ͳ ͳ−ͳ − ݕݔʹ −ሺݔଶ − ͳሻ] ,    𝐁 = [ Ͳ ͳ−ͳ −ሺݔଶ − ͳሻ],                           (24-1) 

from which, when Eq. 5 used, it follows 𝐄 = [ Ͳ ݕݔ−ݕݔ− −ሺݔଶ − ͳሻ] , 𝐔 = [ Ͳ ͳ + ͳ−ݕݔ − ݕݔ Ͳ ],  𝐸ሶ = −ሺݔଶ − ͳሻݕଶ, 𝐾ሶ = 𝐲ሶ ்𝐄𝐲ሶ = ሶݕሶݔݕݔʹ− − ሶݕ ଶሺݔଶ − ͳሻ.   (24-2) 

 
 

         Figure 5: the periodical orbit of Van der Pol’s equation. 
 
To check if the time averaged GPEF and GKEF vanish in a possible closed orbit, we assume that 

ݔ        =  𝜌 sin 𝑡,     ݕ =  𝜌 cos 𝑡,                                                               (24-3) 

so that we obtain ۃ𝐸ሶ ۄ = ଵଶగ ∫ [−ሺ𝜌ଶ cosଶ 𝑡 − ͳሻ𝜌ଶ sinଶ 𝑡ଶగ ሻ݀𝑡 = − ఘ2ଶ ቀఘ2ସ − ͳቁ,                                    (24-4) ۃ𝐾ሶ ۄ = ଵଶగ ∫ [ʹ𝜌ସ sinଶ 𝑡 cosଶ 𝑡 − 𝜌ଶ sinଶ 𝑡ሺ𝜌ଶ sinଶ 𝑡 − ͳሻ]ଶగ ݀𝑡 = − ఘ2ଶ ቀఘ2ସ − ͳቁ.  
Therefore, when 𝜌 = ʹ, the GPEF and GKEF vanish, which gives a periodical orbit. For matrix E, its EFCFs are ߣଵ,ଶ = {−ሺݔଶ − ͳሻ ± √ሺݔଶ − ͳሻ + Ͷݔଶݕଶ} ʹ⁄ ,                                                     (24-5) 
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of which one positive and another negative. These results satisfy the conditions in theorem. As shown in Fig. 5, the 
periodical orbit is a circle of radius 𝜌 = ʹ, along which on the domain with |ݔ| > ͳ, the energy flow 𝐸ሶ < Ͳ, while on 
the domain with |ݔ| < ͳ,the energy flow 𝐸ሶ > Ͳ, and on the full circle the averaged energy flow vanishes. 
 
A planar system  
We investigate a planar system governed by 

ሶݔ  = ሶݕ           ,ݕݔ = ݕ− + ଶݔ ʹ⁄ ,                                                       (25-1) 

of which its Jacobian, energy flow and spin matrices respectively as ۸ = ݕ] ݔݔ −ͳ] = 𝐄,          𝐔 = Ͳ,                                                        (25-2) 

so that there are no periodical orbits due to spin matrix vanishes. We can calculate the energy flow of the system, i.e. 

        𝐸ሶ = ଶݔݕ͵ ʹ⁄ −  ଶ,                                                                         (25-3)ݕ
of which its zero energy flow curves are 

ݕ        = Ͳ,         ݕ = ଶݔ͵ ʹ⁄  ,                                                                       (25-4) 

as shown in Fig.6. Using the Eq. 24-3, the time averaged GPEF is calculated as follows  ۃ𝐸ሶ ۄ = ఘ2ଶగ ∫ ሺଷఘଶଶగ cosଶ𝑡 sin 𝑡 − sinଶ𝑡ሻ݀𝑡 = − ఘ2ଶ ≠ Ͳ,                                              (25-5) 

which indicates periodical orbits are impossible.  

 
 

Figure 6: The zero energy flow curves of system shown by Eq. 25-1. 

Conclusions 

Energy flow theory with two scalars, GPE and GKE as well as the real symmetrical energy flow matrix E and the real 
skew-symmetrical spin matrix U is effectively used to investigate NDS in phase space. It is revealed that a necessary 
sufficient condition for NDS 𝐲ሶ = ,ሺ𝑡 𝐲ሻ having periodical orbits is that there exist a non-zero spin matrix and a closed 
orbit with a corresponding period T, along which the time averaged GPEF and GKEF vanish. For autonomous systems 
with energy flow matrix E the necessary condition for periodical orbits is its EFCFs not being semi-positive or semi-
negative. Three examples, a damping / forced linear system, the Van der Pol’s system, and a planar one, are presented 
to illustrate the revealed characteristics. The developed energy flow theory provides an important means to explore 
dynamic characteristics of various NDS.  
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New simple oscillator model describing ice-induced vibrations of an offshore structure

A. K. Abramian∗, S. A. Vakulenko†
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Summary. In this paper a new simple oscillator model is considered describing ice induced vibrations of upstanding, water surrounded,
and bottom-founded offshore structures. Existing models are extended by taking into account deformations of an ice floe, and a moving
contact interaction between an ice rod, which is cut out from the floe, and the oscillator which represents the offshore structure. Special
attention is paid to a type of ice-induced vibrations (IIV) of structures, known as frequency lock-in, and characterized by having the
dominant frequency of the ice forces near a natural frequency of the structure. The instability onset,induced by resonance for the
oscillator and generated by the ice rod structure interaction, is studied in detail.

Statement of the problem

Vertically-sided, bottom-founded offshore structures occasionally experience sustained vibrations due to drifting ice
sheets crushing against them. Usually, three regimes of interaction are distinguished: intermittent crushing, frequency
lock in, and continuous brittle crushing. In this paper, we introduce a mathematical model for a special type of ice- in-
duced vibrations (IIV) of structures, known as frequency lock-in, and characterized by having the dominant frequency of
the ice forces near a natural frequency of the structure. In this paper, we propose a model extending the previous ones,
in particular, those suggested in [1, 2, 3, 4]. A novelty with respect to the previous investigations is that we study the ice
deformations in more detail including nonlinear deformation. We describe deformations of the ice rod taking into account
possible viscous ice behaviour, and a moving contact between the structure and the ice. Following [1, 2, 3, 4] we consider
an offshore structure as a one-degree-of- freedom oscillator and the ice floe as a system of ice rods, whose properties in-
clude local failure. In particular, we consider a simple oscillator, which interacts with one of such rods. Considering only
one rod we take into account the connections of this rod with the others following the approach suggested in [5]. In order
to simulate the behavior of the structure during the frequency lock-in regime the condition was set that the ice should
always be in contact with the structure. On the basis of this requirement the equation describing the simple oscillator
dynamics is given by:

qtt +Ω2q + αqt = µ, (1)

where q = q(t) is the oscillator displacement, Ω2 = G
M , where Ω is the oscillator frequency, and M and G are the

mass and rigidity of the oscillator respectively, and α > 0 is a positive damping coefficient. For (1) the following initial
conditions are used:

q(0) = 0, qt(0) = 0. (2)

The term µ in (1) defines a force which is acting on the oscillator due to the ice rod, and has the form

µ =
EF

M
(ux +

δ0
E
uxt + u2x)|x=q(t), (3)

where u = u(x, t) is the longitudinal ice rod displacement, E is an ice Young’s modulus, F is the ice rod cross sectional
area, and δ0 is the ice internal, structural damping coefficient. The term ux in the right hand side of (3) defines the
contribution of linear deformations, and the term uxt is the ice viscosity. The following equation describes the dynamics
of the ice rod, which is defined on the semi-infinite domain Iq = {x : q < x <∞}.

ruxx −mutt + δ0uxxt = Q, (4)

Q = −β(st − ut)− k0(s− u), (5)

where u(x, t) is the unknown ice rod displacement, m is the ice rod mass per unit length, Q is a force occurring in the
rod due to its side-surface contact with others ice rods in the space around the rod in the ice floe that is considered in
(4). The ice floe is drifting along the x-axis. The parameters β,r,δ0, and k0 are positive. The coefficient β is the ice
friction coefficient during its side-surface contact, the coefficient r is the coefficient relating the shearing stress and the
strain in the ice floe, and thus defines "the load spreading capacity of the foundation" according to [5]. The parameter k0
characterizes the rod compression which is caused by stresses due to the ice rod compression in the transverse direction
by other ice rods. In other words, the ice floe behavior can be modelled by a generalized spring and a generalized dashpot.
The function s(t) describes the shift of the ice rod, and s(t) is defined by s(t) = −vt+ ρ(t), where v > 0 is the relative
ice velocity, and ρ(t) =

∑∞
n=1 dnH(t− tn).

Here tn are time moments when the ice rod crushes at x = q(t); dn are the lengths of ice blocks that split off, and H(z)
stands for the Heaviside step function. The time moments tn are defined by the condition

p(tn) = pc, (6)
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that is, the pressure p in the ice periodically attains a critical level pc. We introduce the following boundary conditions

u(q(t), t) = q(t), u(x, t)→ 0, for x→ +∞. (7)

The first one is a contact relation between the ice rod and the oscillator, and the second one is a radiation condition at
infinity. The initial conditions are given by

u(x, 0) = φ0(x), ut(x, 0) = φ1(x), x ∈ (q(0),∞), (8)

where φj(x) are fast decreasing functions in x for x→∞.

Figure 1: The dependence of the equilibrium amplitude A on the ice rod speed v for the dimensionless parameters k0 = 25, d = 1,
β = 0.2, ᾱ = 4, and δ0 = 0.1.

Conclusions

In this paper, a new model is proposed to describe the interaction between an ice-rod and an oscillator. This model takes
into account deformations of the ice floe. The model is analytically investigated by asymptotic methods.It is shown that the
contact interaction between the oscillator and the ice rod leads to resonances. The main resonance between the oscillator
and the external load occurs when the natural frequency Ω of the oscillator is close to the external load frequency ω.
We also find a new mechanism for the oscillator’s behavior which can be described by a resonance between the external
load, the oscillator, and the part of the ice rod (boundary layer) inducing an oscillator-ice rod interaction during the rod’s
motion with speed v. We show that ice rod deformation patterns arise which are generated by an interaction between the
oscillator and the rod. This ice rod deformation is exponentially decreasing along the ice rod length. We obtain a plot
describing how the oscillator’s amplitude A depends on the ice velocity v. For some parameter choices this plot shows a
significant peak for the amplitude A. For small rod-speeds v we have a small oscillation amplitude A, as well as for large
v. The height and width of the peak depend on the system parameters.
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Vibrations of a vertical flexible riser in sheared flow

Victoria Kurushina∗,† and Ekaterina Pavlovskaia‡
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Tyumen, 625000, Russia
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‡Centre for Applied Dynamics Research, University of Aberdeen, King’s College, Aberdeen, AB24
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Summary. Vortex-induced vibrations of a flexible pipe, with pinned-pinned ends and straight initial configuration, are considered
in this work in a number of linear and nonlinear velocity profiles, varying along the length of structure. Krenk-Nielsen [1] and Van
der Pol wake oscillators are employed in order to simulate fluctuations of the fluid forces, while the structure is modelled using the
Euler-Bernoulli beam. Trajectories, time histories, multi-mode lock-in are studied using the case parameters, previously investigated
by [2].

Introduction

Vibrations of flexible structures remain a vital problem for the safety of oil and gas subsea production systems. Application
of fluid oscillators is one of the modern ways to improve the current prediction capabilities and study the complex multi-
mode vibration mechanism. The focus of this work is on the near-resonant velocity profiles and resulting behaviour of the
vertical flexible structure.

Flexible riser model

The structure with pinned-pinned ends, previously studied in uniform flow in 2D in [3], is subjected to sheared flow, and
the approximate solution is obtained using the method described in [4]. Approximation for sheared flow is developed
using integration of the velocity profile along the length of the riser. The reduced order non-dimensional model for ith
mode is as follows:

Ẍi + 2a
N∑

n=1

ẊnΘni + ω2
rnXi =

Ww

Lm∗ω2
0

N∑

n=1

XnΦni +
a

2πSt
Λi +

b

4πSt

N∑

n=1

wnΓni − b
N∑

n=1

N∑

m=1

wnẊm∆nmi+ (1)

+
c

2

N∑

n=1

N∑

m=1

qnẎm∆nmi + 2πSta
N∑

n=1

N∑

m=1

ẊnẊmΠnmi + πSta
N∑

n=1

N∑

m=1

ẎnẎmΠnmi;

Ÿi + a
N∑

n=1

ẎnΘni + ω2
rnYi =

Ww

Lm∗ω2
0

N∑

n=1

YnΦni −
b

2

N∑

n=1

N∑

m=1

wnẎm∆nmi +
c

4πSt

N∑

n=1

qnΓni−

− c
N∑

n=1

N∑

m=1

qnẊm∆nmi + 2πSta
N∑

n=1

m∑

n=1

ẊnẎmΠnmi;

ẅi − 2εx1

N∑

n=1

ẇnΘni + 2εx2

N∑

n=1

N∑

m=1

N∑

l=1

ẇnwmwlΞnmli + 2εx3

N∑

n=1

N∑

m=1

N∑

l=1

ẇnẇmẇlBnmli + 4
N∑

n=1

wnΓni = AxẌi;

q̈i − εy

N∑

n=1

q̇nΘni + εy

N∑

n=1

N∑

m=1

N∑

l=1

q̇nqmqlΞnmli +
N∑

n=1

qnΓni = AyŸi,

where

X(ζ, τ) =
N∑

n=1

Xn(τ)X̃n(ζ); Y (ζ, τ) =
N∑

n=1

Yn(τ)Ỹn(ζ); w(ζ, τ) =
N∑

n=1

wn(τ)w̃n(ζ); q(ζ, τ) =
N∑

n=1

qn(τ)q̃n(ζ).

Here, τ is non-dimensional time, ζ = z
L is location of considered cross-section of the beam (where z represents the axial

coordinate), X̃n(ζ), Ỹn(ζ), w̃n(ζ), q̃n(ζ) are sinusoidal functions, Xi and Yi constitute in-line and cross-flow displace-
ments multipliers, wi and qi are wake coefficients multipliers, ΩR is vortex shedding frequency, St is Strouhal number,
εx1, εx2, εx3, εy are dimensionless wake oscillator damping coefficients,Ax, Ay are empirical coupling coefficients, a, b, c
are dimensionless coefficients depending on the initial drag, fluctuating drag and lift coefficients respectively, N is total
number of modes considered, ωni is the ith natural frequency, ω0 is reference frequency, m∗ is mass per unit length (in-
cluding structural mass and fluid added mass), Ww is weight of structure per unit length. Dimensionless coefficients Λi,
Θni, Φni, Γni, ∆nmi, Πnmi, Bnmli, Ξnmli represent interaction of modes with numbers n,m, l. Among them, Λi, Θni,
Γni, ∆nmi, Bnmli, Ξnmli constitute the difference with the uniform flow model [3] and account for the velocity/vortex

shedding frequency profile integrated along ζ, e.g. Θni = 2
∫ 1

0

[
sin(nπζ)sin(iπζ)StUR(ζ)

]
dζ. In this work, the dy-

namics of the vertical flexible structure is studied using 5 mode approximation, where reduced velocity is defined based
on the first natural frequency measured in [2].
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Results

Five sheared flow velocity profiles were considered in the current study where the flow velocities lie in the proximity
of the first few natural frequencies of the flexible structure, including reduced velocities UR = 5.0 and UR = 10.0, as
shown in Fig. 1a. In this example, constant velocity profile with UR = 5.0 results in the highest in-line and cross-flow
displacement amplitudes observed in the bottom part of the structure, as illustrated in Figs 1c and 1d. Structural motion
under this constant uniform velocity and under the parabolic profile with the maximum reduced velocity UR = 5.0 show
response of 4 modes. The parabolic profile with the maximum reduced velocity UR = 10.0 leads to the most symmetric
displacement amplitudes, relatively ζ = 0.50 with three more significant medium peaks. Linearly varying profiles result
in the increased displacements in the cross-sections subjected to the increased flow velocity, however, the profile with
the velocity growing towards the top of structure leads to higher maximum amplitudes in both in-line and cross-flow
directions. Fig. 1b provides two samples of multi-frequency cross-flow displacement signals at the cross-section of
ζ = 0.33 with the largest amplitudes demonstrated under the flow of constant velocity.
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Figure 1: Dynamics of a vertical flexible structure predicted by the 5 mode approximation: (a) five considered velocity profiles shown
in terms of the reduced velocity and the length of structure; (b) time histories of the largest and smallest cross-flow displacement
amplitudes at ζ = 0.33; (c) in-line and (d) cross-flow displacement amplitude variation along the length of structure.

Conclusions

Results of the flexible structure dynamics simulations for a number of linear and nonlinear sheared flow profiles are
presented in this work, using 5 mode approximation obtained in a similar way as was done in the previous studies for
uniform flows [3, 4]. The novelty of this model formulation is in the coefficients representing mode interaction and
the integrated velocity profile. Multi-mode lock-in is considered in details, and the highest displacement amplitudes are
predicted to occur under the influence of linear velocity profiles including the limited cases of uniform flows.
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Summary. In this work, we numerically explore the stochastic dynamics of inclined marine risers subjected to pulsating internal fluid flow. 
The presence of geometric nonlinearities with static deflection makes the response of the inclined riser different from conventional top 
tension risers when subjected to pulsating flows. At first, the riser model is solved via Galerkin method and validated using perturbation 
approaches. Then, we study the propagation of uncertainties i.e. amplitude and frequency of pulsations in the stochastic model revealing 
rich and complex dynamics features.  

Introduction 

Pulsating flow is a phenomenon that affects the oil and gas industries. It occurs due to abrupt perturbations and 
fluctuations in the internal fluid flow of the riser pipe which in return can affect and influence the vibrational motion of 
the structure. It occurs due to several reasons such as the nature of the multi-phase flow and sudden geometric changes 
[1]. Because the value of the excitation amplitude and frequency of fluctuation of the flow are uncertain i.e. stochastic, 
the influence of the flow can be sever especially if the frequency of these flows are near structural resonances of the 
riser making them prone to failure by fatigue. 

Problem Formulation 

The inclined riser to be analyzed in this work is under mid-plane stretching and subjected to static deflection [2] and 
pulsating internal fluid flow. Then, the equation that describes the motion of the riser in dimensionless form can be 
written as   

    
2 4 2 2 2

2
2 4 2 2

2 2 2

2
0 0

1

0 0

1 1 1

2 1 1

2 2

d

s

d d d d d d d d

d s s d

d

dd

x c c T x
t t t t t t

dy y dy y dy y
dx dx dx dx

dx x dx x

y y y y y y y y y

x x x x x

y

dx xx


    

 

                                    
                                

    2
0

1 2 2

0d syy d
dx

x xd

            


                     (1) 

where yd is the deflection of the riser along position x and time t, β is fluid mass parameter, σ is self-weight parameter, υ 
is internal fluid flow velocity, η is nonlinear geometric parameter, c is structural damping, cd is external fluid damping 
and T is the applied top tension. Due to flow fluctuations, the internal velocity is assumed to have the form 

  1 cosV t     where V is the magnitude of the internal velocity,  is a detuning parameter between 0 and 1 and 

 is the excitation frequency. Equation (1) is solved via Galerkin method utilizing the procedures prescribed in [3] and 
[4] and validated using perturbation method defined in [5-7]. Next, we consider a probabilistic frame of work in which 
the amplitude  and the excitation frequency Ω are random variables. Then, we study the influence of type of different 
probability distributions (PDF) on the dynamic response of the structure using Monte Carlo (MC) simulations with 213 
samples. 

Numerical Results 

At first, the deterministic model is analyzed. Due to the quadratic nature of the internal fluid flow, the excitation 
frequency is expected to occur at Ω and 2Ω because of the nature of the parametric excitation. The dynamic response of 
the lowest three modes is depicted in Fig.1 
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Figure 1: Multi-modal Frequency response curves around the first mode of vibrations forV  , 0.416dc  at x=0.48. (a,b) 

Backward Sweep (   ) 0.25  , (  ) 0.50  , (  ) 0.75  . The inset is magnified results for case (b). (c,d) (  )1  . 

Filled shapes denotes forward sweep. 
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We observe, in Fig. 1, the influence of the different components that exists in the system as a result of the interaction. 
The influence of the softening nonlinearity is less apparent due to the competing effects between the first mode and 
contributions from other modes that exist in the response. This is observed very well in Fig. 1b in comparison to other 
cases. In addition, the interaction of other resonances with the response of the solution near Ω and 2Ω become more 
visible at higher fluctuating velocity as the solution demonstrate chaotic behavior. 
 
Next, we consider the stochastic response of the riser. The results from the MC method are divided into ten categories 
considering the two excitation frequency ranges and the combination of the distributions for the amplitude utilizing 
Beta and uniform distributions where they are applicable. As an example, we demonstrate the response of the riser 
under Beta distribution for excitation at a frequency of 12 0.464  in Fig.2 

 

 
(a) 

 
  19.99t      29.99t    39.99t            50t   

(b) 
Figure 2: 12 0.464   (a) Illustration of the nominal value (Blue line) and the 95 % envelop (grey shadow) of the displacement 

(left) and the velocity (right) of the riser. The box in each figure is a magnified response of the riser. (b) Evolution of the normalized 
probability density function as a function of the rise velocity at different times. The box in each figure is a magnified distribution of 

the probability density function. 
 

The response of the riser displacement is exhibited on the left Fig. 2a and we plot the velocity in order to have a better 
representation of the riser response. The distribution influences type of response because at this frequency the riser 
excite not only secondary terms due to quadratic nonlinearity but also primary due the squaring of terms. Due to this 
fact, the mean value is observed to be superseded by different excitation amplitudes constituting the envelope. The 
propagation of the probability density function at different time interval demonstrate that it is stationary. The main 
feature is attributed to the primary excitation of the riser structure. 

Conclusions 

In this work, the stochastic dynamics of inclined risers is studied considering the influence of pulsating internal fluid 
flow. The presence of static deflection under the influence of geometric nonlinearity causes multiple resonances to 
exist. This influences the stochastic response of the riser examined under different distributions. As a result, the 
response of the riser in the Monte Carlo simulations revealed interesting complex and rich dynamic features  
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Solitary wave-like solutions in hyperelastic tubes conveying inviscid and viscous fluid

Vasily Vedeneev∗

∗Lomonosov Moscow State University, Moscow, Russia

Summary. We study possible steady states of an infinitely long tube made of a hyperelastic membrane and conveying either an inviscid,
or a viscous fluid with power-law rheology. The tube model is geometrically and physically nonlinear; the fluid model is limited to
smooth changes in the tube’s radius. For the inviscid case, we analyse the tube’s stretch and flow velocity range at which standing
solitary waves of both the swelling and the necking type exist. For the viscous case, we show that a steady-state solution exists only
for sufficiently small flow speeds and that it has a form of a kink wave; solitary waves do not exist. For the case of a semi-infinite tube
(infinite either upstream or downstream), there exist both kink and solitary wave solutions. For finite-length tubes, there exist solutions
of any kind, i.e. in the form of pieces of kink waves, solitary waves, and periodic waves.

Introduction

Nonlinear waves in fluid-filled elastic tubes play an important role in problems of the cardiovascular system [1,7]. Solitary
wave solutions are used for the analysis of pulse waves as well as for the study of the formation of aneurysms [3,4]. As a
rule, such solutions are theoretically analysed without consideration of the fluid viscosity [2, 5]. The goal of this study is
to include the viscosity into account and to study its effect on solitary-wave-like solutions.

x

r
θ

dx*
ds*

x

r
θ dx

ds

Figure 1: Cylindrical membrane tube in the initial and the deformed state.

Problem formulation and results

Governing equations
We consider a cylindrical membrane tube with a circular cross-section with a thickness of h and a radius of R, made
of incompressible hyperelastic Gent material (Fig. 1). The ratio h/R is sufficiently small for the bending stresses to be
neglected compared to the membrane stresses. The tube conveys a non-Newtonian viscous fluid whose rheology obeys
a power law. We restrict ourselves to axisymmetric motion. In [2], a self-contained derivation of the exact equations of
motion for the case of an inviscid fluid was given. We re-derive these equations and upgrade it by the viscous fluid forces
taken into account. The fluid equations are considered in the formulation [9, 10]. With these assumptions, closed system
of four differential equations is derived.

Analysis: inviscid fluid
If the fluid viscosity is neglected and the velocity is constant at each cross-section, the system of equation has four first
integrals, as shown in [2]. We prove that the existence of these integrals retains if the velocity distribution is non-constant,
but the viscosity is still neglected. The system of first integrals is reduced to a two-dimensional dynamic system, which is
analysed by its phase plane (Fig. 2).
It is known [6] that for a quiescent fluid (or, equivalently, if a constant pressure is set in the tube) in a tube that is axially
unstretched at infinity (axial stretch λ10 = 1), a standing solitary wave in the form of a localised swelling exists for a
range of far-field circumferential stretches 1.18 < λ20 < 1.69. We show that in the case of a moving fluid, there is a
range of velocities (0.063 ≤ vf0 ≤ 0.58 for far-field radial stretch λ20 = 1.5), in which there exists, simultaneously with

(a) (b)

s1 c2
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2

1
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-1

-2
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1 2 3 4 5 0.5 1.0 1.5 2.0 2.56 7 8

Figure 2: Vector field and separatrices of the stationary saddle points for λ10 = 1, λ20 = 1.5, and vf0 = 0.4. General view (a),
enlarged view in the area of the separatrix loops (b).
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Figure 3: Swelling (a) and necking (b) solitary waves λ2(x) for λ10 = 1, λ20 = 1.5, and vf0 = 0.4.
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Figure 4: Kink-like solution λ2(x) for infinite-length tube conveying viscous fluid.

the standing swelling solitary wave, a standing necking solitary wave. At a lower fluid velocity, there is only a swelling
solitary wave; for larger velocities, no solitary waves exist. Note that in a model of a geometrically and physically linear
tube, in which only the nonlinearity of the flow was taken into account [8], there always exists, for any nonzero flow
velocity, only a standing necking solitary wave. Thus, both the existence of a standing swelling solitary wave and the
limited range of fluid velocities for which a standing necking solitary wave exists are consequences of the physical and
geometrical nonlinearities of the tube model.

Analysis: viscous fluid
When a viscous fluid moves, only two of the four first integrals exist, and the motion of the trajectory on the phase plane
is accompanied by a simultaneous change of the vector field. First, we prove that there are limit stretch states of the tube
as x → −∞ and x → +∞, with the stretches λ1 and λ2 tending to constants but the stresses tending to infinities to
compensate for the fluid pressure and the longitudinal stress caused by the fluid viscosity, which are infinitely growing
upstream and infinitely decreasing downstream. The transition between these limit states occurs in the central section of
the tube and exists only if the fluid velocity is sufficiently small. In this case there is a unique solution linking the states
at infinity in the form of a monotonic decrease in the radius downstream, i.e. a kink-like solution. Localised swelling
or necking solutions for a tube that is infinitely long in both directions do not exist. However, such solutions exist if the
tube is infinitely long in only one direction, either downstream or upstream. But solutions in which a semi-infinite tube
has multiple neckings or swellings do not exist. For finite-length tubes, there exist ‘pieces’ of both swelling and necking
solitary waves, as well as close-to-solitary-wave solutions with a finite number of successive swellings or neckings.
This work was supported by a grant of the Russian Foundation for Basic Research No. 18-29-10020.
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FĂRĂGĂU Andrei, 120, 388, 603
FABRE Benoît, 420
FALCON Ricardo, 852
FANG Zhengliang, 965
FAROKHI Hamed, 63, 1153
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